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Abstract: This manuscript presents an approach to perform generalized
linear regression with multiple high dimensional covariance matrices as the
outcome. In many areas of study, such as resting-state functional magnetic
resonance imaging (fMRI) studies, this type of regression can be utilized
to characterize variation in the covariance matrices across units. Model
parameters are estimated by maximizing a likelihood formulation of a gen-
eralized linear model, conditioning on a well-conditioned linear shrinkage
estimator for multiple covariance matrices, where the shrinkage coefficients
are proposed to be shared across matrices. Theoretical studies demonstrate
that the proposed covariance matrix estimator is optimal achieving the
uniformly minimum quadratic loss asymptotically among all linear combi-
nations of the identity matrix and the sample covariance matrix. Under cer-
tain regularity conditions, the proposed estimator of the model parameters
is consistent. The superior performance of the proposed approach over ex-
isting methods is illustrated through simulation studies. Implemented to a
resting-state fMRI study acquired from the Alzheimer’s Disease Neuroimag-
ing Initiative, the proposed approach identified a brain network within
which functional connectivity is significantly associated with Apolipopro-
tein E ε4, a strong genetic marker for Alzheimer’s disease.

MSC2020 subject classifications: Primary 62J99; secondary 62H99.
Keywords and phrases: Covariance matrix estimation, generalized linear
regression, heteroscedasticity, shrinkage estimator.
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1. Introduction

In this manuscript, we study a regression problem with covariance matrices
as the outcome under a high dimensional setting. Suppose yit ∈ R

p is a p-
dimensional random vector, which is the tth acquisition from subject i, for
t = 1, . . . , Ti and i = 1, . . . , n, where Ti is the number of observations of subject
i and n is the number of subjects. Let Tmax = maxi Ti. The term “high dimen-
sionality” refers to the scenario when Tmax � p and p increases to infinity. The
data, yit, are assumed to follow a normal distribution with covariance matrix
Σi. Here, without loss of generality, it is assumed that the distribution mean
is zero as the study interest focuses on the covariance matrices. Let xi ∈ R

q

denote the q-dimensional covariates of interest acquired from subject i. For the
covariance matrices, we assume the following regression model. For i = 1, . . . , n,
the data heteroscedasticity satisfies the following generalized linear regression
model with a logarithmic link function,

log(γ�Σiγ) = x�
i β, (1.1)

where γ ∈ R
p is a linear projection and β ∈ R

q is the model coefficient. In
xi, the first element is set to one to include the intercept term. Using a loga-
rithmic link function, it is guaranteed that Σi’s are positive semi-definite. The
goal is to estimate γ and β using the observed data {(yi1, . . . ,yiTi),xi}ni=1. In
Model (1.1), γ is an unknown linear projection to be estimated such that the
characteristic of the covariance matrices can be best captured by the covariates
of interest.

One application of such a regression problem is to analyze covariate associ-
ated variations in brain coactivation in a functional magnetic resonance imag-
ing (fMRI) study, where covariance/correlation matrices of the fMRI signals are
generally utilized to reveal the coactivation patterns. Characterizing these pat-
terns with population/individual covariates is of great interest in neuroimaging
studies [34, 41]. Another example is the study of financial equities data. Consid-
ering a pool of stock values, covariance matrices over a period of time capture
the comovement or synchronicity of the stocks. Firm and market-level infor-
mation, such as industry type, firm’s cash flow, stock size, and book-to-market
ratio, plays an essential role in determining the synchronicity. Quantifying such
association is an important topic in financial theory [43].

Assuming Tmin = mini Ti > p and p is fixed, Zhao et al. [41] first studied
Model (1.1) and proposed to estimate γ and β through a likelihood-based ap-
proach minimizing the negative log-likelihood function in the projection space.
One sufficient condition to solve the likelihood-based criterion is that the sam-
ple covariance matrices are positive definite. Thus, the likelihood estimator is
ill-posed when Tmax < p as the sample covariance matrices are rank-deficient.
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Additionally, it has been shown that when p increases, the sample covariance
matrix performs poorly and can lead to invalid conclusions. For example, the
largest eigenvalue of the sample covariance matrix is not a consistent estimator,
and the eigenvectors can be nearly orthogonal to the truth [22]. To circumvent
difficulties raised by the high dimensionality, one solution is to impose structural
assumptions, such as bandable covariance matrices, sparse covariance matrices,
spiked covariance matrices, covariances with a tensor product structure, and
latent graphical models [see a review of 6, and references therein]. Based on
structural assumptions, many regularization-based methods have been devel-
oped. However, most of these methods produce covariance estimates that may
not always be positive definite (numerically), and this creates subsequent numer-
ical convergence issues when the quadratic product with Σi is negative in (1.1).
Moreover, most regularization methods can be computationally expensive on
finding the solution and may require searching over different regularization pa-
rameters, not to mention the computational costs increase multiplicatively when
computing over multiple covariance matrices. Further research is also needed to
evaluate what structural assumptions are most appropriate for fMRI data. An-
other class of high-dimensional covariance matrix estimator is the shrinkage
estimator. Daniels and Kass [11] considered two shrinkage estimators of the
covariance matrix, a correlation shrinkage and a rotation shrinkage, offering
a compromise between completely unstructured and structured estimators to
improve the robustness. Ledoit and Wolf [24] introduced a well-conditioned es-
timator of the covariance matrix, which is an optimal linear combination of the
identity matrix and the sample covariance matrix under squared error loss. This
estimator is guaranteed to be positive definite and is easy to compute based on a
simple and explicit formula. These advantages make it desirable for formulating
the proposed estimator. Instead of a linear combination, Ledoit and Wolf [25]
extended this work to nonlinear transformations of the sample eigenvalues and
presented a way of finding the transformation that is asymptotically equivalent
to the oracle linear combination. Based on Tyler’s robust M -estimator [37] and
the linear shrinkage estimator [24], Chen et al. [8] and Pascal et al. [28], in paral-
lel, introduced robust estimators of covariance matrices for elliptical distributed
samples.

To model multiple covariance matrices, procedures include regression-type
approaches [1, 9, 21, 14, 43]; (common) principal component analysis related
methods [13, 5, 20, 15]; and methods based on other types of matrix decompo-
sition, such as the Cholesky decomposition [30]. Among these, Fox and Dun-
son [14] introduced a scalable nonparametric covariance regression model ap-
plying low-rank approximation. Franks and Hoff [15] generalized a Bayesian hi-
erarchical model studying the heterogeneity in the covariance matrices to high
dimensional settings. Assuming that the ideal covariance structure exists in the
eigenspace of the data covariance matrix, Chen et al. [7] introduced a regression-
based approach to remove the scanner effects in covariance achieving the goal
of harmonization. Compared to the above-mentioned approaches, Model (1.1)
offers higher flexibility in modeling the relationship with the covariates. For ex-
ample, x can be either continuous or categorical, and one can easily include
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interactions and/or polynomials of the covariates.

In the high dimensional setting considered in this study, γ and β, as well
as n covariance matrices, will be estimated under Model (1.1). It is well known
that the eigenvalues of the sample covariance matrix are more dispersed than
the truth [24]. The class of linear combinations of the identity and sample co-
variance matrix corrects this dispersion issue by shrinking towards the identity
matrix. The choice of the identity matrix can also be interpreted as a prior
without strong structural assumptions or prior knowledge. Interestingly, it will
be shown that estimating each covariance matrix separately, such as using the
shrinkage estimator proposed in Ledoit and Wolf [24], leads to suboptimal es-
timation accuracy for γ, β, and Σi’s. Thus, we propose a linear shrinkage es-
timator of all the covariance matrices jointly, of which the shrinkage coeffi-
cients are shared across matrices. In addition, it is shown that the proposed
shrinkage estimator leads to a consistent estimator of model coefficients. We
first replace the sample covariance formulation with the proposed shrinkage
estimator, and then estimate (γ,β) through maximizing a plug-in likelihood
evaluated at the shrinkage estimator. In fMRI studies, shrinkage is also a pop-
ular technique to improve the reliability of subject-level functional connectivity
captured by the covariance matrix. In the technique, when estimating individ-
ual covariance matrix, population-level information is borrowed as prior knowl-
edge [38, 31, 27, 32, 29].

The framework proposed in this manuscript has three major contributions.

(1) This paper first studies a joint shrinkage estimator for multiple high di-
mensional covariance matrices, generalizing the linear shrinkage estimator
for a single covariance matrix [24]. We show that the latter approach is
suboptimal compared to the proposed joint covariance shrinkage estimator,
where the shrinkage coefficients are shared across multiple matrices. Within
this class of shrinkage estimators, we believe that this is among the first
attempts to analyze the variations of a large number of covariance matri-
ces associated with covariates in a regression setting under certain model
assumptions.

(2) The proposed shrinkage estimator of the covariance matrices is well condi-
tioned and has uniformly minimum quadratic risk asymptotically among all
linear combinations (Theorem 3.3).

(3) Under certain regularity conditions, the proposed approach achieves consis-
tent estimators of the parameters in Model (1.1) (Proposition 3.1).

The rest of the paper is organized as the following. Section 2 introduces
the proposed shrinkage estimator of the covariance matrices and the pseudo-
likelihood based method of estimating γ and β. Section 3 studies the asymptotic
properties. In Section 4, the superior performance of the proposed approach
over existing methods is demonstrated through simulation studies. Section 5
articulates an application to a resting-state fMRI data set acquired from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Section 6 concludes this
paper with discussions. Technical proofs are collected in the appendix.
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2. Methods

Considering the regression model (1.1), it is proposed to estimate the parameters
by solving the following optimization problem.

minimize
(β,γ)

�(β,γ) =
1

2

n∑
i=1

Ti

{
x�
i β + γ�Σ̂iγ · exp(−x�

i β)
}
,

such that γ�Hγ = 1, (2.1)

where Σ̂i is an estimator of the covariance matrix Σi to be discussed later,
which is positive definite, for i = 1, . . . , n; and H is a positive definite matrix in
R

p×p, which is set to be the average of Σ̂i’s, that is H =
∑n

i=1 TiΣ̂i/
∑n

i=1 Ti.
It is essential to impose a constraint on γ, otherwise the objective function of
(2.1) is minimized at γ = 0 with fixed β. When Σ̂i = Si =

∑Ti

t=1 yity
�
it/Ti

(i.e., the sample covariance matrix), which is the proposal in Zhao et al. [41],
it is equivalent to minimize the negative log-likelihood function of {γ�yit}i,t
assuming the data are normally distributed. However, when Tmax = maxi Ti <
p, problem (2.1) is ill-posed as Si’s are rank-deficient. Thus, the goal of this
manuscript is to propose a well-conditioned estimator of Σi that yields optimal
properties. To achieve this, a covariate-dependent linear shrinkage estimator,
denoted as Σ∗

i , is proposed, which yields the minimum expected squared loss
under regression model (1.1), where the expectation is taken over the sample
covariance matrix Si.

minimize
(μ,ρ)

1

n

n∑
i=1

E
{
γ�Σ∗

iγ − exp(x�
i β)

}2
,

such that Σ∗
i = ρμI+ (1− ρ)Si, for i = 1, . . . , n. (2.2)

The following theorem gives the solution to (2.2).

