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Abstract: Envelope method was recently proposed as a method to reduce
the dimension of responses in multivariate regressions. However, when there
exists missing data, the envelope method using the complete case observa-
tions may lead to biased and inefficient results. In this paper, we generalize
the envelope estimation when the predictors and/or the responses are miss-
ing at random. Specifically, we incorporate the envelope structure in the
expectation-maximization (EM) algorithm. As the parameters under the
envelope method are not pointwise identifiable, the EM algorithm for the
envelope method was not straightforward and requires a special decompo-
sition. Our method is guaranteed to be more efficient, or at least as efficient
as, the standard EM algorithm. Moreover, our method has the potential
to outperform the full data MLE. We give asymptotic properties of our
method under both normal and non-normal cases. The efficiency gain over
the standard EM is confirmed in simulation studies and in an application
to the Chronic Renal Insufficiency Cohort (CRIC) study.
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1. Introduction

Recently, a new dimension reduction method called the envelope method has
been proposed in the multivariate regressions [11]. Unlike the standard dimen-
sion reduction methods, the envelope method assumes the redundancy among
responses rather than among predictors. Specifically, it is assumed that there
exist some linear combinations of the response variables that do not contribute
to the regression. Under such a condition, the envelope method is shown to have
efficiency gain over the ordinary least squares which regresses one response at
a time ignoring other responses. Similar redundancy structures have also been
extended to hold among the predictors or among both predictors and responses.
It is known that the estimation of the central space may suffer from bias when
the correlations between variables are high [7]. The envelope conditions circum-
vent the challenge of identifying the central space in the standard dimension
reduction problem when the correlation between variables is high, at the cost of
obtaining a bigger space containing the parameters of interest, and thus makes
the envelope estimates more reliable.

Various envelope methods have been proposed in different settings, including
response envelope [11], inner envelope [41], scaled envelope [12], reduced rank
envelope [9], predictor envelope [10], simultaneous envelope [14], sparse envelope
[43], tensor envelope [31], model-free envelope [13], and mixed effects envelope
[40]. Algorithms such as 1-D algorithm [15] and envelope coordinate descent
[16] have also been proposed to effectively and efficiently estimate the envelope
models.

A prominent problem when a large number of responses and predictors are
collected is the missingness of responses or predictors. Missing data may arise
when a subject refuses to respond to certain questions or when the data is not
collected. The missing data mechanism is said to be missing at random (MAR)
or ignorable if it only depends on the observed data and it is said to be missing
not at random (MNAR) or nonignorable if otherwise. As [33] suggested, in most
MAR scenarios, a complete case analysis would lead to inefficient or possibly
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biased results. We assume the missingness mechanism is MAR throughout this
paper.

In this paper, we generalize the envelope method for data with missing pre-
dictors and responses. As the parameters under the envelope method are not
pointwise identifiable, such a generalization requires a special decomposition.
The importance of the research lies in several aspects. First, with rapidly ad-
vancing technology, it is common that high-dimensional responses are collected
to characterize multiple aspects of individuals. Biased and inefficient results
will be obtained if the analysis deletes all the observations with missing values.
Second, while the standard missing data methods typically suffer from an effi-
ciency loss, as compared to the full data analysis, the method that incorporates
dimension reduction can potentially recover substantial efficiency. Third, our
proposed method to recover the missing information can also be generalized to
the predictor envelope model where the redundancy is assumed among the pre-
dictors rather than the responses, as well as to the case where the redundancy
is present among both the responses and the predictors. And lastly, to the best
of our knowledge, our paper is among the first few in the dimension reduction
literature to discuss the case where both responses and predictors are subject
to missingness.

We organize the paper as follows. In Section 2, we introduce the notations and
review the envelope models. In Section 3, we present the observed data likelihood
and clarify the difficulty of applying the envelope method directly. In Section 4,
we propose an EM envelope algorithm. Simulations are given in Section 5, where
we compare the EM envelope method with the existing methods. In Section 6,
we apply the EM envelope to the Chronic Renal Insufficiency Cohort (CRIC)
data. In Section 7, we present a brief discussion. Section 8 contains the link to
our R package.

2. Preliminary

Let Yi = (Yi1, . . . , Yir)
T and Xi = (Xi1, . . . , Xip)

T denote the multivariate
responses and predictors for individual i, where T denotes the transpose of
a matrix and i = 1, . . . , n. Also, let Y = (Y1, . . . ,Yn) ∈ R

r×n and X =
(X1, . . . ,Xn) ∈ R

p×n, where Y ∈ R
p×n denotes that Y is an element in the

set of all real matrices with dimension r × n. Consider the multivariate linear
regression model

Yi = βXi + εi, (2.1)

where εi are identically and independently (i.i.d) distributed with mean 0
and variance Σ, and β ∈ R

r×p. We firstly assume the normality of the er-
ror when deriving the EM envelope estimator. We extend later (Propositions
2 and 3) the robustness property of our estimator when the normality is pos-
sibly violated. Let RXij = 1 if Xij is observed and RXij = 0 if otherwise,
for j = 1, . . . , p. Similarly, let RYik

denote the missing indicator for Yik, for
k = 1, . . . , r. Let Ri = (RXi1 , . . . , RXip , RYi1 , . . . , RYir )

T denote the vector of
missingness indicators of all variables for individual i. Let Yi,mis and Xi,mis
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denote the vectors of the missing responses and the predictors for individuals i.
Let Yi,obs and Xi,obs denote the vectors of the observed responses and pre-
dictors for individual i. Under such notations, different individuals may have
different missing responses and predictors, i.e., the lengths and the components
of Yi,obs and Xi,obs differ from one to another. Let Di,obs = (Xi,obs,Yi,obs)

T

and Di,mis = (Xi,mis,Yi,mis)
T denote the observed data and the missing data

for individual i, respectively. Let yik and xij denote the possible value of Yik

and Xij . Then yi = (yi1, . . . , yir)
T and xi = (xi1, . . . , xip)

T are the possible
value of Yi and Xi. Let xi,obs and xi,mis denote the value of the observed and
missing predictors. Define yi,obs and yi,mis similarly. We assume the missingness
is ignorable:

Assumption 1 (ignorability). Ri Di,mis | Di,obs.

Assumption 1 implies that given the observed data, the failure to observe a
variable does not depend on the unobserved data. This particular type of miss-
ingness is called missing at random (MAR) or ignorable missingness. A complete
case analysis is inefficient and can be seriously biased [32]. Throughout the pa-
per, we assume both covariates and responses are missing at random, which has
also been assumed in [6] and [26].

In multivariate regression with fully observed data, the envelope method [11]
is motivated by the observation that some characteristics of the responses are
unaffected by the changes of the predictors. For example, in a randomized trial,
the difference between the repeated measures of the blood pressure of a patient
in the treatment group (or the control group) may only reflect the aging over
time rather than the treatment effect. A matrix O ∈ R

r×r is orthonormal if
and only if it satisfies OTO = Ir, where Ir denotes the identity matrix with
dimension r. Consider an orthonormal matrix (Γ,Γ0) ∈ R

r×r such that

Condition 1. span(β) ⊆ span(Γ),

Condition 2. Σ = ΓΩΓT + Γ0Ω0Γ
T
0 ,

where Γ ∈ R
r×u, Γ0 ∈ R

r×(r−u), and 0 ≤ u ≤ r. The subspace span(Γ) satisfy-
ing Conditions 1 and 2 is not unique, but Cook et al. [11] defined the envelope
to be the smallest subspace satisfying these conditions. The dimension u is
known as the envelope dimension. Notice the decomposition of Σ is equivalent
to cor(ΓT

0 Y,ΓTY | X) = 0. From span(β) ⊆ span(Γ), the regression parameter
can be written as β = Γη, where η ∈ R

u×p. Therefore, the envelope model can
also be written as follows:

Yi = ΓηXi + εi, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 . (2.2)

Under Condition 2, we have Var(ΓTY)= Ω and Var(ΓT
0 Y) = Ω0. The matrices

Ω and Ω0 can be thought of as the variance of Y under the new basis (Γ,Γ0).
The null correlation only guarantees the information of ΓT

0 Y is immaterial in the
first two moments. Under the normality assumption of the error, Conditions 1–2
are equivalent to the following two conditions:

Condition 3. ΓT
0 Y X.
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Condition 4. ΓTY ΓT
0 Y | X.

Conditions 3–4 are equivalent to ΓT
0 Y (ΓTY,X).

Although the original envelope was developed using Conditions 1–2, we di-
rectly define envelope using Conditions 3–4. The envelope under Conditions 3–4
is in general no smaller than that defined by Conditions 1–2. We prefer Con-
ditions 3–4 because the interpretation of the envelope is more straightforward
especially when the normality is violated.

We give a simple example for the envelope model. Assume Y = (Y1, Y2).
Suppose Y1 = βX+ ε1 and Y2 = −βX+ ε2, where ε1 and ε2 follow two normal
distributions, and they are independent of each other. The predictors X do not
affect the summation of responses Y1 + Y2. Additionally, it can be verified that
Y1−Y2 is independent of Y1+Y2; thus, Y1+Y2 can be completely discarded in the
regression. That is, the regression of Y on X can be replaced with the regression
of Y1 − Y2 on X. In this example, Γ = (1,−1)T /

√
2, and Γ0 = (1, 1)T /

√
2. The

combinations of responses that are involved in the regression, ΓTY, is called
the material part of Y, and the part that is uninvolved, ΓT

0 Y, is called the
immaterial part of Y. Hence, the main focus of the envelope method is to find
the column space of Γ, i.e., span(Γ), that fully contains the information of β,
i.e., find an envelope of β.

Once an estimate of the basis Γ, Γ̂, is obtained, β̂env is obtained by projecting
the maximum likelihood estimator β̂ onto the estimated envelope space, β̂env =
PΓ̂β̂, where PA stands for the projection matrix for the matrix A.

Figure 1 demonstrates the intuition of efficiency gain of the envelope method
when there is no missing data, or equivalently, with the full data. Consider
two groups of individuals (the group with X = 1 is denoted by triangles and
the other with X = 0 is by circle dots), where each point (triangle or circle
dot) denotes one individual. Two responses Y1 and Y2 are collected for each
individual. Suppose that we are interested in estimating the group difference on
Y1, the standard maximum likelihood estimation (MLE) projects all the data
onto the Y1 axis, ignoring information on Y2 completely. The density curves of
the two group distributions of Y1 are given at the bottom in Figure 1(a). The
two curves are hard to distinguish as they almost overlapped. The full data MLE
for the group difference is 0.11 with the bootstrap standard error being 0.12 and
the p-value being 0.37. Thus, it is hard to distinguish between the two groups.
While the true difference between the two group mean of Y1, 0.32, is contained
in the 95% confidence interval of the full data MLE, the large variability of the
estimator makes the point estimate deviate from the true parameter value.

The idea of the envelope method is to reduce the noise in the original data by
projecting each observation onto the direction that contains all the information
related to the regression. The two groups are best distinguished along the di-
rection of the black solid line. In contrast, the two groups have almost identical
distribution along the direction that is orthogonal to the black solid line. That
is, the information orthogonal to the black solid line does not contribute to the
distinction between the two groups. Thus, eliminating that part of variation
does not sacrifice any relevant information for the regression, but instead makes
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the regression more efficient. An estimate of the black solid line is shown as the
purple dashed line in Figure 1(b). All the points are thus first projected onto
the estimated direction Γ̂TY, then projected onto the Y1 axis. For example,
a data point A was first projected onto the estimated envelope direction with
an intersection B, and then projected onto the Y1 axis. [11] showed that the
envelope method can achieve substantial efficiency gain when the envelope di-
rection is aligned with the eigenspaces of Σ that correspond to relatively small
eigenvalues. In that way, linear combinations of Y with larger variances can
be eliminated by the projection. In Figure 1(b), the direction that can better
distinguish the two groups is aligned with the direction that the data has less
variability, so the envelope method is expected to provide substantial efficiency
gain. The density curves of the two groups under the envelope estimation are
shown at the bottom of Figure 1(b) and they have much smaller spreads. The
envelope estimator for the group difference is 0.32 with the standard error being
0.03 and the p-value < 0.001. Thus, it is much easier to distinguish between the
two groups.

Now, consider the case where the predictors X are fully observed but some
values of the responses are missing (see Figure 2). The missingness mechanism
is as follows. For an individual i for i = 1, . . . , 150, if Xi = 1 and if Yi1 is
among the largest 30 Yi′1 for i′ = 1, . . . , 150, then Yi2 is missing. If Xi = 0
and if Yi2 is among the largest 45 Yi′2 for i′ = 1, . . . , 150, then Yi1 is missing.
Such missingness mechanism is MAR, and the missing rate is 30% for Y1, and
20% for Y2. The hollow triangle represents Y1 missing, and the hollow circle
dot represents Y2 missing. The standard EM method is shown in Figure 2(a).
Although being an asymptotically unbiased method, the standard EM estimates
of the group difference is 0.11. Similar as the full data MLE, the point estimate
of the standard EM also deviates from the true parameter value due to the
large variability. The bootstrap standard error is 0.12 with the p-value being
0.37. The spreads of the two group densities are again relatively large, resulting
in a relatively inefficient estimate.

