
Electronic Journal of Statistics
Vol. 15 (2021) 3892–3947
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1880

Stochastic optimization with

momentum: Convergence, fluctuations,

and traps avoidance∗

Anas Barakat1, Pascal Bianchi1, Walid Hachem2, and
Sholom Schechtman2
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Abstract: In this paper, a general stochastic optimization procedure is
studied, unifying several variants of the stochastic gradient descent such
as, among others, the stochastic heavy ball method, the Stochastic Nes-
terov Accelerated Gradient algorithm (S-NAG), and the widely used Adam

algorithm. The algorithm is seen as a noisy Euler discretization of a non-
autonomous ordinary differential equation, recently introduced by Belotto
da Silva and Gazeau, which is analyzed in depth. Assuming that the objec-
tive function is non-convex and differentiable, the stability and the almost
sure convergence of the iterates to the set of critical points are established.
A noteworthy special case is the convergence proof of S-NAG in a non-
convex setting. Under some assumptions, the convergence rate is provided
under the form of a Central Limit Theorem. Finally, the non-convergence
of the algorithm to undesired critical points, such as local maxima or saddle
points, is established. Here, the main ingredient is a new avoidance of traps
result for non-autonomous settings, which is of independent interest.
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1. Introduction

Given a probability space Ξ, an integer d > 0, and a function f : Rd × Ξ →
R, consider the problem of finding a local minimum of the function F (x) �
Eξ[f(x, ξ)] w.r.t. x ∈ R

d, where Eξ represents the expectation w.r.t. the random
variable ξ on Ξ. The paper focuses on the case where F is possibly non-convex.
It is assumed that the function F is unknown to the observer, either because the
distribution of ξ is unknown, or because the expectaction cannot be evaluated.
Instead, a sequence (ξn : n ≥ 1) of i.i.d. copies of the random variable ξ is
revealed online.

While the Stochastic Gradient Descent is the most classical algorithm that
is used to solve such a problem, recently, several other algorithms became very
popular. These include the Stochastic Heavy Ball (SHB), the stochastic version
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of Nesterov’s Accelerated Gradient method (S-NAG) and the large class of the
so-called adaptive gradient algorithms, among which Adam [29] is perhaps the
most used in practice. As opposed to the vanilla Stochastic Gradient Descent,
the study of such algorithms is more elaborate, for three reasons. First, the
update of the iterates involves a so-called momentum term, or inertia, which
has the effect of “smoothing” the increment between two consecutive iterates.
Second, the update equation at the time index n is likely to depend on n, making
these systems inherently non-autonomous. Third, as far as adaptive algorithms
are concerned, the update also depends on some additional variable (a.k.a. the
learning rate) computed online as a function of the history of the computed
gradients.

In this work, we study in a unified way the asymptotic behavior of these
algorithms in the situation where F is a differentiable function which is not
necessarily convex, and where the stepsize of the algorithm is decreasing.

Our starting point is a generic non-autonomous Ordinary Differential Equa-
tion (ODE) introduced by Belotto da Silva and Gazeau [9] (see also [8] for
Adam), depicting the continuous-time versions of the aforementioned florilegium
of algorithms. The solutions to the ODE are shown to converge to the set of crit-
ical points of F . This suggests that a general provably convergent algorithm can
be obtained by means of an Euler discretization of the ODE, including possible
stochastic perturbations. Special cases of our general algorithm include SHB,
Adam and S-NAG. We establish the almost sure boundedness and the conver-
gence to critical points. Under additional assumptions, we obtain convergence
rates, under the form of a central limit theorem. These results are new. They
extend the works of [23, 8] to a general setting. In particular, we highlight the
almost sure convergence result of S-NAG in a non-convex setting, which is new
to the best of our knowledge.

Next, we address the question of the avoidance of “traps”. In a non-convex
setting, the set of critical points of a function F is generally larger than the set
of local minimizers. A “trap” stands for a critical point at which the Hessian
matrix of F has negative eigenvalues, namely, it is a local maximum or saddle
point. We establish that the iterates cannot converge to such a point, if the noise
is exciting in some directions. The result extends previous works of [23] obtained
in the context of SHB. This result not only allows to study a broader class of
algorithms but also significantly weakens the assumptions. In particular, [23]
uses a sub-Gaussian assumption on the noise and a rather stringent assumption
on the stepsizes. The main difficulty in the approach of [23] lies in the use of the
classical autonomous version of Poincaré’s invariant manifold theorem. The key
ingredient of our proof is a general avoidance of traps result, adapted to non-
autonomous settings, which we believe to be of independent interest. It extends
usual avoidance of traps results to a non-autonomous setting, by making use of
a non-autonomous version of Poincaré’s theorem [16, 30].

Paper organization In Section 2, we introduce and study the ODE’s govern-
ing our general stochastic algorithm. We establish the existence and uniqueness
of the solutions, as well as the convergence to the set of critical points. In Sec-
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tion 3, we introduce the main algorithm. We provide sufficient conditions under
which the iterates are bounded and converge to the set of critical points. A cen-
tral limit theorem is stated. Section 4 introduces a general avoidance of traps
result for non-autonomous settings. Next, this result is applied to the proposed
algorithm. Sections 5, 6 and 7 are devoted to the proofs of the results of Sec-
tions 2, 3 and 4, respectively.

Notations Given an integer d ≥ 1, two vectors x, y ∈ R
d, and a real α,

we denote by x � y, x�α, x/y, |x|, and
√
|x| the vectors in R

d whose i-th

coordinates are respectively given by xiyi, x
α
i , xi/yi, |xi|,

√
|xi|. Inequalities of

the form x ≤ y are to be read componentwise. The standard Euclidean norm is
denoted ‖ · ‖. Notation MT represents the transpose of a matrix M . For x ∈ R

d

and ρ > 0, the notation B(x, ρ) stands for the open ball of Rd with center x
and radius ρ. We also write R+ = [0,∞). If z ∈ R

d and A ⊂ R
d, we write

dist(z,A) � inf{‖z − z′‖ : z′ ∈ A}. By 1A(x), we refer to the function that
is equal to one if x ∈ A and to zero elsewhere. The set of zeros of a function
h : Rd → R

d′
is zerh = {x : h(x) = 0}. Let D be a domain in R

d. Given an
integer k ≥ 0, the class Ck(D,R) is the class of D → R maps such that all their
partial derivatives up to the order k exist and are continuous. For a function
h ∈ Ck(D,R) and for every i ∈ {1, . . . , d}, we denote as ∂k

i h(x1, . . . , xd) the kth

partial derivative of the function h with respect to xi. When k = 1, we just
write ∂ih(x1, . . . , xd). The gradient of a function F : Rd → R at a point x ∈ R

d

is denoted as ∇F (x), and its Hessian matrix at x is ∇2F (x) as usual. For a
function S : Rd → R

d, the notation ∇S(x) stands for the jacobian matrix of S
at point x.

2. Ordinary differential equations

2.1. A general ODE

Our starting point will be a non-autonomous ODE which is almost identical to
the one introduced in [9] and close to the one in [8]. Let F be a function in
C1(Rd,R), let S be a continuous Rd → R

d
+ function, let h, r, p, q : (0,∞) → R+

be four continuous functions, and let ε > 0. Let v0 ∈ Rd
+ and x0,m0 ∈ Rd. Start-

ing at v(0) = v0, m(0) = m0, and x(0) = x0, our ODE on R+ with trajectories
in Z+ � R

d
+ × R

d × R
d reads⎧⎪⎨⎪⎩
v̇(t) = p(t)S(x(t))− q(t)v(t)

ṁ(t) = h(t)∇F (x(t))− r(t)m(t)

ẋ(t) = −m(t)/
√
v(t) + ε

(ODE-1)

This ODE can be rewritten compactly as follows. Write z0 = (v0,m0, x0), and
let z(t) = (v(t),m(t), x(t)) ∈ Z+ for t ∈ R+. Let Z � R

d × R
d × R

d, and define
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the map g : Z+ × (0,∞) → Z as

g(z, t) =

⎡⎣ p(t)S(x)− q(t)v
h(t)∇F (x)− r(t)m

−m/
√
v + ε

⎤⎦ (1)

for z = (v,m, x) ∈ Z+. With these notations, we can rewrite (ODE-1) as

z(0) = z0, ż(t) = g(z(t), t) for t > 0.

By setting S(x) = ∇F (x)�2 when necessary and by properly choosing the func-
tions h, r, p, and q, a large number of iterative algorithms used in Machine
Learning can be obtained by an Euler’s discretization of this ODE. For in-
stance, choosing h(t) = r(t) = a(t, λ, α1) and p(t) = q(t) = a(t, λ, α2) with
a(t, λ, α) = λ−1(1 − exp(−λα))/(1 − exp(−αt)) and λ, α1, α2 > 0, one obtains
a version of the Adam algorithm [29] (see [9, Sections 2.4-4.2] for details). To
give another less specific example, if we set p = q ≡ 0, then the resulting
ODE covers a family of algorithms to which the well-known Heavy Ball with
friction algorithm [5] belongs. For a comprehensive and more precise view of
the deterministic algorithms that can be deduced from (ODE-1) by an Euler’s
discretization, the reader is referred to [9, Table 1].

In this paper, since we are rather interested in stochastic versions of these
algorithms, Eq. (ODE-1) will be the basic building block of the classical “ODE
method” which is widely used in the field of stochastic approximation [10]. In
order to analyze the behavior of this equation in preparation of the stochastic
analysis, we need the following assumptions.

Assumption 2.1. The function F belongs to C1(Rd,R) and ∇F is locally
Lipschitz continuous.

Assumption 2.2. F is coercive, i.e., F (x) → +∞ as ‖x‖ → +∞.

Note that this assumption implies that the infimum F� of F is finite, and the
set zer∇F of zeros of ∇F is nonempty.

Assumption 2.3. The map S : Rd → Rd
+ is locally Lipschitz continuous.

Assumption 2.4. The continuous functions h, r, p, q : (0,+∞) → R+ satisfy:

i) h ∈ C1((0,+∞),R+), ḣ(t) ≤ 0 on (0,+∞) and the limit h∞ � limt→∞ h(t)
is positive.

ii) r and q are non-increasing and r∞ � limt→∞ r(t), q∞ � limt→∞ q(t) are
positive.

iii) p converges towards p∞ as t → ∞.
iv) For all t ∈ (0,+∞), r(t) ≥ q(t)/4 and r∞ > q∞/4.

These assumptions are sufficient to prove the existence and the uniqueness
of the solution to (ODE-1) starting at a time t0 > 0. The following additional
assumption extends the solution to t0 = 0.

Assumption 2.5. Either h, r, p, q ∈ C1([0,+∞),R+), or the following holds:
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i) For every x ∈ R
d, we have S(x) ≥ ∇F (x)�2.

ii) The functions h
p ,

h
q−2r , t �→ th(t), t �→ tr(t), t �→ tp(t), t �→ tq(t) are

bounded near zero.
iii) There exists t0 > 0 such that for all t < t0, 2r(t)− q(t) > 0 .
iv) There exists δ > 0 such that h

r ,
p
q ∈ C1([0, δ),R+).

v) The initial condition z0 = (v0,m0, x0) ∈ Z+ satisfies

m0 = ∇F (x0) lim
t↓0

h(t)

r(t)
and v0 = S(x0) lim

t↓0

p(t)

q(t)
.

Remark 1. The functions h, r, p, q corresponding to Adam satisfy these condi-
tions. We leave the straightforward verifications to the reader. We just observe
here that the function S that will correspond to our stochastic algorithm in
Section 3 below will satisfy Assumption 2.5–i) by an immediate application of
Jensen’s inequality.

The following theorem slightly generalizes the results of [9, Th. 3 and Th. 5].

Theorem 2.1. Let Assumptions 2.1 to 2.4 hold true. Consider z0 ∈ Z+ and
t0 > 0. Then, there exists a unique global solution z : [t0,+∞) → Z+ to (ODE-1)
with initial condition z(t0) = z0. Moreover, z([t0,+∞)) is a bounded subset
of Z+. As t → +∞, z(t) converges towards the set

Υ � {z� = (p∞S(x�)/q∞, 0, x�) : x� ∈ zer∇F} . (2)

If, additionally, Assumption 2.5 holds, then we can take t0 = 0.

Remark 2. Th. 2.1 only shows the convergence of the trajectory z(t) towards
a set. Convergence of the trajectory towards a single point is not guaranteed
when the set Υ is not countable.