Theorem 2.1. For given (γ,β), the solution to optimization problem (2.2) is

Σ∗
i =

ψ2

δ2
μI+

φ2

δ2
Si, for i = 1, . . . , n, (2.3)

and the minimum value is

1

n

n∑
i=1

E
{
γ�Σ∗

iγ − exp(x�
i β)

}2
=

φ2ψ2

δ2
, (2.4)

where

μ =
1

n(γ�γ)

n∑
i=1

exp(x�
i β), φ2 =

1

n

n∑
i=1

φ2
i , ψ2 =

1

n

n∑
i=1

ψ2
i , δ2 =

1

n

n∑
i=1

δ2i ,

φ2
i =

{
μ(γ�γ)− exp(x�

i β)
}2

, ψ2
i = E

{
γ�Siγ − exp(x�

i β)
}2

,

δ2i = E
{
γ�Siγ − μ(γ�γ)

}2
;

and Lemma 2.1 shows that ψ2/δ2 + φ2/δ2 = 1.
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Lemma 2.1. For ∀ i ∈ {1, . . . , n}, δ2i = φ2
i + ψ2

i , and thus δ2 = φ2 + ψ2.

According to Theorem 2.1, parameters φ2
i , ψ

2
i and δ2i are expected values as

the objective is to minimize the expected squared loss. Thus, one cannot replace
Σ̂i with Σ∗

i in (2.1) and solve for solution using the data. For implementation in
practice, the following sample counterparts are used to compute (2.3) and thus
Σ̂i in (2.1). Let

δ̂2i =
{
γ�Siγ − μ(γ�γ)

}2
, ψ̂2

i =
1

Ti

{
γ�Siγ − exp(x�

i β)
}2

, φ̂2
i = δ̂2i − ψ̂2

i ,

δ̂2 =
1

n

n∑
i=1

δ̂2i , ψ̂2 =
1

n

n∑
i=1

min(ψ̂2
i , δ̂

2
i ), φ̂2 =

1

n

n∑
i=1

φ̂2
i ,

and

S∗
i =

ψ̂2

δ̂2
μI+

φ̂2

δ̂2
Si, for i = 1, . . . , n. (2.5)

In Section 3, we show that S∗
i is a consistent estimator of Σ∗

i and is uniformly
optimal asymptotically among all the linear combinations of the sample covari-
ance matrices and the identity matrix regarding the quadratic risk. The objec-
tive function �(β,γ) is an approximation of the negative log-likelihood function
if replacing Σ̂i with the proposed shrinkage estimator S∗

i . Thus, optimizing (2.1)
can be considered as a pseudo-likelihood approach under the normality assump-
tion.

The proof of Theorem 2.1 and Lemma 2.1 is presented in Appendix Sec-
tion A.1. Formulation (2.2) introduces a shrinkage estimator of the covariance
matrix, where the shrinkage is shared across subjects and is optimal under the
squared error loss. For each subject, Σ∗

i is a linear combination of the sample
covariance matrix Si and the identity matrix. The weighting parameters, ρ and
μ, are population level parameters that are shared across subjects. This is equiv-
alent to imposing a linear shrinkage on the sample eigenvalues. Assuming γ is a
common eigenvector of all the covariance matrices, μ is the average eigenvalue
corresponding to γ. The level of shrinkage is determined by the leverage between
the accuracy of Si’s and the variation in the eigenvalues. If Si’s are accurate or
the errors are small relative to the variation in the eigenvalues, less shrinkage
will be imposed; otherwise, if Si’s are inaccurate and the errors are comparable
or even higher than the eigenvalue variability, the sample covariance matrices
will be shrank more.

Algorithm 1 summarizes the optimization procedure. As problem (2.1) is
nonconvex, a series of random initializations of (γ,β) is considered and the one
that achieves the minimum value of the objective function is the estimate. The
initial values of γ can be set as the eigenvectors of the average sample covariance
matrices, S̄ =

∑n
i=1 TiSi/

∑n
i=1 Ti; and the initial values of β is the correspond-

ing solution to (2.1) by replacing Σ̂i with a well-conditioned estimator, such as
the estimator proposed in Ledoit and Wolf [24]. When p <

∑n
i=1 Ti, S̄ is of full

rank, and the sample eigenvectors are consistent estimators assuming all the
covariance matrices have the same eigendecomposition. Step 3 in the algorithm
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Algorithm 1 The optimization algorithm for problems (2.1) and (2.2).

Input: {(yi1, . . . ,yiTi
),xi}ni=1

1: initialization: (γ(0),β(0))
2: repeat for iteration s = 0, 1, 2, . . .
3: for i = 1, . . . , n, update

S
∗(s+1)
i =

ψ̂2(s)

δ̂2(s)
μ(s)I+

φ̂2(s)

δ̂2(s)
Si,

where (ψ̂2, φ̂2, δ̂2, μ) are set to the value with γ = γ(s) and β = β(s),

4: update γ and β by solving (2.1) with Σ̂i = S
∗(s+1)
i , denoted as γ(s+1) and β(s+1),

respectively,
5: until the objective function in (2.1) converges;
6: consider a random series of initializations, repeat Steps 1–5, and choose the results with

the minimum objective value.
Output: (γ̂, β̂)

updates the covariance matrix estimators with a global shrinkage parameter. In
Section 4, through simulation studies, we show that it improves the performance
in estimating the covariance matrices and β with lower bias and higher stability.
The details of updating γ and β in Step 4 can be found in Algorithm 1 in Zhao
et al. [41].

For higher-order components, one can first remove the identified components
and use the new data to estimate the next with an additional orthogonality
constraint, that is, the new component is orthogonal to the identified ones.
Different from Algorithm 2 in Zhao et al. [41], there is no need to include a
rank-completion step as S∗

i is introduced to render the rank-deficiency issue.
To determine the number of components, the metric of average deviation from
diagonality is adopted [41]. Let Γ(k) ∈ R

p×k denote the first k estimated com-
ponents, the average deviation from diagonality is defined as

DfD(Γ(k)) =

n∏
i=1

(
det{diag(Γ(k)�S∗

iΓ
(k))}

det(Γ(k)�S∗
iΓ

(k))

)Ti/
∑

i Ti

, (2.6)

where diag(A) is a diagonal matrix of the diagonal elements in a square ma-
trix A, and det(A) is the determinant of A. If Γ(k) is a common diagonaliza-
tion of S∗

i ’s, that is, Γ(k)�S∗
iΓ

(k) is a diagonal matrix, for ∀ i = 1, . . . , n, then
DfD(Γ(k)) = 1. In practice, k can be chosen before DfD increases far away from
one or before a sudden jump occurs.

3. Asymptotic Properties

In this section, we study the asymptotic properties of the proposed estima-
tors. For i = 1, . . . , n, it is assumed that Σi has the eigendecomposition of
Σi = ΠiΛiΠ

�
i , where Λi = diag{λi1, . . . , λip} is a diagonal matrix and Πi =

(πi1, . . . ,πip) is an orthonormal rotation matrix; {λi1, . . . , λip} are the eigenval-
ues and the columns of Πi are the corresponding eigenvectors. Let Zi = YiΠi,
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where Yi = (yi1, . . . ,yiTi)
� ∈ R

Ti×p is the data matrix of subject i. Under
the normality assumption, the columns of Zi = (zitj)t,j are uncorrelated, and
the rows, zit = (zi1, . . . , zip) ∈ R

p for t = 1, . . . , Ti, are normally distributed
with mean zero and covariance matrix Λi. The following assumptions are im-
posed.

Assumption A1 There exists a constant C1 independent of Tmax such that
p/Tmax ≤ C1, where Tmax = maxi Ti.

Assumption A2 Let N =
∑n

i=1 Ti, p/N → 0 as n, Tmin → ∞, where Tmin =
mini Ti.

Assumption A3 There exists a constant C2 independent of Tmin and Tmax

such that
∑p

j=1 E(z
8
i1j)/p ≤ C2, for ∀ i ∈ {1, . . . , n}.

Assumption A4 Let Q denote the set of all the quadruples that are made of
four distinct integers between 1 and p, for ∀ i ∈ {1, . . . , n},

lim
Ti→∞

p2

T 2
i

∑
(j,k,l,m)∈Q {Cov(zi1jzi1k, zi1lzi1m)}2

|Q| = 0, (3.1)

where |Q| is the cardinality of set Q.
Assumption A5 All the covariance matrices share the same set of eigenvec-

tors, i.e., Πi = Π, for i = 1, . . . , n. For each Σi, there exists (at least) a
column, indexed by ji, such that γ = πiji and Model (1.1) is satisfied.

Assumption A1 allows the data dimension, p, to be greater than the (maximum)
number of observations, Tmax, and to grow at the same rate as Tmax does. This
is a common regularity condition for shrinkage estimators [24]. Assumption A2
guarantees that the average sample covariance matrix S̄ =

∑n
i=1 TiSi/N utilized

in the initial step of Algorithm 1 is positive definite. Together with Assumption
A5, the eigenvectors of S̄ are consistent estimators of Π [2]. Assumptions A3
and A4 regulate zit on higher-order moments, which is equivalent to imposing
restrictions on the higher-order moments of yit. When the data are assumed to
be normally distributed, both A3 and A4 are satisfied. Assumption A5 assumes
that all the covariance matrices share the same eigenspace, though the ordering
of the eigenvectors may differ. When p/Tmin → 0, Zhao et al. [41] relaxed this
assumption to partial common diagonalization and demonstrated the method
robustness through numerical examples. Studying the asymptotic properties un-
der the relaxation is difficult and not available in existing literature, especially
when p > Tmax.

Taking the eigenvectors of S̄ as the initial values of γ, the following proposi-
tion demonstrates the consistency of the proposed estimator.

Proposition 3.1. Under Assumptions A1–A5, as n, Tmin → ∞, the estimator
of γ and β obtained by Algorithm 1 are asymptotically consistent.

To prove Proposition 3.1, we first study the asymptotic properties of S∗
i and

show that S∗
i is the optimal linear shrinkage estimator of the covariance ma-

trix under the squared loss. This is accomplished under the assumption that γ
is given. As the initialization of γ is already a consistent estimator, the con-
sistency of the solution after iteration follows. For β, it is firstly shown that
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the association between the shrinkage estimator, Σ∗
i , and the covariates is the

same as the covariance matrix, Σi, does (Lemma 3.3). Thus, it is equivalent to
optimize problems (2.1) and (2.2) to solve for β, and the solution is a consis-
tent estimator of β based on the pseudo-likelihood theory [16]. In the iteration
step of Algorithm 1, S∗

i improves the estimation of the covariance matrices with
lower squared loss, and in consequence, improves the estimation of γ and β. In
Section 4, the improvement is demonstrated through simulation studies.

In Section 2, the optimization problem (2.2) introduces a linear combination
of the sample covariance matrix and the identity matrix, Σ∗

i , that achieves
the minimum expected squared error. From Theorem 2.1, the solution has
population-level parameters. Thus, the sample counterpart, S∗

i , is introduced.
The following Lemma 3.1 first shows that asymptotically, the weighting param-
eters in Σ∗

i are well-behaved. Lemma 3.2 demonstrates that the correspond-
ing sample counterpart of the weighting parameters are consistent estimators.
Theorem 3.1 demonstrates that S∗

i performs as well as Σ∗
i does asymptoti-

cally.

Lemma 3.1. For given (γ,β), let Tmin = mini Ti, as Tmin → ∞, μ, φ2, ψ2 and
δ2 are bounded.

Lemma 3.2. For given (γ,β), as Tmin → ∞,

(i) E(δ̂2i − δ2i )
2 → 0, for i = 1, . . . , n, and thus E(δ̂2 − δ2)2 → 0;

(ii) E(ψ̂2
i − ψ2

i )
2 → 0, for i = 1, . . . , n, and thus E(ψ̂2 − ψ2)2 → 0;

(iii) E(φ̂2
i − φ2

i )
2 → 0, for i = 1, . . . , n, and thus E(φ̂2 − φ2)2 → 0.

