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Abstract: Many studies have been conducted on flows of probability mea-
sures, often in terms of gradient flows. We utilize a generalized notion of
derivatives with respect to time to model the instantaneous evolution of
empirically observed one-dimensional distributions that vary over time and
develop consistent estimates for these derivatives. Employing local Fréchet
regression and working in local tangent spaces with regard to the Wasser-
stein metric, we derive the rate of convergence of the proposed estimators.
The resulting time dynamics are illustrated with time-varying distribution
data that include yearly income distributions and the evolution of mortality
over calendar years.
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1. Introduction

There exists a sizeable literature on flows of probability measures, often de-
scribed in terms of gradient flows (Ambrosio et al., 2008; Santambrogio, 2017).
However, the statistical modeling of the instantaneous evolution of observed
distributions that are indexed by time has not yet been explored. Figure 1
shows an example of time-indexed densities, which correspond to demographic
age-at-death distributions from 1936 to 2010 in the US, for females and males
respectively. Motivated by this and similar data, we study temporal flows for
one-dimensional probability distributions. Recently, there has been intensive in-
terest in comparing distributions with the Wasserstein distance, both in theory
and applications (e.g. Bolstad et al., 2003; Bigot et al., 2017; Galichon, 2017;
Cazelles et al., 2018; Bigot et al., 2019), and in visualization (e.g. Delicado and
Vieu, 2017). In the one-dimensional case that we consider here, it is well known
that the Wasserstein transport can also be expressed in terms of quantile func-
tions (Hoeffding, 1940; Zhang and Müller, 2011; Chowdhury and Chaudhuri,
2019).

Our goal is to develop statistical models that reflect instantaneous evolution
of such temporal flows of distributions. Starting with the Monge–Kantorovich
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Fig 1. Time-varying densities of age-at-death (in years) for the US from 1936 to 2010.

problem (e.g., Ambrosio, 2003; Villani, 2003, 2008), given two probability mea-
sures p1 and p2, one aims to transport the pile of mass distributed as in p1 to
that as in p2 while minimizing the transport cost. The transport map attaining
the minimum transport cost defines the optimal transport from p1 to p2. Based
on such optimal transport maps, basic concepts such as tangent bundles and
exponential and logarithmic maps in Riemannian manifolds can be generalized
to the space of univariate probability distributions endowed with the Wasser-
stein distance, which form a quasi-Riemannian manifold (e.g., Ambrosio et al.,
2008; Bigot et al., 2017; Zemel and Panaretos, 2019). The log map, defined as
the difference between the optimal transport and identity maps, captures the
direction and distance of each small mass along the order-preserving transport
from the starting probability measure to the target measure and can be used
to quantify the change between the two probability measures. Hence, we utilize
temporal derivatives of log maps, the Wasserstein temporal gradients, to model
the instantaneous temporal evolution of distributions. For this purpose, we har-
ness local Fréchet regression (Petersen and Müller, 2019a) to first smooth the
observed probability measures over time due to the discrepancy between the
true conditional Fréchet mean and the observed distributions and then estimate
the Wasserstein temporal gradients by difference quotients based on the local
Fréchet regression estimates.

The Wasserstein temporal gradients that we target are introduced in Sec-
tion 2, with estimation and asymptotic theory in Section 3. In Section 4, we
discuss implementation details, followed by a simulation study. Applications
are demonstrated in Section 5 for longitudinal household income and human
mortality data.
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2. Preliminaries

2.1. Optimal transport in the Wasserstein space

Given a bounded interval D in R, we focus on the Wasserstein space W “

WpDq of distributions on D (for which second moments are finite), endowed
with the L2-Wasserstein distance dW . This metric is related to the solution
of Monge’s optimal transport problem (Villani, 2003) and has repeatedly been
rediscovered, with examples including Mallow’s distance (Mallows, 1972), earth
mover’s distance (Rubner et al., 1997) or quantile normalization (Bolstad et al.,
2003).

Specifically, the L2-Wasserstein distance between any atomless distributions
p1, p2 P W is the square root of

d2W pp1, p2q “ inf
g#p1“p2

ż

D
rx ´ gpxqs

2 dp1pxq, (2.1)

where g#p is a push-forward measure such that g#ppAq “ pptx : gpxq P Auq, for
any measurable function g : R Ñ R, distribution p P W and set A Ď R. It is well
known (e.g., Cambanis et al., 1976) that the minimum in (2.1) is attained at
the optimal transport map Υp1,p2 “ F´1

2 ˝F1 from p1 to p2, and is d2W pp1, p2q “
ş1

0
rF´1

1 puq ´ F´1
2 puqs2 du. Here, Fl and F´1

l are the cumulative distribution
function and quantile function of pl for l “ 1, 2, where cumulative distribution
functions are considered to be right continuous and quantile functions to be
left continuous. A distribution p is atomless if it has a continuous cumulative
distribution function.

Basic concepts of Riemannian manifolds can be analogously defined in the
Wasserstein space W based on optimal transport maps (e.g., Ambrosio et al.,
2008; Bigot et al., 2017; Zemel and Panaretos, 2019). Suppose that p0 is an
atomless reference probability measure in W . The tangent space at p0 is defined
as (Equation (8.5.1), Ambrosio et al., 2008)

Tp0 “ tηpΥp0,p ´ idq : p P W , η ą 0u
L2

p0 ,

where L2
p0

“ L2
p0

pDq is the Hilbert space of p0-square-integrable functions on
D Ă R, with inner product x¨, ¨yp0 and norm } ¨ }p0 ; we reserve the notations
without subscripts x¨, ¨y and } ¨ } for the the inner product and norm correspond-
ing to the Lebesgue measure. Due to the atomlessness of p0, the tangent space
Tp0 is a subspace of L2

p0
equipped with the same inner product and induced

norm. The exponential map Expp0
: Tp0 Ñ W is then defined by

Expp0
g “ pg ` idq#p0, for g P Tp0 .