The existing envelope methods for solving Γ all require the data to be fully
observed [11, 15]. Figure 2(b) shows the complete case envelope where all the
observations with missing data are deleted from the analysis. The estimated
complete case envelope direction is shown as the blue dashed line in Figure 2(b),
which is far from the true envelope direction (black solid line). This leads to a
severe bias: even the sign of the estimated parameter is incorrect. The complete
case envelope estimate is −1.63 with the bootstrap standard error being 0.15
and the p-value < 0.001.

Our method is shown in Figure 2(c). Different from the complete case anal-
ysis, we use both the complete cases and the partially missing information.
Our proposed method is asymptotically unbiased when the missing pattern is
MAR. The estimated envelope direction is shown as the red dashed line. Our
method recovers the envelope direction and achieves significant efficiency gain
over the standard EM as the density curves have much smaller spreads. The
EM envelope estimator is 0.31 with the bootstrap standard error 0.04 and the
p-value < 0.001. It is interesting to see that our method may even outperform
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the full data MLE as the efficiency gain by the envelope method outweighs the
information loss due to missing data in this illustrative example.

Fig 1. Intuitive illustration of the envelope method without missing data. Two groups are
shown using circle dots (X = 0) and triangles (X = 1). The solid line is the true envelope
direction, the dashed lines are the estimated envelope. The density curves of the two groups
using the envelope method are shown at the bottom of each subfigure.

Fig 2. Intuitive illustration of the envelope method in the presence of missing data. Two
groups are shown using circle dots (X = 0) and triangles (X = 1). Hollow circle dots or
triangles indicate one of the components of Y is missing: the hollow triangle has Y1 missing,
and the hollow circle dot has Y2 missing. The solid line is the true envelope direction, the
dashed lines are the estimated envelope using different methods. The density curves of the
two groups using different methods are shown at the bottom of each subfigure.

3. The observed data likelihood

The envelope method proposed by [11] utilizes the full data likelihood function
Lfull =

∏n
i=1 f(yi | xi;η,Γ,Ω0,Ω) to obtain the MLE of the parameters. In the

presence of missing data, we replace the full data likelihood with the observed
data likelihood

Lobs =
n∏

i=1

f(yi,obs | xi,obs;η,Γ,Ω0,Ω)
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∝
n∏

i=1

∫ ∫
f(yi,obs,yi,mis | xi;η,Γ,Ω0,Ω)f(xi,obs,xi,mis;ρ)dxi,misdyi,mis,

where ρ is the parameter for the predictors’ distribution and ∝ denotes pro-
portional to, i.e., a multiplicative constant is omitted. Let χi,mis denote the set
of predictors Xi that is missing for individual i. For example, if Xi,mis = Xi1,
then χi,mis = {Xi1}. Write χi,mis = ∅ when all the p predictors are observed
for this individual. Since

∫
f(yi,obs,yi,mis | xi;η,Γ,Ω0,Ω)dyi,mis = f(yi,obs |

xi;η,Γ,Ω0,Ω), we can simplify the observed data likelihood as

Lobs ∝
∏

i∈{χi,mis=∅}
f(yi,obs | xi;η,Γ,Ω0,Ω)

∏
i∈{χi,mis �=∅}

∫
f(yi,obs | xi;η,Γ,Ω0,Ω)f(xi,obs,xi,mis;ρ)dxi,mis.

The first part of the observed data likelihood corresponds to the likelihood
of individuals with fully observed predictors. The second part corresponds to
the likelihood of individuals with missing predictors. Hence, the observed data
likelihood utilizes more information than the complete data likelihood.

The observed data likelihood is in general hard to calculate as it involves
the multivariate integral. Closed form observed data likelihood exists under cer-
tain distributions. Example A1 in the Appendix derives the closed form of the
observed data likelihood when predictors and responses follow a joint normal
distribution. However, in general, the integral in the observed data likelihood
may result in a complicated form. [13] pointed out that the envelope method
performs poorly when the first order derivative of the objective function do not
have a closed form. Even when the observed data likelihood is available in a
closed form, the parameter is typically complicatedly intertwined in the likeli-
hood. Together with the fact that the parameter is not pointwise identifiable, it
is challenging to calculate the maximum likelihood estimates under an envelope
structure. Such a challenge was also identified in [13] in the context of gener-
alized linear models. In this paper, we propose an EM envelope algorithm that
can identify and estimate the envelope space with missing data.

4. The EM envelope

4.1. The EM updates

Let lfull(φ | L) = logLfull(φ | L) denote the log of full data likelihood, where
φ = (η,Γ,Ω0,Ω,ρ). Then, the logarithm of full data likelihood of (X,Y) is

lfull(φ | x,y)

=
n∑

i=1

[−1

2
log |Σ| − 1

2
(yi − βxi)

TΣ−1(yi − βxi) + log{fx(xi | ρ)}] + C
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=− n

2
log |Σ| − 1

2

n∑
i=1

Δi + C,

whereΔi=(yi−βxi)
TΣ−1(yi−βxi)+2 log{fx(xi | ρ)} and C=−(nr log 2π)/2.

In the E-step,

Q(φ | φt)=E{lfull(φ | L) | Dobs;φt}=
∫

lfull(φ | L)f(Dmis | Dobs;φt)dDmis.

Recall that Σ1 = ΓΩΓT and Σ2 = Γ0Ω0Γ
T
0 , we can also use φ =

(η,Γ,Σ1,Σ2,ρ) as the new parameters for the reparameterization. Hence, we
have

Q(φ | φt) = −n

2
log |Σ| − 1

2

n∑
i=1

E(Δi | Di,obs;φt) + C.

Since E(YT
i ΣYi) = E{tr(ΣYiY

T
i )} = tr{ΣE(YiY

T
i )}, we have

E(Δi | Di,obs;φt)

=tr{Σ−1
E(YiY

T
i | Di,obs;φt) + βTΣ−1βE(XiX

T
i | Di,obs;φt)

− 2βTΣ−1
E(YiX

T
i | Di,obs;φt)} − E[2 log{fx(Xi|ρ)} | Di,obs;φt].

Let Ai1,t = E(YiY
T
i | Di,obs;φt), Ai2,t = E(YiX

T
i | Di,obs;φt), Ai3,t =

E(XiX
T
i | Di,obs;φt), Aj,t =

∑n
i=1 Aij,t, j = 1, . . . , 3. Thus,

Q(φ | φt) = −n

2
log |Σ|+

n∑
i=1

E(Δ | Di,obs;φt) + C

= −n

2
log |Σ|− 1

2
tr{Σ−1

( n∑
i=1

Ai1,t − 2

n∑
i=1

Ai2,tβ
T + β

n∑
i=1

Ai3,tβ
T
)
}

+ E[log{fx(xi | ρ)} | Di,obs;φt] + C

∝ −n log |Σ| − tr{Σ−1
(
A1,t − 2A2,tβ

T + βA3,tβ
T
)
}

+ E[2 log{fx(xi | ρ)} | Di,obs;φt] + 2C.

After the E-step, we do the M-step. However, the parameters under the envelope
method are not pointwise identifiable [11]. That is, for any orthogonal matrix
A, replace Γ with ΓA results in a equivalent model. The EM algorithm for the
envelope method is not straightforward and requires a special decomposition
in the M-step. We imitate that of the full data likelihood in [11] to isolate the
parameter to be optimized from the other parameters. We decompose Q(φ | φt)
as Q(φ | φt) = Q1(ρ | φt) +Q2(β,Σ | φt), where Q1(ρ | φt) = E[2 log{fx(Xi |
ρ)} | Dobs;φt]+2C, and Q2(β,Σ | φt) = −n log |Σ|−tr{Σ−1

(
A1,t−2A2,tβ

T +

βA3,tβ
T
)
}. As Q1(ρ | φt) only involves ρ, the maximizer of Q1(ρ | φt) is

ρt+1 = argmaxρ∈Π E[2 log{fx(xi | ρ)} | Dobs;φt], where Π is the parameter
space of ρ.

To find the maximizer of Q2(β,Σ | φt), note under the envelope conditions 3–
4, we have Σ = Σ1+Σ2, where Σ1 = PΓΣPΓ, Σ2 = QΓΣQΓ with Σ1Σ2 = 0,
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and Span(β) ⊆ Span(Σ1). This implies Σ2β = 0. Additionally, by Theorem 3

in [21], Σ−1 = Σ†
1 +Σ†

2, where † indicates the Moore-Penrose inverse. We can
write Q2 as:

Q2(β,Σ | φt) = −n log det0Σ1 − tr{Σ†
1(A1,t − 2A2,tβ

T + βA3,tβ
T )}

− n log det0Σ2 − tr
(
Σ†

2A1,t),

where det0(A) denotes the product of its non-zero eigenvalues. Further, we
have Q2(β,Σ | φt) = Q2,1(β,Σ1 | φt) + Q2,2(Σ2 | φt), where Q2,1(β,Σ1 |
φt) = −n log det0Σ1−tr{Σ†

1(A1,t−2A2,tβ
T +βA3,tβ

T )}, and Q2,2(Σ2 | φt) =

−n log det0Σ2 − tr
(
Σ†

2A1,t). Suppose for the moment, Σ1 is fixed. Then, from

tr{Σ†
1(A1,t − 2A2,tβ

T + βA3,tβ
T )}

=tr{Σ†
1(A1,t −A2,tA

−1
3,tA

T
2,t)}

+ tr{(A
1
2
3,tβ

T −A
− 1

2
3,t A

T
2,t)Σ

†
1(A

1
2
3,tβ

T −A
− 1

2
3,t A

T
2,t)

T },

the maximizer of Q2,1(β,Σ1 | φt) subjects to Span(β) ⊆ Span(Σ1) with Σ1

fixed is βt+1 = PΣ1 β̂std,t = PΣ1A2,tA
−1
3,t , where β̂std,t = A2,tA

−1
3,t . Since

QΣ1Σ
†
1 = 0, we have Q2,1(βt+1,Σ1 | φt) = −n log det0Σ1 − tr{Σ†

1(A1,t −
A2,tA

−1
3,tA

T
2,t)}.

In order to maximize Q2,1(βt+1,Σ1 | φt), Q2,2(Σ2 | φt) over Σ1 and Σ2,
we use the Lemma 4.3 in [11], which is reviewed as Lemma 5 in the Appendix.
Suppose matrix Γ is given, then by Lemma 5, we have Σ1,t+1 = PΓ(A1,t −
A2,tA

−1
3,tA

T
2,t)PΓ/n and Σ2,t+1 = QΓA1,tQΓ/n. Hence, Q2,1(βt+1,Σ1,t+1 |

φt) = C1 − n log det0{PΓ(A1,t −A2,tA
−1
3,tA

T
2,t)PΓ}, Q2,2(Σ2,t+1 | φt) = C2 −

n log det0
(
QΓA1,tQΓ

)
, where C1 = nu logn − nu and C2 = n(r − u)(log n −

1). Finally, we find the matrix Γ to minimize the function log det{PΓ(A1,t −
A2,tA

−1
3,tA

T
2,t)PΓ + QΓA1,tQΓ}. The elements in Γ are not pointwise identifi-

able; however, as the objective function above is a function of Span(Γ), we only
need to estimate the span of the column space of Γ, which is identifiable. The
MLE of Span(Γ) can be obtained using full Grassmannian optimization [11, 8].

4.2. Selection of the envelope dimension

The selection of the envelope dimension can be viewed as a diagnostic or model
selection under the envelope framework. Model selection criteria for missing data
problem such as the likelihood ratio test and the information criteria including
AIC, BIC, typically involve the observed data likelihood. As mentioned, the
observed data likelihood may be complicated and not in a closed form. Hence,
it is ideal if the calculation of the model selection criteria could be obtained
directly from the EM output. [27] proposed the information criteria for missing
data problems. They used the fact that E{log f(Dobs | φ) | Dobs;φt} = Q(φ |
φt) − H(φ | φt), where H(φ | φt) = E{log f(Dmis | Dobs;φ) | Dobs;φt} and
Q(φ | φt) was defined in Section 4.1. The Q function can be computed from the
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EM output and the H function can be analytically approximated as part of the
EM output.