Theorem 3.1. For ∀ i ∈ {1, . . . , n}, S∗
i is a consistent estimator of Σ∗

i , that
is, as Tmin = mini Ti → ∞,

E‖S∗
i − Σ∗

i ‖2 → 0. (3.2)

Thus, the asymptotic expected loss of S∗
i and Σ∗

i are identical, that is,

E
{
γ�S∗

i γ − exp(x�
i β)

}2 − E
{
γ�Σ∗

iγ − exp(x�
i β)

}2 → 0. (3.3)

Next, we show that S∗
i uniformly achieves the minimum quadratic risk asymp-

totically over all linear combinations of the sample covariance matrix and the
identity matrix. For given (γ,β), let Σ∗∗

i denote the solution to the following
optimization problem,

minimize
ρ1,ρ2

1

n

n∑
i=1

{
γ�Σ∗∗

i γ − exp(x�
i β)

}2
,

such that Σ∗∗
i = ρ1I+ ρ2Si, for i = 1, . . . , n. (3.4)

Theorem 3.2. S∗
i is a consistent estimator of Σ∗∗

i , that is, as Tmin = mini Ti →
∞, for i = 1, . . . , n,

E‖S∗
i − Σ∗∗

i ‖2 → 0. (3.5)
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Then, S∗
i has the same asymptotic expected loss as Σ∗∗

i does, that is,

E
{
γ�S∗

iγ − exp(x�
i β)

}2 − E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2 → 0. (3.6)

Theorem 3.3. Assume (γ,β) is given. With a fixed n ∈ N
+, for any sequence

of linear combinations {Σ̂i}ni=1 of the identity matrix and the sample covariance
matrix, where the combination coefficients are constant over i ∈ {1, . . . , n}, the
estimator S∗

i verifies:

lim
T→∞

inf
Ti≥T

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�S∗

iγ − exp(x�
i β)

}2] ≥ 0. (3.7)

In addition, every sequence of {Σ̂i}ni=1 that performs as well as {S∗
i }ni=1 is iden-

tical to {S∗
i }ni=1 in the limit:

lim
T→∞

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�S∗

iγ − exp(x�
i β)

}2]
= 0

(3.8)

⇔ E‖Σ̂i − S∗
i ‖2 → 0, for i = 1, . . . , n. (3.9)

The difference between Σ∗∗
i and Σ∗

i is that Σ∗∗
i minimizes the squared loss

instead of the expected loss, while asymptotically they are equivalent (The-
orems 3.1 and 3.2). Theorem 3.3 presents the main result that, with a fixed
sample size n, the proposed shrinkage estimator {S∗

i }ni=1 achieves the uniformly
minimum (average) quadratic risk asymptotically among all linear combinations
of the identity matrix and the sample covariance matrix. Here, “average” implies
an average over the subjects, and “asymptotically” refers to that the number of
observations within each subject increases to infinity. Therefore, S∗

i is asymp-
totically optimal. In addition, it is guaranteed that S∗

i is positive definite (see
a discussion in Appendix Section A.8). Thus, there exits unique solution to the
optimization problem (2.1).

Next, we study the asymptotic properties of the model coefficient estimator.
Let β̂ denote the solution to the optimization problem (2.1).

Lemma 3.3. For given γ, assume the linear shrinkage estimator, Σ∗
i , satisfies

E(γ�Σ∗
iγ) = exp(x�

i β
∗), for i = 1, . . . , n, (3.10)

then

β∗ = β. (3.11)

Theorem 3.4. For given γ, assume Assumptions A1–A5 are satisfied, β̂ is a
consistent estimator of β as n, Tmin → ∞, where Tmin = mini Ti.
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Lemma 3.3 implies that under the rotation γ, the expectation of the shrinkage
estimator, Σ∗

i , has the same association with the covariates as the true covariance
matrix, Σi, does. S

∗
i is a consistent estimator of Σ∗

i and is positive definite. This
substantiates the choice of S∗

i replacing the sample covariance matrix Si in the

optimization problem. Theorem 3.4 states the consistency of β̂.

4. Simulation Study

4.1. γ is known

In this section, we focus on examining the performance of the proposed method
in estimating the covariance matrices and model coefficients by assuming the
projection γ is known. Three methods are compared. (i) Estimate each individ-
ual covariance matrix using the estimator proposed in Ledoit and Wolf [24] and
replace Σ̂i with it in the optimization problem (2.1). We denote this approach
as LW-CAP (Ledoit and Wolf based Covariate Assisted Principal regression),
where the shrinkage is estimated on each individual covariance matrix. (ii) Esti-
mate the covariance matrices using the proposed shrinkage estimator S∗

i in (2.5).
We denote this approach as CS-CAP (Covariate dependent Shrinkage CAP),
where the shrinkage parameters are assumed to be shared across subjects. (iii)
Estimate each individual covariance matrix using the sample covariance ma-
trix and plug into the optimization problem (2.1). This is the CAP approach
proposed in Zhao et al. [41], which is only applicable when Tmin = mini Ti > p.

The covariance matrices are generated using the eigendecomposition Σi =
ΠΛiΠ

�, where Π = (π1, . . . ,πp) is an orthonormal matrix in R
p×p and Λi =

diag{λi1, . . . , λip} is a diagonal matrix with the diagonal elements to be the
eigenvalues, for i = 1, . . . , n. In Λi, the diagonal elements are exponentially
decaying, where eigenvalues of the second and the fourth dimension (D2 and D4)
satisfy the log-linear model in (1.1). We consider a case with a single predictorX
(thus q = 2), which is generated from a Bernoulli distribution with probability
0.5 to be one. For D2, the coefficient β1 = −1; and for D4, β1 = 1. For the rest
dimensions, λij , for i = 1, . . . , n, is generated from a log-normal distribution,
where the mean of the corresponding normal distribution decreases from 5 to
−1 over j. Cases when p = 20, 50, 100 are considered.

We first compare the three approaches, LW-CAP, CS-CAP and CAP, under
sample sizes n = 50 and Ti = T = 50 for all i and present the result in Table 1.
In the estimation, for dimension j, γ is set to be πj . In Table 1, we present
the bias and the mean squared error (MSE) in estimating the eigenvalues and
the model coefficient in D2 and D4. From the table, for both the eigenvalues
and β1, CS-CAP yields lower estimation bias and MSE than LW-CAP does.
When p < T , CS-CAP achieves a similar estimation bias as the CAP approach
does in estimating the covariance matrices, while the MSE is slightly lower. For
the estimation of β1, CS-CAP yields slightly lower bias. As the dimension p in-
creases, the bias and MSE of eigenvalue estimates from LW-CAP increase; while
the bias and MSE of the estimates from CS-CAP are similar at all p settings.
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Table 1

Bias and mean squared error (MSE) in estimating the eigenvalues of the covariance
matrices and bias, MSE, and coverage probability (CP) in estimating β1 coefficient with

sample sizes n = 50 and Ti = T = 50, for i = 1, . . . , n, when γ is known.

λ̂ij β̂1Method
Bias MSE Bias MSE CP

LW-CAP -6.520 225.360 0.053 0.006 0.795
CS-CAP -1.175 204.686 0.001 0.004 0.935D2
CAP -1.175 206.117 -0.003 0.004 0.935
LW-CAP -7.422 277.888 -0.040 0.005 0.860
CS-CAP -1.223 249.881 0.001 0.004 0.905

p = 20

D4
CAP -1.223 251.595 0.005 0.004 0.910
LW-CAP -7.975 244.326 0.028 0.004 0.915
CS-CAP -1.428 202.141 0.008 0.003 0.935D2
CAP - - - - -
LW-CAP -8.641 295.221 -0.012 0.004 0.915
CS-CAP -1.242 248.254 0.001 0.004 0.925

p = 50

D4
CAP - - - - -
LW-CAP -8.924 260.268 0.010 0.004 0.915
CS-CAP -0.973 203.151 -0.001 0.003 0.930D2
CAP - - - - -
LW-CAP -10.487 331.864 -0.011 0.003 0.940
CS-CAP -1.705 245.754 -0.007 0.003 0.940

p = 100

D4
CAP - - - - -

This demonstrates the superiority of the proposed estimator in estimating the
covariance matrices. Figure 1 presents the estimation bias and MSE of CS-CAP
estimator at various levels of T when fixing n = 50 when p = 20. From the fig-
ure, as the number of observations within each subject increases, the estimates
converge to the truth.

4.2. γ is unknown

In this section, we evaluate the performance of the CS-CAP approach when γ
is unknown and estimated by solving optimization problem (2.1) using Algo-
rithm 1. The data are generated following the same procedure as in Section 4.1.
To evaluate the performance in estimating the projection γ, we consider a simi-
larity metric measured by |〈γ̂,γ〉|, where 〈·, ·〉 is the inner product of two vectors
and γ̂ denotes the estimate of γ. When this metric is one, the two vectors are
identical (up to sign flipping); and when this metric is zero, the two vectors are
orthogonal. Case where p = 100 is studied. The performance of the CS-CAP ap-
proach is firstly compared to the LW-CAP approach with sample sizes n = 100
and Ti = T = 100. The results are presented in Table 2. From the table, the CS-
CAP approach improves the performance with much lower MSE in estimating
the eigenvalues, and lower MSE and higher coverage probability (CP) in estimat-
ing the β coefficient. After iterations, the CS-CAP approach yields an estimate
of the projection with much higher similarity to the truth. To further examine
the performance of the CS-CAP approach under finite sample size, combina-
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Fig 1. Bias and mean squared error (MSE) in estimating the eigenvalues of the covariance
matrices and bias, MSE, and coverage probability in estimating β1 coefficient using CS-CAP
with the number of subjects n = 50 at various numbers of observations from each subject with
p = 20 when γ is known.

Table 2

Bias, mean squared error (MSE), and coverage probability (CP) from 500 bootstrap samples
in estimating the β1 coefficient, the similarity of γ̂ to πj and the standard error (SE), and

the MSE in estimating the eigenvalues λ̂ij , for j = 2, 4. Data dimension p = 100, sample
size n = 100 and Ti = T = 100.

β̂1 γ̂ λ̂ijMethod
Bias MSE CP |〈γ̂,πj〉| (SE) MSE

LW-CAP -0.027 0.002 0.782 0.653 (0.033) 1812.091
D2

CS-CAP -0.023 0.001 0.855 0.931 (0.012) 173.225
LW-CAP 0.018 0.002 0.770 0.666 (0.027) 2186.265

D4
CS-CAP 0.019 0.001 0.845 0.926 (0.011) 231.856

tions of sample sizes n = 50, 100, 500, 1000 and Ti = T = 50, 100, 500, 1000 are
considered. Figure 2 presents the performance in estimating the second dimen-
sion (D2), including the bias, the MSE and the CP of β̂1, the MSE of λ̂ij , and
the similarity of γ̂ to the eigenvector of D2 (Appendix Section B.1 presents the
results of the fourth dimension, D4). From the figure, as n, T → ∞, all estimates
converge to the truth.