Although the exponential map here is not a local homeomorphism as in Rie-
mannian manifolds (Ambrosio et al., 2004), any p P W can be recovered from
p0 by Expp0

pΥp0,p ´ idq, which motivates the definition of the inverse of the
exponential map, i.e., the logarithmic map Logp0

: W Ñ Tp0 ,

Logp0
p “ Υp0,p ´ id, for p P W .



4064 Y. Chen and H.-G. Müller

The tangent vector given by log maps quantifies the difference between p0 and
p. Indeed, }Logp0

p}p0 “ dW pp0, pq. Furthermore, the difference between optimal
transport maps and the identity map reveals how mass is transported between
distributions provided that the order is preserved. Specifically, given x P D, if
Υp1,p2pxq ą x (respectively, Υp1,p2pxq ă x), then x should be moved to the right
(respectively, left) to Υp1,p2pxq in order to keep its rank, i.e., F2pΥp1,p2pxqq “

F1pxq.

2.2. Wasserstein temporal gradients

Let pT, P q be a pair of random elements in T ˆ W with joint distribution F ,
where T Ď R is the time domain. We assume

(A1) P is atomless almost surely.

Note that Erd2W pP, pq | T “ ts ď diampDq2 ă 8 for all p P W and t P T . Since
the Wasserstein space W is a Hadamard space (Kloeckner, 2010), there exists
a unique minimizer of Erd2W pP, ¨q | T “ ts (Sturm, 2003). Thus, the conditional
Fréchet mean μ‘ptq of P given T “ t is well-defined; specifically,

μ‘ptq “ argmin
pPW

Mpp, tq, with Mpp, tq :“ Erd2W pP, pq | T “ ts,

and the quantile function of μ‘ptq is given by F´1
μ‘ptqp¨q “ ErF´1

P p¨q | T “ ts,

where F´1
P is the quantile function of P .

To model the instantaneous temporal evolution of probability distributions,
we are aiming to generalize the notion of derivatives, which are used to quantify
the instantaneous change of differentiable real-valued functions, to the scenario
of temporal distribution flows. As discussed in Section 2.1, log maps quantify the
discrepancy between two probability distributions. We note that the atomless-
ness of μ‘ptq is guaranteed by (A1). Hence, a measure of instantaneous temporal
evolution of distributions, the Wasserstein temporal gradient at time t P T can
be defined by

Vt “ lim
ΔÑ0

Logμ‘ptqμ‘pt ` Δq

Δ

“ lim
ΔÑ0

F´1
μ‘pt`Δq

˝ Fμ‘ptq ´ id

Δ

“
BF´1

μ‘ptq

Bt
˝ Fμ‘ptq, μ‘ptq-a.e.,

(2.2)

provided that the bivariate function pt, uq ÞÑ F´1
μ‘ptqpuq is differentiable with

respect to t. Here, Fμ‘psq and F´1
μ‘psq

are the cumulative distribution function

and quantile function of μ‘psq for s P T . If there exists g P L1pT q such that

dW pμ‘psq, μ‘ptqq ď
şt

s
gpxq dx, then μ‘ is an absolutely continuous curve in

the Wasserstein space, and Vt is also referred to as the velocity vector of μ‘

(Ambrosio et al., 2004).
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Example 1. For t P T , let μ‘ptq “ Nr0,1spζt, υ
2
t q be a truncated Gaussian dis-

tribution on the interval r0, 1s. Then the Wasserstein temporal gradient at t
is

Vtpxq “ ζ 1
t ` px ´ ζtq

υ1
t

υt

´ υt

Fμ‘ptqpxq

„

υ1
t

υt
`

´

ζt
υt

¯1
j

ϕ
´

1´ζt
υt

¯

` p1 ´ Fμ‘ptqpxq

´

ζt
υt

¯1

ϕ
´

´ζt
υt

¯

ϕ ˝ Φ´1
´

Fμ‘ptqpxqΦ
´

1´ζt
υt

¯

` p1 ´ Fμ‘ptqpxqqΦ
´

´ζt
υt

¯¯ ,

where Fμ‘ptqpxq “ rΦppx´ ζtq{υtq ´Φp´ζt{υtqs{rΦpp1´ ζtq{υtq ´Φp´ζt{υtqs, Φ
and ϕ are the cumulative distribution function and density of standard normal
distributions, respectively, and we use the notation g1

t “ pd{dtqgt “ pd{dtqgptq
for a function g. Densities and Wasserstein temporal gradients of Nr0,1spζt, υ

2
t q

with different values of ζt and υt are shown in Figure 2.

Fig 2. Densities and Wasserstein temporal gradients of μ‘ptq “ Nr0,1spζt, υ2
t q, for t P r0, 1s.
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Example 2. For t P T , let μ‘ptq be atomless distributions in a location-scale fam-
ily with location and scale parameters being ξt and ςt, respectively. Specifically,
the cumulative distribution function of μ‘ptq is given by x ÞÑ Gppx ´ ξtq{ςtq,
where G : R Ñ r0, 1s is a template cumulative distribution function. Then the
Wasserstein temporal gradient at t P T is

Vtpxq “ ξ1
t ` px ´ ξtq

ς 1
t

ςt
.

For a real-valued differentiable function g : T Ñ R,

dFμ‘ptqpgptqq

dt
“ 0 if and only if g1

ptq “ Vtpgptqq.

Thus, comparing the actual flow g1ptq for a given longitudinal trajectory gptq
with the optimal flow Vtpgptqq provides insights into how the rank of gptq
changes at each time t. If g1ptq ą Vtpgptqq (respectively, g1ptq ă Vtpgptqq), then
d
dtFμ‘ptqpgptqq is positive (respectively, negative), i.e., the rank of gptq increases
(respectively, decreases) instantaneously at time t.