[18] recommended using the BIC to select the envelope dimension, because
the AIC tends to over select the true dimension and the likelihood ratio testing is
inconsistent. Thus, we generalize the BIC for the missing data problem following
[27] as BICH,Q = −2Q(φ̂ | φ̂)+2H(φ̂ | φ̂)+pu log n. The penalty term is pu log n
because under the envelope model, there are pu+r(r+1)/2 unknown parameters
in total, and only pu varies with dimension u. The asymptotic properties of
BICH,Q are given in [27].

The computation of the H function is not straightforward since it may not
have a closed form. [27] proposed a method for approximating the H function
through the truncated Hermite expansion with MCMC sampling. Alternatively,
an approximation of BICQ could be obtained by omitting H(φ̂ | φ̂), where

BICQ = −2Q(φ̂ | φ̂) + pu log n. When the proportion of missing information is
small, the use of BICQ is adequate.

The information criterion relies on the correct specification of the distri-
bution. Alternatively, we can generalize a bootstrap method for choosing the
envelope dimension u, which is more robust to misspecification of distributions.
A similar bootstrap method was proposed by [45, 17] and has been widely used
for selecting the dimension of the central space in the dimension reduction liter-
ature [30, 46, 48]. We propose to first fix the dimension u for the basis matrix Γ

and then bootstrap data b times to get a sequence of envelope space Γ̂1, . . . , Γ̂b.
If the proposed dimension is u∗ > u, then span(Γ̂) can be any space of di-
mension u∗ that contains span(Γ), and thus, the estimate should suffer from

large variability as compared to the estimate of the original data Γ̂. Therefore,
we choose the largest dimension u∗ such that the bootstrap estimated space
is the most similar to Γ̂. To evaluate the variability of Γ̂1, . . . , Γ̂b, we use the
vector correlation coefficient q2 proposed by [25]. Suppose A and B ∈ R

r×u are
semi-orthonormal matrices, then

q2(A,B) = |BTAATB|.

We see that q2(A,B) ∈ [0, 1] and higher value of q2 indicates higher correlation
between the two subspaces. When q2(A,B) = 1, span(A) = span(B). Hence,
we choose the largest dimension u∗ such that

1

b

b∑
j=1

q2(Γ̂, Γ̂j) > 0.95.

4.3. Asymptotics

The following propositions guarantee the efficiency gain and asymptotic nor-
mality of the EM envelope estimator. Specifically, Proposition 1 establishes the
asymptotic property when the densities of both ε and X are correctly specified
and that of ε is normal. Proposition 2 extends the result to the case where the
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distribution of X is correctly specified but ε has a misspecified normal working
density. Proposition 3 extends the result further to the case where ε and X both
have a misspecified normal working density. Let l∗ denote the log-likelihood un-
der working model. Let sn(φ) = ∇l∗(φ) and Mn(φ) = −E{∇2l∗(φ)}, where
∇ denote the gradient with respect to a general parameter φ. We state our
regularity conditions first.

(A1) (Observed likelihood) Lobs is unimodal, i.e, the probability distribution
has a single maximum, in the parameter space Φ with only one point φ0

such that ∂Q(φ | φt)/∂φ|φ=φ0 = 0, and that ∂Q(φ | φt)/∂φ is continuous
in φ and φt.

(A2) (Finite moments) The error term εi and covariatesXi have finite (4+δ)-th
moment for some δ > 0.

(A3) (Eigenvalues) limn λ−{n−1Var(sn(φ))} > 0 and limn λ−{n−1Mn(φ)} >
0, where lim and λ−(·) stands for the lower limit and the smallest eigen-
value.

(B1) (Equicontinuous) ∇sn(φ) is equicontinuous on any compact subset of Φ.
(B2) (Uniqueness) limn→∞ E{n−1sn(φ)} = 0 has a unique solution at the true

parameter value.

Conditions (A1)–(A3), (B1)–(B2) are mild regularity conditions. For instance,
(B1)–(B2) hold in the following examples when Xi follows normal or binomial
distribution and the working model for εi is normal. We give the proof in the
Appendix.

Example 1. Under Model (2.1), suppose Assumption 1 holds, if the distribution
of Xi is normal, then regularity conditions (B1)–(B2) hold.

Example 2. Under Model (2.1), suppose Assumption 1 holds, if Xi follows
binomial distribution, then regularity conditions (B1)–(B2) hold.

Example 3. Under Model (2.1), suppose Assumption 1 holds, if Xi=(Xi1,Xi2)
where Xi1 follows Binomial distribution, Xi2 follows normal distribution and
Xi1 Xi2, then regularity conditions (B1)–(B2) hold.

In Examples 2 and 3 above, the observed data follows a Gaussian mixture dis-
tribution, which is multimodal and thus violates (A1). However, condition (A1)
is only a sufficient condition for the EM algorithm to converge to the MLE. The
convergence of the EM algorithm under Gaussian mixture model is well studied
and therefore we can impose some alternative assumptions to substitute condi-
tion (A1) under this case. For example, if the conditions in Theorem 3.3 of Zhao
et al. [47] hold, the EM algorithm in Examples 2 and 3 converges to the MLE.

The parameter of the envelope model is φ = (η,Γ,Ω,Ω0,ρ). We are in-
terested in the property of the parameters β, Σ and ρ, which are functions
of φ. From (2.2), we have h(φ) = (β,Σ,ρ) = (Γη,ΓΩΓT + Γ0Ω0Γ

T
0 ,ρ) =

{h1(φ),h2(φ),h3(φ)}. Let θ = h(φ) denote our parameter of interest, θ̂em·env
and θ̂em·std denote the EM envelope and the standard EM estimators as the EM
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sequence converges. The following propositions can be proved using the results
in [39].

Proposition 1. Under Model (2.1), suppose Assumption 1, Conditions 3–4,
and (A1) hold, assume the distributions of εi and Xi are both correctly specified

and εi follows a normal distribution, then
√
n(θ̂em·std − θ)

d−→ N (0,Vstd) and
√
n(θ̂em·env − θ)

d−→ N (0,Venv) as n → ∞, where Venv = G(GTV−1
stdG)†GT

and G is given by⎛⎝Ip ⊗ Γ ηT ⊗ Ir 0 0 0
0 2Cr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ

T
0 ) Cr(Γ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)Er−u 0

0 0 0 0 I

⎞⎠.

Matrices Cr and Eu are defined in the Appendix. Hence, Venv − Vstd ≥ 0,
which indicates the efficiency gain of the EM envelope estimator.

When the envelope dimension u = r, the envelope reduces to the standard
maximum likelihood estimate. That is, even when the envelope assumptions
do not hold, the EM envelope estimator performs as well as the standard EM
estimator. Also, following a similar argument as in [11], if the variability of the
immaterial part is relatively large, then the efficiency gain would be substantial.

Propositions 2 and 3 below extend Proposition 1 and provide the asymp-
totics of missing data envelope estimator when the normality of εi is violated.
Lemmas 1–4 provide asymptotics for the standard estimator.

Lemma 1. Under Model (2.1), suppose Assumption 1 holds, when εi is mis-
specified to follow a normal distribution, if (A1)–(A2) and (B1)–(B2) hold, then

θ̂em·std
p−→ θ as n → ∞.

Lemma 2. Under Model (2.1), suppose Assumption 1 holds, when εi is mis-
specified to follow a normal distribution, if (A1)–(A3) and (B1)–(B2) hold, then
√
n(θ̂em·std−θ)

d−→ N (0, Ṽstd) as n→∞, Ṽstd=Mn(θ)
−1Var{sn(θ)}Mn(θ)

−1.

Proposition 2. Under Model (2.1), suppose Assumption 1, Conditions 3–4,
(A1)–(A3), and (B1)–(B2) hold, if the distribution of Xi is correctly specified
and εi is misspecified to follow a normal distribution, we have

√
n(θ̂em·env −

θ)
d−→ N (0, Ṽenv) as n → ∞, where Ṽenv = G(GTJG)†GTJ, G is defined

in Proposition 1 and the definition of the symmetric matrix J is given in the
Appendix.

Lemma 3. Under Model (2.1), suppose Assumption 1 holds, when εi and Xi

are misspecified to follow a normal distribution, if (A1)–(A2) hold, θ̂em·std
p−→ θ

as n → ∞.

Lemma 4. Under Model (2.1), suppose Assumption 1 holds, when εi and Xi

are misspecified to follow a normal distribution, if (A1)–(A3) hold,
√
n(θ̂em·std−

θ)
d−→ N (0, Ṽstd) as n → ∞, where Ṽstd = Mn(θ)

−1Var{sn(θ)}Mn(θ)
−1.



Envelope method with ignorable missing data 4433

Proposition 3. Under Model (2.1), suppose Assumption 1, Conditions 3–4,
(A1)–(A3) hold, if εi and Xi are both misspecified to follow a normal distri-

bution, we have
√
n(θ̂em·env − θ)

d−→ N (0, Ṽenv) as n → ∞, where Ṽenv =
PG(J)ṼstdP

T
G(J), and PG(J) = G(GTJG)†GTJ.

5. Simulations

5.1. Normal errors

Jia et al. [29] compared the envelope method with some competitor estimators
such as ridge regression and Curds and Whey introduced by [3]. They concluded
that the envelope model has the best performance when u < p < r < n in the
classical domain. Therefore, to avoid duplication, we do not consider those com-
petitor estimators here. In this subsection, we compare six different estimators:
the EM envelope estimator β̂em·env, the complete case (CC) envelope estimator
β̂cc·env, the full data envelope β̂full·env, the standard EM estimator β̂em·std, the

standard complete case (CC) estimator β̂cc·std, and the full data MLE β̂full·std.
The complete case estimators only utilize the observations that do not have
any predictors or responses missing, whereas the full data estimators use the
full data without any missingness. In practice, the full data estimators cannot
be calculated with the missing data. The full data envelope sets a theoretical
maximal efficiency possibly gained from incorporating the envelope structures.
We carry out the simulations in the following steps.

Step 1. Set the population size n = 500. Generate parameters Γ̃ ∈ R
r×u,

β̃ ∈ R
r×p, where r = 20, p = 5 and u = 3, and the elements are

independently generated from U(0, 1) and U(−10, 10). By QR decom-
position, we get Γ from Γ̃, where Γ satisfies ΓTΓ = Iu×u. Set the true
regression coefficients as β = PΓβ̃. Generate a matrix N ∈ R

p×p where
each element is independently from U(−10, 10), and set Σx = NNT ,
Σε = ΓΩΓT + Γ0Ω0Γ

T
0 , where Ω = 0.1Ir, Ω0 = 1000Ir.

Step 2. Generate the full data (Xi,Yi) for each i, where Xi
i.i.d∼ N (μx,Σx)

and Yi | Xi
i.i.d∼ N (βX,Σε) and each element of μx is generated from

U(−10, 10).
Step 3. Generate the missingness as follows. Set three missingness mechanisms

for the predictors as logitP (RXi,4 = 1 | xi,1, xi,2, xi,3) = 1 − xi,1 −
2xi,2 − 3xi,3, logitP (RXi,3 = 1 | xi,1, xi,4) = 1 − xi,1 − 2xi,4, and
logitP (RXi,5 = 1 | xi,1) = 1 − xi,1. Also, set five missingness mecha-
nisms for the responses as logitP (RYi,2 = 1, RYi,4 = 1 | xi,1, yi,8, yi,9) =
2 − xi,1 − yi,8 − 3yi,9, logitP (RYi,3 = 1 | xi,2, yi,4, yi,6) = 1 − xi,2 −
3yi,4 − yi,6, logitP (RYi,7 = 1, RYi,8 = 1, RYi,9 = 1 | yi,1, yi,2, yi,3) =
2 − 2yi,1 − yi,2 − 3yi,3, logitP (RYi,1 = 1, RYi,10 = 1 | xi,1, xi,2) =
1 − xi,1 − xi,2 and logitP (RYi,5 = 1, RYi,6 = 1 | xi,1, xi,2, yi,1, yi,10) =
1−xi,1−xi,2−yi,1−yi,10. For each individual, we randomly choose one
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missingness mechanism for the predictors and one missingness mecha-
nism for the responses. Then, we generate the missingness indicators
(RXi,1 , . . . , RXi,p , RYi,1 , . . . , RYi,r ), for i = 1, . . . n. We obtain the ob-
served data for predictors and responses.

Step 4. Calculate β̂em·env, β̂cc·env, β̂full·env, β̂em·std, β̂cc·std, and β̂full·std,

where β̂em·env is calculated from the EM envelope algorithm using BICQ

to select the envelope dimension.
Step 5. Repeat Steps 2–4 for 1000 times.