In Appendix Section B.2, the robustness of the proposed method to model
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Fig 2. Estimation performance of CS-CAP in estimating the second dimension (D2) when

γ is unknown. For β̂1, (a) bias, (b) mean squared error (MSE) and (c) coverage probability
(CP) are presented, where CP is obtained from 500 bootstrap samples. For the eigenvalues

λ̂ij , (d) MSE is presented. For γ̂, (e) similarity to π2 is presented. Data dimension p = 100.
Sample sizes vary from n = 50, 100, 500, 100 and Ti = T = 50, 100, 500, 1000.

misspecification is examined. Two types of model misspecification are consid-
ered, model misspecification in β and model misspecification in γ. When the
log-linear model is misspecified, the proposed approach can correctly identify
the linear projections under certain scenarios, while the estimate of model co-
efficients is biased. The proposed approach is robust to the setting that the
eigenvectors of the covariance matrices are partially common, while it will not
work when the eigenvectors are completely unique to each covariance matrix.

5. The Alzheimer’s Disease Neuroimaging Initiative Study

Data used in this study are obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-

adni.loni.usc.edu
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bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

We apply the proposed approach to ADNI resting-state functional MRI (fMRI)
data acquired at the baseline screening. AD is an irreversible neurodegenerative
disease that destroys memory and related brain functions causing problems in
cognition and behavior. Apolipoprotein E ε4 (APOE-ε4) has been consistently
identified as a strong genetic risk factor for AD. With an increasing number of
APOE-ε4 alleles, the lifetime risk of developing AD increases, and the age of on-
set decreases [10]. Thus, APOE-ε4 is generally treated as a potential therapeutic
target [33]. In AD studies, resting-state fMRI is another emerging biomarker for
diagnosis [23]. It is important to articulate the genetic impact on brain func-
tional architecture. In this study, n = 194 subjects diagnosed with either MCI
or AD are analyzed. Resting-state fMRI data collected at the initial screening
are preprocessed. Time courses are extracted from p = 75 brain regions, includ-
ing 60 cortical and 15 subcortical regions grouped into 10 functional modules,
using the Harvard-Oxford Atlas in FSL [35]. For each time course, a subsample
is taken with an effective sample size of T = 67 to remove the temporal depen-
dence. The resulting data, denoted as yit (for i = 1, . . . , n and t = 1, . . . , T ),
are assumed to follow a multivariate normal distribution with mean zero and
covariance Σi. The off-diagonal elements in Σi represent the pairwise functional
connectivity between brain regions and Σi represents the brain functional ar-
chitecture of subject i. In the regression model, APOE-ε4, sex, and age are
entered as the covariates (xi’s). The validity of model assumptions is discussed
in Appendix Section C.1.

The CS-CAP approach is applied to identify brain subnetworks within which
the functional connectivity demonstrates a significant association with APOE-
ε4. Using the deviation from diagonality criterion, CS-CAP identifies three com-
ponents denoted as C1, C2, and C3. The model coefficients and 95% bootstrap
confidence interval from 500 bootstrap samples are presented in Table 3. From
the table, C3 is significantly associated with APOE-ε4 and age; C1 and C2
are significantly associated with sex and age. To better interpret C3, a fused
lasso regression [36] is employed to sparsify the loading profile, similarly as in
the sparse principal component analysis proposed in Zou et al. [42]. The fused
lasso regularization is defined based on the modular information to impose local
smoothness and consistency [19, 40]. Figure 3(a) presents the sparse loading
profile colored by the corresponding functional module, and Figure 3(b) is the
river plot illustrating the loading configuration. In C3, all regions with negative
loadings are subcortical regions. Contributions to positive loadings are from re-
gions in the default mode network (DMN), the ventral- and dorsal-attention
networks, and the somato-motor network. Figure 3(c) presents these regions on
a brain map. C3 is negatively associated with APOE-ε4 indicating that func-
tional connectivity between regions in the same sign among APOE-ε4 carriers is
lower, while connectivity between regions in the opposite signs among APOE-
ε4 carriers is higher. The findings are in line with existing knowledge about
AD. Compared to APOE-ε4 non-carriers, more functional connectivity between
the left hippocampus and the insular/prefrontal cortex while more functional
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Table 3

Model coefficient estimate and 95% bootstrap confidence interval using the PS-CAP
approach. The intervals are obtained over 500 bootstrap samples.

APOE-ε4 Sex Age
C1 0.012 (−0.031, 0.263) −0.431 (−0.636,−0.230) −0.227 (−0.319,−0.129)
C2 0.049 (−0.191, 0.309) −0.544 (−0.867,−0.186) −0.232 (−0.383,−0.066)
C3 −0.156 (−0.270,−0.045) −0.061 (−0.201, 0.075) −0.241 (−0.328,−0.172)

Fig 3. (a)The sparsified loading profile, (b) the module river plot, and (c) regions with nonzero
loadings in a brain map of C3. In (a) and (b), the figure and the legend are colored by brain
functional modules. In (c), the brain maps are colored by the loading weights.

disconnection of the hippocampus has been observed in APOE-ε4 carriers [12].
Alterations in DMN connectivity in cognitively normal APOE-ε4 carriers have
been reported across all age groups [3]. Increased connectivity in the limbic
system, including the hippocampus, the amygdala, and the thalamus, has been
detected in individuals with memory impairment [18, 17], though the effect of
APOE-ε4 carriage lacks consensus [3]. It was shown that the limbic hypercon-
nectivity is positively associated with the memory performance, suggesting the
preservation of brain function due to increased connectivity in the medial tem-
poral lobe pathology [17].
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6. Discussion

In this study, we introduce an approach to perform linear regression with mul-
tiple high dimensional covariance matrices as the outcome. A linear shrinkage
estimator of the covariance matrix is firstly introduced, where the shrinkage
coefficients are shared parameters across subjects. It is shown that the pro-
posed estimator is optimal achieving the uniformly minimum quadratic loss
asymptotically among all linear combinations of the identity matrix and the
sample covariance matrix. Replacing the sample covariance matrices with the
proposed well-conditioned estimator in the likelihood function, the linear projec-
tion parameter and the model coefficient are shown to be consistently estimated.
Through simulation studies, the proposed approach demonstrates superior per-
formance in estimating the covariance matrices and the model coefficients with
lower estimation bias and variation over the existing methods. Applying to a
resting-state fMRI data set acquired from the ADNI study, the findings are
consistent with existing knowledge about AD.

The proposed framework extends the proposal in Zhao et al. [41] to high di-
mensional scenario. When p is small, the proposed shrinkage estimator demon-
strates lower squared loss than the sample covariance matrix as suggested in
both theoretical results and simulation studies. Different from the linear shrink-
age estimator introduced in Ledoit and Wolf [24], which was proposed for a
single covariance matrix estimation, the shrinkage coefficients considered in this
study are population level parameters shared across subjects. This is superior
than the individual shrinkage as the proposed one leverages the accuracy of the
sample covariance matrix and the variability in the eigenvalues across subjects.

In this study, the asymptotic properties are studied under the assumption
that the covariance matrices have the same eigendecomposition. We leave the
study of the consistency relaxing this assumption to future research. The pro-
posed shrinkage estimator is optimal with respect to a squared risk. However,
this may overshrink the small eigenvalues [11]. Other types of loss function,
such as the Stein’s loss, will be considered in the future. In the ADNI appli-
cation, we included an ad hoc procedure to select important brain regions for
interpretation. A next-step research is to include the regularization on γ into
the optimization or to introduce an efficient approach to draw inference on the
loadings (such as a bootstrap sampling procedure).

Appendix A: Theory and Proof

A.1. Proof of Theorem 2.1 and Lemma 2.1

Proof. Given (γ,β), E(γ�Siγ) = γ�Σiγ = exp(x�
i β). For the objective func-

tion in (2.2), under the constraint that Σ∗
i = ρμI+ (1− ρ)Si, we have

f(μ, ρ)

=
1

n

n∑
i=1

E
{
γ�Σ∗

i γ − exp(x�
i β)

}2
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=
1

n

n∑
i=1

[
ρ2
{
μ(γ�γ)− exp(x�

i β)
}2

+ (1− ρ)2E
{
γ�Siγ − exp(x�

i β)
}2]

.

In order to minimize the objective function, as the objective function is convex,
derivatives are firstly taken over μ and ρ.

For μ,

∂f

∂μ
= ρ2

1

n

n∑
i=1

2
{
μ(γ�γ)− exp(x�

i β)
}
(γ�γ) = 0,

⇒ μ =
1

n(γ�γ)

n∑
i=1

exp(x�
i β).

For ρ, let φ2
i = {μ(γ�γ)− exp(x�

i β)}2 and ψ2
i = E{γ�Siγ − exp(x�

i β)}2,

∂f

∂ρ
= 2ρ

(
1

n

n∑
i=1

φ2
i

)
− 2(1− ρ)

(
1

n

n∑
i=1

ψ2
i

)
= 0,

⇒ ρ =

∑n
i=1 ψ

2
i∑n

k=1 φ
2
i +
∑n

i=1 ψ
2
i

.

Let δ2i = E{γ�Siγ − μ(γ�γ)}2, then δ2i = φ2
i + ψ2

i . Let φ2 =
∑n

i=1 φ
2
i /n,

ψ2 =
∑n

i=1 ψ
2
i /n, and δ2 =

∑n
i=1 δ

2
i /n (thus, δ2 = φ2 + ψ2), the optimizer of

problem (2.2) is

Σ∗
i =

ψ2

δ2
μI+

φ2

δ2
Si, i = 1, . . . , n.

The minimum value of the function is

1

n

n∑
i=1

E
{
γ�Σ∗

iγ − exp(x�
i β)

}2

=
1

n

n∑
i=1

E

{
ψ2

δ2
μγ�γ +

φ2

δ2
γ�Siγ − ψ2 + φ2

δ2
exp(x�

i β)

}2

=
1

n

n∑
i=1

[
E

{
ψ2

δ2
μγ�γ − ψ2

δ2
exp(x�

i β)

}2

+E

{
φ2

δ2
γ�Siγ − φ2

δ2
exp(x�

i β)

}2
]

=
1

n

n∑
i=1

(
ψ4

δ4
φ2
i +

φ4

δ4
ψ2
i

)

=
ψ4φ2 + φ4ψ2

δ4

=
φ2ψ2

δ2
.
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A.2. Proof of Proposition 3.1

Proof. Under Assumptions A2 and A5, the eigenvectors of S̄ are consistent esti-
mators of Π. Replace γ with its estimate in Theorems 3.1–3.3 and Theorem 3.4,
the consistency of β follows.

A.3. Proof of Lemma 3.1

Proof. (1) For μ,

μ =
1

n(γ�γ)

n∑
i=1

exp(x�
i β) =

1

n

n∑
i=1

γ�Σiγ

γ�γ
≤ 1

n

n∑
i=1

‖Σi‖22.

Under Assumption A2,

1

n

n∑
i=1

‖Σi‖22 =
1

n

n∑
i=1

‖Λi‖22

≤ 1

n

n∑
i=1

‖Λi‖2F

=
1

n

n∑
i=1

⎧⎨
⎩1

p

p∑
j=1

E(z2i1j)
2

⎫⎬
⎭

=
1

n

n∑
i=1

⎧⎨
⎩1

p

p∑
j=1

E(z4i1j)

⎫⎬
⎭

≤ 1

n

n∑
i=1

√√√√1

p

p∑
j=1

E(zi1j)8

≤ 1

n

n∑
i=1

√
C2

=
√
C2,

where ‖ · ‖F is the Frobenius norm of a matrix.
(2) For φ2, upper limits of φ2

i is derived first.

