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Abstract: This article presents a novel method for prediction of station-
ary functional time series, in particular for trajectories that share a similar
pattern but display variable phases. The limitation of most of the existing
prediction methodologies for functional time series is that they only con-
sider vertical variation (amplitude, scale, or vertical shift). To overcome
this limitation, we develop a shape-preserving (SP) prediction method that
incorporates both vertical and horizontal variation. One major advantage
of our proposed method is the ability to preserve the shape of functions.
Moreover, our proposed SP method does not involve unnatural transforma-
tions and can be easily implemented using existing software packages. The
utility of the SP method is demonstrated in the analysis of non-metanic
hydrocarbons (NMHC) concentration. The analysis demonstrates that the
prediction by the SP method captures the common pattern better than
the existing prediction methods and also provides competitive prediction
accuracy.
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1. Introduction

When continuous-time records are separated into natural consecutive time in-
tervals, such as days, weeks, or years, for which a reasonably similar behavior
is expected, the resulting functions can be described as a functional time series,
where one unit of observation is an observed trajectory. Functional data some-
times exhibit two types of variation: amplitude variation which corresponds to
the size or scale of trajectory features, and phase variation which accounts for
location variation and temporal shifts. In this paper, we analyzed the curves of
non-metanic hydrocarbons (NMHC) collected at road level in an Italian city. In
Figure 1, 7 consecutive trajectories of NMHC concentration are displayed. Ob-
serve that each daily curve has two peaks. The time of the occurrence of peaks
varies across days due to human activity or some other environmental reasons.
The variation of the occurrence time of the peaks can be viewed as phase varia-
tion. However, existing work typically consider only the vertical variation (i.e.,
amplitude), but not the variation in phase. An immediate result is that, the pre-
dicted curve may not show the common underlying pattern. To overcome this
serious limitation, we develop a novel method for stationary functional time se-
ries, where trajectories share a common pattern. Our goal is not only to obtain
competitive prediction from the past data by some stationary functional time
series model, such as functional auto-regressive model, in terms of mean squared
error, but also to preserve the underlying pattern for the predicted curves.

There are available prediction methods for stationary functional time se-
ries. Besse et al. [3] proposed a non-parametric kernel predictor. Antoniadis
and Sapatinas [1] studied the first-order functional autoregression curve predic-
tion based on a linear wavelet method. Kargin and Onaski [18] introduced the
predictive factor method. Aue et al. [2] developed a method that uses multi-
variate techniques in functional time series prediction. Jiao et al. [16] proposed
a partial functional prediction method, for the cases where the functions to be
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Fig 1. 7 consecutive NMHC concentration trajectories of one week

predicted are partially observed. There are also some other prediction meth-
ods for functional time series, and these methods have their own advantages.
However, their main limitation is that they incorporate only vertical variation
among the curves. Hyndman and Shang [11] proposed to use weighted functional
principal component regression and weighted functional partial least squares re-
gression. One attractive feature of their method is its ability to take account
for changes in shape over time. However, the geometrically decaying weights re-
strict the shape of each function to be close to the neighboring functions. Hence,
while this method works well for processes with slowly-evolving shape, its dis-
advantage is that it is not suitable for situations where “neighboring” functions
have different shape or shape changes quickly across curves. Compared to Hy-
dman’s method, the SP method allows fast transition of phase. Some related
work assume that functions are composed of multiple components which repeat
themselves over different periods of time (see e.g., Lin et al. [12] and Lin et
al. [13]). The difference between their work and our proposed method is that we
assume that there is only one common pattern that repeats itself over the same
period of time across curves. This, we believe, is more suitable for some cases
such as the environmental data that is being analyzed in this paper.

When trajectories share a common pattern and meanwhile present phase
variation, a typical technique researchers usually adopt is functional registration.
In functional registration, each function is decomposed as fn(t) = Xn ◦ γn(t),
where the amplitude function Xn(t) accounts for the vertical variation, and
the warping function γn(t) captures the phase information. However, to the
best of our knowledge, methods for functional time series prediction have not
incorporated functional registration. The prediction method that we develop
here involves the prediction of amplitude functions and warping functions. One
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of the major challenges is the prediction of warping functions, since they do
not lie in a linear space, and thus ordinary linear models are not applicable.
Warping functions must be monotonically increasing, and are restricted to start
and end at two fixed values. There are several ways to model warping functions.
Generally speaking, all these methods seek to apply linear models to non-linear
objects.

It is noted that warping functions share similar properties with probability
distribution functions, that is, they are all non-decreasing and have common
starting and ending values. There are some papers on modeling probability
density functions. These work typically apply some transformations to density
functions and then employ linear models to the transformed functions. Brum-
back and Lindstrom [4] proposed a self-modeling method for monotone functions
involving the transformation proposed by Jupp [17], which is a bijective map
from the space of monotone increasing vectors to Euclidean space. Gervini [8]
used the Jupp transformation to study warped functional regression. Peterson
and Müller [22] proposed to use the log quantile density transformation and log
hazard transformation to map a density function into a linear Hilbert space.
Kokoszka et al. [20] used the same transformations to predict density func-
tions. Another way is to study the manifold structure of warping functions.
Here some of these related methods are reviewed. Cheng and Wu [6] used lo-
cal linear regression models to study the scalar-on-manifold regression problem,
where covariates lie on an unknown manifold. Su et al. [27] employed the trans-
ported square-root vector field (TSRVF) to implement statistical analysis of
trajectories on Riemannian manifolds. Dai and Müller [7] developed principal
component analysis for sphere-valued functional data. They proposed to apply
functional principal component analysis (fPCA) to the tangent vectors at the
Fréchet mean of the sphere.

However, all these methods have some limitations. One common character-
istic of the first kind of method is that the transformations all involve the
“logarithm” which sometimes dictates the need of another re-scaling step (e.g.,
log(f(Q(t))) and log(f(t)/{1−F (t)}), where F (t) and Q(t) are the cumulative
distribution function and quantile function of the density function f(t), see Pe-
terson and Müller [22]). A major limitation of the logarithm function is that it
either shrinks the variation of large values or exaggerates the variation of values
close to 0. In addition, density functions (and warping functions) lie in a non-
linear space, and it is always unnatural to use linear models directly. Regarding
the second framework, one may consider applying linear models to the tangent
space of the manifold composed of the square root of slope functions (SRSF) of
warping functions γ(t), defined as

√
γ̇(t). The SRSFs of warping functions lie on

an infinite dimensional sphere, and thus the tangent space has clear and simple
representation. However, the SRSFs of warping functions form only the positive
orthant of the sphere (−

√
γ̇(t) is not included), and the predicted SRSFs by lin-

ear models may lie on the negative orthant. In addition, this approach still seeks
to transform nonlinear space to linear space, and thus also changes the original
variation. All of these problems motivate us to develop a new methodology to
predict the stochastic process composed of warping functions.
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We develop a novel method that can jointly predict amplitude and warping
functions. The major advantage of our method is that it does not require any
unnatural transformations and it retains the predicted warping functions strictly
in their original non-linear space. To be more specific, we develop a state-space
model where warping functions are assumed to be driven by hidden states, and
consequently, there is no need to transform warping functions between linear
and non-linear spaces.

We first implement functional registration to obtain amplitude and warp-
ing functions. To predict warping functions, we propose a state-space model,
in which the states are driven by a Markov chain. Spherical K-means cluster-
ing, which is a popular technique for dimension reduction of non-linear space,
is used to reveal the potential low dimensionality of warping functions. In the
model, finite prototypes are employed to represent the nonlinear space of warp-
ing functions, where each warping function is assumed to be the sum of its
corresponding prototype and a random error function. For the prediction of the
amplitude function, we develop a varying coefficient operator functional auto-
regressive model. Varying-coefficient models have been extended to functional
data. Sentürk and Müller [24] generalized functional varying coefficient model to
incorporate the influence of recent past values of predictors on current response.
Further improvements were reported in Sentürk and Müller [25] which proposed
a new representation for varying coefficient functions and introduced a smooth
history index function to model the dependence of the response on the recent
past values of predictors. Krafty et al. [21] employed a varying coefficient model
in the analysis of tumor growth curves. Our varying coefficient model is fully
functional, and the states of previous warping functions influence the current
coefficient operators. The predicted warping functions and amplitude functions
are combined to obtain the final prediction.

In this article, the following issues will be addressed:

1. Since the real states in the state-space model are unknown in practice,
the transition probability matrix of the hidden Markov chain has to be
estimated through the estimated states instead of the real states. The
large-sample behavior of the estimator will be investigated in this paper.

2. A method for determining the dimension and order of the varying coeffi-
cient operator functional auto-regressive model will be developed.