3. Estimation and theory

3.1. Distribution estimation

In practice, distributions are usually not fully observed. This creates an addi-
tional challenge for the implementation of the Wasserstein temporal gradients.
This issue can be addressed, for example, by estimating cumulative distribution
functions (e.g., Aggarwal, 1955; Read, 1972; Falk, 1983; Leblanc, 2012), or es-
timating quantile functions (e.g., Parzen, 1979; Falk, 1984; Yang, 1985; Cheng
and Parzen, 1997) of the underlying distributions from which the observed data

are sampled. Note that with any quantile function estimator pF´1 (respectively,

cumulative distribution function estimator pF ), the corresponding cumulative
distribution function (respectively, quantile function) can be obtained by right
(respectively, left) continuous inversion,

pF pxq “ suptu P r0, 1s : pF´1
puq ď xu, for x P R,

respectively, pF´1
puq “ inftx P D : pF pxq ě uu, for u P p0, 1q.

Alternatively, one can first estimate densities (Panaretos and Zemel, 2016; Pe-
tersen and Müller, 2016) and then obtain the cumulative distribution functions
and quantile functions by integration and inversion.

Suppose tpTi, Piquni“1 are n independent realizations of pT, P q. Available ob-
servations are samples of independent measurements tXiju

mi

j“1 generated from
Pi, respectively, where mi are the sample sizes which may vary across distri-
butions Pi, for i “ 1, . . . , n. Note that the observed data Xij result from two
independent random mechanisms: The first of these generates independently
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and identically distributed pairs pTi, Piq; the second generates samples of obser-
vations tXiju

mi

j“1 according to each distribution Pi, i.e., Xij „ Pi independently.
For a given distribution p P W , with a cumulative distribution function esti-

mate pF obtained by any estimation method based on a random sample generated
from p, we denote by pp “ πp pF q the distribution associated with pF . We make the
following assumption on the discrepancy of the estimated and true probability
distributions for the theoretical analysis of the Wasserstein temporal gradient
estimation.

(D1) For any distribution p P W , with nonnegative decreasing sequence αm “

op1q as m Ñ 8, the corresponding estimate pp based on a sample of size
m generated from p satisfies

sup
pPW

Erd2W ppp, pqs “ Opαmq.

We note that this assumption can be easily satisfied. For example, the density
estimator proposed by Panaretos and Zemel (2016) satisfies (D1) with αm “

m´1{2. If only considering the distributions in W with densities satisfying

sup
xPsupppfpq

maxtfppxq, 1{fppxq, |f 1
ppxq|u ď C, uniform across p,

where fp is the density function of a distribution p P W , supppfpq “ D is the
support of p and C ą 0 is a constant, then the empirical measure satisfies (D1)
with αm “ m´1.

In order to deal with the estimation of n distributions simultaneously, we also
require

(D2) There exists a sequence m “ mpnq such that min1ďiďntmiu ě m and
m Ñ 8 as n Ñ 8.

3.2. Estimation of Wasserstein temporal gradients

We assume that for each i “ 1, . . . , n, we obtain an estimate pFPi of the cumula-
tive distribution function of Pi by one of the methods discussed in Section 3.1
from the observed data tXiju

mi
j“1. Denote by pPi “ πp pFPiq the distribution as-

sociated with pFPi . Since the discrepancy Erd2W pPi, μ‘pTiqq | Tis between the
random distributions Pi and the conditional Fréchet means μ‘pTiq does not

vanish as n Ñ 8, difference quotients based on the estimated distributions pPi

are not directly suitable as an estimate of Wasserstein temporal gradients.
Accordingly, we utilize local Fréchet regression (Petersen and Müller, 2019a)

to smooth the distributions t pPiu over time, which yields consistent estimates
of μ‘ptq, for any t P T . Following Petersen and Müller (2019a), we define the
localized Fréchet mean by

ν‘ptq “ argmin
pPW

Lhpp, tq, with Lhpp, tq “ ErwpT, t, hqd2W pP, pqs. (3.1)
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Here, wps, t, hq “ Khps´ tqrκ2ptq ´κ1ptqps´ tqs{σ2
0ptq, where κzptq “ ErKhpT ´

tqpT ´ tqzs, for z “ 0, 1, 2, σ2
0ptq “ κ0ptqκ2ptq ´ κ1ptq2, Khp¨q “ Kp¨{hq{h,

K is a smoothing kernel, i.e., a density function symmetric around zero, and
h “ hpnq ą 0 is a bandwidth sequence. If assuming the distributions Pi are fully
observed, setting pwps, t, hq “ Khps´tqrpκ2ptq´pκ1ptqps´tqs{pσ2

0ptq, where pκzptq “

n´1
řn

i“1 KhpTi ´ tqpTi ´ tqz, for z “ 0, 1, 2, and pσ2
0ptq “ pκ0ptqpκ2ptq ´ pκ1ptq2, an

oracle local Fréchet regression estimate is

rν‘ptq “ argmin
pPW

rLnpp, tq, with rLnpp, tq “ n´1
n

ÿ

i“1

pwpTi, t, hqd2W pPi, pq. (3.2)

In practice, we usually only observe random samples of measurements Xij gen-

erated from Pi. Replacing Pi with the corresponding estimates pPi as discussed
in Section 3.1, a data-based local Fréchet regression estimate is

pν‘ptq “ argmin
pPW

pLnpp, tq, with pLnpp, tq “ n´1
n

ÿ

i“1

pwpTi, t, hqd2W p pPi, pq. (3.3)

For simplicity, we assume for theoretical analysis that the support of the
marginal density fT of T , i.e., T “ tt P R : fT ptq ą 0u, is connected. Let T ˝

be the interior of T . Furthermore, we require the following assumptions for the
asymptotic analysis of the weights wpT, t, hq and pwpTi, t, hq in ν‘ptq and pν‘ptq,
respectively.