Under the missingness mechanisms above, each predictor suffers from about
10%–15% missingness and each response about 5%–10%. In our simulations,
to simplify the calculation and reduce the computation burden, we apply the
1-D algorithm proposed by [15] to solve Γ. The 1-D algorithm only provide
a
√
n-consistent estimate of Γ rather than the most efficient estimate. How-

ever, we still find good performance of EM envelope method with 1-D algo-
rithm. Details about the algorithm are in the Appendix. The median MSEs
are 4.44 × 10−5, 2.00 × 10−4, 1.02 × 10−5, 5.34 × 10−2, 0.69 and 5.23 × 10−2

for the EM envelope, the complete case envelope, the full data envelope, the
standard EM, the standard complete case analysis and the full data MLE, re-
spectively. Detailed comparisons of the six estimators are given in Figure 3
below and Table 1 in the Appendix. For the EM envelope estimator, by using
BICQ to choose the envelope dimension, out of 1000 times of simulations, we
correctly estimated the envelope dimension u = 3 at an accuracy of 98.6%.
The envelope dimension u = 2 is selected 12 times and u = 4 is selected
2 time. The overselection u = 4 still provides a correct model, although the
point estimate may not be as efficient as compared with that using the cor-
rect u. The underestimation of u = 2 could introduce some bias. As expected,
the standard complete case analysis suffers from both large variance and large
bias. In contrast, the EM envelope is asymptotically unbiased and the most
efficient among the four estimators using the observed data, despite the oc-
casional underestimation of u. In this simulation setting, the variance of the
immaterial part of the responses is relatively large. Thus, by eliminating the
variability of the immaterial part, the EM envelope estimate outperforms the
standard EM. This confirms the efficiency gain in Proposition 1. Similar to the
illustrative example in Section 2, the EM envelope also outperforms the full
data MLE in this simulation, emphasizing the advantage of incorporating a di-
mension reduction method to recover the efficiency loss due to missing data.
The performance of the EM envelope is close to the full data envelope in this
case.

In this specific setting, the complete case envelope outperforms the standard
EM. This is an interesting case as the complete case envelope is biased but the
standard EM is not. However, the ordering of the two is not certain in general.
The complete case data may not have an envelope structure, although in finite
sample cases we can usually find one. Intuitively, if the proportion of missingness
is low, the complete case envelope estimate resembles the EM envelope estimate,
and thus outperforms the standard EM. If the proportion of missingness is high,
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Fig 3. Histograms of the MSEs of the EM envelope estimator, the complete case (CC) envelope
estimator, the full data envelope estimator, the standard EM estimator, the standard complete
case (CC) estimator, and the full data MLE when Ω0 = 1000Iq.

the complete case envelope is both biased and inefficient while the standard EM
is still unbiased although inefficient. When the bias of the complete case envelope
dominates the MSE, the standard EM outperforms the complete case envelope.
When the proportion of missingness is not at extremes (too high or too low),
the complete case envelope is not necessarily better or worse than the standard
EM. The standard EM estimate may have a smaller bias but a relatively larger
variance while the complete case envelope may have a larger bias and a smaller
variance.

We carried out another simulation study, where the steps were the same as
above, except we replaced Ω0 = 1000Iq with Ω0 = 10Iq in Step 2. This is a case
where the variance of the immaterial part is not as large. The median MSEs
of the EM envelope, the complete case envelope, the full data envelope, the
standard EM, the standard complete case analysis and the full data MLE are:
1.06× 10−4, 6.16× 10−4, 8.58× 10−5, 5.42× 10−4, 6.81× 10−3 and 5.24× 10−4.
Detailed comparisons of the six methods are given in Figure 8 and Table 2
in the Appendix. Out of 1000 simulations, the envelope dimension is correctly
estimated as u = 3 with an accuracy of 89.8%, while the rest 10.2% yields
an estimated envelope dimension u > 3. As mentioned, overselection can still
provide us with the correct model but may lead to inefficient estimation. The EM
envelope and the standard complete case analysis remain the best and the worst
estimators using the observed data in terms of the MSEs, the standard EM now
outperforms the complete case envelope. Again, the EM envelope outperforms
the full data MLE.
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5.2. Non-normal errors

In order to investigate the performance of our estimator under the scenario
of Propositions 2 and 3, we carried out four additional sets of simulations to
compare β̂em·env and β̂em·std as well as other estimators when the error term εi
is not normally distributed. Specifically, we consider two scenarios: (i) Correctly
specified the distribution of Xi and (ii) Misspecified the distribution of Xi. The
simulations under scenario (i) are carried out in the following steps.

1*. Set n = 500, r = 10, p = 5, and u = 2. Generate parameters Γ̃ ∈ R
r×u,

β̃ ∈ R
r×p, where the elements are drawed independently from U(0, 1) and

U(−10, 10). By QR decomposition, we get Γ from Γ̃, where Γ satisfies
ΓTΓ = Iu×u. Set the true regression coefficients as β = PΓβ̃. Generate a
matrix N ∈ R

p×p where each element is independently from U(−10, 10),
and set Σx = NNT .

2*. Generate the full data (Xi,Yi) for each individual i. We generate Xij
i.i.d∼

25Ber(0.5) where j = 1, . . . 5. In order to satisfy the independence con-
ditions ΓT

0 Yi Xi and ΓTYi ΓT
0 Yi | Xi, we firstly draw εi1 ∈

R
u and εi2 ∈ R

r−u independently from two distributions t5(0, Iu) and
t5(0, 1000Ir−u). Then we set εi = Γεi1 + Γ0εi2 and Yi = βXi + εi.

3*. Generate missingness same as Step 3.
4*. Calculate β̂em·env, β̂cc·env, β̂full·env, β̂em·std, β̂cc·std, and β̂full·std. We

calculate β̂em·std and β̂em·env using normal working model for εi and
Bernoulli model for Xi using the parameter updates derived in Exam-
ple A3. The dimension of the envelope of β̂em·env, β̂full·env and β̂cc·env
are obtained through the bootstrap method with 20 iterations.

5*. Repeat Steps 2*–4* for 1000 times.

Using the above missingness mechanism, the predictors and responses suffers
from about 13% missingness. Although the normality of εi is violated, the
data was still generated under a nontrivial envelope structure defined by Con-
ditions 3–4 with the envelope dimension u = 2.

We use boostrap to choose the envelope dimensions for β̂em·env, β̂full·env
and β̂cc·env. All the envelope dimensions are correctly specified for β̂em·env and
β̂full·env. Following Theorem 2 in [41] and Proposition 2, once the envelope di-
mension is correctly specified, the full data envelope with a misspecified working
normal density is still consistent although it no longer provides the MLE. As
for β̂cc·env, the correct envelope dimension u = 2 is selected 903 out of 1000
times, u = 3 is selected 94 times, and it chose u = 4 for the rest of 3 times. We
observe the bootstrap method requires more computational time than the likeli-
hood method, but is more robust in selecting the envelope dimension. It is worth
noticing that for the complete case, even if the envelope dimension is correctly
specified for most of the time, the resulting estimator usually suffers from bias.
Under current missingness mechanism, the bias for the complete case estimator
is relatively small. Therefore, all three envelope estimators have better perfor-
mances than the standard estimators with full, complete and all data, because
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the variance of the immaterial part is much larger than that of the material part.
The median MSEs are 4.84× 10−4, 1.52× 10−2, 1.07× 10−3, 0.11, 1.28× 10−4,
and 1.41 × 10−2 for β̂em·env, β̂em·std, β̂cc·env, β̂cc·std, β̂full·env, β̂full·std. De-
tailed comparisons of the simulation results are given in Figure 4 below and
Table 3 in the Appendix. We see that when the error term follows multivariate
t distribution, as long as the envelope independence conditions hold, our EM
envelope estimator empirically outperforms the standard estimator. Also, the
EM envelope outperforms the full data MLE, suggesting that in practice, our
method has the potential to recover the efficiency loss from missing data.

Fig 4. Histograms of the MSEs of the EM envelope estimator, the complete case (CC) envelope
estimator, the full data envelope estimator, the standard EM estimator, the standard complete
case (CC) estimator, and the full data MLE when the error term εi follows t-distribution and
Xi follows Bernoulli distribution.

The simulation under scenario (ii) is similar to that under scenario (i). In

Step 2*, we generateXi
i.i.d∼ t5(0,Σx), where tν(μ,Σ) represent the multivariate

t distribution with location parameter μ, scale parameter Σ and degrees of free-
dom ν, Σx = NNT . and each element of N is independently from U(−10, 10).

In Step 4*, β̂em·std and β̂em·env are obtained using normal working model for
both εi and Xi.

All the envelope dimensions for β̂em·env and β̂full·env are correctly estimated

through the bootstrap method. The dimension for β̂cc·env is selected correctly
for 90.5% of the time, while the rest 9.5% yields an estimated dimension u > 3.
All three envelope estimators have better performances than the standard esti-
mators with full, complete and all data because the variation of the immaterial
part is much larger than the material part. The median MSEs are 7.96× 10−4,
7.61×10−2, 1.38×10−3, 0.50, 1.52×10−4, and 6.96×10−2 for β̂em·env, β̂em·std,
β̂cc·env, β̂cc·std, β̂full·env, β̂full·std. Detailed comparison of the simulation results
are given in Figure 5 below and Table 4 in the Appendix.
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Fig 5. Histograms of the MSEs of the EM envelope estimator, the complete case (CC) en-
velope estimator, the full data envelope estimator, the standard EM estimator, the standard
complete case (CC) estimator, and the full data MLE when the error term εi and Xi follows
t-distribution.

We carried out another two sets of simulations where the data generating
steps were the same as above, but we changed the distribution of εi1 ∈ R

u and
εi2 ∈ R

r−u. Firstly, we generate each element of εi1, εi2 independently from
U(−1, 1) and U(−10, 10). Under this setting, the median MSEs are 2.82×10−4,

1.59×10−3, 1.37×10−3, 1.00×10−2, 2.14×10−4, 1.45×10−3 for β̂em·env, β̂em·std,
β̂cc·env, β̂cc·std, β̂full·env, β̂full·std. When each element of εi1, εi2 are gener-
ated independently from Laplace(0, 1) and Laplace(0, 20), the median MSEs
are 1.45×10−3, 3.75×10−2, 2.92×10−3, 0.246, 3.38×10−4 and 3.41×10−2 for
β̂em·env, β̂em·std, β̂cc·env, β̂cc·std, β̂full·env, β̂full·std. Detailed results are pro-
vided in Tables 5 and 6 in the Apendix. Under both settings, we see substantial
empirical efficiency gains by using our method.

6. Data analysis

In this section, we apply our proposed method to the Chronic Renal Insufficiency
Cohort (CRIC) study. The CRIC study recruited 3939 participants from April
8, 2003 through September 3, 2008 and continued through March 31, 2013 [19].
The study cohort was a racially and ethnically diverse group aged from 21 to 74
years with mild to moderate chronic kidney disease (CKD). Each study subject
was given extensive clinical evaluation, and the information collected included
quality of life, dietary assessment, physical activity, health behaviors, depression,
cognitive function, and blood and urine specimens.

To prevent the development of severe clinical events, it is important to iden-
tify CKD patients with a high risk of end-stage renal diseases (ESRD) in their
early stages. A variety of risk factors for ESRD have been identified in the
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literature [4, 23, 35, 2, 20, 1]. It is of interest to investigate the difference in
the distributions of baseline biomarkers among the patients who develop ESRD
versus who do not. Correlation among risk factors have often been observed
in the literature [5]; however, it has not been fully utilized in the statistical
analyses for predicting ESRD and CVD. Our method leveraged the correlation
among the risk factors and biomarkers to improve the efficiency of the analysis.
Additionally, it is of interest to explore modifiable biomarkers, which are the
biomarkers that are significantly differently distributed for patients who develop
ESRD adjusting for the established biomarkers.

The study participants were distinguished by the ESRD status (binary, 1 for
ESRD and 0 for no ESRD) within five years of enrollment. We assumed death
before the progression of ESRD and withdraw from the study were independent
of the ESRD disease status. Thus, we focused our analysis on the remaining 3205
patients. In our analysis, we also adjusted for gender, age, race, systolic, and
diastolic blood pressures, and hemoglobin. The biomarkers and risk factors are
urine albumin, urine creatinine, high sensitivity C-reactive protein (HS CRP),
brain natriuretic peptide (BNP), chemokine ligand 12 (CXCL12), fetuin A,
fractalkine, myeloperoxidase (MPO), neutrophil gelatinase associated lipocalin
(NGAL), fibrinogen, troponin, urine calcium, urine sodium, urine potassium,
urine phosphate, high sensitive troponin T (TNTHS), aldosterone, C-peptide,
insulin value, total parathyroid hormone (Total PTH), CO2, 24-hour urine pro-
tein, and estimated glomerular filtration rate (EGFR). We performed a log
transformation on the highly skewed biomarkers and risk factors. In addition,
we divided fetuin A by 104 as its scale was quite different from other biomarkers.