3. We will develop a measure to evaluate the performance of our proposed
method in preserving the common pattern.

The rest of the paper is organized as follows. In Section 2, we formulate the
model for the stochastic process of warping functions and amplitude functions,
the joint prediction procedure of amplitude and phase variation, and discuss how
to measure shape similarity. In Section 3, we derive the asymptotic properties
of the least squares estimator of the transition matrix in the state-space model.
Section 4 displays the results of the simulation study comparing the prediction
performance of the SP method and some other competitor methods. In Section 5,
we report the results of the analysis on the NMHC concentration. Section 6
concludes the article.
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2. Models, algorithms, and shape similarity

2.1. Amplitude and phase variation

In this section, we formulate the models for amplitude and phase variation.
Let {fn(t) : n ∈ N} be an arbitrary stationary functional time series defined
on a common probability space (Ω,A, P ), where the function index n is dis-
crete and the time index t is continuous. Assume the following decomposition
fn(t) = Xn ◦ γn(t). In this decomposition, Xn(t) is the amplitude function
and γn(t) is the warping function. The observations {fn(t) : n ∈ N} are el-
ements of the Hilbert space H = L2[0, 1] equipped with the inner product

〈f1, f2〉 =
∫ 1

0
f1(t)f2(t)dt, and fn(t) < ∞ for any t ∈ [0, 1]. The norm of each

fn satisfies ‖fn‖2 =
√

〈fn, fn〉 < ∞. Define the mean function and covariance
function of the amplitude functions as follows

μ(t) = E{Xn(t)}, K(t, s) = cov{Xn(t), Xn(s)}.

In practice, μ(t) and K(t, s) are always unknown and need to be estimated from
samples {X1(t), . . . , XN (t)} as follows:

μ̂(t) =
1

N

N∑
n=1

Xn(t), K̂(t, s) =
1

N

N∑
n=1

{Xn(t)− μ̂(t)}{Xn(s)− μ̂(t)}.

By Mercer’s theorem, K(t, s) and K̂(t, s) admit the following decomposition

K(t, s) =

∞∑
m=1

λmνm(t)νm(s), K̂(t, s) =

∞∑
m=1

λ̂mν̂m(t)ν̂m(s),

where 〈νm1 , νm2〉 = 0 (m1 �= m2) and ‖νm‖2 = 1 (m ≥ 1). The warping
functions γn : H → H have the following property: γn(0) = 0, γn(1) = 1, γn
is invertible, both γn and γ−1

n are continuous, and assume that the first order
derivative exists and satisfies γ̇n(t) < ∞ for all t ∈ [0, 1]. Let Γ denote the set of
all such functions. The square root of slope function (SRSF) of γn(t) is defined
as

sn(t) = S(γn(t)) =
√

γ̇n(t),

and a SRSF sn(t) can be transformed back into a warping function γn(t) by
applying S−1(·) to it

γn(t) = S−1(sn(t)) =

∫ t

0

s2n(u)du, 0 < t < 1.

Evidently ‖sn(t)‖2 = 1, thus {sn(t) : n ∈ N} lie on an infinite-dimensional
sphere. In practice, only {fn(t) : n ≥ 1} are observed, and we propose to apply
functional registration algorithm (see e.g., Ramsay and Silverman [28], Kneip
& Ramsay [19], and Srivastava & Klassen [26]) to obtain {Xn(t) : n ≥ 1} and
{γn(t) : n ≥ 1}. In the following, it is assumed that both {Xn(t) : n ≥ 1} and
{γn(t) : n ≥ 1} are already obtained.
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2.2. Functional auto-regressive model for amplitude functions

One way to model amplitude functions is by a FAR model. A FAR(q) process
is defined by the stochastic recursion

Xn(t)− μ(t) =

q∑
j=1

Φj(Xn−j − μ)(t) + εn(t),

where {εn(t) : n ∈ N} are centered, independent and identically distributed
innovations in H = L2[0, 1] and Φj(·) : H → H is a bounded linear operator for
j = 1, . . . , q, and are defined so that the above recursive equation has a unique
causal solution (see [10], pp. 236). Horváth and Kokoszka [10] has developed
a sufficient condition for causality of FAR(1) process, and the result can be
extended to FAR(q) process (q > 1) under the state-space form of FAR(q)
process.

The FAR model is easy-to-implement for the prediction of functional time
series. One approach of estimation is to first project functions onto a finite di-
mensional sub-space spanned by some functional basis, e.g., functional principal
components (fPC), then multivariate techniques are applied without much loss
of information (see Aue et al. [2]).

2.3. State-space model for warping functions

Phase variation, which pertains to the variation of locations of curve features,
is captured by the warping functions {γn(t) : n ∈ N}. Since {γn(t) : n ∈ N} are
defined in an infinite dimensional non-linear manifold, linear methods are not
appropriate for the prediction of {γn(t) : n ∈ N}. Note that it is computationally
intractable to predict warping functions in the infinite dimensional manifold Γ.
Hence, we propse to employ non-linear dimensional reduction techniques, and
develop the state-space model with the following assumptions.

• The process {γn(t) : n ∈ N} is driven by a Markov chain, which is irre-
ducible, ergodic, and has finite states. Each state cn is associated with a
fixed prototype warping function bcn(t). γn(t) is expressed as the summa-
tion of its corresponding prototype and a random error function un(t).

• The random error functions {un(t) : n ∈ N} are of mean zero, and given
cn, un(t) is independent of cm and um(t), m �= n, and are constrained
such that the resulting function γn(t) is still a warping function.

Suppose the Markov chain has g states, then each state cn can be represented
by a state-indicating row vector ωn, which is g-dimensional satisfying ωn,cn = 1
and ωn,i = 0, for i �= cn. Denote P as the transition probability matrix. The
state-space model is specified as follows

E[ωn|ω1, . . . , ωn−1] = E[ωn|ωn−1] = ωn−1P,

γn(t) =

g∑
j

ωn,jbj(t) + un(t).
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The second equation is an analogue of the fPC representation of functions in
L2[0, 1]. The prototypes {bj(t) : j = 1, . . . , g} can be viewed as a series of basis
functions of Γ, and the state-space model is a discrete approximation of the
continuous evolution of warping functions. The number of prototypes depends
on the variation of warping functions. Under high variation, a large number of
prototypes are typically needed to approximate the dynamic process {γn(t) : n ∈
N} well by the state-space process.

Remark 2.1. In this state-space model, warping functions are driven by hidden
states and it is not needed to employ linear models to account for its variation,
and consequently, there is no need to transform warping functions between linear
and non-linear spaces.

Remark 2.2. One possible concern is identifiability, say, X ◦ γ1 and (X ◦
γ−1
0 )◦(γ0◦γ1) are the same, where γ0 and γ1 are two arbitrary different warping

functions. However, once the template is fixed (e.g., sample mean) for functional
registration, the decomposition is identifiable. Specifically, if the template X0(t)
is fixed, the warping function γn = argminγ∈Γ ‖fn − X0 ◦ γ‖ is unique for
arbitrary n, where ‖ · ‖ is some metric employed for functional registration, and
in this paper, we propose to use Fisher-Rao metric.

2.3.1. Estimation of the state-space model

Since the hidden states and transition probability matrix are unknown in prac-
tice, we need to first estimate bj ’s, ωn’s, and then P . We apply spherical K-
means clustering, which is a widely-accepted dimension reduction technique for
non-linear space, to the SRSFs of warping functions, and use the cluster cen-
troids as the estimators of the SRSFs of bj ’s. The estimators of bj ’s are obtained
by applying S−1(·) to the cluster centroids,

b̂j(t) = S−1(p̂j(t)), j = 1, . . . , g,

where p̂j(t) is the centroid of the j-th cluster of SRSFs. The classified categories
of {sn(t) : n ∈ N} are considered as the estimated states of {γn(t) : n ∈ N}.
More details are discussed below.

The standard spherical K-means clustering aims to minimize

D =
N∑

n=1

(1− cos(sn, pcn)) =
N∑

n=1

(1− 〈sn, pcn〉)

over all assignments of objects n to cluster cn ∈ {1, . . . , g} and over all SRSF
representations of prototype warping functions p1, . . . , pg. A typical projection
and minimization procedure is repeated to obtain ĉn’s and p̂j ’s.