(R1) The kernel K is a probability density function, symmetric around zero
and continuous on r´1, 1s, such that Kpxq “ 0, for all |x| ą 1.

(R2) The marginal density fT of T exists and is continuous on T and twice con-
tinuously differentiable on T ˝. The second-order derivative f2

T is bounded,
suptPT ˝ |f2

T ptq| ă 8.

For any t P T ˝, with the local Fréchet regression estimate pν‘ptq as per (3.3)
and some small Δ ą 0, an estimate of the Wasserstein temporal gradient Vt in
(2.2) is then given by

pVt,Δ “
F´1

pν‘pt`Δq
˝ F

pν‘ptq ´ id

Δ
, (3.4)

where F
pν‘psq and F´1

pν‘psq
are the cumulative distribution function and quantile

function of pν‘psq for s P T .

3.3. Parallel transport

Note that the true and estimated Wasserstein temporal gradients lie in different
tangent spaces; specifically, Vt P Tμ‘ptq and pVt,Δ P T

pν‘ptq. To quantify the

estimation discrepancy of pVt,Δ, an expedient tool is parallel transport, which
is commonly used for manifold-valued data (e.g., Yuan et al., 2012; Lin and
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Yao, 2019; Petersen and Müller, 2019b; Chen et al., 2020). For two probability
measures p1, p2 P W , a parallel transport operator Γp1,p2 : L2

p1
Ñ L2

p2
is defined

by

Γp1,p2g “ g ˝ F´1
1 ˝ F2, for g P L2

p1
,

where F2 and F´1
1 are the cumulative distribution function of p2 and quantile

function of p1, respectively.
Note that since p1 and p2 are atomless, the tangent spaces satisfy Tpk

Ă L2
pk

for k “ 1, 2, and the parallel transport operator Γp1,p2 |Tp1
restricted to the

tangent space Tp1 defines the parallel transport between tangent spaces Tp1

and Tp2 . Furthermore, the parallel transport operator Γp2,p1 from L2
p2

to L2
p1

is the adjoint operator of Γp1,p2 , i.e., xΓp1,p2g1, g2yp2 “ xg1,Γp2,p1g2yp1 . Thus,
the discrepancy between functions g1 P Tp1 and g2 P Tp2 can be quantified by
}Γp2,p1g2 ´ g1}p1 .

3.4. Asymptotic theory

As discussed in Section 3.3, in order to justify }Γ
pν‘ptq,μ‘ptq

pVt,Δ ´ Vt}μ‘ptq as a

measure of estimation discrepancy of pVt,Δ, we require the atomlessness of μ‘ptq
and pν‘ptq. The former follows from (A1). However, the latter is not guaranteed
in general. For theoretical derivations, we instead consider an atomless variant
qν‘ptq of pν‘ptq, which is defined as follows. Suppose inf D “ x0 ă x1 ă ¨ ¨ ¨ ă

xB “ supD is an equidistant grid on D with increment b. Then the cumulative
distribution function of qν‘ptq is given by F

qν‘ptqpxq “ F
pν‘ptqpxl´1q ` b´1px ´

xl´1qrF
pν‘ptqpxlq´F

pν‘ptqpxl´1qs, for x P rxl´1, xlq; F
qν‘ptqpxq “ 0 and 1 for x ă x0

and x ě xB , respectively. We assume that b “ bpnq is a positive sequence such
that b Ñ 0 as n Ñ 8. Hence, an estimate of the Wasserstein temporal gradient
at time t based on qν‘psq with s P T is given by

qVt,Δ “
F´1

qν‘pt`Δq
˝ F

qν‘ptq ´ id

Δ
.

To obtain the convergence rate of qVt,Δ, we also require the following assump-
tion.

(A2) The bivariate function pt, uq ÞÑ F´1
μ‘ptqpuq is twice differentiable; pt, uq ÞÑ

B2F´1
μ‘ptqpuq{pBtBuq is continuous with respect to u. There exists a constant

C ą 0 such that supxPD fμ‘ptqpxq ď C,
ş1

0
suptPT |B2F´1

μ‘ptqpuq{Bt2|2 du ď

C, and suptPT , uPp0,1q |B2F´1
μ‘ptqpuq{pBtBuq| ď C.

We take Δ “ h; this choice, together with suitable values for h, b and Δ, will
lead to Wasserstein temporal gradient estimates qVt,Δ with an asymptotic rate
of convergence that matches the well-known optimal rate of derivative estima-
tion for nonparametric regression for the case of real-valued responses assuming
twice continuous differentiability of the regression function. This optimal rate is
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for example achieved by derivative estimates based on local polynomial fitting
(Müller, 1987; Fan and Gijbels, 1996).

Theorem 1. Assume (A1)–(A2), (D1)–(D2) and (R1)–(R2). With Δ “ h, if
h Ñ 0, nh3 Ñ 8, bh´1 Ñ 8, and αmh´1 Ñ 0,

›

›

›
Γ

qν‘ptq,μ‘ptq
qVt,Δ ´ Vt

›

›

›

μ‘ptq

“

›

›

›

›

›

F´1
qν‘pt`hq

´ F´1
qν‘ptq

h
´

BF´1
μ‘ptq

Bt

›

›

›

›

›

“ O phq ` Op

´

pnh3
q

´1{2
¯

` O
`

bh´1
˘

` Op

´

pαmh´1
q
1{2

¯

.

Furthermore, with h „ n´1{5, b “ Opn´2{5q and αm “ Opn´3{5q,

›

›

›
Γ

qν‘ptq,μ‘ptq
qVt,Δ ´ Vt

›

›

›

μ‘ptq
“ Op

´

n´1{5
¯

. (3.5)

Proofs are in the appendix.