We first assessed the difference in the distributions of baseline biomarkers
versus the ESRD status, unadjusted for the established biomarkers. All the
biomarkers except the EGFR had some missingness ranging from <1% to 6%.
Also, as for the predictors, hemoglobin and BMI had a relatively low missing
rate (there are 15 observations with hemoglobin missing and 5 observations with
BMI missing). As the proportion of missingness was relatively low, we used the
BICQ given in Section 4.2 to select the envelope dimension. The EM envelope
method reduced the dimension of the biomarkers from r = 23 to u = 15. The
point estimates, bootstrap standard errors, confidence intervals and p-values
for the mean difference of biomarkers among ESRD patients versus no ESRD
patients are given in the Appendix. The magnitude of the point estimates of
our method is in general slightly smaller than those of the standard EM. For
example, the coefficient for urine albumin is 0.56 using our method and 2.54
using the standard EM. This is because in each EM iteration, the envelope es-
timate is the projection of the standard estimates onto the envelope direction.
The reduction in the magnitude is interpreted as the noise subtracted from the
original estimates. As Louis [34] suggested, the closed form of the asymptotic
variance for the standard EM estimator is in general hard to obtain. Hence, we
carried out the nonparametric bootstrap for 1000 times, that is, we resample
individuals with replacement. The standard errors of our method is also gener-
ally smaller than those of the standard method. For example, Figure 6 further
shows the empirical cumulative density distributions of the estimated standard
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Fig 6. The empirical cumulative distribution of the ratio between the standard errors of the
standard EM and our method without adjusting for the established biomarkers.

errors of the standard EM versus our method. Again, the estimated standard
errors are in general smaller (on the right hand side of 1 in Figure 6) using
our method than using the standard EM indicating the efficiency gain using
our method, which aligns with our theory. The mean of the ratio is 1.24 for
coefficients corresponding to ESRD and 1.62 for all coefficients. That is, on av-
erage, our method is about 24% more efficient than the standard method for the
coefficients corresponding to ESRD and 62% more efficient for all coefficients.
The same set of biomarkers (all the aforementioned biomarkers except HS CRP,
fetuin A and insulin value) were found by our method and the standard EM, to
be significantly different among patients with and without ESRD. Table 7 and
Table 8 in the Appendix present details of the results.

It is found in the literature that although many novel biomarkers are found to
be marginally significantly associated with the ESRD status, such an association
often disappears after adjusting for the established biomarkers [22, 37, 28]. That
is, they are not as useful as modifiable biomarkers. We next assess the mean
difference of baseline biomarkers among patients with and without the ESRD
status, adjusted for the established biomarkers. The EGFR and the amount of
urine protein excreted are two established biomarkers for predicting the ESRD.
Thus, in the subsequent analysis, we use the two variables as predictors rather
than responses. The estimated envelope dimension is u = 17. The point esti-
mates, bootstrap standard errors, confidence intervals and p-values for the mean
difference of biomarkers for different ESRD status adjusting for the EGFR and
the urine protein are given in Table 7. The point estimates and the standard
errors are again in general smaller using our method as compared with using
the standard EM. Figure 7 shows the empirical distribution of the ratio between
the estimated standard errors of the two methods. The mean of the ratio is 1.92
for coefficients corresponding to the ESRD and 1.86 for all coefficients. Compar-
ing Figure 6 and Figure 7, we see that the EM envelope method achieves even
higher efficiency gain when we adjust for the established biomarkers versus not.
As found in the literature, after adjusting for the established biomarkers, the
majority of biomarkers that have been investigated are no longer significant.
We observe the same phenomenon using both our method and the standard
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Fig 7. The empirical cumulative distribution of the ratio between the standard errors of the
standard EM and our method adjusted for the established biomarkers.

EM. However, among the few biomarkers that remain significant, there is some
discrepancy between the standard EM and our method: our method found HS
CRP, aldosterone, and C-peptide significant which were not shown in standard
EM; whereas standard EM found NGAL, which was not found in our method.
As our method is more efficient for finite sample, the results of which are more
precise than those of the standard EM.

7. Discussion

In this paper, we proposed the EM envelope method to achieve more efficient es-
timation for coefficients in the multivariate regression with missing data. Specifi-
cally, we assumed the redundancy exists in the response variables and thus could
be omitted in the regression to reduce noise. A similar redundancy structure may
also occur among the predictors or among both predictors and responses. Our
method can be similarly derived under those scenarios. For example, if we as-
sume there exists a linear combination of predictors that do not contribute to the
regression and assume the missingness mechanism of predictors and responses
are MAR, then our method could be adapted to gain efficiency by discarding
the immaterial part of the variance among the predictors. A similar derivation
can be made by changing the covariance matrix Σ in this paper to Σx, the
covariance matrix of predictors.

An alternative approach to calculate an envelope estimate with missing data
is to use the model free approach proposed by [13]. Specifically, we can calcu-
late the standard EM estimator together with its asymptotic variance using the
Louis formula. However, the calculation of the asymptotic variance of the EM
estimator requires calculating the conditional expectation of the outer product
of the complete data score vector, an inherently problem-specific task that usu-
ally requires much computational effort as discussed in [36]. Also, this method
requires estimating an envelope in R

pq space instead of Rq, which makes the
problem more challenging. A detailed comparison of the empirical performances
of such model free envelope based on the standard EM estimator versus the EM
envelope method is left for future work.
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Under model (2.2), we implicitly assumed the independence between the
predictor X and the error vector ε. Specifically, we assumed there is no het-
eroscedasticity. Su and Cook [42] studied the heteroscedastic envelope when the
predictor is categorical. Our method can be easily adapted to their approach.
How to apply the envelope method under heteroscedasticity when the predictor
is beyond categorical is still an open problem, which we leave for future research.

Throughout this paper, our method is proposed assuming the missing data
mechanism is ignorable. When the data is nonignorably missing, a selection
model is needed to be specified. We also leave it as a future research topic.

8. Software

The corresponding R package is available at https://github.com/mlqmlq/

missing_env.

Appendix A: The derivations of examples

In the following example, we show that if (XT
i ,Y

T
i )

T follows a normal distribu-
tion, then (YT

i,obs,X
T
i,obs)

T also follows a normal distribution.

Example A1. Suppose the predictors and responses are normally distributed as

Yi|Xi
i.i.d∼ N (βXi,Σ) and Xi

i.i.d∼ N (μx,Σx). Then, (Y
T
i,obs,X

T
i,obs)

T follows a
normal distribution N (μ∗

i ,Σ
∗
i ), where the explicit form of the parameter μ∗

i =
SiBiμ̃ and Σ∗

i = SiBiΣ̃BT
i S

T
i where Bi, Si, μ̃ and Σ̃ are given below.

Derivation of Example A1

Note that Yi|Xi
i.i.d∼ N (βXi,Σ) and Xi

i.i.d∼ N (μx,Σx); hence, (X
T
i ,Y

T
i )

T i.i.d∼
N (μ̃, Σ̃), where μ̃ = (μT

x ,μ
T
xβ

T )T , and Σ̃ =

(
Σx Σxβ

βTΣx Σ+ βTΣxβ

)
. Also,

there exists a unique permutation matrix Bi, i.e., a square matrix that has
exactly one entry of 1 in each row and each column and 0s elsewhere, such that
(XT

i,obs,Y
T
i,obs,X

T
i,mis,Y

T
i,mis)

T = Bi(X
T
i ,Y

T
i )

T ; thus, (XT
i,obs,Y

T
i,obs,X

T
i,mis,

YT
i,mis)

T followsN (Biμ̃,BiΣ̃BT
i ). Thus, by the property of normal distribution,

(XT
i,obs,Y

T
i,obs)

T ∼ N (SiBiμ̃,SiBiΣ̃BT
i S

T
i ), where Si = (Iki ,Oki×(l−ki)), Oa×b

is a matrix of size a × b with all elements being 0, ki is the total length of
(XT

i,obs,Y
T
i,obs)

T , and l is the total length of (XT ,YT )T . Hence, μ∗
i = SiBiμ̃,

and Σ∗
i = SiBiΣ̃BT

i S
T
i .

The update of the parameters β and Σ have been discussed above. Here, we
present two examples focusing on the calculation of Aj,t and ρt.

Example A2. Under Model (2.1) and assume Xi
i.i.d∼ Np(μx,Σx). Then, the

update of parameters are μx,t+1 = E(Xi|Di,obs;θt)/n and Σx,t+1 = {A3,t −
2E(Xi|Di,obs;θt)μx,t+1}/n+ μx,t+1μ

T
x,t+1.

https://github.com/mlqmlq/missing_env
https://github.com/mlqmlq/missing_env
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Derivation of Example A2

The likelihood of X can be written as

l(ρ|x) = C ′ − n

2
log |Σx| −

1

2

n∑
i=1

(xi − μx)Σ
−1
x (xi − μx)

T ,

where C ′ = −(np log 2π)/2. Thus,

E{l(ρ|x)|Di,obs;θt}

=C ′ − n

2
log |Σx| −

1

2

n∑
i=1

[tr{Σ−1
x E(xT

i xi|Di,obs;θt)}+ 2μΣ−1
x E(xT

i |Di,obs;θt)

− μΣ−1
x μT ]

=C ′ − n

2
log |Σx| −

1

2
{tr(Σ−1

x A3,t) + 2μΣ−1
x A4,t − nμΣ−1

x μT }, (A.1)

where Ai4,t = E(Xi|θt,Di,obs) denote the conditional expectation of Xi given
Di,obs. Let ρt+1 = (μt+1,Σx,t+1). By Lemma 5, we have μt+1 = AT

4,t/n, and

Σx,t+1 = (A3,t − 2A4,tμt+1)/n+ μT
t+1μt+1.

Then, we calculate A1,t, A2,t, A3,t. Since Xi and Yi|Xi are normally dis-
tributed, following a similar derivation as the Example A1, given θt, (X

T
i ,Y

T
i )

T

also follows a normal distribution with mean (μT
x,t,μ

T
x,tβ

T
t )

T and covariance ma-
trix

Σ̃t =

(
Σx,t Σx,tβt

βT
t Σx,t Σt + βT

t Σx,tβt

)
.

For simplicity, for the derivation of the parameter updates below, we only focus
on the tth step, and thus omit all the subscript t for the parameter updates.
For different individuals, missing value occurs at different locations, so we rear-
range Xi, Yi to separate missing variables from the observed variables. Write
(DT

i,mis,D
T
i,obs)

T = Bi(X
T
i ,Y

T
i )

T , where Bi is a permutation matrix. Thus,

(DT
i,mis,D

T
i,obs)

T independently follows N{(μT
i,1,μ

T
i,2)

T ,

(
Σi1 Σi2

ΣT
i2 Σi3

)
}, where

(μT
i,1,μ

T
i,2)

T = Bi(μ
T
x ,μ

T
xβ

T )T , and

(
Σi1 Σi2

ΣT
i2 Σi3

)
= BiΣ̃BT

i . Hence, Di,mis |

Di,obs follows N{μi,1 +Σi2Σ
−1
i3 (Di,obs − μi,2),Σi1 −Σi2Σ

−1
i3 ΣT

i2}. Therefore,

E(Di,mis|Di,obs;θ) = μi,1 +Σi2Σ
−1
i3 (Di,obs − μi,2),

E(Di,misD
T
i,obs|Di,obs;θ) = {μi,1 +Σi2Σ

−1
i3 (Di,obs − μi,2)}DT

i,obs,

and

E(Di,misD
T
i,mis|Di,obs;θ)

= E(Di,mis|Di,obs;θ)E(Di,mis|Di,obs;θ)
T +Var(Di,mis|Di,obs;θ)

= μi,1 +Σi2{Σ−1
i3 (Di,obs − μi,2)}{μi,1 +Σi2Σ

−1
i3 (Di,obs − μi,2)}T +Σi1

−Σi2Σ
−1
i3 ΣT

i2.
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Then, we can obtain Ai1, Ai2 and Ai3 through

E{(XT
i ,Y

T
i )

T (XT
i ,Y

T
i )|Di,obs;θ}

=

(
E(XiX

T
i |Di,obs;θ) E(XiY

T
i |Di,obs;θ)

E(YiX
T
i |Di,obs;θ) E(YiY

T
i |Di,obs;θ)

)
=

(
Ai3 AT

i2

Ai2 Ai1

)
=BT

i

(
E(Di,misD

T
i,mis|Di,obs;θ) E(Di,misD

T
i,obs|Di,obs;θ)

E(Di,obsD
T
i,mis|Di,obs;θ) E(Di,obsD

T
i,obs|Di,obs;θ)

)
Bi.

The last equation holds because for a permutation matrix Bi, we have B
−1
i =

BT
i . After getting Ai1, Ai2 and Ai3, we can obtain A1, A2 and A3 by summa-

tion over i.