Let ω̂n denote a g-dimensional vector where only the ĉn-th element is 1 and
the rest elements are zeros. Then P is estimated by the least squares method,
where ωn is replaced with ω̂n, say,

P̂ = argmin
P

N∑
n=2

‖ω̂n − ω̂n−1P‖22.
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The number of hidden states is unknown in practice, and we propose a cross-
validation method in Section 2.4.2 to select g. We assume the selected g is
correct, and will not distinguish between the selected g and the real number of
states. Note that, using the R package skmeans, spherical K-means clustering
algorithm can be implemented by the R function skmeans (see Hornik et al. [9]).
The estimation procedure is summarized in Algorithm 1:

Algorithm 1 Estimation of the state-space model
Step 1 Obtain the SRSFs of warping functions, sn = S(γn).
Step 2 Fix the number of states g, apply spherical K-means clustering to {sn : n ∈ N}, and
obtain the cluster centroids {p̂j : j = 1, . . . , g} and the classified categories {ĉn : n ∈ N}.
Step 3 Apply S−1(·) to {p̂j : j = 1, . . . , g} to obtain the estimated prototype warping func-

tions, say, b̂j = S−1(p̂j), j = 1, . . . , g.

2.4. Joint prediction methodology

After separating amplitude and phase components, it is natural to consider how
to predict the two components jointly, as they are not necessarily independent
of each other. Because warping functions and amplitude functions are defined
in two different spaces, it is necessary to find a common space for these two
kinds of functions in the joint prediction. To be more specific, we assume the
amplitude and warping functions are jointly driven by a Markov process. The
joint modeling procedure is discussed below.

2.4.1. Prediction of warping function

We convert the stochastic process of warping functions into a Markov chain
by applying spherical K-means clustering to their corresponding SRSFs, as has
been discussed in Section 2.3. In order to incorporate the dependence between
phase and amplitude variation, we assume the same kind of state-space model
for amplitude functions, and apply K-means clustering to estimate the hidden
states of amplitude functions. Similarly, the classified categories are treated as
the estimated hidden states. Figure 2 shows the framework, where ω represents
the true state and ω̂ represents the estimated state, and superscripts (a) and
(f) refer to amplitude and phase component respectively.

The two categorical sequences are combined to obtain a new sequence, ω̂n =

(ω̂
(f)
n ⊗ ω̂

(a)
n ), where ⊗ signifies the Kronecker product. Then apply the least

squares method to estimate the transition matrix P of this combined estimated
Markov chain, where P is a g� × g� matrix, g is the number of states of phase
variation and � is the number of states of amplitude variation. The predicted

state is ˆ̂ωN+1 = ω̂N P̂ , and the predictor of ω
(f)
N+1 is obtained as

ˆ̂ω
(f)
N+1 = ω̂N P̂ J,
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Fig 2. Hidden states and estimated states.

where J is the (g�)× g matrix

J =

⎛⎜⎜⎜⎝
1� 0� · · · 0�

0� 1� · · · 0�

...
...

. . .
...

0� 0� · · · 1�

⎞⎟⎟⎟⎠ ,

and 1� = (1, . . . , 1)′1×�, 0� = (0, . . . , 0)′1×�, and
′ signifies transpose. The pre-

dicted warping function is γ̂N+1(t) =
g∑

j=1

ˆ̂ω
(f)
N+1,j b̂j(t). As a side note, ˆ̂ωN+1 is

not a state-indicating vector, but a vector of probabilities of which the sum is
one. Evidently γ̂N+1(t) is a warping function since

d

dt
γ̂N+1(t) =

g∑
j=1

ˆ̂ω
(f)
N+1,j

db̂j(t)

dt
≥ 0,

g∑
j=1

ˆ̂ω
(f)
N+1,j b̂j(1) =

g∑
j=1

ˆ̂ω
(f)
N+1,j = 1,

g∑
j=1

ˆ̂ω
(f)
N+1,j b̂j(0) = 0.

Remark 2.3. When the sample size is small, some ad-hoc adjustments might
be needed to let P̂ satisfy the constraints of a transition matrix. One approach
is to obtain the transition matrix by solving the optimization problem

P̂ = arg min
P∈PM

‖P − P̂LS‖F ,

where PM is the set of all probability transition matrices, ‖ · ‖F is Frobenius

norm, and P̂LS is the original least squares estimator of P .

2.4.2. Data-driven selection of the number of states

To the best of our knowledge, there is no widely accepted procedure for order
selection of hidden Markov models. The selection of state number is a trade-off
between bias and variance. A large number of states decrease the approxima-
tion error by prototype warping functions, but increase variance of estimation.
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Considering that our purpose is prediction, we propose an approach based on
prediction error.

The prediction performance is evaluated by �2 mean squared error and am-
plitude distance (Section 2.5.2). Assume that there is a large test data-set Dtest

which is an independent copy of the dataset used for model fitting, and use
the first 80% curves in Dtest to fit a model with g phase states and � amplitude
states, and predict the rest 20% curves with the fitted model. Next calculate the
mean squared error and the average amplitude distance between the predicted
curves and the curves to be predicted, and refer to these two errors for the order
selection. In practice, the sample size may be limited, and it is not possible to
reserve a large fraction of data for the testing set. In this case, Monte-Carlo
cross-validation is a good alternative approach. A fraction of consecutive curves
are selected as training set and the rest curves are used for testing. This pro-
cedure is repeated multiple times where the partitions are randomly chosen on
each run. A group of candidate state numbers are preset, and the two average
errors are computed for models with different candidates. The state numbers
are selected such that both errors are decent.

2.4.3. Prediction of amplitude function

We now develop the FAR model with varying coefficient operators for the pre-
diction of amplitude functions. The coefficient operator is determined by the

state of the previous warping function. Define Yn(t) = Xn(t)− μ(t) and let c
(f)
n

be the hidden state of γn. The proposed model has the following representation

Yn+1(t) =

q∑
h=1

Φ
(c(f)

n )
h (Yn+1−h)(t) + εn+1(t),

where {εn(t) : n ∈ N} are centered, independent and indentically distributed

innovations in L2[0, 1], and {Φ(k)
h : k = 1, . . . , g, h = 1, . . . , q} are bounded linear

operators, and are constrained so that the above recursive equation has a unique
causal solution.

The estimation of {Φ(k)
h : k = 1, . . . , g, h = 1, . . . , q} is obtained by minimizing

the objective function

S(Φ) =

N−1∑
n=h

∥∥∥∥∥Yn+1 −
q∑

h=1

Φ
(c(f)

n )
h (Yn+1−h)

∥∥∥∥∥
2

2

.

By simple decomposition,

S(Φ) =

g∑
k=1

Nk∑
nk=1

∥∥∥∥∥Ynk+1 −
q∑

h=1

Φ
(k)
h (Ynk+1−h)

∥∥∥∥∥
2

2

,

where Nk is the number of Yn+1 so that γn is in state k. Then minimize the
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following quantity to obtain the estimation of {Φ(k)
h }ph=1:

Sk(Φ) =

Nk∑
nk=1

∥∥∥∥∥Ynk+1 −
q∑

h=1

Φ
(k)
h (Ynk+1−h)

∥∥∥∥∥
2

2

.

After projecting all functional elements onto the sub-eigenspace spanned by the
finite major functional principal components of {Xn(t) : n ∈ N+}, the multivari-

ate technique are applied to estimate {Φ(k)
h : h = 1, . . . , q} for each k. Denote

Φ̂
(k)
h as the estimator of Φ

(k)
h , then the predictor of YN+1 is

ŶN+1 =

g∑
k=1

q∑
h=1

Φ̂
(k)
h (YN+1−h)1(ĉN = k).

The entire joint prediction procedure is summarized in Algorithm 2.

Algorithm 2 Joint prediction algorithm (one-step ahead)
Step 1Apply functional registration algorithm to obtain the amplitude and warping functions.
Step 2 Apply spherical K-means clustering algorithm resp. K-means clustering algorithm to
the SRSFs of the warping functions resp. the amplitude functions to obtain the estimated
states. Combine the two state sequences, fit a Markov model, and obtain the prediction of the
next warping function γ̂N+1 by the state space model.

Step 3 Obtain the prediction of the next amplitude function, ŶN+1, based on a FAR model
with varying coefficient operators.
Step 4 Warp ŶN+1 + μ̂ by γ̂N+1 to obtain the final prediction, f̂N+1 = (ŶN+1 + μ̂) ◦ γ̂N+1.

Remark 2.4. The final expression is binary. In practice, the following weighted
predictor can also be considered,

ŶN+1 =

g∑
k=1

q∑
h=1

Φ̂
(k)
h (YN+1−h)P (ĉN = k).

The weighted predictor has smaller variance but larger bias. The probabilities of
states P (ĉN = k) need to be estimated under some model, for example, P (ĉN =

k) ∝ 1/d(γ̂N , b̂k), where d(γ̂N , b̂k) is some distance between γ̂N and b̂k.