4. Implementation and simulations

There are two tuning parameters for implementation of Wasserstein temporal
gradients, namely the bandwidth h involved in the local Fréchet regression as per
(3.3) and the time increment Δ used in the difference quotient estimator as per
(3.4). As suggested by the theoretical analysis in Section 3.4, we take Δ “ h in
practice. We choose the bandwidth h by leave-one-out cross validation, where
the objective function to be minimized is the mean discrepancy between the
local Fréchet regression estimates and the observed distributions; specifically,

h “ argmin
h1

n´1
n

ÿ

i“1

d2W ppν´i
‘h1 pTiq, pPiq,

where pν´i
‘h1 pTiq is the local Fréchet regression estimate of μ‘pTiq obtained with

bandwidth h1 based on the sample excluding the ith pair pTi, pPiq, i.e.,

pν´i
‘h1 pTiq “ argmin

pPW

1

n ´ 1

ÿ

i1‰i

pwpTi1 , Ti, h
1
qd2W p pPi1 , pq,

and pPi is the estimate of Pi based on the observed measurements tXiju
mi
j“1 as

discussed in Section 3.1. In practice, we replace leave-one-out cross validation
by 10-fold cross validation when n ą 30.

We generated data for simulations as follows:

Step 1: Set μ‘ptq “ Nr0,1spζt, υ
2
t q, a truncated Gaussian distribution on r0, 1s

with ζt “ pt ´ 0.2qpt ´ 0.5qpt ´ 0.9q ` 0.2 and υt “ 0.15 ` 0.03 sinp2πtq.
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Step 2: Sample ai „ Unift˘10π,˘11π, . . . ,˘14πu and Ti „ Unifr0, 1s inde-
pendently, for i “ 1, . . . , n. Set Pi “ gai#μ‘pTiq, where gapxq “

x ´ |a|´1 sinpaxq with a P Rzt0u and x P R.
Step 3: Draw an independently and identically distributed sample tXijumj“1 of

size m from each of the distributions tPiu
n
i“1.

Four cases were considered with n P t50, 200u and m P t25, 500u. We simu-
lated 500 runs for each pair pn,mq. To evaluate the performance of the Wasser-
stein temporal gradient estimate based on the local Fréchet regression as per
(3.4), we computed the integrated error (IE) for given t P r0, 1s; specifically,

IEpn,m, tq “

›

›

›

›

›

F´1
pν‘pt`Δq

´ F´1
pν‘ptq

Δ
´

B

Bt
F´1
μ‘ptq

›

›

›

›

›

. (4.1)

The results are summarized in the boxplots of IEs in Figure 3. It can be seen
that the estimation error decreases as n or m increases.

Fig 3. Boxplots of the integrated errors (IEs) as per (4.1) of the 500 runs for t P

t0.25, 0.5, 0.75u and each pn,mq P t50, 200u ˆ t25, 500u.

5. Applications

In this section, we will demonstrate the proposed Wasserstein gradients for
time-dependent household income and human mortality data. As mentioned
before, the underlying densities are practically never known and need to be
estimated from data that they generate. In the household income and mortality
examples, the data are reported in the form of histograms, respectively life
tables. Our methods can be applied in a straightforward way to histogram data;
specifically we estimate the densities by applying a smoothing step, e.g., using
local linear regression. For local Fréchet regression, we use the Epanechnikov
kernel function Kptq “ 0.75p1´ t2q1r´1,1sptq and choose smoothing bandwidths
h by cross validation.
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5.1. Household income data

Many studies have been conducted on income distribution and inequality (Jones,
1997; Heathcote et al., 2010), since this is a major measure of economic equal-
ity/inequality. The evolution of income distributions over time is of particular
interest as it provides quantification of the directions in which income inequality
is evolving. The US Census Bureau provides histogram data of US household
income over calendar years from 1994 to 2016, available at www.census.gov. To
make incomes of different years comparable, adjustments for inflation have been
made, using the year 2000 as baseline for constant dollars.

Fig 4. Densities of US household incomes for 1994–2016, where “2010 pop00” and “2010
pop10” represent the distribution of 2010 based on the population census of 2000 and 2010,
respectively, and “2013” and “2013 r” represent the distributions on previous and redesigned
questionnaires, respectively.

We focus on incomes less than $300, 000. The data require some preprocess-
ing, as the width of the histogram bins changed between 2000 and 2001; for
2010, due to census changes, two datasets are available based on both census
2010 and 2000 populations; for 2013, two sets of data are also available and
one of them is based on a redesigned questionnaire which has been used since

www.census.gov
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then. To mitigate against these changes, which potentially introduce artificial
variation, we divided the whole period into four parts: 1994–2000, 2001–2010,
2010–2013 and 2013–2016. Although another change of bin width occurred be-
tween 2008 and 2009, we keep the entire period 2001–2010 in order to cover the
financial crisis of 2008 well within the time interval. The densities constructed
by smoothing the histogram data are shown in Figure 4, where “2010 pop00”,
“2010 pop10”, “2013” and “2013 r” represents the income distribution of 2010
based on the population census of 2000 and 2010, and of 2013 based the previous
and redesigned questionnaires, respectively.

Figure 4 reveals not much variation in the income distributions over time
except around 2008. The estimated Wasserstein temporal gradients as per (3.4)
(with bandwidths h “ 1.99, 1.55, 1.50 and 1.50 years for the four periods,
respectively, chosen by cross validation, see Section 4 and time increment Δ “ h)
demonstrate how the income of poor, middle-class and rich households evolved
for the four periods in Figure 5. The Wasserstein temporal gradients for the
ending years of each period cannot be well estimated due to the relative large
value of Δ, and hence the results for 2000, “2010 pop00”, “2013” and 2016 are
not displayed. Since the local Fréchet regression has increased variance near
endpoints, the estimated Wasserstein temporal gradients on the two ends of
each period are somewhat unreliable.