φ2
i =

{
μ(γ�γ)− exp(x�

i β)
}2

≤ μ2(γ�γ)2 + {exp(x�
i β)}2

= μ2(γ�γ)2 + (γ�Σiγ)
2

≤
(
μ2 + ‖Σi‖42

)
(γ�γ)2.

From the above derivation, we have

μ2 ≤ C2, and ‖Σi‖22 = ‖Λi‖22 ≤ ‖Λi‖2F ≤
√

C2.
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Since γ is given, without loss of generality, assume that ‖γ‖2 = 1, i.e.,
γ�γ = 1. Then,

φ2
i ≤ 2C2(γ

�γ) = 2C2.

Thus,

φ2 =
1

n

n∑
i=1

φ2
i ≤ 2C2.

(3) For ψ2, analogously, ψ2
i is considered first.

ψ2
i = E

{
γ�Siγ − exp(x�

i β)
}2

= E
{
γ�(Si − Σi)γ

}2 ≤ (γ�γ)2E‖Si−Σi‖22

E‖Si − Σi‖2F =
1

p

p∑
j=1

p∑
k=1

E

⎧⎨
⎩
(

1

Ti

Ti∑
t=1

yitjyitk − σijk

)2
⎫⎬
⎭

=
1

p

p∑
j=1

p∑
k=1

E

⎧⎨
⎩
(

1

Ti

Ti∑
t=1

zitjzitk − λijk

)2
⎫⎬
⎭

=
1

p

p∑
j=1

p∑
k=1

Var

(
1

Ti

Ti∑
t=1

zitjzitk

)

=
1

p

p∑
j=1

p∑
k=1

1

Ti
Var(zi1jzi1k)

≤ 1

pTi

p∑
j=1

p∑
k=1

E(z2i1jz
2
i1k)

≤ 1

pTi

p∑
j=1

p∑
k=1

√
Ez4i1j

√
Ez4i1k

≤ p

Ti

⎛
⎝1

p

p∑
j=1

√
Ez4i1j

⎞
⎠

2

≤ p

Ti

⎛
⎝1

p

p∑
j=1

Ez4i1j

⎞
⎠

≤ p

Ti

√√√√1

p

p∑
j=1

Ez8i1j

≤ C1

√
C2

Thus, for ψ2,

ψ2 =
1

n

n∑
i=1

ψ2
i ≤ 1

n

n∑
i=1

(γ�γ)2C1

√
C2 = C1

√
C2.
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(4) Finally, for δ2,

δ2 = φ2 + ψ2 ≤ 2C2 + C1

√
C2.

A.4. Proof of Lemma 3.2

Proof. In the proof of Lemma 3.2, here, it is assumed that γ is a column of Πi

indexed by ji, for i = 1, . . . , n (Assumption A4).

(i) First, we prove the consistency of δ̂2i .

δ̂2i − δ2i

=
{
γ�Siγ − μ(γ�γ)

}2 − E
{
γ�Siγ − μ(γ�γ)

}2
=

{
(γ�Siγ)

2 − E(γ�Siγ)
2
}
− 2μ(γ�γ)

{
(γ�Siγ)− E(γ�Siγ)

}
Under Assumption A4,

γ�Siγ =
1

Ti

Ti∑
t=1

γ�yity
�
itγ =

1

Ti

Ti∑
t=1

z2itji .

(γ�Siγ)
2 =

1

T 2
i

(
Ti∑
t=1

z2itji

)2

=
1

T 2
i

Ti∑
t=1

z4itji +
1

T 2
i

∑
t �=s

z2itjiz
2
isji .

E(γ�Siγ)
2 =

1

T 2
i

TiEz
4
i1ji +

1

Ti
Ti(Ti − 1)

(
Ez2itji

)2
=

1

Ti
Ez4i1ji +

Ti(Ti − 1)

T 2
i

(γ�Σiγ)
2.

For ∀ ε > 0,

P
{
|(γ�Siγ)− E(γ�Siγ)| ≥ ε

}
≤ 1

ε2
Var(γ�Siγ)

=
1

ε2

[
E(γ�Siγ)

2 −
{
E(γ�Siγ)

}2]
=

1

ε2

{
1

T 2
i

Ez4i1ji +
Ti(Ti − 1)

T 2
i

(γ�Σiγ)
2 − (γ�Σiγ)

2

}
Ti→∞−→ 0.

E(γ�Siγ)
4

=
1

T 4
i

E

(
Ti∑
t=1

z2itji

)4
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=
1

T 4
i

⎧⎨
⎩
∑
t

Ez8itji + 2
∑
t �=s

Ez4itjiz
4
isji + 2

∑
u

E

⎛
⎝z4iuji

∑
t �=s

z2itjiz
2
isji

⎞
⎠

+
∑
u �=v

∑
t �=s

E
(
z2itjiz

2
isjiz

2
iujiz

2
ivji

)⎫⎬⎭
=

1

T 4
i

{
TiEz

8
i1ji + 2Ti(Ti − 1)(Ez4i1ji)

2 + 2T 2
i (Ti − 1)Ez4i1ji(Ez

2
i1ji)

2

+T 2
i (Ti − 1)2(Ez2i1ji)

4
}
.

{
E(γ�Siγ)

2
}2

=
1

T 2
i

(Ez4i1ji)
2 +

2Ti(Ti − 1)

T 3
i

Ez4i1ji(γΣiγ)
2 +

T 2
i (Ti − 1)2

T 4
i

(γΣiγ)
4.

For ∀ ε > 0,

P
{
|(γ�Siγ)

2 − E(γ�Siγ)
2| ≥ ε

}
≤ 1

ε2
Var(γ�Siγ)

2

=
1

ε2

[
E(γ�Siγ)

4 −
{
E(γ�Siγ)

2
}2]

=
1

ε2

{
1

T 3
i

Ez8i1ji +
Ti − 2

T 3
i

(Ez4i1ji)
2

}
Ti→∞−→ 0.

Therefore, as Tmin = mini Ti → ∞,

E

(
δ̂2i − δ2i

)2
→ 0, for i = 1, . . . , n, and E

(
δ̂2 − δ2

)2
→ 0.

(ii) Secondly, prove the consistency of ψ̂2
i , for i = 1, . . . , n.

ψ̂2
i − ψ2

i =
1

Ti

{
γ�Siγ − exp(x�

i β)
}2 − E

{
γ�Siγ − exp(x�

i β)
}2

.

E
{
γ�Siγ − exp(x�

i β)
}2

= E

{
1

Ti

∑
t

z2itji − exp(x�
i β)

}2

=
1

T 2
i

∑
t

Var(z2itji)

=
1

Ti
Var(z2i1ji).

ψ̂2
i − ψ2

i
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=
1

Ti

[{
γ�Siγ − exp(x�

i β)
}2 −Var(z2i1ji)

]
=

1

Ti

[
(γ�Siγ)

2 − Ez4i1ji − 2 exp(x�
i β)

{
γ�Siγ − exp(x�

i β)
}]

.

From above derivation and the fact that E(γ�Siγ) = γ�Σiγ = exp(x�
i β),

as Ti → ∞, for ∀ ε > 0,

P
{
|(γ�Siγ)− E(γ�Siγ)| ≥ ε

}
→ 0.

As both (γ�Siγ)
2 and Ez4i1ji are bounded, then, as Tmin = mini Ti → ∞,

E

(
ψ̂2
i − ψ2

i

)2
→ 0, for i = 1, . . . , n.

Let ψ̃2
i = min(ψ̂2

i , δ̂
2
i ).

ψ̃2
i − ψ2

i = min(ψ̂2
i , δ̂

2
i )− ψ2

i

≤ ψ̂2
i − ψ2

i

≤ |ψ̂2
i − ψ2

i |
≤ max

(
|ψ̂2

i − ψ2
i |, |δ̂2i − δ2i |

)
.

δ2i = φ2
i + ψ2

i ≥ ψ2
i , then

ψ̃2
i − ψ2

i = min(ψ̂2
i , δ̂

2
i )− ψ2

i

= min
(
ψ̂2
i − ψ2

i , δ̂
2
i − ψ2

i

)
≥ min

(
ψ̂2
i − ψ2

i , δ̂
2
i − δ2i

)
≥ min

(
−|ψ̂i − ψ2

i |,−|δ̂2i − δ2i |
)

≥ −max
(
|ψ̂i − ψ2

i |, |δ̂2i − δ2i |
)
.

E(ψ̃2
i−ψ2

i )
2 ≤ E

{
max

(
|ψ̂i − ψ2

i |, |δ̂2i − δ2i |
)2}

≤ E(ψ̂2
i−ψ2

i )
2+E(δ̂2i−δ2i )

2.

Therefore, as Tmin = mini Ti → ∞,

E

(
ψ̃2
i − ψ2

i

)2
→ 0, for i = 1, . . . , n, and E

(
ψ̂2 − ψ2

)2
→ 0.

(iii) Lastly, φ̂2
i = δ̂2i − ψ̂2

i . The consistency of φ̂2
i (for i = 1, . . . , n) and φ̂2 are

straightforward.

A.5. Proof of Theorem 3.1

In order to prove Theorem 3.1, the following lemma is firstly introduced. This
lemma is also used to prove Lemma A.2 in the next section.
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Lemma A.1. If a2i is a sequence of nonnegative random variables (implicitly
indexed by Ti) whose expectations converge to zero, for i = 1, . . . , n, and κ1, κ2

are two nonrandom scalars, and

a2i

δ̂κ1

i δκ2

i

≤ 2(δ̂2i + δ2i ) a.s.,

then, as Tmin = mini Ti → ∞,

E

(
a2i

δ̂κ1

i δκ2

i

)
→ 0.

Analogously, if a2 is a sequence of nonnegative random variables (implicitly
indexed by Tmin = mini Ti) whose expectations converge to zero, and κ1, κ2 are
two nonrandom scalars, and

a2

δ̂κ1δκ2

≤ 2(δ̂2 + δ2) a.s.,

then, as Tmin = mini Ti → ∞,

E

(
a2

δ̂κ1δκ2

)
→ 0.

Proof. For a fixed ε > 0, let Ti denote the set of indices Ti such that δ2i ≤ ε/8.

In Lemma 3.2, it is proved that E(δ̂2i − δ2i )
2 → 0. Thus, there exists an integer

Ti1 such that ∀ Ti ≥ Ti1,
E|δ̂2i − δ2i | ≤ ε/4.

For ∀ Ti ≥ Ti1 in the set Ti,

E

(
a2i

δ̂κ1
i δκ2

i

)
≤ 2
(
Eδ̂2i + δ2i

)
≤ 2
(
E|δ̂2i − δ2i |+ 2δ2i

)
≤ 2
( ε
4
+ 2× ε

8

)
= ε.

Consider the complementary of set Ti, since Ea2i → 0, there exists an integer
Ti2 such that, ∀ Ti ≥ Ti2,

Ea2 ≤ εκ1+κ2+1

24κ1+3κ2+1
.

δ2i is bounded by 2C2 +C1

√
C2. Then, there exists an integer Ti3 such that, for

∀ Ti ≥ Ti3

P

(
|δ̂2i − δ2i | ≥

ε

16

)
≤ 4ε

16(2C2 + C1

√
C2) + ε

.