2.4.4. Parameter selection

Now we develop the functional final prediction error (fFPE) criterion to select
the order and dimension of the sub-eigenspace for the prediction of amplitude
functions. Create the d-variate fPC score vector Yn = (yn,1, . . . , yn,d)

′, where
yn,m = 〈Yn, νm〉 = 〈Xn − μ, νm〉. Since the eigenfunctions are orthogonal and
the fPC scores are uncorrelated for each Yn, the mean squared prediction error
is decomposed as

E

[∥∥∥YN+1 − ŶN+1

∥∥∥2] = E

⎡⎣∥∥∥∥∥
∞∑

m=1

yN+1,mνm −
d∑

m=1

ŷN+1,mνm

∥∥∥∥∥
2
⎤⎦
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= E

[∥∥∥YN+1 − ŶN+1

∥∥∥2]+ ∑
m>d

λm,

where ‖ · ‖ denotes the �2-norm, and ŷN+1,m is the prediction of yN+1,m from
the past d-variate fPC score vectors. As for the first summand, assume {Yn : n ∈
N} follows a d-variate VAR(q) process (see Aue et al. [2] for the justifica-
tion of the VAR process) with varying coefficient matrix, that is, Yn+1 =

Φ
(c(f)

n )
1 Yn + . . . + Φ

(c(f)
n )

q Yn−q+1 + Zn+1, where Zn is the error term. For any
state of warping function k, it can be shown that (see, e.g., Lütkepohl [14])√
Nk(β̂k − βk)

L→ Nqd2(0,Σd
Z,k ⊗ Γ−1

q,k), where βk = vec([Φ
(k)
1 , . . . ,Φ

(k)
q ]′) and

β̂k is the least squares estimator of βk, Σ
d
Z,k is the covariance matrix of Zn+1 as

c
(f)
n = k, Γq,k = var(vec([Yn, . . . ,Yn−q+1])) as c

(f)
n = k, and

L→ signifies conver-

gence in distribution. Let Ŷ
(k)
N+1 be the predictor of YN+1 as c

(f)
n = k. Assuming

the classification is correct, it follows that

E

[∥∥∥YN+1 − ŶN+1

∥∥∥2] = E

⎡⎣∥∥∥∥∥YN+1 −
g∑

k=1

Ŷ
(k)
N+11(c

(f)
N = k)

∥∥∥∥∥
2
⎤⎦

= E

[
E

[∥∥∥∥YN+1 − Ŷ
(c

(f)
N )

N+1

∥∥∥∥2
∣∣∣∣∣c(f)N

]]
=

g∑
k=1

E

[∥∥∥YN+1 − Ŷ
(k)
N+1

∥∥∥2]P (c
(f)
N = k)

=

g∑
k=1

E

⎡⎣∥∥∥∥∥YN+1 −
q∑

h=1

Φ̂
(k)
h YN+1−h

∥∥∥∥∥
2
⎤⎦P (c

(f)
N = k)

=

g∑
k=1

⎧⎨⎩tr(Σd
Z,k) + E

⎡⎣∥∥∥∥∥
q∑

h=1

(Φ
(k)
h − Φ̂

(k)
h )YN+1−h

∥∥∥∥∥
2
⎤⎦⎫⎬⎭P (c

(f)
N = k)

=

g∑
k=1

{
tr(Σd

Z,k) + E

[∥∥∥Ip ⊗ (Y ′
N , . . . ,Y ′

N−q+1)(βk − β̂k)
∥∥∥2]}P (c

(f)
N = k)

∼
g∑

k=1

{
tr(Σd

Z,k) +
qd

Nk
tr(Σd

Z,k)

}
P (c

(f)
N = k),

where aN ∼ bN means aN/bN → 1. Finally we conclude that

E[‖YN+1 − ŶN+1‖2] ∼
g∑

k=1

(
Nk + qd

Nk

)
tr(Σd

Z,k)P (c
(f)
N = k) +

∑
m>d

λm.

Replacing tr(Σd
Z,k) with tr(Σ̂d

Z,k), P (c
(f)
N = k) with Nk/N , and λm with λ̂m,

where Σ̂d
Z,k is the unbiased estimator of Σd

Z,k, the fFPE criterion is given by,

fFPE(q, d) =

g∑
k=1

(
Nk + qd

N

)
tr(Σ̂d

Z,k) +
∑
m>d

λ̂m.

We propose to select q and d by minimizing fFPE(q, d).
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2.5. Shape similarity

2.5.1. Functional shape space

One of the main questions considered in this article is: what is a good measure-
ment of shape similarity? In order to compare the shapes of different trajectories,
we need to formally define the functional shape space E and to evaluate shape
similarity. Here, we shall follow the convention that shape is independent of
scale and location. We first rescale and relocate functions, so that they are of
unit norm, and start at the same value. Then we study the shape difference of
the thus obtained set. This resulting space is termed pre-shape space.

Suppose there are two functions f1 and f2, with the corresponding transfor-
mations in the pre-shape space as f̃1 and f̃2. We propose the principle that, if
f̃1 can be warped into f̃2, the two functions f1 and f2 are considered to be of
the same shape. This idea is motivated by shape data analysis (see e.g., Srivas-
tava and Klassen [26]). To be specific, stretching, rotating, or relocating do not
change the shape of planar shape objects. As a motivating example in shape
data analysis, suppose that there is a planar contour delineating a human hand,
stretching, rotating, and relocating the contour will not change the shape of
human hand.

In the functional shape space, we unify the shape representations, that is,
obtain the unification of all points in pre-shape space representing the same
shape. Therefore, the functional shape space E is defined as the quotient space
of L2[0, 1] with respect to relocating, rescaling and warping. We define the equiv-
alence relation ≡ on E as follows: let f̃1, f̃2 be the pre-shape elements of two
functions f1, f2, then f1 ≡ f2 if there exists a warping function γ such that
f̃1 = f̃2 ◦ γ. For any function f0, the set of all functions, of which transforma-
tions in the pre-shape space can be warped into f̃0, is considered as an object in
the functional shape space E , that is, [f0] = {f : f̃ ◦ γ = f̃0, γ ∈ Γ} ∈ E . Based
on this definition, the distance d([f1], [f2]) between two shape objects [f1] and
[f2] should be invariant to relocating, rescaling and warping of f1 and f2.

2.5.2. Amplitude distance

For any f ∈ H0 = {f ∈ H : ḟ > 0}, and ν1, ν2 ∈ Tf (H), where Tf (H) is the
tangent space of H at f , defined as {h ∈ H : 〈f, h〉 = 0}, the Fisher–Rao metric
is defined as the inner product

〈〈ν1, ν2〉〉f =
1

4

∫ 1

0

ν̇1(t)ν̇2(t)
1

ḟ(t)
dt.

One important property of Fisher-Rao metric is invariance of simultaneous
warping: for any γ ∈ Γ, dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ), where dFR denotes
the geodesic distance induced by the Fisher-Rao metric. Under the SRSF rep-
resentation, the Fisher–Rao Riemannian metric on H0 becomes the standard
�2-metric (see [26], pp. 106). With this property, the geodesic distance under
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the Fisher–Rao metric can be written explicitly as dFR(f1, f2) = ‖s1 − s2‖2,
where s1, s2 are the SRSF representations of f1, f2. The Fisher–Rao metric is
defined only on a subset H0 ⊂ H, but under SRSF representation, it can be
generalized to H endowed with the �2-metric. The �2-metric on SRSF represen-
tation space is termed as the extended Fisher–Rao metric.

We shall use the amplitude distance (2.1), which has been shown to be a
proper distance in the functional shape space, to measure shape similarity,

d([f1], [f2]) = inf
γ

dFR(f̃1, f̃2 ◦ γ). (2.1)

If two functions are of the same shape, then the amplitude distance between
the two functions is zero. The geodesic distance induced by the Fisher–Rao
metric is invariant to simultaneous warpings. Therefore, the effect of phase vari-
ation does not influence the amplitude distance between two functions, say, for
any two different warping functions γ1 and γ2, infγ dFR(f̃1 ◦ γ1, f̃2 ◦ γ2 ◦ γ) =

infγ dFR(f̃1, f̃2 ◦ γ), and thus the amplitude distance between two shape objects
is unique (see [26], pp. 85–88).

Remark 2.5. In this paper, we use both the amplitude distance and the Eu-
clidean distance to evaluate the prediction.

3. Theoretical results

The least squares method is employed to estimate the unknown transition prob-
abilities, and aim to find the asymptotic properties of the estimator. It is known
that the least squares estimator of the transition matrix of a Markov chain is
consistent and asymptotically normal (see van der Plas [29]). However, since
the real hidden states need to be estimated, the least squares estimator of the
transition matrix P is not necessarily consistent with P . To find the matrix that
P̂ is consistent with, the following assumptions are needed.