Remark 3. A simpler version of (ODE-1) is obtained when omitting the mo-
mentum term. It reads:{

v̇(t) = p(t)S(x(t))− q(t)v(t)

ẋ(t) = −∇F (x(t))/
√

v(t) + ε .
(ODE-1′)

This ODE encompasses the algorithms of the family of RMSProp [42], as
shown in [8, 9]. The approach for proving the previous theorem can be adapted
to (ODE-1′) with only minor modifications. In the proofs below, we will point
out the particularities of (ODE-1′) when necessary.

The following paragraph is devoted to a particular case of (ODE-1), which
does not satisfy Assumption 2.4, and which requires a more involved treatment
than (ODE-1′).

2.2. The Nesterov case

The authors of [13], [41] and others studied the ODE

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, α > 0, F ∈ C1(Rd,R),
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which Euler’s discretization generates the well-known Nesterov’s accelerated
gradient algorithm, see also [6, 7]. This ODE can be rewritten as{

ṁ(t) = ∇F (x(t))− α
t m(t)

ẋ(t) = −m(t),
(ODE-N)

which is formally the particular case of (ODE-1) that is taken for p(t) = q(t) =
0, h(t) = 1, and r(t) = α/t. Obviously, this case is not covered by Assump-
tion 2.4. Moreover, it turns out that, contrary to the situation described in
Remark 3 above, this case cannot be dealt with by a straightforward adapta-
tion of the proof of Th. 2.1. The reason for this is as follows. Heuristically, the
proof of Th. 2.1 is built around the fact that the solution of (ODE-1) “shadows”
for large t the solution of the autonomous ODE⎧⎪⎪⎨⎪⎪⎩

v̇(t) = p∞S(x(t))− q∞v(t)

ṁ(t) = h∞∇F (x(t))− r∞m(t)

ẋ(t) = − m(t)√
v(t)+ε

,

and the latter can be shown to converge to the set Υ defined in Eq. (2), either
under Assumption 2.4 or for the algorithms covered by Remark 3. This idea
does not work anymore for (ODE-N), for its large–t autonomous counterpart{

ṁ(t) = ∇F (x(t))

ẋ(t) = −m(t).

can have solutions that do not converge to the critical points of F . As an example
of such solutions, take d = 1 and F (x) = x2/2. Then, t �→ (cos(t), sin(t)) is an
oscillating solution of the latter ODE.

Yet, we have the following result. Up to our knowledge, the proof of the
convergence below as t → +∞ is new.

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold true. Then, for each x0 ∈
R

d, there exists a unique bounded global solution (m, x) : R+ → R
d × R

d

to (ODE-N) with the initial condition (m(0), x(0)) = (0, x0). As t → +∞,
(m(t), x(t)) converges towards the set

Ῡ � {(0, x�) : x� ∈ zer∇F}. (3)

2.3. Related works

The continuous-time dynamical system (ODE-1) we consider was first intro-
duced in [9, Eq. (2.1)] with S = ∇F�2. Th. 2.1 above is roughly the same as
[9, Ths. 3 and 5], with some slight differences regarding the assumptions on
the function F , or Assumption 2.4-iv). We point out that the main focus of [9]
is to study the properties of the deterministic continous-time dynamical sys-
tem (ODE-1). In the present work, we highlight that the purpose of Th. 2.1 is
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to pave the way to our analysis of the corresponding stochastic algorithms in
Section 3.

Concerning Th. 2.2, the existence and the uniqueness of a global solution
to (ODE-N) has been previously shown in the literature, for instance in [13,
Prop. 2.1] or in [41, Th. 1]. The convergence statement in Th. 2.2 is new to
the best of our knowledge. In particular, we stress that we do not make any
convexity assumption on F . The closest result we are aware of is the one of
Cabot-Engler-Gadat [13]. In [13, Prop. 2.5], it is shown that if x(t) converges
towards some point x̄, then necessarily x̄ is a critical point of F . Our result in
Th. 2.2 strengthens this statement, by establishing that x(t) actually converges
to the set of critical points.

3. Stochastic algorithms

In this section, we discuss the asymptotic behavior of stochastic algorithms that
consist in noisy Euler’s discretizations of (ODE-1) and (ODE-N) studied in the
previous section.

We first set the stage. Let (Ξ,T , μ) be a probability space. Denoting as
B(Rd) the Borel σ-algebra on R

d, consider a B(Rd)⊗ T –measurable function
f : Rd × Ξ → R that satisfies the following assumption.

Assumption 3.1. The following conditions hold:

i) For every x ∈ R
d, f(x, ·) is μ–integrable.

ii) For every s ∈ Ξ, the map f(·, s) is differentiable. Denoting as ∇f(x, s) its
gradient w.r.t. x, the function ∇f(x, ·) is integrable.

iii) There exists a measurable map κ : Rd × Ξ → R+ s.t. for every x ∈ R
d:

a) The map κ(x, ·) is μ–integrable,
b) There exists ε > 0 s.t. for every s ∈ Ξ,

∀u, v ∈ B(x, ε), ‖∇f(u, s)−∇f(v, s)‖ ≤ κ(x, s)‖u− v‖ .
Under Assumption 3.1, we can define the mapping F : Rd → R as

F (x) = Eξ[f(x, ξ)] (4)

for all x ∈ R
d, where we write Eξϕ(ξ) =

∫
ϕ(ξ)μ(dξ). It is easy to see that the

mapping F is differentiable,

∇F (x) = Eξ[∇f(x, ξ)]

for all x ∈ R
d, and ∇F is locally Lipschitz.

Let (γn)n≥1 be a sequence of positive real numbers satisfying

Assumption 3.2. γn+1/γn → 1 and
∑

n γn = +∞.

Define for every integer n ≥ 1

τn =

n∑
k=1

γk .
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Let (Ω,F ,P) be a probability space, and let (ξn : n ≥ 1) be a sequence of iid
random variables defined from (Ω,F ,P) into (Ξ,T , μ) with the distribution μ.

3.1. General algorithm

Our first algorithm is a discrete and noisy version of (ODE-1).
Let z0 = (v0,m0, x0) ∈ Z+ and h0, r0, p0, q0 ∈ (0,∞). Define for every n ≥ 1

hn = h(τn), rn = r(τn), pn = p(τn), and qn = q(τn). (5)

The algorithm is written as follows.

Algorithm 1 (general algorithm)
Initialization: z0 ∈ Z+.
for n = 1 to niter do

vn+1 = (1− γn+1qn)vn + γn+1pn∇f(xn, ξn+1)�2

mn+1 = (1− γn+1rn)mn + γn+1hn∇f(xn, ξn+1)
xn+1 = xn − γn+1mn+1/

√
vn+1 + ε .

end for

We suppose throughout the paper that 1−γn+1qn ≥ 0 for all n ∈ N. This will
guarantee that the quantity

√
vn + ε is always well-defined (see Algorithm 1).

This mild assumption is satisfied as soon as q0 ≤ 1
γ1

since the sequence (qn) is

non-increasing and the sequence of stepsizes (γn) can also be supposed to be
non-increasing.

Since this algorithm makes use of the function ∇f(x, ξ)�2, a strengthening
of Assumption 3.1 is required:

Assumption 3.3. In Assumption 3.1, Conditions ii) and iii) are respectively
replaced with the stronger conditions

ii’) For each x ∈ R
d, the function ∇f(x, ·)�2 is μ -integrable.

iii’) There exists a measurable map κ : Rd × Ξ → R+ s.t. for every x ∈ R
d:

a) The map κ(x, ·) is μ–integrable.
b) There exists ε > 0 s.t. for every u, v ∈ B(x, ε),

‖∇f(u, s)−∇f(v, s)‖ ∨ ‖∇f(u, s)�2 −∇f(v, s)�2‖ ≤ κ(x, s)‖u− v‖.
Under Assumption 3.3, we can also define the mapping S : Rd → R

d as:

S(x) = Eξ[∇f(x, ξ)�2]

for all x ∈ R
d. Notice that Assumptions 2.1 and 2.3 are satisfied for F and S.

Assumption 3.4. Assume either of the following conditions.

i) There exists q ≥ 2 s.t. for every compact set K ⊂ R
d,

sup
x∈K

Eξ‖∇f(x, ξ)‖2q < ∞ and
∑
n

γ1+q/2
n < ∞ .
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ii) For every compact set K ⊂ R
d, there exists a real σK �= 0 s.t.

Eξ exp〈u,∇f(x, ξ)−∇F (x)〉1x∈K ≤ exp
(
σ2
K‖u‖2/2

)
and

Eξ exp〈u,∇f(x, ξ)�2 − S(x)〉1x∈K ≤ exp
(
σ2
K‖u‖2/2

)
,

for every x, u ∈ R
d. Moreover, for every α > 0,

∑
n exp(−α/γn) < ∞ .

Remark 4. We make the following comments regarding Assumption 3.4.

• Assumption 3.4-i) allows to use larger stepsizes in comparison to the clas-
sical condition

∑
n γ

2
n < ∞ which corresponds to the particular case q = 2.

• Recall that a random vector X is said to be subgaussian if there exists
a real σ �= 0 s.t. Ee〈u,X〉 ≤ eσ

2‖u‖2/2 for every constant vector u ∈ R
d.

In Assumption 3.4-ii), the subgaussian noise offers the possibility to use
a sequence of stepsizes with an even slower decay rate than in Assump-
tion 3.4–i).

Assumption 3.5. The set F ({x : ∇F (x) = 0}) has an empty interior.

Remark 5. Assumption 3.5 excludes a pathological behavior of the objective
function F at critical points. It is satisfied when F ∈ Ck(Rd,R) for k ≥ d.
Indeed, in this case, Sard’s theorem stipulates that the Lebesgue measure of
F ({x : ∇F (x) = 0}) is zero in R.

Theorem 3.1. Let Assumptions 2.2, 2.4, and 3.2–3.5 hold true. Assume that
the random sequence (zn = (vn,mn, xn) : n ∈ N) given by Algorithm 1 is
bounded with probability one. Then, w.p.1, the sequence (zn) converges to-
wards the set Υ defined in Eq. (2). If, in addition, the set of critical points of
the objective function F is finite or countable, then w.p.1, the sequence (zn)
converges to a single point of Υ.

We now deal with the boundedness problem of the sequence (zn). We intro-
duce an additional assumption for this purpose.

Assumption 3.6. The following conditions hold.

i) ∇F is (globally) Lipschitz continuous.
ii) There exists C > 0 s.t. for all x ∈ R

d, Eξ[‖∇f(x, ξ)‖2] ≤ C(1 + F (x)),
iii)

∑
n γ

2
n < ∞.

Theorem 3.2. Let Assumptions 2.2, 2.4, 3.2, 3.3, 3.4-i) (with q = 2) and 3.6
hold. Then, the sequence (vn,mn, xn) given by Algorithm 1 is bounded with
probability one.

Remark 6. The above stability result requires square summable step sizes.
Showing the same boundedness result under the Assumption 3.4 that allows for
larger step sizes is a challenging problem in the general case. In these situations,
the boundedness of the iterates can be sometimes ensured by ad hoc means.
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Remark 7. We can also consider the noisy discretization of (ODE-1′) intro-
duced in Remark 3 above. This algorithm reads{

vn+1 = (1− γn+1qn)vn + γn+1pn∇f(xn, ξn+1)
�2 (6a)

xn+1 = xn − γn+1∇f(xn, ξn+1)/
√
vn+1 + ε (6b)

for (v0, x0) ∈ R
d
+×R

d. With only minor adaptations, Th. 3.1 and Th. 3.2 can
be shown to hold as well for this algorithm. We refer to the concomitant paper
[22, Sec. 2.2] for the link between this algorithm and the seminal algorithms
AdaGrad [21] and RMSProp [42].

3.2. Stochastic Nesterov’s Accelerated Gradient (S-NAG)

S-NAG is the noisy Euler’s discretization of (ODE-N). Given α > 0, it generates
the sequence (mn, xn) on R

d × R
d given by Algorithm 2.

Algorithm 2 (S-NAG with decreasing steps)

Initialization: m0 = 0, x0 ∈ Rd.
for n = 1 to niter do

mn+1 = (1− αγn+1/τn)mn + γn+1∇f(xn, ξn+1)
xn+1 = xn − γn+1mn+1 .

end for

Assumption 3.7. Assume either of the following conditions.

i) There exists q ≥ 2 s.t. for every compact set K ⊂ R
d,

sup
x∈K

Eξ‖∇f(x, ξ)‖q < ∞ and
∑
n

γ1+q/2
n < ∞ .

ii) For every compact set K ⊂ R
d, there exists a real σK �= 0 s.t.