Let 1{·} denote the indicator function. For ∀ Ti ≥ max(Ti2, Ti3) outside the set
Ti, then

E

(
a2i

δ̂κ1

i δκ2

i

)
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= E

(
a2i

δ̂κ1
i δκ2

i

1{δ̂2i≤ε/16}

)
+ E

(
a2i

δ̂κ1
i δκ2

i

1{δ̂2i>ε/16}

)

≤ E

{
2(δ̂2i + δ2i )1{δ̂2i≤ε/16}

}
+

(
16

ε

)κ1
(
8

ε

)κ2

E

(
a2i1{δ̂2i>ε/16}

)

≤ 2
{
(2C2 + C1

√
C2) +

ε

16

}
P

(
|δ̂2i − δ2i | ≥

ε

16

)
+

(
16

ε

)κ1
(
8

ε

)κ2

E(a2i )

≤ 2
{
(2C2 + C1

√
C2) +

ε

16

} 4ε

16(2C2 + C1

√
C2) + ε

+

(
16

ε

)κ1
(
8

ε

)κ2 εκ1+κ2+1

24κ1+3κ2+1

≤ ε.

Bringing together the results inside and outside the set Ti,
for ∀ Ti ≥ max(Ti1, Ti2, Ti3),

E

(
a2i

δ̂κ1

i δκ2

i

)
≤ ε.

The proof of the second part follows the same strategy.

Now, we prove Theorem 3.1.

Proof. We first prove that S∗
i is a consistent estimator of Σ∗

i .

‖S∗
i − Σ∗

i ‖2 = max
γ �=0

‖γ�(S∗
i − Σ∗

i )γ‖2
γ�γ

= max
γ �=0

1

γ�γ

∥∥∥∥∥
(
φ̂2

δ̂2
− φ2

δ2

)(
γ�Siγ − μγ�γ

)∥∥∥∥∥
2

= max
γ �=0

1

γ�γ

(
φ̂2

δ̂2
− φ2

δ2

)2

δ̂2i .

1

n

n∑
i=1

‖S∗
i − Σ∗

i ‖2 = max
γ �=0

1

γ�γ

(φ̂2δ2 − φ2δ̂2)2

δ̂4δ4
1

n

n∑
i=1

δ̂2i

= max
γ �=0

1

γ�γ

(φ̂2δ2 − φ2δ̂2)2

δ̂2δ4
.

Using the fact that φ2 ≤ δ2 and φ̂2 ≤ δ̂2,

(φ̂2δ2 − φ2δ̂2)2

δ̂2δ4
≤ δ̂2 ≤ 2(δ̂2 + δ2).
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In Lemma 3.2, it is shown that E(φ̂2 − φ2)2 and E(δ̂2 − δ2)2 converge to zero.
In addition, Lemma 3.1 shows that φ2 and δ2 are bounded. Thus,

E

(
φ̂2δ2 − φ2δ̂2

)2
= E

{
(φ̂2 − φ2)δ2 − φ2(δ̂2 − δ2)

}2

≤ δ4E(φ̂2 − φ2)2 + φ4
E(δ̂2 − δ2)2

→ 0.

Let a2 = (φ̂2δ2 − φ2δ̂2)2, κ1 = 2 and κ2 = 4, then Ea2 → 0, and using
Lemma A.1,

E
(φ̂2δ2 − φ2δ̂2)2

δ̂2δ4
→ 0.

Thus,

1

n

n∑
i=1

E‖S∗
i − Σ∗

i ‖2 → 0.

And therefore, for ∀ i,
E‖S∗

i − Σ∗
i ‖2 → 0.

For the second statement,

E
∣∣‖S∗

i − Σi‖2 − ‖Σ∗
i − Σi‖2

∣∣ = E |〈S∗
i − Σ∗

i ,S
∗
i +Σ∗

i − 2Σi〉|

≤
√
E‖S∗

i − Σ∗
i ‖2
√
E‖S∗

i +Σ∗
i − 2Σi‖2

→ 0.

Therefor,

E
{
γ�S∗

iγ − exp(x�
i β)

}2 − E
{
γ�Σ∗

iγ − exp(x�
i β)

}2 → 0.

A.6. Proof of Theorem 3.2

Before proving Theorem 3.2, we first provide the solution to the optimization
problem (3.4). Let

f(ρ1, ρ2) =
1

n

n∑
i=1

{
γ�(ρ1I+ ρ2Si)γ − exp(x�

i β)
}2

.

∂f

∂ρ1
=

1

n

n∑
i=1

2(γ�γ)
{
ρ1γ

�γ + ρ2γ
�Siγ − exp(x�

i β)
}
= 0

∂f

∂ρ2
=

1

n

n∑
i=1

2(γ�Siγ)
{
ρ1(γ

�γ) + ρ2(γ
�Siγ)− exp(x�

i β)
}
= 0.

⇒ ρ2 =

∑
i(γ

�Siγ) exp(x
�
i β)/n− (

∑
i γ

�Siγ/n)(
∑

i exp(x
�
i β)/n)∑

i(γ
�Siγ)2/n− (

∑
i γ

�Siγ/n)2
.
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ρ1 =
1

γ�γ

{
1

n

n∑
i=1

exp(x�
i β)−

1

n

n∑
i=1

ρ2(γ
�Siγ)

}

=
1

γ�γ

{
(
∑

i γ
�Siγ/n)(

∑
i(γ

�Siγ) exp(x
�
i β)/n)∑

i(γ
�Siγ)2/n− (

∑
i γ

�Siγ/n)2

− (
∑

i exp(x
�
i β)/n)(

∑
i(γ

�Siγ)
2/n)∑

i(γ
�Siγ)2/n− (

∑
i γ

�Siγ/n)2

}
.

In order to prove Theorem 3.2, the following lemma is introduced.

Lemma A.2. For given (γ,β), let Tmin = mini Ti, as Tmin → ∞, for ∀ i ∈
{1, . . . , n},

E

(∣∣∣∣∣ φ̂
2
i ψ̂

2
i

δ̂2i
− φ2

iψ
2
i

δ2i

∣∣∣∣∣
)

→ 0.

Then, as n, Tmin → ∞,

E

(∣∣∣∣∣ φ̂
2ψ̂2

δ̂2
− φ2ψ2

δ2

∣∣∣∣∣
)

→ 0.

Proof.

φ̂2
i ψ̂

2
i

δ̂2i
− φ2

iψ
2
i

δ2i
=

φ̂2
i ψ̂

2
i δ

2
i − φ2

iψ
2
i δ̂

2
i

δ̂2i δ
2
i

.

Let a2i = |φ̂2
i ψ̂

2
i δ

2
i − φ2

iψ
2
i δ̂

2
i |, κ1 = 2 and κ2 = 2. First need to verify the

assumptions in Lemma A.1.∣∣∣∣∣ φ̂
2
i ψ̂

2
i

δ̂2i
− φ2

iψ
2
i

δ2i

∣∣∣∣∣ ≤ φ̂2
i ψ̂

2
i

δ̂2i
+

φ2
iψ

2
i

δ2i
≤ φ̂2

i + φ2
i ≤ δ̂2i + δ2i ≤ 2(δ̂2i + δ2i ), a.s..

Furthermore,

E

(
|φ̂2

i ψ̂
2
i δ

2
i − φ2

iψ
2
i δ̂

2
i |
)

=E

{∣∣∣(φ̂2
i ψ̂

2
i − φ2

iψ
2
i )δ

2
i − φ2

iψ
2
i (δ̂

2
i − δ2i )

∣∣∣}
=E

{∣∣∣(φ̂2
i − φ2

i )(ψ̂
2
i − ψ2

i )δ
2
i + φ2

i (ψ̂
2
i − ψ2

i )δ
2
i + (φ̂2

i − φ2
i )ψ

2
i δ

2
i − φ2

iψ
2
i (δ̂

2
i − δ2i )

∣∣∣}
≤
√
E(φ̂2

i − φ2
i )

2

√
E(ψ̂2

i − ψ2
i )

2δ2i + φ2
iE|ψ̂2

i − ψ2
i |δ2i

+ E|φ̂2
i − φ2

i |ψ2
i δ

2
i − φ2

iψ
2
i E|δ̂2i − δ2i |.

The right-hand side converges to zero. Therefore, Ea2i → 0, conditions in
Lemma A.1 are satisfied. Therefore,

E

∣∣∣∣∣ φ̂
2
i ψ̂

2
i

δ̂2i
− φ2

iψ
2
i

δ2i

∣∣∣∣∣→ 0.
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Analogously, it can be shown that

E

∣∣∣∣∣ φ̂
2ψ̂2

δ̂2
− φ2ψ2

δ2

∣∣∣∣∣→ 0.

Next, we prove Theorem 3.2.

Proof. Let αi = (γ�Σiγ)(γ
�Siγ) − {μ(γ�γ)}2 and α =

∑n
i=1 αi/n. E(αi) =

exp2(x�
i β)− μ2(γ�γ)2, then

Eα =
1

n

n∑
i=1

exp2(x�
i β)− μ2(γ�γ) = φ2.

First, need to prove that α− φ2 converges to zero in quadratic mean.

Var(αi)

= Var
{
(γ�Σiγ)(γ

�Siγ)− μ2(γ�γ)2
}

= Var
{
(γ�Σiγ)(γ

�Siγ)
}
+Var

{
μ2(γ�γ)2

}
−2Cov

{
(γ�Σiγ)(γ

�Siγ), μ
2(γ�γ)2

}
= Var

{
(γ�Σiγ)(γ

�Siγ)
}
.

(γ�Σiγ)(γ
�Siγ) = λiji

(
1

Ti

Ti∑
t=1

z2itji

)
.

Var
{
(γ�Σiγ)(γ

�Siγ)
}

= Var

{
1

Ti

Ti∑
t=1

λijiz
2
itji

}

=
1

Ti
Var
(
λijiz

2
i1ji

)
≤ 1

Ti
E
(
λijiz

2
i1ji

)2
≤ 1

Ti
Eλ2

ijiz
4
i1ji

≤ 1

Ti

(
Ez2i1ji

)2
Ez4i1ji

≤ 1

Ti

(
Ez4i1ji

)2
≤ 1

Ti
Ez8i1ji

≤ C2

Ti
.

Var(α) =
1

n2

n∑
i=1

Var(αi) ≤
C2

n2

n∑
i=1

1

Ti
→ 0, as Tmin = min

i
Ti → ∞.
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This proves that α− φ2 converges to 0 in quadratic mean. In the following, we
prove that S∗

i is a consistent estimator of Σ∗∗
i .

S∗
i =

ψ̂2

δ̂2
μI+

φ̂2

δ̂2
Si =

δ̂2 − ψ̂2

δ̂2
μI+

φ̂2

δ̂2
Si = μI+

φ̂2

δ̂2
(Si − μI).

Σ∗∗
i = ρ1I+ ρ2Si = (ρ1 + ρ2μ)I+ ρ2(Si − μI).

1

n

n∑
i=1

‖S∗
i − Σ∗∗

i ‖2

=
1

n

n∑
i=1

∥∥∥∥∥(μ− ρ1 − ρ2μ)I+

(
φ̂2

δ̂2
− ρ2

)
(Si − μI)

∥∥∥∥∥
2

=
1

n

n∑
i=1

⎧⎨
⎩max

γ �=0

1

γ�γ

∥∥∥∥∥(μ− ρ1 − ρ2μ)(γ
�γ) +

(
φ̂2

δ̂2
− ρ2

)
(γ�Siγ − μ(γ�γ))

∥∥∥∥∥
2
⎫⎬
⎭

=max
γ �=0

⎧⎨
⎩(μ− ρ1 − ρ2μ)

2(γ�γ) +
1

γ�γ

(
φ̂2

δ̂2
− ρ2

)2

δ̂2i

+2(μ− ρ1 − ρ2μ)

(
φ̂2

δ̂2
− ρ2

)(
1

n

n∑
i=1

γ�Siγ − μ(γ�γ)

)}
.