Example A3. Under model (2.1), assume p = 1 and Xi
i.i.d∼ Ber(π). The

update of parameter is πt+1 =
∑n

i=1 π̃i,t/n. The form of π̃i,t and the formula of
Aj,t are given below.

Proof of Example A3

Let βi,obs denote the submatrix of β where the rows corresponds to the ob-
served responses Yi,obs. Let Σi,obs denote the submatrix of Σ with the elements
corresponds to the covariance of Yi,obs. Let εi,obs denote the random error cor-
responds to Yi,obs. Hence, we have Yi,obs = βi,obsXi + εi,obs where εi,obs inde-
pendently follows N (0,Σi,obs).

First, we derive the distribution of Xi|Yi,obs given θ = θt.

f(xi|yi,obs;θt)

∝f(xi,yi,obs;θt)

=
πxi(1− π)1−xi

(2π)
n
2 |Σ

1
2

i,obs,t|
exp{−1

2
(yi,obs − xiβi,obs,t)Σ

−1
i,obs,t(yi,obs − xiβi,obs,t)

T }

∝ exp

{
−1

2
xiβi,obs,tΣ

−1
i,obs,tβ

T
i,obs,tx

T
i + yi,obsΣ

−1
i,obs,tβ

T
i,obs,tx

T
i

}
(

π

1− π
)xi

=
[π exp{βi,obs,tΣ

−1
i,obs,ty

T
i,obs − βi,obs,tΣ

−1
i,obs,tβ

T
i,obs,t/2}

1− π

]xi

.

The last equation holds because for a Bernoulli variable, we have x2
i = xi. Then,

Xi|(Yi,obs = yi,obs) follows a Bernoulli distribution with parameter
πtqt

1− πt + πtqt
, where qt = exp{βi,obs,tΣ

−1
i,obs,ty

T
i,obs − βi,obs,tΣ

−1
i,obs,tβ

T
i,obs,t/2}.

The likelihood function of X can be written as

l(ρ|x) =
n∑

i=1

xi log π + (n−
n∑

i=1

xi) log(1− π).
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Hence,

E{l(ρ|X)|Di,obs;θt}

=

n∑
i=1

E(Xi|Di,obs;θt) log π + {n−
n∑

i=1

E(Xi|Di,obs;θt)} log(1− π).

For an individual i, if Xi is observed, E(Xi|Di,obs) = Xi, and E(Xi|Di,obs) =

πtqt
1− πt + πtqt

if otherwise. Denote π̃i =

(
πtqt

1− πt + πtqt

)1−RXi

X
RXi
i , we have

E{l(ρ|X)|Di,obs;θt} =
∑n

i=1 π̃i,t log π + (n−
∑n

i=1 π̃i,t) log(1− π).
By taking derivative with regard to π, we get the update for parameter πt+1 =∑n
i=1 π̃i,t/n.
For simplicity, we again omit the subscript t in the following derivation. Next,

we calculate the conditional covariance matrices A1,A2, A3. For an individual i,
if xi is not missing, Ai1, Ai2 and Ai3 can be computed trivially. Hence, we only
need to demonstrate the case when xi is missing. There exists a permutation
matrix Bi, such that (YT

i,mis,Y
T
i,obs)

T = BiYi. Then, Var(y
T
i,mis,y

T
i,obs)

T =

BiΣBT
i =

(
Σi1 Σi2

ΣT
i2 Σi3

)
, where Σi1 = Var(Yi,mis), Σi2 = Cov(Yi,mis,Yi,mis),

and Σi3 = Var(Yi,obs).

Because Ai1 = BT
i

(
E(YT

i,misYi,mis|yi,obs;θ) E(YT
i,mis|yi,obs;θ)yi,obs

yT
i,obsE(Yi,mis|yi,obs;θ) yT

i,obsyi,obs

)
Bi,

we only need to compute E(YT
i,misYi,mis|yi,obs;θ) and E(YT

i,mis|yi,obs;θ). Since

E(YT
i,mis|yi,obs;θ) = {β0,mis + π̃iβi,mis + (yi,obs − β0,obs − π̃iβi,obs)Σ

−1
i3 ΣT

i2}T ,

E(YT
i,misYi,mis|yi,obs;θ) =Σi1 −Σi2Σ

−1
i3 ΣT

i2

+ E(yT
i,mis|yi,obs,θ)E(yi,mis|yi,obs;θ),

the form of Ai1 can be obtained.
To calculate Ai2, by the law of total expectation, we have

Ai2 =E(YiXi|Di,obs;θ)

=E{E(YiXi|Xi,yi,obs;θ)|yi,obs;θ}
=BT

i E[E{(YT
i,mis,Y

T
i,obs)

T |Xi,yi,obs;θ}Xi|yi,obs;θ]

=BT
i E[{βi,misXi + (yi,obsXi −Σi2Σ

−1
i3 βi,obsXi),yi,obsXi}T |yi,obs;θ]

=BT
i {βi,misπ̃i + (yi,obsπ̃i −Σi2Σ

−1
i3 βi,obsπ̃i),yi,obsπ̃i}T .

Since Xi|yi,obs follows Bernoulli distribution with parameter π̃i, we have Ai3 =
π̃i. After obtaining Ai1, Ai2 and Ai3, we can obtain A1, A2 and A3 through a
summation over i.

Proof of Example 1

Firstly we prove the case where Xi follows normal distribution. Since the work-
ing model for εi is also normal, the estimator θ̂obs·std is obtained by maximizing
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the following observed data likelihood under the working model:

L(θ) =

n∏
i=1

∫ ∫
(2π)−

r+p
2 |Σ|− 1

2 |Σx|−
1
2 exp{−1

2
(yi − xiβ)

TΣ−1(yi − xiβ)}

· exp{−1

2
(xi − μx)

TΣ−1
x (xi − μx)}dxi,misdyi,mis. (A.2)

From Example 1 and notations therein, we have

L(θ) ∝
n∏

i=1

|SiBiΣ̃BT
i S

T
i |−

1
2 exp{−1

2
(Di,obs − SiBiμ̃)

T (SiBiΣ̃BT
i S

T
i )

−1

(Di,obs − SiBiμ̃)}.

By denoting SiBiμ̃ = μi,obs and SiBiΣ̃BT
i S

T
i = Σi,obs, we have

L(θ) ∝ |Σi,obs|−
1
2 exp{(Di,obs − μi,obs)

TΣ−1
i,obs(Di,obs − μi,obs)}.

The estimator θ̂obs·std is the solution to the following generalized estimating
equation (GEE):

∂l

∂θT
=

n∑
i=1

∂li
∂θT

=

n∑
i=1

ψT (Di,obs,θ) = 0,

where li is the log-likelihood of each observation under the working model, and
ψ(Di,obs,θ) = ∂li/∂θ. During the proof, we are calculating the expectation
given the observed data pattern.

Denote M1 =
∂μ̃

∂μT
x

, M2 =
∂μ̃

∂βT
, M3 =

∂vec(Σ̃)

∂vech(Σ)T
, M4 =

∂vec(Σ̃)

∂βT
, and

M5 =
∂vec(Σ̃)

∂vech(Σx)T
. We have

∂li
∂μT

x

= (Di,obs − μi,obs)
TΣ−1

i,obsSiBiM1,

∂li
∂vech(Σx)T

= −1

2
vec(Σ−1

i,obs)
T (BT

i S
T
i ⊗BT

i S
T
i )M5 +

1

2
(Di,obs − μi,obs)

T⊗

(Di,obs − μi,obs)
T (Σ−1

i,obs ⊗Σ−1
i,obs)(B

T
i S

T
i ⊗BT

i S
T
i )M5,

∂li
∂vech(Σ)T

= −1

2
vec(Σ−1

i,obs)
T (BT

i S
T
i ⊗BT

i S
T
i )M3 +

1

2
(Di,obs − μi,obs)

T⊗

(Di,obs − μi,obs)
T (Σ−1

i,obs ⊗Σ−1
i,obs)(B

T
i S

T
i ⊗BT

i S
T
i )M3,

∂li
∂βT

=
∂li

∂vec(Σi,obs)T
∂vec(Σi,obs)

∂βT
+

∂li
∂μT

i,obs

∂μi,obs

∂βT

= −1

2
vec(Σ−1

i,obs)
T (BT

i S
T
i ⊗BT

i S
T
i )M4 + (Di,obs − μi,obs)

TΣ−1
i,obsSiBiM2

+
1

2
(Di,obs − μi,obs)

T ⊗ (Di,obs − μi,obs)
T

(Σ−1
i,obs ⊗Σ−1

i,obs)(B
T
i S

T
i ⊗BT

i S
T
i )M4,
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and

ψ(Di,obs,θ) =

(
∂li
∂μT

x

,
∂li

∂vech(Σx)T
,

∂li
∂vech(Σ)T

,
∂li
∂βT

)T

.

We need to show (B1) hold for any compact subset of the parameter space. That
is, for any c > 0 and sequence {Di,obs}∞i=1 satisfying ‖Di,obs‖ ≤ c, the sequence
of functions ψ(Di,obs,θ) is equicontinuous on any compact set of the parameter
space.

By taking the derivative of ψ(Di,obs,θ) with respect to θ, we will see that
∂ψ

∂θ
is continuous in θ and Di,obs. Hence, when the parameter space Θ is com-

pact and ‖Di,obs‖ ≤ c,
∂ψ

∂θ
is uniformly bounded. Therefore, ψ(Di,obs,θ) is

equicontinuous. That is, regularity condition (B1) holds.
Next, we prove condition (B2) holds. That is, the solution of

lim
n→∞

n−1
n∑

i=1

E{ψ(Di,obs,θ)} = 0 (A.3)

is unique at θ = θ0. Since we assumed a fixed missing mechanism and (Xi,Yi) is
of length p+r, there are at most 2p+r−1 observed data patterns. Let m denote
the total number of observed data patterns, D∗

i,obs denote the i-th observed

data pattern with probability p∗i for i = 1, . . . ,m satisfying
∑m

i=1 p
∗
i = 1. For

example, if for the i-th observed data pattern only X1 is missing, then D∗
i,obs =

(X2, . . . , Xp,Y). Hence,

lim
n→∞

n−1
n∑

i=1

E{ψ(Di,obs,θ)} =

m∑
i=1

p∗iE{ψ(D∗
i,obs,θ)}. (A.4)

Let θ0 = (μ0x,Σ0x,Σ0,β0) denote true parameter value, μ̃0=(μT
0x,μ

T
0xβ

T
0 )

T

and Σ̃0 =

(
Σ0x Σ0xβ0

βT
0 Σ0x Σ0 + βT

0 Σ0xβ0

)
. Let S∗

i , B
∗
i denote the corresponding

matrices in Example 1 for the observed data D∗
i,obs. Let l∗i denote the log-

likelihood of the i-th observed data pattern under the working model, then

∂l∗i
∂μ̃T

= (D∗
i,obs − S∗

iB
∗
i μ̃)

T (S∗
iB

∗
i Σ̃B∗T

i S∗T
i )−1S∗

iB
,
i

By E(D∗
i,obs) = S∗

iB
∗
i μ̃0 and (A.4), we have

m∑
i=1

p∗iE

(
∂l∗i
∂μ̃T

)
= (μ̃0 − μ̃)T

m∑
i=1

p∗i (S
∗
iB

∗
i )

T (S∗
iB

∗
i Σ̃B∗T

i S∗T
i )−1S∗

iB
∗
i

= (μ̃0 − μ̃)T
m∑
i=1

p∗iPB∗T
i S∗T

i (Σ̃)Σ̃
−1 = 0,

where PB(Σ) ≡ B(BTΣB)−1BTΣ represents the projection onto span(B) rela-
tive to Σ. In order to show the above estimating equation has a unique solution
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at μ̃ = μ̃0, we only need to show
∑m

i=1 p
∗
iPB∗T

i S∗T
i (Σ̃) is full rank. Let q

∗
i denote

the probability of Xi is observed if i ≤ p, and the probability of Yi−p is observed
if i > p. Then

m∑
i=1

p∗iPB∗T
i S∗T

i (Σ̃) =

p+r∑
i=1

q∗iPei(Σ̃),

where ei is the vector of length p+ r where the i-th index equals 1 and equals
0 otherwise. Since there is no predictor or response with missing rate 100%,
q∗i > 0 for all 1 ≤ i ≤ p + r, the above matrix is full rank. That is, μ̃ = μ̃0 is
the unique solution.