Eξ exp〈u,∇f(x, ξ)−∇F (x)〉1x∈K ≤ exp
(
σ2
K‖u‖2/2

)
,

for every x, u ∈ R
d. Moreover, for every α > 0,

∑
n exp(−α/γn) < ∞ .

Theorem 3.3. Let Assumptions 2.2, 3.1, 3.2, 3.5 and 3.7 hold true. Assume that
the random sequence (yn = (mn, xn) : n ∈ N) given by Algorithm 2 is bounded
with probability one. Then, w.p.1, the sequence (yn) converges towards the
set Ῡ defined in Eq. (3). If, in addition, the set of critical points of the objective
function F is finite or countable, then w.p.1, the sequence (yn) converges to a
single point of Ῡ.

The almost sure boundedness of the sequence (yn) is handled in what follows.

Theorem 3.4. Let Assumptions 2.2, 3.1, 3.2 and 3.6 hold. Then, the sequence
(yn = (mn, xn) : n ∈ N) given by Algorithm 2 is bounded with probability one.

Remark 8. Assumption 3.4-i) in Th. 3.2 is not needed for Th. 3.4.
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3.3. Central limit theorem

In this section, we establish a conditional central limit theorem for Algorithm 1.

Assumption 3.8. Let x� ∈ zer∇F . The following holds.

i) F is twice continuously differentiable on a neighborhood of x� and the
Hessian ∇2F (x�) is positive definite.

ii) S is continuously differentiable on a neighborhood of x�.
iii) There exists M > 0 and bM > 4 s.t.

sup
x∈B(x�,M)

Eξ[‖∇f(x, ξ)‖bM ] < ∞ . (7)

Under Assumptions 2.4-i) to iii), it follows from Eq. (5) that the sequences
(hn), (rn), (pn) and (qn) of nonnegative reals converge respectively to h∞, r∞, p∞
and q∞ where h∞, r∞ and q∞ are supposed positive. Define v� � q−1

∞ p∞S(x�).
Consider the matrix

V � diag
(
(ε+ v�)

�− 1
2

)
. (8)

Let P be an orthogonal matrix s.t. the following spectral decomposition holds:

V
1
2∇2F (x�)V

1
2 = Pdiag(π1, · · · , πd)P

−1 ,

where π1 ≤ · · · ≤ πd are the (positive) eigenvalues of V
1
2∇2F (x�)V

1
2 . Define

H �
[
−r∞Id h∞∇2F (x�)
−V 0

]
where Id is the d× d identity matrix. Then the matrix H is Hurwitz. Indeed, it
can be shown that the largest real part of the eigenvalues of H coincides with
−L, where

L � r∞
2

(
1−

√(
1− 4h∞π1

r2∞

)
∨ 0

)
> 0 . (9)

Assumption 3.9. The sequence (γn) is given by γn = γ0

nα for some α ∈ (0, 1],
γ0 > 0. Moreover, if α = 1, we assume that γ0 > 1

2(L∧q∞) .

Theorem 3.5. Let Assumptions 2.4-i) to iii), 3.3, 3.8 and 3.9 hold. Consider
the iterates zn = (vn,mn, xn) given by Algorithm 1. Set θ � 0 if α < 1 and
θ � 1/(2γ0) if α = 1. Assume that the event {zn → z�}, where z� = (v�, 0, x�),
has a positive probability. Then, given that event,

1
√
γn

[
mn

xn − x�

]
⇒ N (0,Γ) ,

where ⇒ stands for the convergence in distribution and N (0,Γ) is a centered
Gaussian distribution on R

2d with a covariance matrix Γ given by the unique
solution to the Lyapunov equation

(H+ θI2d)Γ + Γ(H+ θI2d)
T = −

[
Cov(h∞∇f(x�, ξ)) 0

0 0

]
.
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In particular, given {zn → z�}, the vector
√
γn

−1(xn − x�) converges in distri-
bution to a centered Gaussian distribution with a covariance matrix given by:

Γ2 = V
1
2P

⎡⎣ Ck,�

r∞−2θ
h∞

(πk + π� +
2θ(θ−r∞)

h∞
) + (πk−π�)2

2(r∞−2θ)

⎤⎦
k,�=1...d

P−1V
1
2 (10)

where C � P−1V
1
2Eξ

[
∇f(x�, ξ)∇f(x�, ξ)

T
]
V

1
2P .

A few remarks are in order.

• The matrix Γ2 coincides with the limiting covariance matrix associated to the
iterates {

mn+1 = mn + γn+1(h∞V∇f(xn, ξn+1)− r∞mn)

xn+1 = xn − γn+1mn+1 .

This procedure can be seen as a preconditioned version of the stochastic heavy
ball algorithm [23] although the iterates are not implementable because of the
unknown matrix V . Notice also that the limiting covariance Γ2 depends on v�
but does not depend on the fluctuations of the sequence (vn).

• When h∞ = r∞ (which is the case for Adam), we recover the expression of
the asymptotic covariance matrix previously provided in [8, Section 5.3] and
the remarks formulated therein.

• The assumption r∞ > 0 is crucial to establish Th. 3.5. For this reason, Th. 3.5
does not generalize immediately to Algorithm 2. The study of the fluctuations
of Algorithm 2 is left for future works.

3.4. Related works

In [23], Gadat, Panloup and Saadane study the SHB algorithm, which is a noisy
Euler’s discretization of (ODE-1) in the situation where h = r and p = q ≡ 0
(i.e., there is no v variable). In this framework, if we set h = r ≡ r > 0 in Algo-
rithm 1 above, then Th. 3.1 above recovers the analogous case in [23, Th. 2.1],
which is termed as the exponential memory case. The other important case
treated in [23] is the case where h(t) = r(t) = r/t for some r > 0, referred to
as the polynomially memory case. Actually, it is known that the ODE obtained
for h(t) = r(t) = r/t and p = q ≡ 0 boils down to (ODE-N) after a time
variable change (see, e.g., Lem. 5.3 below). Nevertheless, we highlight that the
stochastic algorithm that stems from this ODE and that is studied in [23] is
different from the S-NAG algorithm introduced above which stems from a dif-
ferent ODE (ODE-N). Hence, the convergence result of Th. 3.3 for the S-NAG

algorithm we consider is not covered by the analysis of [23].
The specific case of the Adam algorithm is analyzed in [8] in both the con-

stant and vanishing stepsize settings (see [8, Ths. 5.2-5.4] which are the ana-
logues of our Ths. 3.1-3.2). Note that we deal with a more general algorithm
in the present paper. Indeed, Algorithm 1 offers some freedom in the choice
of the functions h, r, p, q satisfying Assumption 2.4 beyond the specific case of
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the Adam algorithm studied in [8]. Apart from this generalization, we also em-
phasize some small improvements. Regarding Theorem 3.1, we provide noise
conditions allowing to choose larger stepsizes (see Assumption 3.4 compared
to [8, Assumption 4.2]). Concerning the stability result (Th. 3.2), we relax [8,
Assumption 5.3-(iii)] which is no more needed in the present paper (see Assump-
tion 3.6) thanks to a modification of the discretized Lyapunov function used in
the proof (see Section 6.4 compared to [8, Section 9.2]).

In most generality, the almost sure convergence result of the iterates of Al-
gorithm 1 using vanishing stepsizes (Ths. 3.1-3.2) is new to the best of our
knowledge. Moreover, while some recent results exist for S-NAG in the constant
stepsize and for convex objective functions (see for e.g. [4]), Ths. 3.3 and 3.4
which tackle the possibly non-convex setting are also new to the best of our
knowledge.

In the work [22] that was posted on the arXiv repository a few days after our
submission, Gadat and Gavra study the specific case of the algorithm described
in Eq. (6) encompassing both Adagrad and RMSProp, with the possibility
to use mini-batches. For this specific algorithm, the authors establish a similar
almost sure convergence result to ours [22, Th. 1] for decreasing stepsizes and
derive some quantitative results bounding in expectation the gradient of the
objective function along the iterations for constant stepsizes [22, Th. 2]. We
highlight though that they do not consider the presence of momentum in the
algorithm. Therefore, their analysis does not cover neither Algorithm 1 nor
Algorithm 2.

In contrast to our analysis, some works in the literature explore the constant
stepsize regime for some stochastic momentum methods either for smooth [43]
or weakly convex objective functions [32]. Furthermore, concerning Adam-like
algorithms, several recent works control the minimum of the norms of the gradi-
ents of the objective function evaluated at the iterates of the algorithm over N
iterations in expectation or with high probability [17, 45, 14, 46, 15, 44, 1, 18, 2]
and establish regret bounds in the convex setting [2].

Similar central limit theorems to Th. 3.5 are established in the cases of the
stochastic heavy ball algorithm with exponential memory [23, Th. 2.4] and
Adam [8, Th. 5.7]. In comparison to [23], we precise that our theorem recovers
their result and provides a closed formula for the asymptotic covariance ma-
trix Γ2. Our proof of Th. 3.5 differs from the strategies adopted in [23] and [8].

4. Avoidance of traps

In Th. 3.1 and Th. 3.3 above, we established the almost sure convergence of the
iterates xn towards the set of critical points of the objective function F for both
Algorithms 1 and 2. However, the landscape of F can contain what is known as
“traps” for the algorithm, namely, critical points where the Hessian matrix of F
has negative eigenvalues, making these critical points local maxima or saddle
points. In this section, we show that the convergence of the iterates to these
traps does not take place if the noise is exciting in some directions.
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Starting with the contributions of Pemantle [38] and Brandière and Duflo [12],
the numerous so-called avoidance of traps results that can be found in the liter-
ature deal with the case where the ODE that underlies the stochastic algorithm
is an autonomous ODE. Obviously, this is neither the case of (ODE-1), nor
of (ODE-N). To deal with this issue, we first state a general avoidance of traps
result that extends [38, 12] to a non-autonomous setting, and that has an interest
of its own. We then apply this result to Algorithms 1 and 2.

4.1. A general avoidance-of-traps result in a non-autonomous
setting

The notations in this subsection and in Sections 7.1–7.2 are independent from
the rest of the paper. We recall that for a function h : Rd → R

d′
, we denote by

∂k
i h(x1, . . . , xd) the kth partial derivative of the function h with respect to xi.
The setting of our problem is as follows. Given an integer d > 0 and a

continuous function b : Rd ×R+ → R
d, we consider a stochastic algorithm built

around the non-autonomous ODE ż(t) = b(z(t), t). Let z� ∈ Rd, and assume
that on V × R+ where V is a certain neighborhood of z�, the function b can be
developed as

b(z, t) = D(z − z�) + e(z, t), (11)

where e(z�, ·) ≡ 0, and where the matrix D ∈ R
d×d is assumed to admit the

following spectral factorization: Given 0 ≤ d− < d and 0 < d+ ≤ d with
d− + d+ = d, we can write

D = QΛQ−1, Λ =

[
Λ−

Λ+

]
, (12)

where the Jordan blocks that constitute Λ− ∈ R
d−×d−

(respectively Λ+ ∈
R

d+×d+

) are those that contain the eigenvalues λi of D for which �λi ≤ 0
(respectively �λi > 0). Since d+ > 0, the point z� is an unstable equilibrium
point of the ODE ż(t) = b(z(t), t), in the sense that the ODE solution will only
be able to converge to z� along a specific so-called invariant manifold which
precise characterization will be given in Section 7.1 below.

We now consider a stochastic algorithm that is built around this ODE. The
condition d+ > 0 makes that z� is a trap that the algorithm should desirably
avoid. The following theorem states that this will be the case if the noise term
of the algorithm is omnidirectional enough. The idea is to show that the case
being, the algorithm trajectories will move away from the invariant manifold
mentioned above.

Theorem 4.1. Given a sequence (γn) of nonnegative deterministic stepsizes
such that

∑
n γn = +∞,

∑
n γ

2
n < +∞, and a filtration (Fn), consider the

stochastic approximation algorithm in R
d

zn+1 = zn + γn+1b(zn, τn) + γn+1ηn+1 + γn+1ρn+1
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where τn =
∑n

k=1 γk. Assume that the sequences (ηn) and (ρn) are adapted
to Fn, and that z0 is F0–measurable. Assume that there exists z� ∈ R

d such
that Eq. (11) holds true on V ×R+, where V is a neighborhood of z�. Consider
the spectral factorization (12), and assume that d+ > 0. Assume moreover that
the function e at the right hand side of Eq. (11) satisfies the conditions:

i) e(z�, ·) ≡ 0.
ii) On V×R+, the functions ∂

n
2 ∂

k
1 e(z, t) exist and are continuous for 0 ≤ n < 2

and 0 ≤ k + n ≤ 2.
iii) The following convergence holds:

lim
(z,t)→(z�,∞)

‖∂1e(z, t)‖ = 0 . (13)

iv) There exist t0 > 0 and a neighborhood W ⊂ R
d of z� s.t.

sup
z∈W,t≥t0

‖∂2e(z, t)‖ < + ∞ and sup
z∈W,t≥t0

∥∥∂2
1e(z, t)

∥∥ < + ∞ .