(μ− ρ1 − ρ2μ)
2

=
(
∑

i γ
�Siγ/n−

∑
i exp(x

�
i β)/n)

2

(γ�γ)2 {(
∑

i γ
�Siγ/n)2 −

∑
i(γ

�Siγ)2/n}2

·
{
(
∑

i γ
�Siγ/n)(

∑
i exp(x

�
i β)/n)−

∑
i(γ

�Siγ) exp(x
�
i β)/n

}2
(γ�γ)2 {(

∑
i γ

�Siγ/n)2 −
∑

i(γ
�Siγ)2/n}2

E

{
1

n

∑
i

γ�Siγ − 1

n

∑
i

exp(x�
i β)

}2

=
1

n2

∑
i

E
{
γ�Siγ − exp(x�

i β)
}2

+
1

n2

∑
i �=i′

E
{
γ�Siγ − exp(x�

i β)
}{

γ�Si′γ − exp(x�
i′β)

}
.

E
{
γ�Siγ − exp(x�

i β)
}2

= E
{
γ�Siγ − E(γ�Siγ)

}2
= Var(γ�Siγ)

=
1

Ti
Ez4i1ji +

Ti(Ti − 1)

T 2
i

(γ�Σiγ)
2 − (γ�Σiγ)

2
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Ti→∞−→ 0.

It is assumed that the samples/subjects are independent, therefore,

E
{
γ�Siγ − exp(x�

i β)
}{

γ�Si′γ − exp(x�
i′β)

}
= 0.

Thus,

E

{
1

n

∑
i

γ�Siγ − 1

n

∑
i

exp(x�
i β)

}2

→ 0, as Tmin → ∞.

E

{(
1

n

∑
i

γ�Siγ

)(
1

n

∑
i

exp(x�
i β)

)
− 1

n

∑
i

(γ�Siγ) exp(x
�
i β)

}2

≤ E

(
1

n

∑
i

γ�Siγ

)2(
1

n

∑
i

exp(x�
i β)

)2

+ E

{
1

n

∑
i

(γ�Siγ) exp(x
�
i β)

}2

.

E

(
1

n

∑
i

γ�Siγ

)2

=
1

n2

∑
i

E(γ�Siγ)
2 +

1

n2

∑
i �=i′

E(γ�Siγ)(γ
�Si′γ)

=
1

n2

∑
i

⎧⎨
⎩ 1

T 2
i

Ez4itji +
1

T 2
i

∑
t �=s

Ez2itjiz
2
isji

⎫⎬
⎭

+
1

n2

∑
i �=i′

(
1

T 2
i

Ti∑
t=1

Ez2itji

)⎛⎝ 1

T 2
i′

Ti′∑
t=1

Ez2i′tji′

⎞
⎠

=
1

n2

∑
i

{
1

Ti
Ez4i1ji +

Ti(Ti − 1)

T 2
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(γ�Σiγ)
2

}

+
1
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∑
i �=i′

(
1

Ti
(γ�Σiγ)

)(
1

Ti′
(γ�Σi′γ)

)

Tmin→∞−→ 1

n2

∑
i

(γ�Σiγ)
2.

E

{
1

n

∑
i

(γ�Siγ) exp(x
�
i β)

}2

=
1

n2

∑
i

∑
i

E(γ�Siγ)
2 exp2(x�

i β)

+
1

n2

∑
i �=i′

E(γ�Siγ) exp(x
�
i β)E(γ

�Si′γ) exp(x
�
i′β)
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=
1

n2

∑
i

{
1

Ti
Ez4itji +

Ti(Ti − 1)

T 2
i

(γ�Σiγ)
2

}
(γ�Σiγ)

2

+
1

n2

∑
i �=i′

(γ�Σiγ)
2(γ�Σi′γ)

2

Tmin→∞−→ 1

n2

∑
i

(γ�Σiγ)
4 +

1

n2

∑
i �=i′

(γ�Σiγ)
2(γ�Σi′γ)

2.

E

{(
1

n

∑
i

γ�Siγ

)(
1

n

∑
i

exp(x�
i β)

)
− 1

n

∑
i

(γ�Siγ) exp(x
�
i β)

}2

≤ E

(
1

n

∑
i

γ�Siγ

)2(
1

n

∑
i

exp(x�
i β)

)2

+E

{
1

n

∑
i

(γ�Siγ) exp(x
�
i β)

}2

Tmin→∞−→ 1

n2

∑
i

(γ�Σiγ)
2

(
1

n

∑
i

(γ�Σiγ)

)2

+
1

n2

∑
i

(γ�Σiγ)
4

+
1

n2

∑
i �=i′

(γ�Σiγ)
2(γ�Σi′γ)

2.

The above quantity on the right is bounded by a constant from above. Therefore,
as Tmin → ∞,

(μ− ρ1 − ρ2μ)
2 → 0.

(
φ̂2

δ̂2
− ρ2

)2

=

(
φ̂2

δ̂2
− φ2

δ̂2

)2

+

(
φ2

δ̂2
− α

δ̂2

)2

+

(
α

δ̂2
− ρ2

)2

.

Since δ̂4 is bounded,

E(φ̂2 − φ2)2 → 0 ⇒ E

(
φ̂2

δ̂2
− φ2

δ̂2

)2

→ 0;

E(φ2 − α)2 → 0 ⇒ E

(
φ2

δ̂2
− α

δ̂2

)2

→ 0.

Let ρ2 = ρ
(1)
2 /ρ

(2)
2 , where

ρ
(1)
2 =

1

n

∑
i

(γ�Siγ) exp(x
�
i β)−

(
1

n

∑
i

γ�Siγ

)(
1

n

∑
i

exp(x�
i β)

)
,

ρ
(2)
2 =

1

n

∑
i

(γ�Siγ)
2 −
(
1

n

∑
i

γ�Siγ

)2

.
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E

(
α− ρ

(1)
2

)2

=

(
1

n

∑
i

exp(x�
i β)

)2

E

{
1

n

∑
i

(γ�Siγ)−
1

n

∑
i

exp(x�
i β)

}2

→ 0.

δ̂2

=
1

n

n∑
i=1

{
γ�Siγ − μ(γ�γ)

}2

=
1

n

n∑
i=1

(γ�Siγ)
2 − 2

(
1

n

n∑
i=1

γ�Siγ

)(
1

n

n∑
i=1

exp(x�
i β)

)

+

(
1

n

n∑
i=1

exp(x�
i β)

)2

.

It can be concluded that as Tmin → ∞,

E

(
δ̂ − ρ22

)2
= E

{
1

n

n∑
i=1

(γ�Siγ)−
1

n

n∑
i=1

exp(x�
i β)

}2

→ 0,

and

E

(
φ̂2

δ̂2
− ρ2

)2

→ 0.

E

{
1

n

n∑
i=1

‖S∗
i − Σ∗∗

i ‖2
}

→ 0, ⇒ E‖S∗
i − Σ∗∗

i ‖2 → 0.

This implies that

E
{
γ�S∗

iγ − exp(x�
i β)

}2 − E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2 → 0.

A.7. Proof of Theorem 3.3

Proof. For the first statement,

lim
Tmin→∞

inf
Ti≥Tmin

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�S∗

iγ − exp(x�
i β)

}2]

≥ inf

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2]
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+ lim

[
1

n

n∑
i=1

E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2 − 1

n

n∑
i=1

E
{
γ�S∗

iγ − exp(x�
i β)

}2]
.

By Theorem 3.2, the second term on the right converges to zero, and the first
term is ≥ 0 by the definition of Σ∗∗

i .
For the second statement,

lim
Tmin→∞

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�S∗

iγ − exp(x�
i β)

}2]
= 0

⇔ lim
Tmin→∞

[
1

n

n∑
i=1

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− 1

n

n∑
i=1

E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2]
= 0

⇔ lim
Tmin→∞

E

{
γ�Σ̂iγ − exp(x�

i β)
}2

− E
{
γ�Σ∗∗

i γ − exp(x�
i β)

}2
= 0

⇔ lim
Tmin→∞

E‖γ�Σ̂iγ − γ�Σ∗∗
i γ‖2 = 0

⇔ lim
Tmin→∞

E‖γ�Σ̂iγ − γ�S∗
iγ‖2 = 0

⇔ lim
Tmin→∞

E‖Σ̂i − S∗
i ‖2 = 0.

This finishes the proof of this theorem.

A.8. S∗
i is well-conditioned

In this section, we show that the proposed estimator S∗
i is well-conditioned and

thus, invertible. This is achieved by two steps: for i = 1, . . . , n, (1) prove that the
largest eigenvalue of S∗

i is bounded in probability; (2) prove that the smallest
eigenvalue of S∗

i is bounded away from zero in probability. The proof follows the
same strategy as in Ledoit and Wolf [24], but considers the case with multiple
covariance matrices.

The covariance matrix Σi has the eigendecomposition as Σi = ΠiΛiΠ
�
i . Let

Ui = Λ
−1/2
i Yi. Denote λmax(A) and λmin(A) as the maximum and minimum

eigenvalue of a matrix A, respectively.

λmax(S
∗
i ) = λmax

(
ψ̂2

δ̂2
μI+

φ̂2

δ̂2
Si

)

=
ψ̂2

δ̂2
μ+

φ̂2

δ̂2
λmax(Si).
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μ =
1

n

n∑
i=1

exp(x�
i β) =

1

n

n∑
i=1

λiji ≤ max
i

λmax(Λi).

λmax(Si) = λmax

(
1

Ti
Λ1/2UiU

�
i Λ

1/2
i

)

≤ λmax

(
1

Ti
UiU

�
i

)
λmax(Λi)

≤ λmax

(
1

Ti
UiU

�
i

)
max

i
λmax(Λi).

Assume that p/Tmax converges to a limit, denoted as c. Based on Assumption
A1, c ≤ C1. Based on the results in Yin et al. [39], as Tmin = mini Ti → ∞, for
i = 1, . . . , n,

lim λmax

(
1

Ti
UiU

�
i

)
= (1 +

√
c)2, a.s.

This implies that

P

{
λmax(S

∗
i ) ≤ (1 +

√
c)2 max

i
λmax(Λi)

}
→ 1,

and

P

{
λmax(S

∗
i ) ≤ (1 +

√
C1)

2 max
i

λmax(Λi)
}
→ 1.

Therefore, if p/Tmax converges to a constant, the largest eigenvalue of S∗
i is

bounded in probability. If p/Tmax has no limit, under Assumption A1, there ex-
ists a subsequence such that p/Tmax converges. Along this sequence, the largest
eigenvalue of S∗

i is bounded in probability. This is true for any converging se-
quence, and in addition, the upper bound is independent of the particular sub-
sequence. As a result, it holds for the whole sequence.

Next, we show that the smallest eigenvalue of S∗
i is bounded away from zero

in probability. Analogously, we have

λmin(Si) = λmin

(
1

Ti
Λ1/2UiU

�
i Λ

1/2
i

)

≥ λmin

(
1

Ti
UiU

�
i

)
λmin(Λi)

≥ λmin

(
1

Ti
UiU

�
i

)
min
i

λmin(Λi).

First, assume p/Tmax converges to a constant c. If c ∈ (0, 1), based on the results
in Bai and Yin [4],

lim λmin

(
1

Ti
UiU

�
i

)
= (1−

√
c)2, a.s.
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Assume c ≤ 1− κ for some κ ∈ (0, 1). One can conclude that

P

{
λmin(S

∗
i ) ≥ (1−

√
1− κ)2 min

i
λmin(Λi)

}
→ 1.