It can be seen in Figure 5 that for the period 1994–1999, incomes of house-
holds at the same percentile levels increased almost throughout, except for rel-
atively poor households whose incomes tended to decrease in 1999. Incomes of
households earning more than $150,000 per year increased much faster than the
other incomes. For the second period 2001–2010, the economic status of the
lower and middle earners was stable in the first three years, rose in 2004–2006,
and then declined starting in 2007. Higher incomes declined until 2002, and be-
ginning in 2003, a divide manifested itself in the higher income levels: The lower
tier of higher incomes was associated with declining income, whereas the higher
tier was associated with increasing income, except for 2007 and 2008. Note that
in 2007 and 2008, all household incomes tended to decrease, coinciding with the
financial crisis. For the last two periods, it can be seen that household incomes
gradually recovered from the crisis. While top incomes above 240,000 US dol-
lars always gained, households with relatively low incomes did not recover until
around 2014.

5.2. Human mortality data

The analysis of mortality data across countries and species has found interest in
demography and statistics (Carey et al., 1992; Chiou and Müller, 2009; Ouellette
and Bourbeau, 2011; Hyndman et al., 2013; Shang and Hyndman, 2017). Of
particular interest is how the distribution of age-of-death evolves over time.
The Human Mortality Database (www.mortality.org) provides data of yearly
life tables for 37 countries or areas, from which the distributions of ages-at-
death in terms of histograms can be extracted.

www.mortality.org
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Fig 5. Estimates of the Wasserstein temporal gradients (solid curves) as per (3.4) for US
household income distribution flows for 1994–1999 and 2001–2015. Positive values indicate
an increasing trend; negative values indicate a decreasing trend.

We focus on ages-at-death in the age interval r0, 100s (in years) and take
Russia, Sweden and the United States as three examples. The densities obtained
by smoothing the histogram data for females and males separately are shown in
Figures 6, 7 and 1, respectively. It can been seen that densities of mortality
and their changes vary across these three countries, which is partly due to
the different domains in terms of calendar years during which country-specific
mortality has been recorded, which goes much further into the past for Sweden
than for the other countries. Estimates of the Wasserstein temporal gradients
have been obtained with bandwidths h chosen by cross validation as discussed
in Section 4 per gender and country (see Table 1 for details) and Δ “ h.
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Table 1

Bandwidths used in the local Fréchet regression for the age-at-death distributions.

Russia Sweden USA

Females 1.87 2.09 2.40
Males 1.66 1.78 2.52

Fig 6. Top: Time-varying densities of age-at-death (in years) with females in the left column
and males in the right column for Russia from 1961 to 2010. Bottom: Estimates of the (unit-
free) Wasserstein temporal gradients of the age-at-death (in years) distributions from 1961 to
2010, where positive values indicate increasing trend and negative values indicate decreasing
trend.

For Russia, the densities of ages-at-death from 1961 to 2010 are shown in the
top two panels in Figure 6. The age-at-death distributions are quite different
between females and males; female adults tend to live longer than males. The
estimates of the Wasserstein temporal gradients for 1961–2010 for Russia are
shown in the bottom two panels in Figure 6, and were obtained based on data
from 1959 to 2014; the estimated gradients for the first and last two years were
excluded due to boundary effects. Between 1970 and 2000, the movement of
mortality to higher ages and thus longer life was interrupted, with a lot of
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variation during this period, and resumed only in the 2000s, where substantial
improvement occurs in children’s mortality. In the 1990s, there was a remarkable
reversal in the trend of longevity increase, as the estimates of the Wasserstein
temporal gradients were negative for those years, especially for young females
and mid-age males.

Fig 7. Top: Time-varying densities of age-at-death (in years) with females in the left column
and males in the right column for Sweden from 1754 to 2012. Bottom: Estimates of the
(unit-free) Wasserstein temporal gradients for the distributions of age-at-death (in years)
distributions from 1754 to 2012, where positive values indicate increasing trend; negative
values indicate decreasing trend.

For Sweden, as shown in Figure 7, the densities of ages-at-death of females
and males are quite similar, indicating a general increase in longevity over the
years. The estimated Wasserstein temporal gradients for Sweden in Figure 7
from 1754 to 2012, which are obtained based on data from 1751 to 2016, show
some volatility in the age-at-death distributions for both females and males,
especially before 1950. Compared to Russia, the evolution of the age-at-death
distributions in Sweden is more balanced—years where the distribution moves
to the left (right) are followed by years with a rightward (leftward) movement
in the distribution. The Wasserstein temporal gradients for Sweden vary in a
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much larger range than Russia, which is partly due to the inclusion of early
calendar years, where the variation of mortality from year to year was much
larger, compared to more recent calendar years. For example, the top orange
curve for 1773 demonstrates a massive increasing trend in life span for both
females and males while the bottom orange curves for 1770–1771 demonstrate
a strongly decreasing trend.

For the US, the age-at-death distributions are somewhat similar across gen-
ders. The estimates of the Wasserstein temporal gradients from 1936 to 2010
obtained based on data from 1933 to 2015 for the US in Figure 8 indicate that
age-at-death distributions tend to move to the right in almost all years, sug-
gesting increasing longevity. However, for several of the years since the 1980s,
reversals can be found for both females and males. A major reversal can be
found for the males from young adults to middle age during 1983–1987. This
puzzling reversal has been attributed to drug use (e.g., Case and Deaton, 2015).

Fig 8. Estimates of the (unit-free) Wasserstein temporal gradients of the age-at-death (in
years) distributions for the US from 1936 to 2010, with females on the left and males on the
right. Positive values indicate increasing trend; negative values indicate decreasing trend.

Appendix A: Derivation of Theorem 1

For t P T , we define

qtp¨q “ E
“

wpT, t, hqF´1
P p¨q

‰

,

qtp¨q “ n´1
n

ÿ

i“1

wpTi, t, hqF´1
Pi

p¨q,

rqtp¨q “ n´1
n

ÿ

i“1

pwpTi, t, hqF´1
Pi

p¨q,
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pqtp¨q “ n´1
n

ÿ

i“1

pwpTi, t, hq pF´1
Pi

p¨q,

where F´1
P , F´1

Pi
and pF´1

Pi
are the quantile functions of P , Pi and pPi, respectively.