Since μ̃ = (μT
0x,μ

T
0xβ

T
0 )

T , the solution for μx must be unique and μx = μ0x.
Recall that

E(D∗
i,obs) = S∗

iB
∗
i μ̃0 = μ∗

0i,obs,

and
Var(D∗

i,obs) = S∗
iB

∗
i Σ̃0B

∗T
i S∗T

i = Σ∗
0i,obs,

we have

E{(D∗
i,obs − μ∗

0i,obs)
T ⊗ (D∗

i,obs − μ∗
0i,obs)

T (Σ∗−1
i,obs ⊗Σ∗−1

i,obs)}
=vec(Σ∗−1

i,obsΣ
∗
0i,obsΣ

∗−1
i,obs)

T .

Therefore,

∂l∗i
∂vech(Σ̃)T

∣∣
μ̃=μ̃0x

=
1

2
{vec(Σ∗−1

i,obsΣ
∗
0i,obsΣ

∗−1
i,obs)

T − vec(Σ∗−1
i,obs)

T }(BT
i S

T
i ⊗BT

i S
T
i )

=
1

2
vec{Σ∗−1

i,obs(Σ
∗
0i,obs −Σ∗

i,obs)Σ
∗−1
i,obs}T (BT

i S
T
i ⊗BT

i S
T
i )

=
1

2
vec(Σ∗

0i,obs −Σ∗
i,obs)

T (Σ∗−1
i,obs ⊗Σ∗−1

i,obs)(B
T
i S

T
i ⊗BT

i S
T
i )

=
1

2
vec(Σ̃0 − Σ̃)T (S∗

iB
∗
i ⊗ S∗

iB
∗
i )(Σ

∗−1
i,obs ⊗Σ∗−1

i,obs)(B
T
i S

T
i ⊗BT

i S
T
i )

=
1

2
vec(Σ̃0 − Σ̃)T {S∗

iB
∗
i (S

∗
iB

∗
i Σ̃B∗T

i S∗T
i )−1BT

i S
T
i

⊗ S∗
iB

∗
i (S

∗
iB

∗
i Σ̃B∗T

i S∗T
i )−1BT

i S
T
i }

=
1

2
vec(Σ̃0 − Σ̃)T (PB∗T

i S∗T
i (Σ̃) ⊗PB∗T

i S∗T
i (Σ̃)).

Hence, we have

m∑
i=1

p∗iE

(
∂l∗i

∂vech(Σ̃)T

∣∣
μ̃=μ̃0

)

=
1

2
vec(Σ̃0 − Σ̃)T

m∑
i=1

p∗i (PB∗T
i S∗T

i (Σ̃) ⊗PB∗T
i S∗T

i (Σ̃)) = 0.
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Similarly,
∑m

i=1 p
∗
i (PB∗T

i S∗T
i (Σ̃) ⊗ PB∗T

i S∗T
i (Σ̃)) is full rank. Hence, the above

equation implies Σ̃ = Σ̃0 is the unique solution. That is, Σx = Σ0x, Σ = Σ0,
and β = β0 are unique solutions.

Therefore, the solution for (A.3) is unique, so that (B2) holds.

Proof of Example 2

When Xi follows binomial distribution with m trials and success probability p.
Without loss of generality, among the n samples, we let the first n0 samples
to be the case where the covariate Xi is not missing. Then, the observed data
likelihood can be written as

n0∏
i=1

∫
(2π)−

r
2 |Σ|− 1

2 exp{−1

2
(yi − xiβ)

TΣ−1(yi − xiβ)}

·
n∏

i=n0+1

∫ ∫
(2π)−

r
2 |Σ|− 1

2 exp{−1

2
(yi − xiβ)

TΣ−1(yi − xiβ)}

·
(
m

xi

)
pxi(1− p)m−xidxidyi,mis

=

n0∏
i=1

(2π)−
r
2 |Σ|− 1

2 exp{−1

2
(yi,obs − xiβi,obs)

TΣ−1
i,obs(yi,obs − xiβi,obs)}

n∏
i=n0+1

m∑
k=0

(2π)−
r
2 |Σ|− 1

2 exp{−1

2
(yi,obs − kβi,obs)

TΣ−1
i,obs(yi,obs − kβi,obs)}(

m

k

)
pk(1− p)m−k

(
m

xi

)
pxi(1− p)m−xi .

Hence, L(θ) can also be expressed using normal densities:

L(θ) =

n0∏
i=1

{
φ(xiβi,obs,Σi,obs)

(
m

xi

)
pxi(1− p)m−xi

}

·
n∏

i=n0+1

{
m∑

k=0

φ(kβi,obs,Σi,obs)

(
m

k

)
pk(1− p)m−k

}
,

which is a Gaussian mixture model. It is easy to show that
∂ψi

∂θ
is continuous

in θ using the same technique. Hence, following the same proof procedure, we
know that (B1)–(B2) holds when Xi follows binomial distribution.
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Proof of Example 3

Without loss of generality, the first n0 out of n observations have covariate Xi1

is not missing. Then, the observed data likelihood can be written as

n0∏
i=1

∫
(2π)−

r
2 |Σ|−

1
2 exp{−1

2
(yi − xi1β1 − xi2β2)

TΣ−1(yi − xi1β1 − xi2β2)}(
m

xi1

)
pxi1(1− p)m−xi1 exp{−1

2
(xi2 − μx)

TΣ−1
x (xi2 − μx)}dxi2,misdyi,mis

n∏
i=n0+1

∫
(2π)−

r
2 |Σ|−

1
2 exp{−1

2
(yi − xi1β1 − xi2β2)

TΣ−1(yi − xi1β1 − xi2β2)}(
m

xi1

)
pxi1(1− p)m−xi1 exp{−1

2
(xi2 − μx)

TΣ−1
x (xi2 − μx)}dxi1dxi2,misdyi,mis

=

n0∏
i=1

φ(αi,γi)

(
m

xi1

)
pxi1(1− p)m−xi1

n∏
i=n0+1

{ m∑
k=0

φ(α̃ik, γ̃ik)

(
m

k

)
pk(1− p)m−k

}
,

where αi, γi, α̃ik and γ̃ik are functions of the observed data and can be com-
puted in closed form following the same approach as in the proof of Example 1.
We see that the observed data likelihood is still from a Gaussian mixture model.
Hence, (B1)–(B2) holds.

Appendix B: Proof of propositions

Proof of Proposition 1

The parameter of the envelope model is φ = (η,Γ,Ω,Ω0,ρ). A more rigor-
ous notation would be φ = {vec(η), vec(Γ), vech(Ω), vech(Ω0), vec(ρ)}, where
the vectorization operator vec : Rr×p → R

rp stacks the columns of the ma-
trix. Also, for symmetric matrices Ω and Ω0, we use the “vech” operator:
R

r×r → R
r(r+1)/2, which stacks the unique elements lies on or below the di-

agonal by column. Following the notations in [24], we let Cr ∈ R
r(r+1)/2×r2 and

Er ∈ R
r2×r(r+1)/2 denote the “contraction” and “expansion” matrices such that

vech(A) = Crvec(A) and vec(A) = Ervech(A) for any symmetric matrix A of
size r.

Recall we let φ = (η,Γ,Ω,Ω0,ρ) and θ = (β,Σ,ρ) denote the parame-
ters under the envelope model and the standard model. Since regularity con-
dition (A1) holds, by Corollary 1 of [44], we know θ̂em·std and θ̂em·env are the
observed MLE.

We can find function h such that

h(θ) =

⎛⎝ vec(β)
vech(Σ)
vec(ρ)

⎞⎠ =

⎛⎝ vec(ηTΓT )
vech(ΓΩΓT + Γ0Ω0Γ

T
0 )

vec(ρ)

⎞⎠ .
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By matrix differentiation, the gradient matrix G =
∂h(θ)

∂θT
have the following

form⎛⎝Ip ⊗ Γ ηT ⊗ Ir 0 0 0
0 2Cr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ

T
0 ) Cr(Γ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)Er−u 0

0 0 0 0 I

⎞⎠ .

Because of the over-parameterization of θ, the gradient matrix G is not of full
rank. By Proposition 3.1 in [39], we have

Venv = G(GTV−1
stdG)†GT .

Hence,

Vstd −Venv = V
1
2

std{I−V
− 1

2

stdG(GTV−1
stdG)†GTV

− 1
2

std }V
1
2

std.

Since I−V
− 1

2

stdG(GTV−1
stdG)†GTV

− 1
2

std is the projection matrix onto the orthog-

onal complement of span(V
− 1

2

stdG), it is positive semi-definite. Hence, Venv ≤
Vstd.

Proof of Lemma 1

Under Model (2.1), since condition (A1) holds, θ̂em·std is the the same as the
observed data MLE. Since regularity conditions (A2), (B1)–(B2) hold, by Propo-

sition 5.5 in [38], θ̂em·std
p−→ θ as n → ∞.

Proof of Lemma 2

In additional to the conditions in Lemma 1, we also have condition (A3) holds.

Hence, by Theorem 5.14,
√
n(θ̂em·std − θ)

d−→ N (0, Ṽstd) as n → ∞, where
Ṽstd = Mn(θ)

−1Var{sn(θ)}Mn(θ)
−1.

Proof of Proposition 2

From Lemmas 1 and 2, we know that θ̂em·std is consistent and asymptoti-
cally normal. Then, we can use Proposition 4.1 in [39] to prove this proposi-
tion.

Shapiro’s ξ in our context is ξ = (β,Σ,ρ). Following the proof in [41], we
give the minimum discrepancy function as fMDF = lmax − l, where l is the
logarithm of the misspecified likelihood function (A.2), and lmax is obtained by

substituting θ̂em·std for θ in (A.2). There must be one-to-one functions f1 from

θ to ξ and f2 from θ̂em·std to x so that ξ = f1(θ) and x = f2(θ̂em·std). As fMDF
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is constructed by the normal likelihood, it satisfies the four conditions required

by [39]. Let J =
1

2

∂2fMDF

∂θ∂θT
. Then, because θ̂em·std is obtained by minimizing

fMDF , by Proposition 4.1 of [39], we have
√
n(θ̂em·env − θ0)

d→ N (0, Ṽenv),

where Ṽenv = G(GTJG)†GTJVstdJG(GTJG)†GT .

Proof of Lemma 3

We use Proposition 5.5 in [38] to prove consistency. In the proof of Example 1,
we showed the regularity conditions (B1)–(B2) hold when Xi is modeled using
a normal distribution.

Moreover, since both εi and Xi have finite (4 + δ)-th moment from Con-
dition (A2), we have E{supθ∈Θ ‖ψi(Di,obs,θ)‖}2 < ∞, and E‖Di,obs‖ < ∞.
Therefore, the conditions of Lemma 5.3 in [38] holds. Since the observed data

MLE θ̂obs·std is always O(1), by Proposition 5.5 in [38], θ̂obs·std
p→ θ0 as

n → ∞.

Proof of Lemma 4

In order to prove the asymptotic normality of θ̂em·std, we only need to show√
n(θ̂obs·std − θ)

d−→ N (0, Ṽstd) because of condition (A1). We prove that using
Theorem 5.14 in [38].

Since Di,obs has finite (4 + δ)-th moment, supi ‖ψi(Di,obs,θ)‖2+
δ
2 < ∞.

Then, by condition (A3), lim infn λ−{n−1Var(sn(θ))} > 0 and
lim infn λ−{n−1Mn(θ)} > 0 holds. Therefore,

√
n(θ̂em·std − θ0)

d→ N (0, Ṽstd).

Proof of Proposition 3

From Lemmas 3–4, we know the standard estimator θ̂em·std is consistent and
asymptotical normal under the normal working model. Hence, the proof of
Proposition 3 is the same as the proof of Proposition 2. We omit the proof
here.

Appendix C: Lemma and algorithms

Review of Lemma 4.3 in [11]

Lemma 5. Let B denote the set of all positive semi-definite matrices in R
r×r

having the same column dimension k, 0 < k ≤ r, and let P be the projection
onto the common column space. Let U be a matrix in R

n×r and let l(B) =
−ndet0(B) − tr(UB†UT ). Then, the optimizer of l(B) over B is the matrix
n−1PUTUP, and the maximum value of l(B) is nklogn−nk−ndet0(PUTUP).
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The 1-D algorithm

[15] proposed the 1-D algorithm to calculate the envelope estimates. We review
it as follows:

Algorithm 1: The 1-D algorithm

1. Initialization: g0 = G0 = 0;
2. For k = 0, 1, . . . , u− 1,

(a) Let Gk = (g1, . . . ,gk) if k ≥ 1 and let (Gk,G0k) be an orthogonal basis for R
r.

(b) Define the stepwise objective function

Dk(w) = log(wTMkw) + log{wT (Mk +Uk)
−1w},

where Mk = GT
0k(A1,t −A2,tA

−1
3,tA

T
2,t)G0k, Uk = GT

0kA2,tA
−1
3,tA

T
2,tG0k and

w ∈ R
r−k.

(c) Solve wk+1 = argminw Dk(w) subject to a length constraint wTw = 1.
(d) Define gk+1 = G0kwk+1 to be the unit length (k + 1)th stepwise direction.