When c > 1− κ, we propose to identify a lower bound from the following

λmin(S
∗
i ) = λmin

(
ψ̂2

δ̂2
μI+

φ̂2

δ̂2
Si

)
≥ ψ̂2

δ̂2
μ.

Compare the right-hand side in the above to it population counterpart,

ψ̂2

δ̂2
μ− ψ2

δ2
μ = μ

{
ψ̂2 − ψ2

δ2
+ ψ̂2

(
1

δ̂2
− 1

δ2

)}
.

From Lemmas 3.1 and 3.2, we can show that the above converges to zero in
probability. First, consider ψ2 =

∑n
i=1 ψ

2
i /n, where ψ2

i = E{γ�(Si − Σi)γ}2.
From the proof of Lemma 3.1,

E‖Si − Σi‖2 =
1

pTi

p∑
j=1

p∑
k=1

E(z2i1jz
2
i1k)−

1

pTi

p∑
j=1

p∑
k=1

λ2
ijk

=
p

Ti

⎧⎨
⎩ 1

p2

p∑
j=1

p∑
k=1

E(z2i1jz
2
i1k)

⎫⎬
⎭− 1

pTi

p∑
j=1

λ2
ijj .

As Tmin → ∞, the second term on the right-hand side converges to zero. For ε >
0, there exists a constantM > 0 such that when Tmin > M ,

∑p
j=1 λ

2
ijj/(pTi) < ε.

Thus, ψ2
i ≥ (1− κ)− ε and ψ2 ≥ (1− κ)− ε.

λmin(S
∗
i ) ≥ ψ̂2

δ̂2
μ

=
ψ2

δ2
μ+

(
ψ̂2

δ̂2
μ− ψ2

δ2
μ

)

≥ ψ2

δ2
μ− ε

≥ ψ2

2C2 + C1

√
C2

− ε

≥ (1− κ)− ε

2C2 + C1

√
C2

− ε.

For a choice of ε, we have

P

{
λmin(S

∗
i ) ≥

1− κ

2(2C2 + C1

√
C2)

}
→ 1.

Therefore, for both c ≤ 1 − κ and c > 1 − κ, the smallest eigenvalue of S∗
i is

bounded away from zero. Analogous to the proof of the largest eigenvalue, for
the case that p/Tmax does not have a limit, we can also have the conclusion
for the whole sequence. Since both the largest and the smallest eigenvalues are
bounded, S∗

i is well-conditioned and invertible.
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A.9. Proof of Lemma 3.3 and Theorem 3.4

We first proof Lemma 3.3.

Proof.

E(γ�Σ∗
iγ) =

ψ2

δ2
μ(γ�γ) +

φ2

δ2
E(γ�Siγ)

=
ψ2

δ2
μ(γ�γ) +

φ2

δ2
exp(x�

i β)

= exp(x�
i β

∗).∑
i exp(x

�
i β

∗)/n∑
i exp(x

�
i β)/n

=
ψ2

δ2
μ(γ�γ)∑

i exp(x
�
i β)/n

+
φ2

δ2
=

ψ2

δ2
+

φ2

δ2
= 1.

⇒ 1

n

n∑
i=1

exp(x�
i β

∗) =
1

n

n∑
i=1

exp(x�
i β).

Therefore,
β∗ = β.

Next, we prove that the proposed estimator β is a consistent estimator (The-
orem 3.4).

Proof. Using the consistency of pseudo-likelihood estimator [16] and the con-

clusion in Lemma 3.3, β̂ is a consistent estimator of β.

Appendix B: Additional Simulation Results

B.1. γ unknown

Here, we present the performance of estimating the fourth dimension (D4) when
γ is unknown (Figure B.1). From the figures, as n and T increase, the estimate
of the covariance matrices, the projection and the model coefficient converge to
the truth.

B.2. Model misspecification

B.2.1. Model misspecification in β

In this section, we examine the performance of the proposed approach when
the log-linear model (1.1) is misspecified. We consider the case when the data
dimension is p = 20 and sample size n = 100 and Ti = T = 100 for illustration.
Two scenarios are considered. In the first scenario, the true model has two
correlated covariates generated from a bivariate normal distribution with mean
zero, standard deviation 0.5, and correlation 0.2:

log(λij) = β0 + β1xi1 + β2xi2. (B.1)
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Fig B.1. Estimation performance of PS-CAP in estimating the fourth dimension (D4) when

γ is unknown. For β̂1, (a) bias, (b) mean squared error (MSE) and (c) coverage probability
(CP) are presented, where CP is obtained from 500 bootstrap samples. For the eigenvalues

λ̂ij , (d) MSE is presented. For γ̂, (e) similarity to π4 is presented. Data dimension p = 100.
Sample sizes vary from n = 50, 100, 500, 100 and Ti = T = 50, 100, 500, 1000.

In D2, |β1| = |β2| and in D4, |β1| = 2|β2|. Under the misspecified case, the second
covariate, xi2, is ignored. Table B.1 presents the results using the proposed
approach.

The second scenario considers the following log-linear model for the eigenval-
ues is considered, which includes an interaction between the covariates:

log(λij) = β0 + β1xi1 + β2xi2 + β3(xi1 × xi2), (B.2)

where xi1 is generated from a Bernoulli distribution with probability 0.5 to be
one and xi2 is generated from a normal distribution with mean zero and stan-
dard deviation 0.5. Table B.2 presents the estimation results using the proposed
method. Under the misspecified case, the interaction between the two covariates
is ignored. Thus, in the table, it has no estimate of β3.

From both tables, under either correctly specified or misspecified model, the
proposed approach correctly identifies the components related to the covariates.
Under the misspecified model, the estimate of β is biased.
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B.2.2. Model misspecification in γ

In this section, we discuss the robustness of the proposed approach to the
violation of the assumption that all the covariance matrices share the same
eigenspace. One advantage of the proposed shrinkage estimator of the covari-
ance matrix is that it will not change the eigenvectors compared to the sample
covariance matrix. In Section E.6 of the supplementary materials of Zhao et
al. [41], the performance under the partial common diagonalization assumption
was examined through a simulation study. In the setting, two eigencomponents
are set to be the same across subjects and the rest are unique to each subject.
The method can correctly identify the common component across subjects that
is related to the covariates. As the proposed approach in this study has the
property of preserving the eigenstructure, under the setting of partial common
diagonalization, it will also correctly identify the common component that is
related to the covariates.

Here, we also consider a case that each covariance matrix has a unique
eigenspace, that is, the covariance matrices are generated using the eigende-
composition Σi = ΠiΛiΠ

�
i , where Πi is an orthonormal matrix in R

p×p, for
i = 1, . . . , n. The rest simulation settings are the same as in Section 4.2. Ta-
ble B.3 presents the results when p = 20, n = 100, and Ti = T = 100. For the
estimation of γ, we compare with an average of the eigenvectors (after scaling
to unit �2-norm). For D2, through the correlation between the estimated γ and
the average if 0.915, the estimation of β1 is off. For D4, both the estimate of γ
and β1 are away from the truth. Therefore, an assumption of partial common
diagonalization is essential for the proposed framework.

Appendix C: Additional Analysis of the ADNI Study

C.1. Validity of model assumptions

In resting-state fMRI studies, the output data are generally considered normally
distributed. For each time course, data are temporally correlated of at most
lag two [26]. Thus, we subsample the data to remove the temporal correlation.
Figure C.1 presents the normal Q-Q plot and the histogram of the data extracted
from one brain region of one subject. From the figure, the marginal distribution
is close to normal. Thus, the normality assumption is satisfied.

In Section 3, five assumptions are imposed to achieve estimation consistency
of the parameters. By setting C1 = 2, Assumption A1 is satisfied. In the fMRI
dataset, the increase of the total number of observations across subjects (i.e.
N =

∑n
i=1 Ti) can be faster than the number of variables (p). Thus, Assump-

tion A2 can be satisfied. Under the normality assumption, the eighth order
moment exits, and Assumptions A3 and A4 are valid. Assumption A5 con-
cerns the population eigenvalues. We cannot easily assess this assumption using
sample covariance matrices due to the large bias under the high-dimensional
setting [22]. We thus can only provide some empirical examination while noting
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Table B.1

Bias and mean squared error (MSE) in estimating β, and the similarity of γ̂ to πj and the
standard error (SE), for j = 2, 4, under the misspecified and correctly specified models for

model (B.1). Data dimension p = 20, sample size n = 100 and Ti = T = 100.

β̂1 β̂2 γ̂
Bias MSE Bias MSE |〈γ̂,πj〉| (SE)

Misspecified 0.105 0.014 - - 0.994 (0.003)
D2

Correctly specified 0.002 0.001 < 0.001 0.001 0.993 (0.003)
Misspecified −0.081 0.008 - - 0.991 (0.004)

D4
Correctly specified −0.015 0.001 0.008 0.001 0.983 (0.009)

Table B.2

Bias and mean squared error (MSE) in estimating β, and the similarity of γ̂ to πj and the
standard error (SE), for j = 2, 4, under the misspecified and correctly specified models for

model (B.2). Data dimension p = 20, sample size n = 100 and Ti = T = 100.

β̂1 β̂2 β̂3 γ̂
Bias MSE Bias MSE Bias MSE |〈γ̂,πj〉| (SE)

Misspecified < 0.001 0.002 −0.252 0.066 - - 0.993 (0.003)
D2

Correctly specified 0.002 0.001 −0.002 0.002 −0.001 0.003 0.993 (0.003)
Misspecified −0.010 0.001 −0.113 0.014 - - 0.987 (0.006)

D4
Correctly specified −0.010 0.001 0.015 0.002 −0.005 0.003 0.988 (0.006)

Table B.3

Bias and mean squared error (MSE) in estimating β1 and the similarity of γ̂ to the average
of πij (denoted as π̄j) and the standard error (SE), for j = 2, 4, when each covariance

matrix has a unique eigenspace. Data dimension p = 20, sample size n = 100 and
Ti = T = 100.

β̂1 γ̂
Truth Bias MSE |〈γ̂, π̄j〉| (SE)

D2 −1 0.980 0.971 0.915 (0.031)
D4 1 −0.523 0.293 0.571 (0.060)

Fig C.1. Normal Q-Q plot and histogram of the data extracted from one brain region of one
subject.
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that the empirical results should be evaluated with caution due to this bias issue.
To empirically assess the validity of Assumption A5, we first calculate the aver-
age sample covariance matrix and then compare the eigenvectors of the average
covariance matrix with the eigenvectors of each individual’s sample covariance
matrix. When the correlation of two eigenvectors is greater than 0.5, we say
there is a high similarity, allowing variability and bias in sample eigenvectors.
About 67% of the eigenvectors have a high similarity across multiple subjects.
Since the individual sample covariance matrix is rank-deficient, the eigenvectors
are not unique. With about 67% overlapping, the assumption of common eigen-
structure is partially satisfied. In addition, as discussed in Section B.2.2, when
the eigenstructure is partially common across subjects, it will not impact the
identification of the common components that are related to the covariates. The
proposed approach identifies three components based on the metric of average
deviation from diagonality suggesting that these three components commonly
diagonalize the covariance matrices. Here the assumption that the log-linear
model is correctly specified is challenging to validate using data alone. The cur-
rent model is considered based on the domain knowledge and the study interest
of AD research.
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