A1. The Markov chain {ωn : n ∈ N} is stationary and ergodic, and has finite
states;

A2. The estimated prototypes are obtained from an independent copy of ob-

servations, and the estimated state ω̂
(a)
n resp. ω̂

(f)
n is independent of F∞

a,0

and F∞
f,0 given ω

(a)
n resp. ω

(f)
n , where F∞

a,0 = σ(ω
(a)
0 , ω̂

(a)
0 , . . . , ω

(a)
∞ , ω̂

(a)
∞ )

and F∞
f,0 = σ(ω

(f)
0 , ω̂

(f)
0 , . . . , ω

(f)
∞ , ω̂

(f)
∞ ), and σ(X) signifies the σ-algebra

induced by X;

A3. p(ĉ
(f)
n = β|c(f)n = α) are the same across n for any α, β = 1, . . . , g, and

p(ĉ
(a)
n = β′|c(a)n = α′) are the same across n for any α′, β′ = 1, . . . , �.

Note that Assumption (A2) is compatible with the assumption on the error
term un of the state-space model. Based on the model assumption, the esti-
mated state ω̂n is only relevant to the real state ωn and the random error un, so
Assumption (A2) is a natural consequence of the assumption on un. Assumption
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(A2) means, given the corresponding real state, the estimated state is indepen-
dent of all other states. This is a reasonable assumption, since as the sample size
grows large enough, the estimated prototype functions tend to be uncorrelated
with any individual function. Assumption (A3) guarantees a constant transition
probability matrix of the estimate states.

The Bayesian theorem implies the following proposition.

Proposition 3.1. Under Assumptions (A1)–(A3), the transition probabilities

of the combined estimated process {ω̂(f)
n ⊗ ω̂

(a)
n : n ∈ N} are given by

P (ω̂
(f)
n+1, ω̂

(a)
n+1|ω̂(f)

n , ω̂(a)
n ) =∑

ω
(f)
n+1,ω

(a)
n+1,ω

(f)
n ,ω

(a)
n

P (ω
(f)
n+1, ω

(a)
n+1|ω(a)

n , ω(f)
n )P (ω̂

(a)
n+1|ω

(a)
n+1)P (ω̂

(f)
n+1|ω

(f)
n+1)

× P (ω̂
(a)
n |ω(a)

n )P (ω̂
(f)
n |ω(f)

n )P (ω
(a)
n , ω

(f)
n )∑

ω
(a)
n ,ω

(f)
n

P (ω̂
(a)
n |ω(a)

n )P (ω̂
(f)
n |ω(f)

n )P (ω
(f)
n , ω

(a)
n )

.

Remark 3.1. Proposition 3.1 implies the transition probability of the estimated
Markov chain.

Next we show that the least squares estimator P̂ is consistent with P̃ =

{P (ω̂
(f)
n+1, ω̂

(a)
n+1|ω̂

(f)
n , ω̂

(a)
n )}. Notationally, let LN (P ) = N−1

N∑
n=2

‖ω̂n− ω̂n−1P‖22,

then we develop the following theorem for the least squares estimator P̂N , which
is a generalization of the result of van der Plas [29].

Theorem 3.1. Under Assumptions (A1)–(A3), for each N there exists a ran-

dom matrix P̂N such that LN (P̂N ) = inf
P

LN (P ) and lim
N→∞

P̂N = P̃ a.s..

In order to establish the asymptotic normality of the least squares estimator
P̂N , we make one additional assumption as follows,

A4. The matrix A = {aij} where aij = 2E{〈∂ω̂0P
∂θi

|P̃ ,
∂ω̂0P
∂θj

|P̃ 〉} is positive

definite, where θi is the i-th element of vec(P).

and introduce the following notations,

Fi(n, θ) =

〈
ω̂n − ω̂n−1P, ω̂n−1

∂P

∂θi

〉
,

Fi(n, θ̃) =

〈
ω̂n − ω̂n−1P̃ , ω̂n−1

∂P

∂θi

∣∣∣∣
P̃

〉
.

The asymptotic normality of the least squares estimator P̂N is established in
Theorem 3.2.

Theorem 3.2. Under Assumptions (A1)–(A4),

N1/2(θ̂N − θ̃)
L→ N (0, A−1ΣA−1),
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where θ̃ = vec(P̃), θ̂N = vec(P̂N), and

Σij = E{Fi(0, θ̃)Fj(0, θ̃)}+ 2

∞∑
k=1

E{Fi(0, θ̃)Fj(k, θ̃)}.

Remark 3.2. The estimation of the transition probability matrix is consistent
and asymptotically normal. Therefore, the estimation behaves stably under large
sample size.

4. Simulations

Finite sample simulations were implemented to illustrate the effectiveness of the
SP method. The method was tested on a FAR(1) process with phase variation.
In each simulation run, 300 (or 600) functions were simulated, and the first
90% of the simulated trajectories were used for model fitting to do one-step
ahead prediction for the remaining 10% of trajectories by a moving-window ap-
proach. Each simulation run was repeated 200 times. We compared our method
with the prediction method of Aue et al. [2], which does not incorporate func-
tional registration, through two kinds of distance, the �2 Euclidean distance
(�2) and the amplitude distance (FR). We also compared our proposed state-
space model with the transformation methods on the prediction of warping
functions.

4.1. First simulation setup

4.1.1. Simulation of warping function

Based on the properties of B-splines (de Boor [5]), we develop the following pro-
cedure to simulate warping functions. We first generated four prototype warping
functions with 7 B-splines. The B-spline scores of the four prototypes were gen-
erated through the following procedure:

1. Four 6-variate vectors with positive elements, ξi = (ξi1, . . . , ξi6), i =
1, 2, 3, 4, were specified as follows:

ξ1 = (1.0, 1.2, 1.4, 1.6, 1.8, 2.0), ξ2 = (2.0, 1.8, 1.6, 1.4, 1.2, 1.0),

ξ3 = (0.3, 0.3, 1.2, 1.2, 0.3, 0.3), ξ4 = (1.2, 1.2, 0.3, 0.3, 1.2, 1.2).

2. The vectors obtained in the first step were transformed as follows:

φi,j+1 =

∑j
k=1 ξik∑6
k=1 ξik

, j = 1, 2, . . . , 6,

then concatenate a zero to each of the vectors (φi2, . . . , φi7) for i = 1, 2, 3, 4
to finalize the score vectors of the prototype warping functions.
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The four score vectors φi = (φi1, . . . , φi7) satisfy φi1 = 0, φi7 = 1 and φi1 <
φi2 < . . . < φi7. The prototypes were generated with 7 B-splines

bi(t) =

7∑
j=1

φijBj(t), t ∈ [0, 1].

The independent error warping functions, denoted by γe
n, were simulated through

the same procedure, say, first simulate a 6-dimensional vector ξen, then trans-
form it to φe

n and take the B-spline expansion. The elements in ξen independently
follow the uniform distribution U [1, 2]. The state of warping functions were sim-
ulated under a Markov process with four states, and the probability transition
matrix has the representation

P =

⎛⎜⎜⎝
p (1− p)/3 (1− p)/3 (1− p)/3

(1− p)/3 p (1− p)/3 (1− p)/3
(1− p)/3 (1− p)/3 p (1− p)/3
(1− p)/3 (1− p)/3 (1− p)/3 p

⎞⎟⎟⎠ .

Each state is associated with a prototype. The final warping functions were
obtained by

γn(t) = (1− τ)b
c
(f)
n

(t) + τγe
n(t),

where 0 < τ < 1 determining the proportion of signal, and c
(f)
n is the simulated

state of the n-th warping function. Figure 3 displays the simulated warping
functions and the prototypes.

Fig 3. Prototypes and simulated warping functions for different τ ’s

4.1.2. Simulation of amplitude function

Amplitude functions were simulated with the same 7 B-splines, where the
scores of the third and the fifth B-splines are significantly larger than those
of the other B-splines. Thus all curves have the same two-peak pattern. The
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two pronounced scores jointly follow a VAR(1) process with varying coeffi-
cient matrix, and the amplitude functions were obtained by the basis expansion
an(t) =

∑7
j=1 ζnjBj(t). The VAR(1) process has 4 coefficient matrices specified

below (
0.8 0
0 0

)
,

(
0 0.8
0 0

)
,

(
0 0
0.8 0

)
,

(
0 0
0 0.8

)
,

and the coefficient matrices were determined by the state of warping function.
The varying coefficient VAR(1) model is specified below,(

ζn+1,3 − 4
ζn+1,5 − 6

)
= Φ(c(f)

n )

(
ζn,3 − 4
ζn,5 − 6

)
+ en+1,

where en
i.i.d∼ N (0,Σ), Σ = 0.2I2, and I2 is a 2×2 identity matrix. The other

scores independently follow N (1, 0.1). The functional time series trajectories
were obtained by applying the warping functions to the amplitude functions,
fn(t) = an ◦ γn(t).