Moreover, suppose that:

v)
∑

n ‖ρn+1‖21zn∈W < ∞ almost surely.
vi) lim supE[‖ηn+1‖4 |Fn]1zn∈W < ∞, and E[ηn+1 |Fn]1zn∈W = 0.

vii) Writing η̃n = Q−1ηn = (η̃−n , η̃
+
n ) with η̃±n ∈ R

d±
, for some c2 > 0, it holds

that
lim inf E[‖η̃+n+1‖2 |Fn]1zn∈W ≥ c21zn∈W .

Then, P([zn → z�]) = 0.

Remark 9. Assumptions i) to iv) of Th. 4.1 are related to the function e
defined in Eq. (11), which can be seen as a non-autonomous perturbation of
the autonomous linear ODE ż(t) = D(z(t)− z�). These assumptions guarantee
the existence of a local (around the unstable equilibrium z�) non-autonomous
invariant manifold of the non-autonomous ODE ż(t) = b(z(t), t) with enough
regularity properties, as provided by Prop. 7.1 and Prop. 7.3 below.

4.2. Application to the stochastic algorithms

4.2.1. Trap avoidance of the general algorithm 1

In Th. 3.1 above, we showed that the sequence (zn) generated by Algorithm 1
converges almost surely towards the set Υ defined in Eq. (2). Our purpose now
is to show that the traps in Υ (to be characterized below) are avoided by the
stochastic algorithm 1 under a proper omnidirectionality assumption on the
noise.

Our first task is to write Algorithm 1 in a manner compatible with the state-
ment of Th. 4.1. The following decomposition holds for the sequence (zn =
(vn,mn, xn), n ∈ N) generated by this algorithm:

zn+1 = zn + γn+1g(zn, τn) + γn+1ηn+1 + γn+1ρ̃n+1,
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where ρ̃n+1 =
(
0 , 0 , mn√

vn+ε
− mn+1√

vn+1+ε

)
, and where ηn+1 is the martingale in-

crement with respect to the filtration (Fn) which is defined by Eq. (28).
Observe from Eq. (2) that each z� ∈ Υ is written as z� = (v�, 0, x�) where

x� ∈ zer∇F , and v� = q−1
∞ p∞S(x�) (in particular, x� and z� are in a one-to-

one correspondence). We need to linearize the function g(·, t) around z�. The
following assumptions will be required.

Assumption 4.1. The functions F and S belong respectively to C3(Rd,R)
and C2(Rd,Rd

+).

Assumption 4.2. The functions h, r, p, q belong to C1((0,∞),R+) and have
bounded derivatives on [t0,+∞) for some t0 > 0.

Lemma 4.2. Let Assumptions 2.4-i) to iii), 4.1 and 4.2 hold. Let z� = (v�, 0, x�)
∈ Υ. Then, for every z ∈ Z+ and every t > 0, the following decomposition holds
true:

g(z, t) = D(z − z�) + e(z, t) + c(t),

where D =

⎡⎣−q∞Id 0 p∞∇S(x�)
0 −r∞Id h∞∇2F (x�)
0 −V 0

⎤⎦ , c(t) =

⎡⎣p(t)S(x�)− q(t)v�
0
0

⎤⎦ ,

and the function e(z, t) (defined in Section 7.3.1 below for conciseness) has the
same properties as its analogue in the statement of Th. 4.1.

Using this lemma, the algorithm iterate zn+1 can be rewritten as an instance
of the algorithm in the statement of Th. 4.1, namely,

zn+1 = zn + γn+1b(zn, τn) + γn+1ηn+1 + γn+1ρn+1, (14)

where in our present setting, b(z, t) = g(z, t) − c(t) = D(z − z�) + e(z, t) and
ρn = c(τn−1)+ ρ̃n. In the following assumption, we use the well-known fact that
a symmetric matrix H has the same inertia as AHAT for an arbitrary invertible
matrix A.

Assumption 4.3. Let x� ∈ zer∇F , let v� = q−1
∞ p∞S(x�), and define the diag-

onal matrix V = diag((v� + ε)�− 1
2 ) as in (8). Assume the following conditions:

i)
∑

n (q∞pn − p∞qn)
2
< ∞ ,

ii) The Hessian matrix ∇2F (x�) has a negative eigenvalue.
iii) There exists δ > 0 such that supx∈B(x�,δ) Eξ[‖∇f(x, ξ)‖8] < ∞ .

iv) Defining Πu as the orthogonal projector on the eigenspace of V
1
2∇2F (x�)V

1
2

that is associated with the negative eigenvalues of this matrix, it holds that

ΠuV
1
2Eξ(∇f(x�, ξ)−∇F (x�))(∇f(x�, ξ)−∇F (x�))

TV
1
2Πu �= 0.

Theorem 4.3. Let Assumptions 2.4, 3.3, and 4.1, 4.2 hold true. Let z� ∈ Υ be
such that Assumption 4.3 holds true for this z�. Then, the eigenspace associ-
ated with the eigenvalues of D with positive real parts has the same dimension
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as the eigenspace of ∇2F (x�) associated with the negative eigenvalues of this
matrix. Let (zn = (vn,mn, xn) : n ∈ N) be the random sequence generated by
Algorithm 1 with stepsizes satisfying

∑
n γn = +∞ and

∑
n γ

2
n < +∞. Then,

P([zn → z�]) = 0.

The assumptions and the result call for some comments.

Remark 10. The definition of a trap as regards the general algorithm in the
statement of Th. 4.1 is that the matrix D in Eq. (11) has eigenvalues with
positive real parts. Th. 4.3 states that this condition is equivalent to ∇2F (x�)
having negative eigenvalues. What’s more, the dimension of the invariant sub-
space of D corresponding to the eigenvalues with positive real parts is equal to
the dimension of the negative eigenvalue subspace of ∇2F (x�). Thus, Assump-
tion 4.3–iv) provides the “largest” subspace where the noise energy must be non
zero for the purpose of avoiding the trap.

Remark 11. Assumptions 4.2 and 4.3-i) are satisfied by many widely studied
algorithms, among which RMSProp and Adam.

Remark 12. The results of Th. 4.3 can be straightforwardly adapted to the
case of (ODE-1′). Assumption 4.3-iv) on the noise is unchanged.

In the case of the S-NAG algorithm, the assumptions become particularly
simple. We state the afferent result separately.

4.2.2. Trap avoidance for S-NAG

Assumption 4.4. Let x� ∈ zer∇F and let the following conditions hold.

i) The Hessian matrix ∇2F (x�) has a negative eigenvalue.
ii) There exists δ > 0 such that supx∈B(x�,δ) Eξ[‖∇f(x, ξ)‖4] < ∞ .

iii) Π̃uEξ(∇f(x�, ξ) − ∇F (x�))(∇f(x�, ξ) − ∇F (x�))
TΠ̃u �= 0, where Π̃u is

the orthogonal projector on the eigenspace of ∇2F (x�) associated with its
negative eigenvalues.

Theorem 4.4. Let Assumptions 2.4, 3.1, 4.1 and 4.4 hold. Define y� = (0, x�).
Let (yn = (mn, xn) : n ∈ N) be the random sequence given by Algorithm 2 with
stepsizes satisfying

∑
n γn = +∞ and

∑
n γ

2
n < +∞. Then, P([yn → y�]) = 0.

4.3. Related works

Up to our knowledge, all the avoidance of traps results that can be found in
the literature, starting from [38, 12], refer to stochastic algorithms that are dis-
cretizations of autonomous ODE’s (see for e.g., [10, Sec. 9] for general Robbins
Monro algorithms and [33, Sec. 4.3] for SGD). In this line of research, a pow-
erful class of techniques relies on Poincaré’s invariant manifold theorem for an
autonomous ODE in a neighborhood of some unstable equilibrium point. In our
work, we extend the avoidance of traps results to a non-autonomous setting,



3910 A. Barakat et al.

by borrowing a non-autonomous version of Poincaré’s theorem from the rich
literature that exists on the subject [16, 30].

In [23], the authors succeeded in establishing an avoidance of traps result
for their non-autonomous stochastic algorithm which is close to our S-NAG

algorithm (see the discussion at the end of Section 3.4 above), at the expense of a
sub-Gaussian assumption on the noise and a rather stringent assumption on the
stepsizes. The main difficulty in the approach of [23] lies in the use of the classical
autonomous version of Poincaré’s theorem (see [23, Remark 2.1]). This kind of
difficulty is avoided by our approach, which allows to obtain avoidance of traps
results with close to minimal assumptions. More recently, in the contribution of
[22] discussed in Sec. 3.4, the authors establish an avoidance of traps result ([22,
Th. 3]) for the algorithm described in Eq. (6) using techniques inspired from
[38, 10]. As previously mentioned, this recent work does not handle momentum
and hence neither Algorithm 1 nor Algorithm 2. Moreover, as indicated in our
discussion of [23], our strategy of proof is different.

Taking another point of view as concerns the trap avoidance, some recent
works [31, 20, 27, 35, 36] address the problem of escaping saddle points when
the algorithm is deterministic but when the initialization point is random. In
contrast to this line of research, our work considers a stochastic algorithm for
which randomness enters into play at each iteration of the algorithm via noisy
gradients.

5. Proofs for Section 2

5.1. Proof of Th. 2.1

The arguments of the proof of this theorem that we provide here follow the
approach of [9] with some small differences. Close arguments can be found in [8].
We provide the proof here for completeness and in preparation of the proofs that
will be related with the stochastic algorithms.

5.1.1. Existence and uniqueness

The following lemma guarantees that the term
√

v(t) + ε in (ODE-1) is well-
defined.

Lemma 5.1. Let t0 ∈ R+ and T ∈ (t0,∞]. Assume that there exists a solution
z(t) = (v(t),m(t), x(t)) to (ODE-1) on [t0, T ) for which v(t0) ≥ 0. Then, for all
t ∈ [t0, T ), v(t) ≥ 0.

Proof. Assume that ν � inf{t ∈ [t0, T ), v(t) < 0} satisfies ν < T . If v(t0) > 0,

Gronwall’s lemma implies that v(t) ≥ v(t0) exp(−
∫ t

t0
q(t)) on [t0, ν] which is in

contradiction with the fact that v(ν) = 0. If v(t0) = 0, since ν < T , there exists
t1 ∈ (t0, ν) s.t. v̇(t1) < 0. Hence, using the first equation from (ODE-1), we
obtain v(t1) > 0. This brings us back to the first case, replacing t0 by t1.
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Recall that F� = inf F is finite by Assumption 2.2. Of prime importance in
the proof will be the energy (Lyapunov) function E : R+ ×Z+ → R, defined as

E(h, z) = h(F (x)− F�) +
1

2

∥∥∥∥ m

(v + ε)�
1
4

∥∥∥∥2 , (15)

for every h ≥ 0 and every z = (v,m, x) ∈ Z+. This function is slightly different
from its analogues that were used in [3, 8, 9].

Consider (t, z) ∈ (0,+∞) × Z+ and set z = (v,m, x). Then, using Assump-
tion 2.1, we can write

∂tE(h(t), z) + 〈∇zE(h(t), z), g(z, t)〉

= ḣ(t)(F (x)− F�)−
1

4
〈 m�2

(v + ε)�
3
2

, p(t)S(x)− q(t)v〉

+ 〈 m

(v + ε)�
1
2

, h(t)∇F (x)− r(t)m〉 − 〈 m

(v + ε)�
1
2

, h(t)∇F (x)〉

≤ −
(
r(t)− q(t)

4

)∥∥∥∥ m

(v + ε)�
1
4

∥∥∥∥2 + ḣ(t)(F (x)− F�)−
p(t)

4
〈S(x), m�2

(v + ε)�
3
2

〉.

(16)

With the help of this function, we can now establish the existence, the unique-
ness and the boundedness of the solution of (ODE-1) on [t0,∞) for an arbi-
trary t0 > 0.

Lemma 5.2. For each t0 > 0 and z0 ∈ Z+, (ODE-1) has a unique solution on
[t0,∞) starting at z(t0) = z0. Moreover, the orbit {z(t) : t ≥ t0} is bounded.