The EM envelope algorithm

We summarize the EM envelope algorithm as follows, where δ can be chosen
depending on the accuracy to achieve.

Algorithm 2: The EM envelope algorithm

for k = 1, 2, . . . , u do
Initialization: t = 0, Σ0 = Iq , β0 = 0, θ0 = (Σ1,0,Σ2,0,η0,Γ0,ρ0),
ρ0 = (ρ0μx ,ρ0Σx ), ρ0μx = 0, ρ0Σx = Ip, Δ0 = ∞.
while Δt > δ do

1. Calculate A1,t =
∑n

i=1 Ai1,t, A2,t =
∑n

i=1 Ai2,t, A3,t =
∑n

i=1 Ai3,t based
on θt;
2. Using Algorithm 1 to calculate Γt, then
Σ1,t+1 = PΓt (A1,t −A2,tA

−1
3,tA

T
2,t)PΓt/n;

3. Update: ρt+1 = argmaxρ∈Π E[log{fx(xi|ρ)}|Dobs; θt],

βt+1 = PΣ1,t+1
A2,tA

−1
3,t , Σt+1 = Σ1,t+1 +QΓtA1,tQΓt/n;

4. Set Δt+1 = ‖βt+1 − βt‖1, θt+1 = (Σt+1,βt+1,ρt+1), t ← t+ 1;
end

BICHQ,k = −2Q(θt|θt) + 2H(θt|θt) + pu logn, β̂k = βt+1

end
Select k which minimize BICHQ,k. Corresponding βk is the EM envelope estimator.
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Appendix D: Additional tables and figures

Table 1

Summary of MSE when εi and Xi are correctly specified using a normal distribution and
Ω0 = 1000Iq

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 1.64e-05 3.58e-05 4.44e-05 1.03e-03 5.70e-05 8.66e-02

β̂cc·env 3.80e-05 1.04e-04 2.00e-04 0.21 0.32 1.96

β̂full·env 3.90e-06 8.30e-06 1.02e-05 3.05e-02 1.23e-05 2.59

β̂em·std 2.37e-02 4.41e-02 5.34e-02 5.47e-02 6.38e-02 0.12

β̂cc·std 0.15 0.54 0.69 0.73 0.87 1.85

β̂full·std 1.99e-02 4.32e-02 5.23e-02 5.40e-02 6.23e-02 0.13

Table 2

Summary of MSE when Ω0 = 10Iq

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 4.54e-05 9.08e-05 1.06e-04 1.36e-04 1.25e-04 1.05e-03

β̂cc·env 2.16e-04 4.95e-04 6.16e-04 1.69e-03 9.42e-04 2.02e-02

β̂full·env 3.28e-05 7.32e-05 8.58e-05 9.36e-05 9.97e-05 1.10e-03

β̂em·std 2.17e-04 4.52e-04 5.42e-04 5.62e-04 6.49e-04 1.34e-03

β̂cc·std 1.49e-03 5.40e-03 6.81e-03 7.32e-03 8.80e-03 2.35e-02

β̂full·std 2.00e-04 4.33e-04 5.24e-04 5.40e-04 6.23e-04 1.28e-03

Table 3

Summary of MSE when εi follows t-distribution and Xi follows Bernoulli distribution

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 1.39e-04 3.64e-04 4.84e-04 5.32e-04 6.60e-04 1.90e-03

β̂cc·env 1.66e-04 7.42e-04 1.07e-03 6.11e-03 1.54e-03 0.236

β̂full·env 2.89e-05 9.80e-05 1.28e-04 1.36e-04 1.64e-04 5.50e-04

β̂em·std 6.21e-03 1.27e-02 1.52e-02 1.56e-02 1.77e-02 3.61e-02

β̂cc·std 4.80e-02 9.32e-02 0.115 0.123 0.143 0.518

β̂full·std 6.60e-03 1.17e-02 1.41e-02 1.44e-02 1.66e-02 3.26e-02

Table 4

Summary of MSE when εi and X follows t-distribution

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 2.14e-04 6.00e-04 7.96e-04 8.50e-04 1.04e-03 3.72e-03

β̂cc·env 3.48e-04 9.93e-04 1.38e-03 1.53e-03 1.89e-03 5.67e-03

β̂full·env 3.41e-05 1.17e-04 1.52e-04 1.62e-04 1.96e-04 4.98e-04

β̂em·std 2.36e-02 5.79e-02 7.61e-02 8.29e-02 0.101 0.407

β̂cc·std 9.37e-02 0.363 0.500 0.567 0.683 3.70

β̂full·std 2.11e-02 5.24e-02 6.96e-02 7.56e-02 9.10e-02 0.338
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Table 5

Summary of MSE when εi follows uniform distribution and Xi follows t-distribution

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 7.05e-05 2.14e-04 2.82e-04 3.00e-04 3.61e-03 1.00e-03

β̂cc·env 1.70e-04 9.89e-04 1.37e-03 1.54e-03 1.93e-03 6.53e-03

β̂full·env 5.34e-05 1.59e-04 2.13e-04 2.29e-04 2.83e-04 7.99e-04

β̂em·std 4.22e-04 1.24e-03 1.59e-03 1.68e-03 2.06e-03 4.81e-03

β̂cc·std 2.27e-03 7.64e-03 1.00e-02 1.11e-02 1.34e-02 4.45e-02

β̂full·std 4.48e-04 1.14e-03 1.45e-03 1.53e-03 1.84e-03 4.12e-03

Table 6

Summary of MSE when εi follows Laplacian distribution and Xi follows t-distribution

Min. 1st Quartile Median Mean 3rd Quartile Max.

β̂em·env 3.59e-04 1.10e-03 1.45e-03 1.57e-03 1.94e-03 5.85e-03

β̂cc·env 5.40e-04 2.16e-03 2.92e-03 3.20e-03 3.98e-03 1.09e-02

β̂full·env 9.61e-05 2.57e-04 3.38e-04 3.56e-04 4.40e-04 9.81e-04

β̂em·std 7.41e-03 2.92e-02 3.75e-02 4.07e-02 4.97e-02 0.101

β̂cc·std 5.33e-03 0.179 0.246 0.274 0.340 0.908

β̂full·std 9.38e-03 2.74e-02 3.41e-02 3.71e-02 4.56e-02 9.87e-02

Fig 8. Histograms of the MSEs of the EM envelope estimator, the complete case (CC) envelope
estimator, the full data envelope estimator, the standard EM estimator, the standard complete
case (CC) estimator and the full data MLE when Ω0 = 10Iq.
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Table 7. The point estimates, bootstrap standard errors, confidence intervals and p-values for the difference among patients with and without ESRD
on biomarkers adjusted for the established biomarkers

Our Method Standard EM

β̂ ŜE 2.5% 97.5% p-value β̂ ŜE 2.5% 97.5% p-value
log(Urine albumin) −0.05 0.03 −0.12 3e-3 0.12 −0.09 0.05 −0.18 4e-3 0.06
Urine creatinine −2.68 1.68 −5.97 0.55 0.11 −2.53 1.67 −5.79 0.70 0.13
log(HS CRP) −0.04 0.02 −0.07 −2e-3 0.05 −0.12 0.07 −0.28 0.02 0.10
log(BNP) 0.14 0.03 0.09 0.20 < 0.01 0.36 0.07 0.22 0.49 < 0.01
CXCL12 98.22 31.41 38.97 160.83 < 0.01 99.34 31.35 38.43 158.59 < 0.01

Scaled FETUIN A −0.85 0.64 −2.10 0.37 0.18 −0.85 0.63 −2.11 0.36 0.18
Fractalkine 0.05 8e-3 0.04 0.06 < 0.01 0.09 0.02 0.05 0.13 < 0.01

MPO 24.28 16.27 −7.13 59.23 0.14 22.32 16.81 −9.90 58.22 0.18
log(NGAL) −0.01 0.03 −0.07 0.04 0.69 0.18 0.07 0.06 0.31 < 0.01
Fibrinogen 0.05 0.02 0.02 0.09 < 0.01 0.28 0.06 0.15 0.40 < 0.01
Troponini 4e-3 2e-3 3e-4 8e-3 0.06 5e-3 2e-3 1e-4 9e-3 0.04

log(Urine calcium) −3e-3 0.02 −0.04 0.03 0.88 −0.03 0.06 −0.15 0.09 0.60
Urine sodium −1.41 1.63 −4.58 1.89 0.39 −1.33 1.62 −4.49 1.86 0.41

Urine potassium 0.25 0.61 −0.96 1.46 0.68 0.18 0.60 −1.03 1.39 0.76
Urine phosphate −0.36 0.93 −2.14 1.49 0.70 −0.28 0.92 −2.05 1.51 0.76

TNTHS 10.07 1.64 6.89 13.30 < 0.01 9.93 1.59 6.83 13.12 < 0.01
log(Aldosterone) 0.06 0.02 0.02 0.09 < 0.01 0.04 0.04 −0.04 0.13 0.31

C-peptide −0.10 0.04 −0.17 −0.03 < 0.01 0.21 0.12 −0.02 0.44 0.08
Insulin −2.12 1.25 −4.58 0.38 0.09 −2.08 1.25 −4.52 0.40 0.10

TOTAL PTH 27.29 4.81 18.43 37.26 < 0.01 27.16 4.78 18.31 36.96 < 0.01
CO2 −0.04 0.05 −0.14 0.06 0.47 −0.24 0.18 −0.58 0.12 0.18
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Table 8. The point estimates, bootstrap standard errors, confidence intervals and p-values for the difference among patients with and without ESRD
on biomarkers unadjusted for the established biomarkers

Our Method Standard EM

β̂ ŜE 2.5% 97.5% p-value β̂ ŜE 2.5% 97.5% p-value
log(Urine albumin) 0.56 0.06 0.44 0.68 < 0.01 2.54 0.08 2.38 2.69 < 0.01
Urine creatinine −11.98 1.33 −14.79 −9.30 < 0.01 −11.88 1.33 −14.69 −9.29 < 0.01
log(HS CRP) 0.02 0.04 −0.04 0.11 0.54 −0.02 0.06 −0.12 0.10 0.76
log(BNP) 0.45 0.04 0.38 0.54 < 0.01 0.49 0.06 0.38 0.61 < 0.01
CXCL12 266.41 27.17 212.50 318.62 < 0.01 265.34 27.12 210.83 316.36 < 0.01

Scaled FETUIN A −0.69 0.51 −1.75 0.26 0.17 −0.72 0.51 −1.77 0.23 0.16
Fractalkine 0.16 0.01 0.14 0.18 < 0.01 0.22 0.02 0.19 0.26 < 0.01

MPO 43.04 16.99 11.20 78.69 0.01 43.07 16.95 11.28 78.69 0.01
log(NGAL) 0.30 0.06 0.14 0.38 < 0.01 0.83 0.06 0.73 0.95 < 0.01
Fibrinogen 0.29 0.04 0.23 0.39 < 0.01 0.76 0.05 0.65 0.88 < 0.01
Troponini 0.01 2e-3 3e-3 0.01 < 0.01 8e-3 3e-3 2e-3 0.01 < 0.01

log(Urine calcium) −0.41 0.03 −0.47 −0.36 < 0.01 −0.58 0.045 −0.67 −0.48 < 0.01
Urine sodium −7.51 1.33 −9.82 −4.82 < 0.01 −7.49 1.32 −9.78 −4.79 < 0.01

Urine potassium −3.40 0.50 −4.40 −2.44 < 0.01 −3.33 0.4 −4.32 −2.37 < 0.01
Urine phosphate −4.33 0.74 −5.77 −2.81 < 0.01 −4.34 0.73 −5.79 −2.87 < 0.01

TNTHS 20.22 1.64 17.19 23.58 < 0.01 20.12 1.63 17.12 23.48 < 0.01
log(Aldosterone) 0.08 0.02 0.04 0.13 < 0.01 0.14 0.03 0.08 0.21 < 0.01

C-peptide 0.37 0.06 0.24 0.49 < 0.01 0.64 0.10 0.45 0.84 < 0.01
Insulin 1.31 1.05 −0.74 3.37 0.21 1.27 1.05 −0.79 3.34 0.23

TOTAL PTH 54.48 4.68 46.19 64.22 < 0.01 54.42 4.69 46.11 64.22 < 0.01
CO2 −0.99 0.19 −1.17 −0.80 < 0.01 −1.41 0.15 −1.69 −1.11 < 0.01

log(24-hour urine protein) 0.44 0.04 0.36 0.53 < 0.01 2.06 0.06 1.94 2.19 < 0.01
EGFR −13.07 0.47 −13.98 −12.13 < 0.01 −12.95 0.47 −13.88 −12.00 < 0.01
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