Figure 4 displays the simulated amplitude functions and the simulated func-
tional time series for different τ ’s. Table 1 and 2 display the average �2 predic-
tion error (�2, defined as

∑
n ‖fn− f̂n‖2/(0.1N)) and amplitude difference (FR)

between the predicted functions and the corresponding actual functions being
predicted for p = 0.5, 0.7, 0.9 and N = 300, 600.

Fig 4. Simulated curves for different τ ’s

4.2. Second simulation setup

In the second setup, the amplitude functions were simulated similarly with
one coefficient matrix Φ = 0.8I2. The major difference is the simulation of
warping functions. In this simulation setup, the same procedure is applied to
simulate a sequence of independent warping functions {γe

n(t) : n ∈ N}, where
ξen,j

i.i.d∼ U [0.5, 3] for j = 1, . . . , 6, and then take the moving average of these
functions to obtain {γn(t) : n ∈ N}, say, γn = βγe

n−1 + (1 − β)γe
n, where β
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Table 1

Average amplitude distance and �2 prediction error (τ = 0.4). The format of each block:
average (standard deviation ×100)

p 0.5 0.7 0.9
Shape-preserving prediction

N = 300
g �2 FR �2 FR �2 FR
3 0.298(1.86) 0.192(1.08) 0.257(2.37) 0.199(1.12) 0.202(3.69) 0.196(1.07)
4 0.294(1.75) 0.193(1.05) 0.241(2.46) 0.199(1.02) 0.168(2.01) 0.196(0.94)
5 0.297(1.79) 0.193(0.95) 0.245(2.36) 0.200(0.95) 0.170(2.29) 0.196(1.13)

N = 600
g �2 FR �2 FR �2 FR
3 0.300(1.26) 0.189(0.75) 0.260(1.73) 0.198(0.73) 0.200(2.50) 0.194(0.85)
4 0.293(1.24) 0.190(0.74) 0.242(1.69) 0.200(0.73) 0.166(1.51) 0.193(0.69)
5 0.295(1.31) 0.191(0.71) 0.240(1.78) 0.199(0.71) 0.166(1.40) 0.193(0.78)

Prediction without registration
N = 300

– �2 FR �2 FR �2 FR
– 0.289(1.85) 0.235(1.15) 0.245(2.12) 0.216(1.07) 0.185(2.23) 0.201(1.13)

N = 600
– �2 FR �2 FR �2 FR
– 0.290(1.27) 0.236(0.83) 0.247(1.61) 0.214(0.80) 0.184(1.35) 0.199(0.80)

Table 2

Average amplitude distance and �2 prediction error (τ = 0.2). The format of each block:
average (standard deviation ×100)

p 0.5 0.7 0.9
Shape-preserving prediction

N = 300
g �2 FR �2 FR �2 FR
3 0.377(2.18) 0.205(1.27) 0.318(3.03) 0.202(1.22) 0.219(5.25) 0.206(1.62)
4 0.371(2.25) 0.203(1.12) 0.291(3.14) 0.201(1.29) 0.166(2.40) 0.207(1.71)
5 0.371(2.25) 0.205(1.10) 0.292(3.41) 0.203(1.26) 0.168(2.46) 0.207(1.73)

N = 600
g �2 FR �2 FR �2 FR
3 0.381(1.39) 0.206(0.81) 0.313(2.42) 0.202(0.99) 0.221(4.06) 0.209(1.24)
4 0.372(1.45) 0.203(0.88) 0.289(2.14) 0.200(0.89) 0.169(1.92) 0.208(1.41)
5 0.373(1.65) 0.203(0.90) 0.291(2.45) 0.201(0.86) 0.168(1.89) 0.207(1.40)

Prediction without registration
N = 300

– �2 FR �2 FR �2 FR
– 0.352(2.35) 0.317(1.42) 0.285(2.71) 0.260(1.58) 0.179(2.77) 0.202(1.67)

N = 600
– �2 FR �2 FR �2 FR
– 0.354(1.45) 0.318(1.15) 0.279(2.31) 0.256(1.07) 0.176(1.95) 0.198(1.19)

takes value in (0.3, 0.5, 0.7). Here, the amplitude and warping functions were
predicted separately. Table 3 shows the average �2 prediction error and ampli-
tude distance between the predicted curves and the corresponding real curves
for different values of β and N .
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Table 3

Average amplitude distance and �2 prediction error for different β. The format of each
block: average (standard deviation ×100)

β 0.3 0.5 0.7
Shape-preserving prediction

N = 300
g �2 FR �2 FR �2 FR
4 0.309(2.89) 0.202(1.11) 0.280(2.55) 0.198(1.15) 0.310(2.88) 0.202(1.21)
6 0.309(2.67) 0.203(1.10) 0.282(2.66) 0.199(1.09) 0.309(2.90) 0.204(1.11)
8 0.308(2.88) 0.205(1.05) 0.278(2.66) 0.201(1.16) 0.310(2.60) 0.204(1.07)
10 0.311(2.96) 0.205(1.03) 0.279(2.60) 0.201(1.11) 0.310(2.96) 0.206(1.15)

N = 600
g �2 FR �2 FR �2 FR
4 0.310(1.99) 0.201(0.81) 0.279(1.92) 0.197(0.72) 0.306(2.04) 0.200(0.82)
6 0.308(2.01) 0.202(0.77) 0.276(1.88) 0.197(0.71) 0.307(1.87) 0.202(0.80)
8 0.304(2.03) 0.202(0.85) 0.279(1.85) 0.198(0.78) 0.306(1.95) 0.203(0.84)
10 0.305(1.88) 0.202(0.84) 0.277(1.91) 0.197(0.69) 0.306(1.85) 0.203(0.79)

Prediction without registration
N = 300

– �2 FR �2 FR �2 FR
– 0.301(2.76) 0.262(1.60) 0.267(2.41) 0.234(1.49) 0.301(2.65) 0.261(1.64)

N = 600
– �2 FR �2 FR �2 FR
– 0.301(1.87) 0.261(1.12) 0.265(1.78) 0.232(0.98) 0.297(1.70) 0.260(1.09)

4.3. Discussion on the simulations

In the first simulation setting, the optimal number of hidden states of warp-
ing functions is 4. Therefore, as g changes from 3 to 4, the performance of the
SP method is significantly improved. Tables 1, 2 and 3 show that (1.) The SP
method preserves the common pattern after incorporating functional registra-
tion into prediction, and (2.) The performance of the SP method is robust to
the selection of the number of hidden states. When the phase variation is diffi-
cult to predict, the prediction by the SP method may not be as accurate as the
prediction without functional registration. However, if the shape of the curve to
be predicted is of major concern, the SP method is a better approach.

4.4. Comparison with logarithm transformation methods

As has been discussed in the introduction, one feasible prediction approach for
warping functions is to predict transformed warping functions. Such methods
typically transform highly constrained warping functions to unconstrained func-
tions, and then linear models are employed to predict the transformed functions.
The transformations in such methods always incorporate “logarithm” and the
original variation is shrunk or exaggerated. To show the superiority of the state-
space model approach, it was compared with two transformation methods.

The first competitor method employs Jupp transformation. The method was
considered in the warped regression model (Gernivi [8]). In this method, each
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warping function γn(t) is evaluated at fixed grids 0 = γn0 < γn1 < · · · <
γnr < γn,r+1 = 1, and each discretized vector is transformed by the Jupp
transformation specified below:

τnj = log

{
γn,j+1 − γn,j
γn,j − γn,j−1

}
, j = 1, . . . , r, n = 1, . . . , N.

VAR model is then employed to predict the transformed vectors. The last step
is to transform the predicted vector (τ̂N+1,1, . . . , τ̂N+1,r) back into a constrained
increasing vector by the inverse Jupp transformation, say,

γ̂N+1,j = sN+1,j/(1 + sN+1,r),

sN+1,j =

j∑
k=1

exp(τ̂N+1,1 + · · ·+ τ̂N+1,k), j = 1, . . . , r.

This method typically requires fine grids so that the discretized vectors capture
the major features of warping functions.

The second method is a functional approach. Similar to those transformations
employed in Petersen and Müller [22], the transformation applied in this method
has strict inverse only modulo the quotient space, and specifically, two functions
f1(t) and f2(t) defined over [0, 1] are equivalent if f1(t)/f1(1) = f2(t)/f2(1). The
transformation ψ(·) and its inverse are given as follows:

rn(t) ≡ ψ(γn)(t) = log (γ̇n) (t),

ψ−1(rn(t)) =

∫ t

0

exp (rn(x))∫ 1

0
exp(rn(s))ds

dx.

The prediction method proposed by Aue et al. [2] was applied to predict the
future transformed functions, and the predicted functions were then transformed
back into warping functions with ψ−1(·).