Proof. Let t0 > 0, and fix z0 ∈ Z+. On each set of the type [t0, t0+A]×B̄(z0, R)
where A,R > 0 and B̄(z0, R) ⊂ (−ε,∞)d × R

d × R
d, we easily obtain from our

assumptions that the function g defined in (1) is continuous, and that g(·, t) is
uniformly Lipschitz on t ∈ [t0, t0 + A]. In these conditions, Picard’s theorem
asserts that (ODE-1) starting from z(t0) = z0 has a unique solution on a certain
maximal interval [t0, T ). Lem. 5.1 shows that v(t) ≥ 0 on this interval.

Let us show that T = ∞. Applying Ineq. (16) with (v,m, x) = (v(t),m(t), x(t))
and using Assumption 2.4, we obtain that the function t �→ E(h(t), z(t)) is
decreasing on [t0, T ). By the coercivity of F (Assumption 2.2) and Assump-
tion 2.4–i), we get that the trajectory {x(t)} is bounded. Recall the equation
ṁ(t) = h(t)∇F (x(t))−r(t)m(t). Using the continuity of the functions ∇F , h and
r along with Gronwall’s lemma, we get that {m(t)} is bounded if T < ∞. We
can show a similar result for {v(t)}. Thus, {z(t)} is bounded on [t0, T ) if T < ∞
which is a contradiction, see, e.g., [25, Cor.3.2].

It remains to show that the trajectory {z(t)} is bounded. To that end, let us
apply the variation of constants method to the equation ṁ(t) = h(t)∇F (x(t))−
r(t)m(t). Writing R(t) =

∫ t

t0
r(u) du, we get that

d

dt

(
eR(t)m(t)

)
= eR(t)h(t)∇F (x(t)).
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Therefore, for every t ≥ t0,

m(t) = e−R(t)m(t0) +

∫ t

t0

eR(u)−R(t)h(u)∇F (x(u))du .

Using the continuity of ∇F together with the boundedness of x, Assumption 2.4
and the triangle inequality, we obtain the existence of a constant C > 0 inde-
pendent of t s.t.

‖m(t)−m(t0)‖ − ‖m(t0)‖ ≤ Ch(t0)

∫ t

t0

e−
∫ t
u
r(s) dsdu

≤ Ch(t0)

∫ t

t0

e−r∞(t−u)du ≤ Ch(t0)

r∞
.

The same reasoning applies to v(t) using the continuity of S and Assumption 2.4.
This completes the proof.

We can now extend this solution to t0 = 0 along the approach of [9], where the
detailed derivations can be found. The idea is to replace h(t) with h(max(η, t))
for some η > 0 and to do the same for p, q, and r. It is then easy to see that the
ODE that is obtained by doing these replacements has a unique global solution
on R+. By making η → 0 and by using the Arzelà-Ascoli theorem along with
Assumption 2.5, we obtain that (ODE-1) has a unique solution on R+.

5.1.2. Convergence

The first step in this part consists in transforming (ODE-1) into an autonomous
ODE by including the time variable into the state vector. More specifically, we
start with the following ODE:[

ż(t)
u̇(t)

]
=

[
g(z(t), u(t))

1

]
with

[
z(0)
u(0)

]
=

[
z0
t0

]
,

then, we perform the following change of variable in time[
z
u

]
�→
[

z
s = 1/u

]
allowing the solution to lie in a compact set.

We initialize the above ODE at a time instant t0 > 0. Define the functions
H,R,P,Q : R+ → R+ by setting H(s) = h(1/s), R(s) = r(1/s), P(s) = p(1/s);
Q(s) = q(1/s) for s > 0; H(0) = h∞, R(0) = r∞, P(0) = p∞ and Q(0) = q∞. Our
autonomous dynamical system can then be described by the following system
of equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̇(t) = P(s(t))S(x(t))− Q(s(t))v(t)

ṁ(t) = H(s(t))∇F (x(t))− R(s(t))m(t)

ẋ(t) = − m(t)√
v(t)+ε

ṡ(t) = −s(t)2

(17)
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Since the solution of the ODE ṡ(t) = −s(t)2 for which s(t0) = 1/t0 is s(t) = 1/t,
the trajectory {s(t)} is bounded. The three remaining equations are a reformu-
lation of (ODE-1) for which the trajectories have already been shown to exist
and to be bounded in Lem. 5.2. In the sequel, we denote by Φ : Z+ × R+ →
Z+ × R+ the semiflow induced by the autonomous ODE (17), i.e., for every
u = (z, s) ∈ Z+ × R+, Φ(u, ·) is the unique global solution to the autonomous
ODE (17) initialized at u. Observe that the orbits of this semiflow are precom-
pact. Moreover, the function Φ((z, 0), ·) is perfectly defined for each z ∈ Z+

since the associated solution satisfies the ODE (19) defined below, which three
first equations satisfy the hypotheses of Lem. 5.2.

Consider now a continuous function V : Z+ × R+ → R defined by:

V (u) = E (H(s), z) , u = (z, s) ∈ Z+ × (0,∞).

As for Ineq. (16) above, we have here that

d

dt
V (Φ(u, t)) ≤ −

(
r(t)− q(t)

4

)∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2
+ ḣ(t)(F (x(t))− F�)−

p(t)

4
〈S(x(t)), m(t)�2

(v(t) + ε)�
3
2

〉

if s > 0, and the same inequality with (ḣ(t), p(t), r(t), q(t)) being replaced with
(0, p∞, r∞, q∞) otherwise.

Since V ◦ Φ(u, ·) is non-increasing and nonnegative, we can define V∞ �
limt→∞ V (Φ(u, t)). Let ω(u) �

⋂
s>0

⋃
t≥s Φ(u, t) be the ω-limit set of the semi-

flow Φ issued from u. Recall that ω(u) is an invariant set for the flow Φ(u, ·),
and that

dist(Φ(u, t), ω(u)) −−−→
t→∞

0,

see, e.g., [24, Th. 1.1.8]). In order to finish the proof of Th. 2.1, we need to make
explicit the structure of ω(u).

We know from La Salle’s invariance principle that ω(u) ⊂ V −1(V∞). In par-
ticular,

∀y ∈ ω(u), ∀t ≥ 0, V (Φ(y, t)) = V (y) = V∞ (18)

by the invariance of ω(u).
From ODE (17), we have that any y ∈ ω(u) is of the form y = (z, 0) since

s(t) → 0. As a consequence, Φ(y, ·) is a solution to the autonomous ODE⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v̇(t) = p∞S(x(t))− q∞v(t)

ṁ(t) = h∞∇F (x(t))− r∞m(t)

ẋ(t) = − m(t)√
v(t)+ε

ṡ(t) = 0 .

(19)

The three first equations can be written in a more compact form:

ż(t) = g∞(z(t)) (20)
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where z(t) = (v(t),m(t), x(t)), and

g∞(z) = lim
t→∞

g(z, t) =

⎡⎣ p∞S(x)− q∞v
h∞∇F (x)− r∞m

−m/
√
v + ε

⎤⎦
for each z ∈ Z+. Consider y = (v,m, x, 0) ∈ ω(u). Using Eq. (18), we obtain
that dV (Φ(y, t))/dt = 0, which implies that

(
r∞ − q∞

4

)∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 + p∞
4

〈S(x(t)), m(t)�2

(v(t) + ε)�
3
2

〉 = 0

for all (v(t),m(t), x(t), 0) = Φ(y, t). As a consequence, Assumption 2.4-iv) gives
m(t) = m = 0, and then, x(t) = x for some x s.t. ∇F (x) = 0 using ODE (19).
We now turn to showing that v(t) = v = p∞S(x)/q∞. We have proved so far
that any element y ∈ ω(u) is written y = (v, 0, x, 0) where ∇F (x) = 0. The
component v(·) of Φ(y, ·) is a solution to the ODE v̇(t) = p∞S(x)− q∞v(t) and
is thus written

v(t) =
p∞S(x)

q∞
+ e−q∞t

(
v − p∞S(x)

q∞

)
. (21)

Fixing x, let Sx be the section of ω(u) defined by:

Sxω(u) =
{
y ∈ ω(u) : y = (ṽ, 0, x, 0) , ṽ ∈ R

d
+

}
.

As ω(u) is invariant, we have Sxω(u) = SxΦ(ω(u), t) for all t ≥ 0. Since the set
{ṽ ∈ R

d
+ s.t. (ṽ, 0, x, 0) ∈ Sxω(u)} lies in a compact, we deduce from Eq. (21)

that this set is reduced to the singleton {p∞S(x)/q∞} and in particular v =
p∞S(x)/q∞. Therefore, the union of ω-limit sets of the semiflow Φ induced by
ODE (17) coincides with the set of equilibrium points of this semiflow. The
latter set itself corresponds to the set of points (z, 0) s.t. z ∈ zer g∞. It remains
to notice that Υ = zer g∞ to finish the proof.

Remark 13. Commenting on Remark 3, the same proof works for (ODE-1′)
by using the function F − F� as a Lyapunov function. The corresponding limit
set (as t → +∞) is then of the form

{z̃∞ = (ṽ∞, x̃∞) ∈ R
d
+ × R

d : ∇F (x̃∞) = 0 , ṽ∞ = p∞S(x̃∞)/q∞}.

Similarly, if we set p = q ≡ 0 in (ODE-1) and we keep what remains in Assump-
tion 2.4, the function h(t)(F (x)− F�) +

1
2‖m‖2 works as a Lyapunov function,

and the limit set has the form {(0, x) : ∇F (x) = 0}.

5.2. Proof of Th. 2.2

The existence and the uniqueness of the solution to (ODE-N) have been shown
in the literature. We refer to [13, Prop. 2.1-2.2.c)] for an identical statement of
this result and [41, Th. 1, Appendix A] for a complete proof. The boundedness
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of the solution follows immediately from the coercivity of F together with the
fact that the function t �→ F (x(t)) + 1

2‖m(t)‖2 is nonincreasing.
Concerning the convergence statement, our proof is based on comparing the

solutions of (ODE-N) to the solutions of the ODE in [23, Eq. (2.3)]. We first
note that under a change of variable, a solution to (ODE-N) gives a solution to
[23, Eq. (2.3)].

Lemma 5.3. Let (m, x) be a solution to (ODE-N). Define y(t) =
κm(κ

√
t)

2
√
t

,

u(t) = x
(
κ
√
t
)
, with κ =

√
2α+ 2 and β = κ2

4 . Then, (y, u) verifies{
ẏ(t) = β

t (∇F (u(t)))− y(t))

u̇(t) = −y(t) .
(22)

Proof. By simple differentiation, we get:

ẏ(t) =
β

t

[
∇F

(
x(κ

√
t)
)
− α

κ
√
t
m
(
κ
√
t
)]

− κ

4t
3
2

m
(
κ
√
t
)
=

β

t
(∇F (u(t))− y(t)) ,

u̇(t) = − κ

2
√
t
m
(
κ
√
t
)
= −y(t) .

Consider a solution (m, x) of (ODE-N) starting at (m0, x0) ∈ R
d ×R

d. As in
Section 5.1.2, for every t0 > 0, on [t0,+∞), we have that (m, x, s) is a solution
to the autonomous ODE⎧⎪⎨⎪⎩

ṁ(t) = ∇F (x(t))− αs(t)m(t)

ẋ(t) = −m(t)

ṡ(t) = −s(t)2 ,

(23)

starting at (m0, x0, 1/t0). Denote by ΦN = (Φm
N ,Φx

N ,Φs
N ) the semiflow induced

by ODE (23) and ωN ((m0, x0, 1/t0)) its limit set.
Define (y, u) as in Lem. 5.3. Starting at (y(t0), u(t0), 1/t0), we also have that

(y, u, s) is a solution on [t0,+∞) to the “autonomized” Heavy-Ball ODE⎧⎪⎨⎪⎩
ẏ(t) = βs(t)(∇F (u(t)))− y(t))

u̇(t) = −y(t)

ṡ(t) = −s(t)2 .

(24)

Denote by ΦH = (Φy
H ,Φu

H ,Φs
H) the semiflow induced by ODE (24) and

ωH((y(t0), u(t0), 1/t0)) its limit set.

Lemma 5.4. For any compact set K ⊂ R
2d+1 and any T > 0, the family of

functions
{
Φ(z, ·) : [0, T ] → R

2d+1
}
z∈K

, where Φ is either ΦH or ΦN , is rela-

tively compact in (C0([0, T ],R2d+1), ‖·‖∞).