Considering any fixed t P T ˝, we will show that

›

›

›

›

›

qt`h ´ qt
h

´
BF´1

μ‘ptq

Bt

›

›

›

›

›

“ Ophq. (A.1)

For qt, we will show that with sufficiently small h,

Bqtpuq{Bu ą 0, for all u P p0, 1q, (A.2)

i.e., qt is a quantile function, whence we will show that

›

›

›
F´1

pν‘ptq ´ qt

›

›

›
ď }pqt ´ qt} . (A.3)

Hence,
›

›

›

›

›

F´1
pν‘pt`hq

´ F´1
pν‘ptq

h
´

qt`h ´ qt
h

›

›

›

›

›

ď h´1
´›

›

›
F´1

pν‘pt`hq
´ qt`h

›

›

›
`

›

›

›
F´1

pν‘ptq ´ qt

›

›

›

¯

ď h´1
p}pqt`h ´ qt`h} ` }pqt ´ qt}q .

Furthermore, we will show that

}pqt`h ´ rqt`h} “ Op

´

pαmhq
1{2

¯

,

›

›

rqt`h ´ qt`h

›

› “ Op

´

pnhq
´1{2

¯

,

›

›qt`h ´ qt`h

›

› “ Op

´

pnhq
´1{2

¯

.

(A.4)

Similar results hold when replacing t ` h with t ´ h. We note that for all t P T ,
}F´1

qν‘ptq ´ F´1
pν‘ptq} ď b, a.s. In conjunction with the atomlessness of μ‘ptq and

qν‘ptq, taking Δ “ h yields

›

›

›
Γ

qν‘ptq,μ‘ptq
qVt,Δ ´ Vt

›

›

›

μ‘ptq

“

›

›

›

›

›

F´1
qν‘pt`hq

´ F´1
qν‘ptq

h
´

BF´1
μ‘ptq

Bt

›

›

›

›

›

“ Ophq ` Op

´

pnh3
q

´1{2
¯

` Opbh´1
q ` Op

´

pαmh´1
q
1{2

¯

,

whence (3.5) follows with h „ n´1{5, b “ Opn´2{5q and αm “ Opn´3{5q. Next,
we will prove (A.1)–(A.4), respectively.
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For any given t0 P T ˝, there exists ρ ą 0 such that rt0 ´ ρ, t0 ` ρs Ă T . We
note that under (R1) and (R2), as h Ñ 0, it holds for z P t0, 1u that

E
“

KhpT ´ tqpT ´ tq2z
‰

“ h2z
“

fT ptqK1,2z ` Oph2
q
‰

,

E
“

KhpT ´ tqpT ´ tq2z`1
‰

“ h2z`2
“

f 1
T ptqK1,2z`2 ` op1q

‰

,

E
“

KhpT ´ tq|T ´ t|2z`1
‰

“ Oph2z`1
q,

E rKhpT ´ tqpT ´ tqzs
2

“ Oph2z´1
q,

(A.5)

where Kk,l “
ş1

´1
Kpsqksl ds, for k, l P N and the O and o terms are uniform in

t P rt0´ρ, t0`ρs. For the following proofs, we define κ`
z ptq “ ErKhpTi´tq|Ti´t|zs

and pκ`
z ptq “ n´1

řn
i“1rKhpTi ´ tq|Ti ´ t|zs, for z “ 0, 1, 2, 3.

Proof of (A.1). Applying a Taylor expansion yields
›

›

›

›

›

qt`h ´ qt
h

´
BF´1

μ‘ptq

Bt

›

›

›

›

›

ď
1

2h

“

E
ˇ

ˇwpT, t ` h, hqpT ´ tq2
ˇ

ˇ ` E
ˇ

ˇwpT, t, hqpT ´ tq2
ˇ

ˇ

‰

ˆ

»

–

ż 1

0

sup
t1PT

ˇ

ˇ

ˇ

ˇ

ˇ

B2F´1
μ‘pt1qpuq

Bt12

ˇ

ˇ

ˇ

ˇ

ˇ

2

du

fi

fl

1{2

.

Under (R1) and (R2), for z “ 0, 1, 2, 3, it follows from similar arguments to
(A.5) that as h Ñ 0,

E |wpT, t ` h, hqpT ´ pt ` hqq
z
|

ď
κ2pt ` hqκ`

z pt ` hq ` |κ1pt ` hq|κ`
z`1pt ` hq

σ2
0pt ` hq

“ Ophz
q.

Hence,

E
ˇ

ˇwpT, t ` h, hqpT ´ tq2
ˇ

ˇ

“ E
ˇ

ˇwpT, t ` h, hqpT ´ pt ` hqq
2
ˇ

ˇ ` 2hE |wpT, t ` h, hqpT ´ pt ` hqq|

` h2
E |wpT, t ` h, hq|

“ Oph2
q.

Similarly, E|wpT, t, hqpT ´tq2| “ Oph2q. In conjunction with (A2), (A.1) follows.

Proof of (A.2). We note that by (A.5) and (A2),

sup
uPp0,1q

ˇ

ˇ

ˇ

ˇ

ˇ

Bqtpuq

Bu
´

BF´1
μ‘ptqpuq

Bu

ˇ

ˇ

ˇ

ˇ

ˇ

ď E |wpT, t, hqpT ´ tq| sup
t1PT , uPp0,1q

ˇ

ˇ

ˇ

ˇ

ˇ

B2F´1
μ‘pt1qpuq

Bt1Bu

ˇ

ˇ

ˇ

ˇ

ˇ

“ Ophq,
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and that

inf
uPp0,1q

BF´1
μ‘ptqpuq

Bu
“

ˆ

sup
xPD

fμ‘ptqpxq

˙´1

ě C´1
ą 0.