The warping functions were simulated under the second setup (β = 0.8),
and {γe

i (t) : i ∈ N} were simulated in the same way (see Section 4.1.1) with 10

B-splines, say, γe
i (t) =

∑10
j=1 φijBj(t). The scores {ξij : j = 1, . . . , 9} follow the

following distribution

P (ξij = 1) = P (ξij = 2) = P (ξij = 3) = P (ξij = 4) = 1/4, j = 1, 2, 3,

P (ξij = 0) = q, P (ξij = 1) = (1− q)/2, P (ξij = 2) = (1− q)/2, j = 4, 5, 6,

P (ξij = 1) = P (ξij = 2) = P (ξij = 3) = P (ξij = 4) = 1/4, j = 7, 8, 9.

Here, 500 warping functions were simulated. In the Jupp transformation method
(JP), the warping functions were evaluated at 10 equally-spaced grids between 0
and 1. In the functional transformation approach (FT), 10 functional principal
components were employed to represent the functions {rn(t) : n = 1, . . . , 500}. In
our state space model method (MC), 10 prototypes were selected. The prediction
error of γ̂(t) was evaluated with the spherical geodesic distance d(γ̂(t), γ(t)) =
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Table 4

Average prediction errors

Method
q

0 0.3 0.5 1

MC 0.055 0.095 0.117 0.045
JP 0.078 0.122 0.155 0.289
FT 0.172 0.240 0.260 0.326

cos−1(〈S(γ̂(t)), S(γ(t))〉). Table 4 displays the average prediction errors of dif-
ferent methods under different q’s.

As q is large (close to 1), the middle part of the simulated warping functions
is more likely to be flat, say, γ̇n ≈ 0, and the “logarithm” transformations are
more likely to exaggerate the original variation. Table 4 shows that the MC
method is superior to the other two competitor methods, especially when the
warping functions are flat over some intervals.

5. Analysis of pollution concentration trajectories

The SP method was applied to predict the air quality trajectories (De Vito
et al. [23]). The data is available at the UCI Machine Learning Repository.
The dataset contains hourly averaged observations collected from 5 metal oxide
chemical sensors embedded in an Air Quality chemical multi-sensor device. The
device was placed at road level in a significantly polluted area in an Italian city.
The pollution concentration was recorded from March 2004 to February 2005
(one year). Here we analyzed the non metanic hydrocarbons concentration.

The pollution concentration is highly influenced by the traffic flow, so the
trajectories share a common two-peak pattern (one peak in the morning and one
peak in the afternoon). However, humidity, wind speed, temperature and other
environmental factors can also influence the concentration, thus the trajectories
display phase variation. Figure 5 displays the smoothed NMHC concentration
trajectories and the registered trajectories. The trajectories of the weekdays are
marked in black; those of Saturdays are marked in blue; and those of Sundays
are marked in red. Figure 6 displays the (prototype) warping functions.

As the trajectories for the weekdays share a mean different from that of
weekends, the amplitude functions were centralized with the means of each day
of the week. After removing the days with too many missing values, there are
357 trajectories in total. We found that the SP method produced the overall best
prediction when the amplitude and warping functions are predicted separately.
The first 300 curves were used to train the model for predicting the rest 57
curves, and FAR(1) models were fitted to predict the amplitude functions of the
trajectories to be predicted. The SP method was compared with the prediction
method without functional registration (Aue et al. [2]).

Table 5 displays the average �2 prediction error and amplitude distance be-
tween the predicted curves and the corresponding smoothed curves under dif-
ferent numbers of states g and dimensions of eigen-space d. It is noted that the

https://archive.ics.uci.edu/ml/datasets/Air+Quality
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Fig 5. Smoothed daily NMHC concentration and registered trajectories

Fig 6. Warping functions and prototype warping functions.

Table 5

Prediction comparison. Format of each block: average �2 prediction error (average amplitude
distance)

Shape-preserving method

g
d

3 5 7

6 141.805(0.856) 145.567(0.848) 147.846(0.856)
7 141.988(0.854) 145.507(0.846) 148.507(0.866)
8 142.608(0.851) 144.627(0.857) 141.010(0.857)
9 140.398(0.846) 144.824(0.854) 143.171(0.848)
10 138.352(0.850) 144.326(0.847) 145.268(0.847)
11 141.591(0.844) 146.282(0.847) 141.682(0.855)

Prediction without functional registration
d 3 5 7
– 138.552(0.892) 136.458(0.879) 134.998(0.880)
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SP method sacrifices marginal prediction accuracy to preserve the common two-
peak pattern of the functional time series. The best SP prediction is achieved
when d = 3, g = 10, while the competitor method reaches its best perfor-
mance when d = 7. This is because the functional registration step assures that
less functional principal components are needed to capture most of the vertical
variation.

6. Conclusions

In this paper, we develop a new prediction method for stationary functional
time series that display a common pattern. To the best of our knowledge, our
SP method is the first to incorporate functional registration into prediction of
functional time series. The prediction algorithm jointly predicts the amplitude
and phase components. These two predicted components are then combined to
form the final prediction.

The SP method has two main advantages. First, if the curves displayed a
common pattern and significant phase variation, considering vertical variation
only would lead to the loss of main features. Comparatively, the new methodol-
ogy separates amplitude and phase components first, thus the SP method can
preserve the pattern better. Second, the SP method is “natural” because: (1.)
S(·) is a bijective transformation, thus no additional adjustments are needed
to transform a SRSF back into a warping function, which avoids bias; (2.) The
method does not directly apply linear models to non-linear objects, making
the prediction natural and avoiding extremely small values resulting from the
“logarithm”. The simulation study and real data analysis of non metanic hydro-
carbons concentration data show that the SP method is superior to the predic-
tion methods without functional registration in capturing the common pattern
of trajectories, and meanwhile produce predictions with competitive prediction
accuracy. In this paper, it is assumed that the pattern (shape) repeats with a
fixed period. However, in some cases, such as some biomedical or physical sig-
nals, a signal may be composed of multiple components, and each component
repeats itself at different rate. The extension of the SP method to such cases is
a research topic that will be pursued in the future.

Appendix A: Technical proofs

Proof of Proposition 3.1. By the Bayesian theorem and Assumption (A2), we
deduce that

P (ω̂
(f)
n+1, ω̂

(a)
n+1|ω̂(f)

n , ω̂(a)
n ) =

∑
ω

(f)
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n ,ω
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n |ω̂(a)

n , ω̂(f)
n ),
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The result follows.

The least squares estimator of P is defined as the minimizer of the quantity∑N
n=2 ‖ω̂n − ω̂n−1P‖2, where ω̂n = ω̂

(f)
n ⊗ ω̂

(a)
n . By Proposition 3.1, we have

E(ω̂n+1|ω̂n) = ω̂nP̃ . Notationally, let

LN (P ) =
1

N

N∑
n=2

‖ω̂n − ω̂n−1P‖2, L(P ) = E{LN (P )} = E{‖ω̂2 − ω̂1P‖2}.

To prove Theorem 3.1, first we state the following lemma from van der Plas [29].

Lemma A.1. Let {Xn : n ∈ N} be a stationary and ergodic process with values
in a Euclidean space E, and Θ be a compact subspace of some Euclidean space.
Let F be a real valued measurable function on E × θ such that F (x, θ) is a con-
tinuous function of θ for all x ∈ E. Define φ(x) = supθ∈Θ |F (x, θ)| for all x and

assume that E{φ(X0)} < ∞, then lim
N→∞

N−1
∑N

n=1 F (Xn, θ) = E{F (X0, θ)},
a.s. uniformly for all θ ∈ Θ.

Proof of Theorem 3.1. The first part holds since P is in a compact set and LN

is a continuous function. We now show the second part. We deduce that

L(P̂N )− L(P̃ ) = E{‖ω̂2 − ω̂1P̂N‖2} − E{‖ω̂2 − ω̂1P̃‖2}
= E{(ω̂1P̂N )T ω̂1P̂N} − E{(ω̂1P̃ )T ω̂1P̃}

+ 2E{ω̂T
2 (ω̂1P̃ − ω̂1P̂N )},

and

E{ω̂T
2 (ω̂1P̃ − ω̂1P̂N )} = E[E{ω̂T

2 (ω̂1P̃ − ω̂1P̂N )|ω̂1}]
= E{(ω̂1P̃ )T (ω̂1P̃ − ω̂1P̂N )}.