Proof. The map Φ : R2d+1×R+ → R
2d+1 is continuous, hence uniformly contin-

uous on K × [0, T ]. The result follows from the application of the Arzelà-Ascoli
theorem to the family

{
Φ(z, ·) : [0, T ] → R

2d+1
}
z∈K

.
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Let (m,x, 0) ∈ ωN ((m0, x0, 1/t0)). There exists a sequence (tk) of nonneg-
ative reals such that (m,x, 0) = limk→∞(m(tk), x(tk), 1/tk). For any T > 0,
using Lem. 5.4, up to an extraction, we can say that the sequence of functions
{ΦN ((m(tk), x(tk), 1/tk), ·)}k converges towards (m̃, x̃, 0) in C0([0, T ],Rd), where
(m̃, x̃) is a solution to {

˙̃m(t) = ∇F (x̃(t))
˙̃x(t) = −m̃(t) ,

(25)

with (m̃(0), x̃(0)) = (m,x). Moreover, by Lem. 5.3, we also have that:

sup
h∈[0,T 2/κ2]

∥∥∥x̃(κ√h)− Φx
N ((m(tk), x(tk), 1/tk), κ

√
h)
∥∥∥

= sup
h∈[0,T 2/κ2]

∥∥∥x̃(κ√h)− Φu
H((m(tk), x(tk), 1/tk), h)

∥∥∥ −−−−−→
k→+∞

0 . (26)

Using Lem. 5.4, up to an additional extraction, we get on C0([0, T 2/κ2],R2d+1)
that {ΦH((x(tk),m(tk), 1/tk), ·)}k converges to (u, y, 0), where (u, y) is a solution
to {

ẏ(t) = 0

u̇(t) = −y(t) .
(27)

Therefore, u(t) = A+Bt for some A andB in R
d. Imagine that B �= 0. We pre-

viously proved that x (and therefore u) is bounded by some constant C > 0. Let

T ′ > C+‖A‖
‖B‖ . Up to an extraction, we obtain that {ΦH((x(tk),m(tk), 1/tk), ·)}k

converges to u′ on C0([0, T ′],R2d+1), with u′(t) = A′ + B′t for some A′ and
B′ in R

d. We then have by uniqueness of the limit that A′ = A and B′ = B.
As a consequence, ‖u′(T ′)‖ = ‖A+BT ′‖ > C and we obtain a contradiction.
Hence B = 0.

This implies that u is constant. Then, if we go back to Eqs. (26) and (25),
we get that x̃ is constant, hence m̃ ≡ 0 and then ∇F (x̃) ≡ 0. In particular, this
means that m = m̃(0) = 0 and ∇F (x) = ∇F (x̃(0)) = 0.

6. Proofs for Section 3

6.1. Preliminaries

We first recall some useful definitions and results. Let Ψ represent any semiflow
on an arbitrary metric space (E, d). As in the previous section, a point z ∈ E
is called an equilibrium point of the semiflow Ψ if Ψ(z, t) = z for all t ≥ 0.
We denote by ΛΨ the set of equilibrium points of Ψ. A continuous function
V : E → R is called a Lyapunov function for the semiflow Ψ if V(Ψ(z, t)) ≤ V(z)
for all z ∈ E and all t ≥ 0. It is called a strict Lyapunov function if, moreover,
{z ∈ E : ∀t ≥ 0, V(Ψ(z, t)) = V(z)} = ΛΨ. If V is a strict Lyapunov function
for Ψ and if z ∈ E is a point s.t. {Ψ(z, t) : t ≥ 0} is relatively compact, then
it holds that ΛΨ �= ∅ and d(Ψ(z, t),ΛΨ) → 0, see [24, Th. 2.1.7]. A continuous
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function z : [0,+∞) → E is said to be an asymptotic pseudotrajectory (APT,
[11]) for the semiflow Ψ if limt→+∞ sups∈[0,T ] d(z(t+s),Ψ(z(t), s)) = 0 for every
T ∈ (0,+∞).

6.2. Proof of Th. 3.1

Recall that Φ is the semiflow induced by the autonomous ODE (17) which
is an “autonomized” version of our initial (ODE-1). In the remainder of this
section, the proof will be divided into two main steps: (a) we show that a certain
continuous-time linearly interpolated process constructed from the iterates of
our algorithm 1 is an APT of Φ; (b) we exhibit a strict Lyapunov function for
a restriction to a carefully chosen compact set of a well chosen semiflow related
to Φ. Then, we characterize the limit set of the APT using [10, Th. 5.7] and [10,
Prop. 6.4]. The sequence (zn) converges almost surely to this same limit set.

(a) APT For every n ≥ 1, define z̄n = (vn,mn, xn−1) (note the shift in the
index of the variable x). We have the decomposition

z̄n+1 = z̄n + γn+1g(z̄n, τn) + γn+1ηn+1 + γn+1ςn+1 ,

where g is defined in Eq. (1),

ηn+1 =
(
pn(∇f(xn, ξn+1)

�2 − S(xn)), hn(∇f(xn, ξn+1)−∇F (xn)), 0
)
, (28)

is a martingale increment and where we set ςn+1 = (ςvn+1, ς
m
n+1, ς

x
n+1) with the

components defined by:⎧⎪⎨⎪⎩
ςvn+1 = pn(S(xn)− S(xn−1))

ςmn+1 = hn(∇F (xn)−∇F (xn−1))

ςxn+1 = ( γn

γn+1
− 1) mn√

vn+ε
.

We first prove that ςn → 0 a.s. by considering the components separately. The
components ςmn+1 and ςvn+1 converge a.s. to zero by using Assumptions 2.1, 2.3,
together with the boundedness of the sequences (pn) and (hn) (which are both
convergent). Indeed, since ∇F is locally Lipschitz continuous and the sequence
(zn) is supposed to be almost surely bounded, there exists a constant C s.t.
‖∇F (xn) − ∇F (xn−1)‖ ≤ C‖xn − xn−1‖ ≤ C

ε γn‖mn‖. The same inequal-
ity holds when replacing ∇F by S which is also locally Lipschitz continuous.
The component ςxn+1 also converges a.s. to zero by observing that ‖ςxn+1‖ ≤
|1 − γn

γn+1
|.‖mn‖/

√
ε and using Assumption 3.2 together with the a.s. bound-

edness of (zn). Now consider the martingale increment sequence (ηn), adapted
to Fn. Take δ > 0. Since (zn) is a.s bounded, there is a constant C ′ > 0 such
that P(sup ‖xn‖ > C ′) ≤ δ. Denoting η̃n � ηn1‖xn‖≤C′ and combining Assump-
tions 2.4 with 3.4-i) we can show using convexity inequalities that

sup
n

E‖η̃n+1‖q < ∞.
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Then, we deduce from this result together with the corresponding stepsize as-
sumption from 3.4-i) and [10, Prop. 4.2] (see also [34, Prop. 8]) the key property:

∀T > 0 , max
{∥∥∥L−1∑

k=n

γk+1η̃k+1

∥∥∥ : L = n+ 1, . . . , J(τn + T )
}

a.s.−−−−→
n→∞

0 (29)

where J(t) = max{n ≥ 0 : τn ≤ t}. Hence, for all T > 0, with probability at
least 1− δ:

max
{∥∥∥L−1∑

k=n

γk+1ηk+1

∥∥∥ : L = n+ 1, . . . , J(τn + T )
}

−−−−→
n→∞

0 . (30)

Since δ can be chosen arbitrary small, Eq. (30) remains true with probability 1.
This result also holds under Assumption 3.4-ii) (instead of 3.4-i)) by applying
[10, Prop. 4.4].

Let z : [0,+∞) → Z+ be the continous-time linearly interpolated process
given by

z(t) = z̄n + (t− τn)
z̄n+1 − z̄n

γn+1
(∀n ∈ N , ∀t ∈ [τn, τn+1))

(where τn =
∑n

k=1 γk). Let t0 > 0. Define u : [t0,∞) → Z × (0, 1/t0] by

u(t) =

[
z(t)
1/t

]
, for t ≥ t0 > 0.

Using Eq. (30) and the almost sure boundedness of the sequence (zn) along
with the fact that ςn converges a.s. to zero, it follows from [10, Prop. 4.1, Re-
mark 4.5] that u(t) is an APT of the already defined semiflow Φ induced by (17).
Remark that it also holds that z(t) is an APT of the semiflow Φ∞ induced
by (20). As the trajectory of u(t) is precompact, the limit set

L(u) =
⋂
t≥t0

u([t,∞))

is compact. Moreover, it has the form

L(u) =

[
S
0

]
, where S �

⋂
t≥t0

z([t,∞)) . (31)

Our objective now is to prove that

S ⊂ ΛΦ∞ . (32)

In order to establish this inclusion, we study the behavior of the restriction Φ|L
of the semiflow Φ to the set L (which is well-defined since L is Φ-invariant).
Remark that

Φ|L =

[
Φ∞|S

0

]
,
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where Φ∞ is the semiflow associated to (20). In the second part of the proof, we
establish Eq. (32) combining item (a) we just proved with [10, Th. 5.7] and [10,
Prop. 6.4]. In order to use the latter proposition, we prove a useful proposition
in item (b).

(b) Strict Lyapunov function and convergence For every δ > 0 and
every z = (v,m, x) ∈ Z+, define:

Wδ(v,m, x) � E∞(z)− δ〈∇F (x),m〉+ δ‖q∞v − p∞S(x)‖2 , (33)

where, under Assumption 2.4-i), the function E∞ is defined by

E∞(z) � lim
t→+∞

E(t, z) = h∞(F (x)− F�) +
1

2

∥∥∥∥ m

(v + ε)�
1
4

∥∥∥∥2 . (34)

Proposition 6.1. Let t0 > 0 and let Assumptions 2.1 to 2.4 and 3.5 hold
true. Let S be the limit set defined in Eq. (31). Let Φ

∞
: S × [t0,+∞) → S

be the restriction of the semiflow Φ∞ to S i.e., Φ
∞
(z, t) = Φ∞(z, t) for all

z ∈ S, t ≥ t0.Then,

i) S is compact.
ii) Φ

∞
is a well-defined semiflow on S.

iii) The set of equilibrium points of Φ
∞

is equal to ΛΦ∞ ∩ S.
iv) There exists δ > 0 s.t. Wδ is a strict Lyapunov function for the semi-

flow Φ
∞
.

Proof. The first point is a consequence of the definition of S and the bounded-
ness of z. The second point stems from the definition of Φ∞. Observing that
Φ

∞
is valued in S, the third point is immediate from the definition of ΛΦ∞ .

We now prove the last point. Consider z ∈ S and write Φ
∞
(z, t) under the

form Φ
∞
(z, t) = (v(t),m(t), x(t)). Notice that this quantity is bounded as a

function of the variable t. For any map W : Z+ → R, define for all t ≥ t0,
LW(t) � lim sups→0 s

−1(W(Φ
∞
(z, t + s)) − W(Φ

∞
(z, t))) . Introduce G(z) �

−〈∇F (x),m〉 and H(z) � ‖q∞v − p∞S(x)‖2 for every z = (v,m, x) ∈ Z+.
Consider δ > 0 (to be specified later on). We study LWδ

= LE∞ + δLG + δLH .
Note that Φ

∞
(z, t) ∈ S ∩ Z+ for all t ≥ t0 by an analogous result to Lem. 5.1

for Φ∞. Thus, t �→ E∞(Φ
∞
(z, t)) is differentiable at any point t ≥ t0 and

LE∞(t) = d
dtE∞(Φ

∞
(z, t)). Using similar derivations to Ineq. (16), we obtain

that

LE∞(t) ≤ −
(
r∞ − q∞

4

)∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 . (35)

We now study LG. For every t ≥ t0,

LG(t) = lim sup
s→0

s−1(−〈∇F (x(t+ s)),m(t+ s)〉+ 〈∇F (x(t)),m(t)〉)

≤ lim sup
s→0

s−1‖∇F (x(t))−∇F (x(t+ s))‖‖m(t+ s)‖ − 〈∇F (x(t)), ṁ(t)〉 .
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Let L∇F be the Lipschitz constant of∇F on the bounded set {x : (v,m, x) ∈ S}.
Define C1 � supt ‖

√
v(t) + ε‖. Then,

LG(t) ≤ L∇F lim sup
s→0

s−1‖x(t)− x(t+ s)‖‖m(t+ s)‖ − 〈∇F (x(t)), ṁ(t)〉

≤ L∇F ‖ẋ(t)‖‖m(t)‖ − 〈∇F (x(t)), ṁ(t)〉
≤ L∇F ‖ẋ(t)‖‖m(t)‖ − h∞‖∇F (x(t))‖2 + r∞〈∇F (x(t)),m(t)〉

≤
(
L∇FC

1
2
1

ε
1
4

+
r∞C1

2u2
1

)∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 − (h∞ − r∞u2
1

2

)
‖∇F (x(t))‖2

(36)

where we used the classical inequality |〈a, b〉| ≤ ‖a‖2/(2u2) + u2‖b‖2/2 for any
non-zero real u to derive the last above inequality. We now study LH . For
every t ≥ t0,

LH(t) = lim sup
s→0

s−1(‖q∞v(t+ s)− p∞S(x(t+ s))‖2 − ‖q∞v(t)− p∞S(x(t))‖2)

= lim sup
s→0

s−1(p2∞‖S(x(t))− S(x(t+ s))‖2

+ 2p∞〈S(x(t))− S(x(t+ s)), q∞v(t+ s)− p∞S(x(t))〉)
+ lim

s→0
s−1(‖q∞v(t+ s)− p∞S(x(t))‖2 − ‖q∞v(t)− p∞S(x(t))‖2) .