Thus, with sufficiently small h, Bqtpuq{Bu ą 0, for all u P p0, 1q.

Proof of (A.3).

}pqt ´ qt}
2

´

›

›

›
F´1

pν‘ptq ´ qt

›

›

›

2

“

›

›

›
pqt ´ F´1

pν‘ptq

›

›

›

2

` 2
A

pqt ´ F´1
pν‘ptq, F

´1
pν‘ptq ´ qt

E

.

If xpqt ´ F´1
pν‘ptq, F

´1
pν‘ptq ´ qty ă 0, then there exists u P p0, 1q such that

›

›

›
uqt ` p1 ´ uqF´1

pν‘ptq ´ pqt

›

›

›

2

´

›

›

›
F´1

pν‘ptq ´ pqt

›

›

›

2

“ u2
›

›

›
F´1

pν‘ptq ´ qt

›

›

›

2

` 2u
A

pqt ´ F´1
pν‘ptq, F

´1
pν‘ptq ´ qt

E

ă 0,

which contradicts the fact that F´1
pν‘ptq “ argminF´1 n´1

řn
i“1 pwpTi, t, hq} pF´1

Pi
´

F´1}2 “ argminF´1 }pqt ´F´1}2, where the minimization is over all the quantile
functions of distributions in W . Therefore, xpqt ´F´1

pν‘ptq, F
´1
pν‘ptq ´ qty ě 0, whence

(A.3) follows.

Proof of (A.4). Under (R1)–(R2) and (D1)–(D2),

E

´

}pqt`h ´ rqt`h}
2
¯

ď E

˜

1

n

n
ÿ

i“1

pwpTi, t ` h, hq
2

›

›

›

pF´1
Pi

´ F´1
Pi

›

›

›

2
¸

“ E

«

1

n

n
ÿ

i“1

pwpTi, t ` h, hq
2
E

ˆ

›

›

›

pF´1
Pi

´ F´1
Pi

›

›

›

2

| Ti, Pi

˙

ff

ď C1αmE

«

1

n

n
ÿ

i“1

pwpTi, t ` h, hq
2

ff

ď C2
αm

h
E

«

1

n

n
ÿ

i“1

ˆ

pκ2pt ` hq ´ pκ1pt ` hqpTi ´ pt ` hqq

pσ2
0pt ` hq

˙2

KhpTi ´ pt ` hqq

ff

“ C2αmh´1
E

„

pκ2pt ` hq2pκ0pt ` hq ´ pκ2pt ` hqpκ1pt ` hq2

pκ2pt ` hqpκ0pt ` hq ´ pκ1pt ` hq2

j

“ C2αmh´1
E rpκ2pt ` hqs

“ C2αmh´1κ2pt ` hq

ď C3αmh,

where C1, C2, C3 are constants. Hence, }pqt`h ´ rqt`h} “ Opppαmhq1{2q.
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Next, we observe that

›

›

rqt`h ´ qt`h

›

› ď sup
uPp0,1q

1

n

n
ÿ

i“1

ˇ

ˇp pwpTi, t ` h, hq ´ wpTi, t ` h, hqqF´1
Pi

puq
ˇ

ˇ

ď

ˆ

sup
xPD

|x|

˙

1

n

n
ÿ

i“1

| pwpTi, t ` h, hq ´ wpTi, t ` h, hq|

ď

ˆ

sup
xPD

|x|

˙ ˆ

|pκ0pt ` hq|

ˇ

ˇ

ˇ

ˇ

pκ2pt ` hq

pσ2
0pt ` hq

´
κ2pt ` hq

σ2
0pt ` hq

ˇ

ˇ

ˇ

ˇ

` |pκ`
1 pt ` hq|

ˇ

ˇ

ˇ

ˇ

pκ1pt ` hq

pσ2
0pt ` hq

´
κ1pt ` hq

σ2
0pt ` hq

ˇ

ˇ

ˇ

ˇ

˙

.

We note that

E rKhpT ´ pt ` hqqpT ´ pt ` hqq
z
s
2

“ Oph2z´1
q. (A.6)

In conjunction with (A.5) and Taylor expansion,

pκ0pt ` hq “ κ0pt ` hq ` Op

´

pnhq
´1{2

¯

,

pκ`
1 pt ` hq “ κ`

1 pt ` hq ` Op

´

hpnhq
´1{2

¯

,
ˇ

ˇ

ˇ

ˇ

pκ2pt ` hq

pσ2
0pt ` hq

´
κ2pt ` hq

σ2
0pt ` hq

ˇ

ˇ

ˇ

ˇ

“ Op

´

pnhq
´1{2

¯

,

ˇ

ˇ

ˇ

ˇ

pκ`
1 pt ` hq

pσ2
0pt ` hq

´
κ`
1 pt ` hq

σ2
0pt ` hq

ˇ

ˇ

ˇ

ˇ

“ Op

´

h´1
pnhq

´1{2
¯

,

whence we have }rqt`h ´ qt`h} “ Opppnhq´1{2q.
Lastly, we observe that

›

›qt`h ´ qt`h

›

›

ď
κ2pt ` hq

σ2
0pt ` hq

1

n

n
ÿ

i“1

›

›KhpTi ´ pt ` hqqF´1
Pi

´ E
“

KhpT ´ pt ` hqqF´1
P

‰›

›

`
h|κ1pt ` hq|

σ2
0pt ` hq

1

n

n
ÿ

i“1

›

›

›

›

KhpTi ´ pt ` hqq
Ti ´ pt ` hq

h
F´1
Pi

´ E

„

KhpT ´ pt ` hqq
T ´ pt ` hq

h
F´1
P

j›

›

›

›

“ Op

´

pnhq
´1{2

¯

,

which follows from (A.6) and the boundedness of D.
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