Assume P̂N is obtained from an independent copy of samples, then if P̂N �= P̃
and given P̂N ,

L(P̂N )− L(P̃ ) = E{(ω̂1P̂N )T ω̂1P̂} − E{(ω̂1P̃ )T ω̂1P̃}
+ 2E{(ω̂1P̃ )T (ω̂1P̃ − ω̂1P̂N )}

= P̃TΣωP̃ + P̂TΣωP̂ − 2P̃TΣωP̂N
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= ‖(Σω)
1
2 P̃ − (Σω)

1
2 P̂N‖2 > 0,

where Σω is the covariance matrix of ω̂n. Since {ωn : n ∈ N} is ergodic and
stationary, {ω̂n : n ∈ N} is also ergodic and stationary. Hence by Lemma A.1,

0 < L(P̂N )− L(P̃ ) = L(P̂N )− LN (P̂N ) + LN (P̂N )− L(P̃ )

≤ L(P̂N )− LN (P̂N ) + LN (P̃ )− L(P̃ )

≤ 2 sup
P

|L(P )− LN (P )| → 0, a.s..

Therefore, L(P̂N ) → L(P̃ ) a.s.. Since L(P ) is a continuous function, P̂N → P̃
a.s..

Before proving Theorem 3.2, we first define Fn = 〈ω̂n − 1
2 ω̂n−1P, ω̂n−1P 〉,

and evidently, we have the relationship

Fi(n, θ) =
∂Fn

∂θi
,

∂LN (P )

∂θi
= −2N−1

N∑
n=1

Fi(n, θ).

In addition, we need to establish the following lemmas.

Lemma A.2. Under Assumption (A1)–(A3), assume there exists a probability
distribution π such that ‖P (ωn ∈ ·) − π(·)‖ → 0, as n → ∞. Then {Fn}
is strong mixing for any initial distribution of F0, and the mixing coefficients

satisfy
∞∑

m=1
α(m) < ∞.

Proof. Define Fn
m = σ(ωm, . . . , ωn), F̂n

m = σ(Fm, . . . , Fn), and assume Ê ∈ F̂n
0

and F̂ ∈ F̂∞
n+m, then by Assumption (A2), we have

P (Ê ∩ F̂ ) = E(1Ê1F̂ ) = E{E(1Ê1F̂ |F
n+m−1
0 )}

= E{E(1Ê |F
n
0 )E)1F̂ |F

n+m−1
0 )}

= E{g(E)h(ωn+m−1)} = E[E{g(E)h(ωn+m−1)|σ(ωn)}]
= E[E{g(E)|σ(ωn)}E{h(ωn+m−1)|σ(ωn)}]
= E{g̃(ωn)P

m−1h(ωn)},

where

g(E) = E(1Ê |F
n
0 ), h(ωn+m−1) = E(1F̂ |F

n+m−1
0 ),

g̃(ωn) = E{g(E)|σ(ωn)}, Pmh(x) = E{h(ωm)|ω0 = x}.

By similar arguments, P (Ê) = E{g̃(ωn)}, P (F̂ ) = E{Pm−1h(ωn)}. Therefore
we have,

P (Ê ∩ F̂ )− P (Ê)P (F̂ ) = E{g̃(ωn)P
m−1h(ωn)} − E{g̃(ωn)}E{Pm−1h(ωn)}

= E[g̃(ωn){Pm−1h(ωn)− π(h)}]
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+ E{g̃(ωn)}[π(h)− E{Pm−1h(ωn)}],

where π(h) =
∫
h(x)π(dx). Since E{g̃(ωn)} is bounded by 1, we have asm → ∞,

α(m) = sup
Ê,F̂

|P (Ê ∩ F̂ )− P (Ê)P (F̂ )|

≤ 2 sup
ω

E[‖Pm−1(h(ωn) ∈ ·)− π(h(·))‖] → 0.

Because Pm−1(ωn ∈ ·) converges to π(·) exponentially fast by the property of
Markov chain, we conclude

∑∞
m=1 α(m) < ∞.

We now show that
√
N(θ̂N − θ̃) converges to normality as N → ∞, based on

the following results (Ibraginov [15]), which establishes the asymptotic normality
for bounded univariate strong mixing processes.

Lemma A.3. Suppose that the stationary process {Fn} is a strong mixing se-
quence with mixing coefficient α(m). If the random variable ξ is measurable with
respect to σ(F−∞, . . . , Fn), and the random variable η is measurable with respect
to σ(Fn+m, . . . , F∞), and if |ξ| < C1, |η| < C2, then cov(ξ, η) ≤ 4C1C2α(m).

Lemma A.4. Let {Xn : n ∈ N} be a centered strictly stationary, strong mix-
ing sequence. Suppose that there exists B < ∞ such that |Xn| < B a.s. and∑∞

m=1 α(m)< ∞. Then σ2 = E(X2
0 ) + 2

∑∞
j=1 E(X0Xj) < ∞ and if σ > 0, as

N → ∞, N−1/2SN
L→ N (0, σ2), where SN =

∑N
n=1 Xn.

Proof of Theorem 3.2. Note that Fi(n, θ) is a centered stochastic process:

E{Fi(n, θ̃)} = E

{〈
ω̂n − ω̂n−1P̃ ,

∂ω̂n−1P

∂θi

∣∣∣∣
P̃

〉}
= E

{
E

{〈
ω̂n − ω̂n−1P̃ ,

∂ω̂n−1P

∂θi

∣∣∣∣
P̃

〉} ∣∣∣∣ω̂n−1

}
= E

{〈
E

{
ω̂n − ω̂n−1P̃

∣∣∣∣ω̂n−1

}
,
∂ω̂n−1P

∂θi

∣∣∣∣
P̃

〉}
= 0.

Therefore, by the result in Lemma A.2, {Fi(n, θ̃) : n ∈ N} is a centered, strong
mixing, bounded and stationary sequence. Then by Lemma A.4, we have

√
N

(
1

N

N∑
n=1

Fi(n, θ̃)

)
L→ N (0, σ2

ii),

where σii = E{F 2
i (0, θ̃)} + 2

∑∞
k=1 E{Fi(0, θ̃)Fi(k, θ̃)}, i = 1, . . . , g2. For the

asymptotic normality of N−1/2
∑N

n=1
∂Fn(θ)

∂θ , we only need to show that the
covariance elements are finite. For i �= j, define

σN,ij = E

{
N∑

n=1

Fi(n, θ)×
N∑

n=1

Fj(n, θ)

}
, Rij(m) = E{Fi(0, θ)Fj(m, θ)},
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since Fi(n, θ) ∈ σ(F−∞, . . . , Fn), Fj(n + m, θ) ∈ σ(Fn+m−1, . . . , F∞), then by
Lemma A.3, we have

σN,ij = N

(
Rij(0) + 2

N−1∑
k=1

(
1− k

N

)
Rij(k)

)

≤ N

⎛⎝Rij(0) + const.
∑
k≥1

α(k)

⎞⎠ ,

and thus

cov

(
1√
N

N∑
n=1

Fi(n, θ),
1√
N

N∑
n=1

Fj(n, θ)

)
< ∞.

Observe that

∂LN (P )

∂θ
= − 2

N

N∑
n=1

∂Fn(θ)

∂θ
,

so by Lemma A.4 and the previous arguments, we have

N1/2

{
∂LN (P )

∂θ

∣∣∣∣
P̃

}
L→ N (0, 4Σ). (B1)

By the mean value theorem, we deduce that

0 = N1/2

{
∂LN (P )

∂θ

∣∣∣∣
P̃

}
+

{
∂2LN (P )

∂θ∂θ′

∣∣∣∣
P∗

N

}
N1/2(θ̂N − θ̃), (B2)

where P ∗
N is a stochastic g × g transition probability matrix satisfying ‖P ∗

N −
P̃‖ ≤ ‖P̂N − P̃‖. By Lemma A.1, ∂2LN (P )

∂θ∂θ′ converges uniformly for all P . Evi-
dently,

E

{
∂2LN (P )

∂θi∂θj

∣∣∣∣
P̃

}
= 2aij ,

thus we have∥∥∥∥∥∂2LN (P )

∂θ∂θ′

∣∣∣∣
P̂N

− 2A

∥∥∥∥∥
2

≤ 2

⎧⎨⎩
∥∥∥∥∥∂2LN (P )

∂θ∂θ′

∣∣∣∣
P̂N

− ∂2E(LN )(P )

∂θ∂θ′

∣∣∣∣
P̂N

∥∥∥∥∥
2

+

∥∥∥∥∥∂2E(LN )(P )

∂θ∂θ′

∣∣∣∣
P̂N

− ∂2E(LN )(P )

∂θ∂θ′

∣∣∣∣
P̃

∥∥∥∥∥
2
⎫⎬⎭ .

The first summand converges to zero almost surely by Lemma A.1, and the
second summand converges to zero by Theorem 3.1 and the fact that LN is a
continuous function. Consequently,

∂2LN (P )

∂θ∂θ′

∣∣∣∣
P∗

N

a.s.→ 2A a.s..

Then the theorem follows immediately from (B1) and (B2).
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