The second term in the righthand side coincides with

−2q∞〈p∞S(x(t))− q∞v(t), v̇(t)〉 = −2q∞‖p∞S(x(t))− q∞v(t)‖2 .

Denote by LS the Lipschitz constant of S on the set {x : (v,m, x) ∈ S}. Note
that s−1(‖S(x(t+ s))−S(x(t))‖2) ≤ L2

Ss‖s−1(x(t+ s)− x(t))‖2 which converges
to zero as s → 0. Thus,

LH(t) = −2q∞‖p∞S(x(t))− q∞v(t)‖2

+ lim sup
s→0

2p∞s−1〈S(x(t))− S(x(t+ s)), q∞v(t+ s)− p∞S(x(t))〉

≤ −2q∞‖p∞S(x(t))− q∞v(t)‖2 + 2p∞‖ẋ(t)‖LS‖q∞v(t)− p∞S(x(t))‖

≤ p∞

ε
1
2u2

2

∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 − (2q∞ − p∞u2
2L

2
S)‖p∞S(x(t))− q∞v(t)‖2 .

(37)

Recalling that LWδ
= LE∞ + δLG + δLH and combining Eqs. (35), (36)

and (37), we obtain for every t ≥ t0,

LWδ
(t) ≤ −M(δ)

∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 − δ

(
h∞ − r∞u2

1

2

)
‖∇F (x(t))‖2

− δ
(
2q∞ − p∞u2

2L
2
S

)
‖p∞S(x(t))− q∞v(t)‖2 . (38)
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where M(δ) � r∞ − q∞
4 − δ

(
r∞C1

2u2
1

+
L∇FC

1
2
1

ε
1
4

+ p∞

ε
1
2 u2

2

)
. Now select u1, u2 small

enough s.t. h∞ − r∞u2
1/2 > 0 and 2q∞ − p∞u2

2L
2
S > 0. Then, choose δ in such

a way that M(δ) > 0. Thus, there exists a constant c depending on δ s.t. for
every t ≥ t0,

LWδ
(t) ≤ −c

(∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 + ‖∇F (x(t))‖2 + ‖p∞S(x(t))− q∞v(t)‖2
)

.

(39)
It can easily be seen that for every z ∈ S, t �→ Wδ(Φ

∞
(z, t)) is Lipschitz

continuous, hence absolutely continuous. Its derivative almost everywhere co-
incides with LWδ

, which is nonpositive. Thus, Wδ is a Lyapunov function for
Φ

∞
. We prove that the Lyapunov function is strict. Consider z = (v,m, x) ∈ S

s.t. Wδ(Φ
∞
(z, t)) = Wδ(z) for all t ≥ t0. The derivative almost everywhere of

t �→ Wδ(Φ
∞
(z, t)) is identically zero, and by Eq. (39), this implies that

−c

(∥∥∥∥ m(t)

(v(t) + ε)�
1
4

∥∥∥∥2 + ‖∇F (x(t))‖2 + ‖p∞S(x(t))− q∞v(t)‖2
)

is equal to zero for every t ≥ t0 a.e. (hence, for every t ≥ t0, by continuity
of Φ

∞
). In particular for t = t0, m = ∇F (x) = 0 and p∞S(x) − q∞v = 0.

Hence, z ∈ zer g∞ ∩ S. This concludes the proof since ΛΦ∞ = zer g∞.

End of the Proof of Th. 3.1 Finally, Assumption 3.5 implies that the
set Wδ(ΛΦ∞ ∩ S) is of empty interior. Recall that Assumptions 2.1 and 2.3
both follow from Assumption 3.3 made in Th. 3.1. Given Prop. 6.1, the proof
is concluded by applying [10, Prop. 6.4] to the restricted semiflow Φ̄∞ (with
(M,Λ) = (S,ΛΦ̄∞)). Note that a Lyapunov function for ΛΦ̄∞ is what is called a
strict Lyapunov function. Such a function is provided by Prop. 6.1. We obtain
as a conclusion of [10, Prop. 6.4] that S ⊂ ΛΦ̄∞ . This gives the desired result
(Eq. (32)) given Prop. 6.1-iii).

The last assertion of Th. 3.1 is a consequence of [10, Cor. 6.6].

6.3. Proof of Th. 3.3

We can rewrite the iterates from Algorithm 2 as follows:{
mn+1 = mn + γn+1(∇F (xn)− α

τn
mn) + γn+1(∇f(xn, ξn+1)−∇F (xn))

xn+1 = xn − γn+1mn+1 .

(40)
We prove that the sequence (yn = (mn, xn) : n ∈ N) of iterates of this

algorithm converges almost surely towards the set Ῡ defined in Eq. (3) if it is
supposed to be bounded with probability one. The proof follows a similar path
to the proof in Section 5.2.
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Indeed, denote by X and M the linearly interpolated processes constructed
respectively from the sequences (xn) and (mn) and let s(t) = 1/t. Recall that
ΦN = (Φm

N ,Φx
N ,Φs

N ) is the semiflow induced by (23). As in Section 6.2, we have
that Z � (M,X, s) is an APT of (23). In particular, this means that

∀T > 0 , sup
h∈[0,T ]

‖X(t+ h)− Φx
N (Z(t), h)‖ −−−→

t→∞
0 . (41)

By Lem. 5.3, we also have that

sup
h∈[0,T 2/κ2]

∥∥∥X(t+ κ
√
h)− Φx

N (Z(t), κ
√
h)
∥∥∥

= sup
h∈[0,T 2/κ2]

∥∥∥X(t+ κ
√
h)− Φu

H(Z(t), h)
∥∥∥ −−−→

t→∞
0 . (42)

Let (m,x) be a limit point of the sequence (yn) and let T > 0. Using Lem. 5.4,
we can proceed in the same manner as in Section 5.2 and get a sequence (tk)
such that

(M(tk + ·),X(tk + ·)) → (m, x) and (Φy
H(Z(tk), ·),Φu

H(Z(tk), ·)) → (y, u) ,

where (m(0), x(0)) = (m,x), and (m, x) and (x, u) are respectively solutions
to (25) and (27). As in the end of Section 5.2, we obtain that u and x are
constant, therefore m ≡ 0 and ∇F (x) ≡ 0 , which finishes the proof.

6.4. Proof of Th. 3.2

The idea of the proof is to apply Robbins-Siegmund’s theorem [40] to

Vn = hn−1F (xn) +
1

2
〈m�2

n ,
1√

vn + ε
〉

(note the similarity of Vn with the energy function (15)). Since inf F > −∞,
we assume without loss of generality that F ≥ 0. In this subsection, we use the
notation ∇fn+1 as a shorthand notation for ∇f(xn, ξn+1) and C denotes some
positive constant which may change from line to line. We write En = E[· |Fn] for
the conditional expectation w.r.t the σ-algebra Fn. Define Pn � 1

2 〈Dn,m
�2
n 〉,

with Dn � 1√
vn+ε

. We have the decomposition:

Pn+1 − Pn =
1

2
〈Dn+1 −Dn,m

�2
n+1〉+

1

2
〈Dn,m

�2
n+1 −m�2

n 〉. (43)

We estimate the vector

Dn+1 −Dn =

√
vn + ε−√

vn+1 + ε√
vn+1 + ε�√

vn + ε
.
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Remarking that vn+1 ≥ (1 − γn+1qn)vn and using the update rule of vn, we
obtain for a sufficiently large n that

√
vn + ε−

√
vn+1 + ε = γn+1

qnvn − pn∇f�2
n+1√

vn + ε+
√
vn+1 + ε

≤ γn+1qn
vn

(1 +
√
1− γn+1qn)

√
vn + ε

=
γn+1qn

1 +
√
1− γn+1qn

√
vn �

√
vn√

vn + ε

≤ cn+1
√
vn+1 , (44)

where cn+1 � γn+1qn√
1−γn+1qn(1+

√
1−γn+1qn)

. It is easy to see that cn+1/γn → q∞/2.

Thus, for any δ > 0, cn+1 ≤ (q∞ + 2δ)γn/2 for all n large enough. Using also
that

√
vn+1/

√
vn+1 + ε ≤ 1, we obtain

Dn+1 −Dn ≤ q∞ + 2δ

2
γnDn . (45)

Substituting the above inequality in Eq. (43), we obtain

Pn+1 − Pn ≤
(
q∞ + 2δ

2

)
γn
2
〈Dn,m

�2
n+1〉+

1

2
〈Dn,m

�2
n+1 −m�2

n 〉

≤ q∞ + 2δ

2
γnPn +

(
1 +

q∞ + 2δ

2
γn

)
1

2
〈Dn,m

�2
n+1 −m�2

n 〉 .

Using m�2
n+1 −m�2

n = 2mn � (mn+1 −mn) + (mn+1 −mn)
�2, and noting that

En(mn+1 −mn) = γn+1hn∇F (xn)− γn+1rnmn,

En
1

2
〈Dn,m

�2
n+1 −m�2

n 〉 = γn+1hn〈∇F (xn),
mn√
vn + ε

〉 − 2γn+1rnPn

+
1

2
〈Dn,En[(mn+1 −mn)

�2]〉 .

There exists δ > 0 such that r∞ − q∞
4 − δ

2 > 0 by Assumption 2.4-iv). As
γn+1

γn
rn− q∞

4 → r∞− q∞
4 , for all n large enough, γn+1

γn
rn− q∞

4 > r∞− q∞
4 − δ

2 > 0.
Hence, for all n large enough,

EnPn+1 − Pn ≤ −2

(
r∞ − q∞

4
− δ

2

)
γnPn + γn+1hn〈∇F (xn),

mn√
vn + ε

〉

+ Cγ2
n〈∇F (xn),

mn√
vn + ε

〉+ C〈Dn,En[(mn+1 −mn)
�2]〉 . (46)

Using the inequality 〈u, v〉 ≤ (‖u‖2 + ‖v‖2)/2 and Assumption 3.6-ii), it is easy
to show the inequality 〈∇F (xn),

mn√
vn+ε

〉 ≤ C(1+F (xn)+Pn). Moreover, using

the componentwise inequality (hn∇fn+1 − rnmn)
�2 ≤ 2h2

n∇f�2
n+1 + 2r2nm

�2
n
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along with Assumption 3.6-ii) and the boundedness of the sequences (hn), (rn)
and (γn+1/γn), we obtain

〈Dn,En[(mn+1 −mn)
�2]〉 ≤ Cγ2

n(1 + F (xn) + Pn) . (47)

Combining Eq. (46) and Eq. (47), we get

En(Pn+1 − Pn) ≤ γn+1hn〈∇F (xn),mn �Dn〉+Cγ2
n(1 + F (xn) + Pn) . (48)

Denoting by M the Lipschitz coefficient of ∇F , we also have

F (xn+1) ≤ F (xn)− γn+1〈∇F (xn),mn+1 �Dn+1〉+
γ2
n+1M

2
‖mn+1 �Dn+1‖2 .

(49)

Using (45) and the update rule of mn, we have ‖mn+1 �Dn+1 −mn �Dn‖2

≤ C ‖(mn+1 −mn)�Dn‖2 + C ‖mn+1 � (Dn+1 −Dn)‖2

≤ Cγ2
n+1(‖∇fn+1‖2 + ‖mn �Dn‖2) + Cγ2

n+1 ‖mn+1 �Dn‖2

≤ Cγ2
n+1(‖mn �Dn‖2 + ‖∇fn+1‖2) .

(50)

Finally, recalling that Vn = hn−1F (xn) + Pn, (hn) is decreasing, combining
Eq. (48), (49), (50), and using Assumption 3.6, we have

En[Vn+1] ≤ Vn + γn+1hn〈∇F (xn),En [mn �Dn −mn+1 �Dn+1]〉

+ Cγ2
n+1

(
1 + F (xn) + Pn + ‖mn �Dn‖2

)
+ Cγ2

n+1En[‖mn �Dn −mn+1 �Dn+1‖2]

≤ Vn + Cγ2
n

(
1 + F (xn) + Pn + ‖mn �Dn‖2 + En

[
‖∇fn+1‖2

])
≤ Vn + Cγ2

n(1 + F (xn) + Pn)

≤ (1 + Cγ2
n)Vn + Cγ2

n ,

where we used Cauchy-Schwarz’s inequality and the fact that ‖mn �Dn‖2 ≤
CPn. By the Robbins-Siegmund’s theorem [40], the sequence (Vn) converges
almost surely to a finite random variable V∞ ∈ R

+. Then, the coercivity of F
implies that (xn) is almost surely bounded.

We now establish the almost sure boundedness of (mn). Assume in the sequel
that n is large enough to have (1−γn+1rn) ≥ 0. Consider the martingale differ-
ence sequence Δn+1 � ∇fn+1 −∇F (xn). We decompose mn = m̄n + m̃n where
m̄n+1 = (1 − γn+1rn)m̄n + γn+1hn∇F (xn) and m̃n+1 = (1 − γn+1rn)m̃n +
γn+1hnΔn+1, setting m̄0 = 0 and m̃0 = m0. We prove that both terms m̄n

and m̃n are bounded. Consider the first term: ‖m̄n+1‖ ≤ (1 − γn+1rn)‖m̄n‖ +
γn+1 supk ‖hk∇F (xk)‖ , where the supremum in the above inequality is al-
most surely finite by continuity of ∇F . We immediately get that if ‖m̄n‖ ≥
supk ‖hk∇F (xk)‖

r∞
, then ‖m̄n+1‖ ≤ ‖m̄n‖. Thus
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‖m̄n+1‖ ≤ supk ‖hk∇F (xk)‖
r∞

+ sup
k

γk+1‖hk∇F (xk)‖ ,

which implies that m̄n is bounded. Consider now the term m̃n:

En[‖m̃n+1‖2] = (1− γn+1rn)
2‖m̃n‖2 + γ2

n+1h
2
nEn[‖Δn+1‖2]

≤ ‖m̃n‖2 + γ2
n+1h

2
nEn[‖Δn+1‖2] .

Then, the inequality En[‖Δn+1‖2] ≤ En[‖∇fn+1‖2] combined with Assump-
tion 3.4-i) and the a.s. boundedness of the sequence (xn) imply that there exists
a finite random variable CK (independent of n) s.t. En[‖∇fn+1‖2] ≤ CK. As a
consequence, since

∑
n γ

2
n+1 < ∞ and the sequence (hn) is bounded, we obtain

that a.s.: ∑
n≥0

γ2
n+1h

2
nEn[‖Δn+1‖2] ≤ CCK

∑
n≥0

γ2
n+1 < +∞ .

Hence, we can apply the Robbins-Siegmund theorem to obtain that
supn ‖m̃n‖2 < ∞ w.p.1. Finally, it can be shown that (vn) is almost surely
bounded using the same arguments, decomposing vn into v̄n + ṽn as above.
Indeed, first, we have:

En[‖ṽn+1‖2] ≤ ‖ṽn‖2 + γ2
n+1p

2
nEn[‖∇f�2

n+1 − S(xn)‖2] .

Second, it also holds that:

En[‖∇f�2
n+1 − S(xn)‖2] ≤ En[‖∇f�2

n+1‖2] ≤ En[‖∇fn+1‖4] .

Then, using Assumption 3.4-i) and the a.s. boundedness of the sequence (xn),
there exists a finite random variable C ′

K (independent of n) s.t. En[‖∇fn+1‖4] ≤
C ′

K. Moreover, the sequence (pn) is bounded and
∑

n γ
2
n+1 < ∞. As a conse-

quence, it holds that a.s:∑
n≥0

γ2
n+1p

2
nEn[‖∇f�2

n+1 − S(xn)‖2] ≤ CC ′
K
∑
n≥0

γ2
n+1 < +∞ .

It follows that the Robbins-Siegmund theorem can be applied to the sequence
‖ṽn‖2 as for the sequence ‖m̃n‖2 to obtain that supn ‖ṽn‖2 < ∞ w.p.1.

6.5. Proof of Th. 3.4

The proof of Th. 3.2 easily adapts to Algorithm 2 by replacing Vn by

Ṽn � F (xn) +
1

2
‖mn‖2 .

The boundedness of (mn) is an immediate consequence of the convergence of Ṽn.
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6.6. Proof of Th. 3.5

We shall use the following result.

Theorem 6.2 (adapted from [37], Th. 7). Let k ≥ 1. On some probability
space equipped with a filtration F = (Fn)n∈N, consider a sequence of r.v. on
R

k given by

Zn+1 = (I + γn+1H̄)Zn + γn+1bn+1 +
√
γn+1ηn+1

and E[‖Z0‖2] < ∞, where H̄ is a k×k Hurwitz matrix, (bn) and (ηn) are random
sequences, and γn = γ0n

−α for some γ0 > 0 and α ∈ (0, 1]. Let Ω0 ∈ F∞ have
a positive probability. Assume that the following holds almost surely on Ω0:

i) E[ηn+1|Fn] = 0.
ii) There exists a constant b̄ > 2 s.t. supn≥0 E[‖ηn+1‖b̄|Fn] < ∞.

iii) E[ηn+1η
T
n+1|Fn] = Σ + Δn where E[‖Δn‖1Ω0 ] → 0 and Σ is a positive

semidefinite matrix.
iv) The sequence (bn) is the sum of two sequences (bn,1) and (bn,2), adapted to

F , s.t. supn≥0 E[‖bn,1‖2] < ∞, E[‖bn,1‖1Ω0 ] → 0 and bn,2 → 0 a.s. on Ω0.

Then, given Ω0, (Zn) converges in distribution to the unique stationary distri-
bution μ� of the generalized Ornstein-Uhlenbeck process

dXt = H̄Xtdt+
√
ΣdBt

where (Bt) is the standard Brownian motion and
√
Σ is the unique positive

semidefinite square root of Σ. The distribution μ� is the zero mean Gaussian
distribution with covariance matrix Γ given as the solution to (H̄ + 1α=1

2γ0
Ik)Γ+

Γ(H̄ + 1α=1

2γ0
Ik)

T = −Σ.

Proof. The proof is identical to the proof of [37, Th. 7], only substituting the
inverse of the square root of Σ by the Moore-Penrose inverse. Finally, the unique-
ness of the stationary distribution μ� and its expression follow from [28, Th. 6.7,
p. 357].

We define vn = v̄n + δn where δ0 = 0, v̄0 = v0 and

δn+1 = (1− γn+1qn)δn + γn+1(pn − qnq
−1
∞ p∞)S(xn) ,

v̄n+1 = (1− γn+1qn)v̄n + γn+1qnq
−1
∞ p∞S(xn)

+ γn+1pn(∇f(xn, ξn+1)
�2 − S(xn)) .

For every z = (v,m, x) ∈ Z+ and δ ≥ 0, we define

rn(z, δ) �

⎡⎢⎣qnq
−1
∞ p∞(S(x− γn

m√
v+δ+ε

)− S(x))

hn(∇F (x− γn
m√

v+δ+ε
)−∇F (x))

γn

γn+1
( 1√

v+ε
− 1√

v+δ+ε
)�m

⎤⎥⎦ .
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Moreover, for every z = (v,m, x) ∈ Z+ and every n ∈ N, we set

gn(z) =

⎡⎣qnq−1
∞ p∞S(x)− qnv

hn∇F (x)− rnm
− γn

γn+1

m√
v+ε

⎤⎦ .

Defining ζn = (v̄n,mn, xn−1) and recalling the definition of (ηn) from Eq. (28),
we have the decomposition

ζn+1 = ζn + γn+1gn(ζn) + γn+1ηn+1 + γn+1rn(ζn, δn) .

Define z� � (x�, 0, v�). Note that gn(z�) = 0. Evaluating the Jacobian matrix
Gn of gn at z�, we obtain that there exist constants C > 0, M̄ > 0 and n0 ∈ N

s.t. for all n ≥ n0,

‖gn(z)−Gn(z − z�)‖ ≤ C‖z − z�‖2 (∀z ∈ B(z�, M̄)) , (51)

where Gn is given by

Gn �

⎡⎣−qnId 0 qnq
−1
∞ p∞∇S(x�)

0 −rnId hn∇2F (x�)
0 − γn

γn+1
V 0

⎤⎦ ,

where ∇S is the Jacobian of S and the matrix V is defined in Eq. (8). We define

G∞ � lim
n

Gn =

⎡⎣−q∞Id 0 p∞∇S(x�)
0 −r∞Id h∞∇2F (x�)
0 −V 0

⎤⎦ .

One can verify that G∞ is Hurwitz, and that the largest real part of its eigen-
values is −L′, where L′ � L ∧ q∞ and L is defined in Eq. (9).

We define Ω(0) � {zn → z�}. We assume P(Ω(0)) > 0. Using for instance
[19, Lem. 4 and Lem. 5], it holds that δn(ω) → 0 for every ω ∈ Ω(0), and
since xn(ω) − xn−1(ω) → 0 on that set, we obtain that Ω(0) = {ζn → z�}. Let
M ∈ (0, M̄) be a constant, whose value will be specified later on. For every

N0 ∈ N, define Ω
(0)
N0

� {ζn → z� and supn≥N0
‖ζn − z�‖ ≤ M}. We seek to

show that
√
γn

−1(ζn − z�) ⇒ ν given Ω(0), for some Gaussian measure ν, using

Th. 6.2. As Ω
(0)
N0

↑ Ω(0), it is sufficient to show that the latter convergence holds

given Ω
(0)
N0

, for every N0 large enough. From now on, we consider that N0 is

fixed. We define the sequence (ζ̃n)n≥N0 as ζ̃N0 = ζN0 and for every n ≥ N0,

ζ̃n+1 = ζ̃n + γn+1g̃n(ζ̃n) + γn+1(ηn+1 + rn(ζ̃n, δn))1An

where An is the event defined by

An �
n⋂

k=N0

{‖xk − x�‖ ≤ M} ∩ {‖ζ̃n − z�‖ ≤ M}
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and
g̃n(z) � gn(z)1‖z−z�‖≤M −K(z − z�)1‖z−z�‖>M ,

where K > 0 is a large constant which will be specified later on. The sequences

(ζ̃n)n≥N0 and (ζn)n≥N0 coincide on Ω
(0)
N0

. Thus, it is sufficient to study the weak

convergence of (ζ̃n)n≥N0 .

An estimate of ‖rn(ζ̃n, δn)‖1An We start by studying the sequence
(‖δn‖1An). Unfolding the update rule defining δn and using the fact that (qn)
is a sequence of positive reals converging to q∞ > 0, we obtain that

‖δn‖1An ≤
n∑

k=1

⎡⎣ n∏
j=k+1

|1− γjqj−1|

⎤⎦ γk|pk−1 − qk−1q
−1
∞ p∞|‖S(xk−1)‖1An

≤ C

n∑
k=1

exp

⎛⎝−β

n∑
j=k+1

γj

⎞⎠ γk|pk−1 − qk−1q
−1
∞ p∞| � wn ,

for some β > 0. The sequence (wn) is deterministic and converges to zero by
[19, Lem. 4]. There exists n1 ≥ n0 s.t. wn ≤ M . As v �→ 1√

v+ε
is Lipschitz and

∇F and S are locally Lipschitz, for every z = (v,m, x) and δ s.t. ‖z− z�‖ ≤ M
and ‖δ‖ ≤ M , we have

‖rn(z, δ)‖ ≤ Cγn+1‖(v + δ + ε)�− 1
2 ‖‖m‖

+ C‖(v + δ + ε)�− 1
2 − (v + ε)�− 1

2 ‖‖m‖
≤ Cγn+1‖z − z�‖+ C‖δ‖‖z − z�‖ .

This implies that for every n ≥ n1,

‖rn(ζ̃n, δn)‖1An ≤ C(γn+1 + wn)‖ζ̃n − z�‖ . (52)

Tightness of
√
γn

−1(ζ̃n − z�) We decompose

ζ̃n+1−z� = (I3d+γn+1Gn)(ζ̃n−z�)+γn+1

(
gn(ζ̃n)−Gn(ζ̃n − z�)

)
1‖ζ̃n−z�‖≤M

− γn+1(K +Gn)(ζ̃n − z�)1‖ζ̃n−z�‖>M + γn+1(ηn+1 + rn(ζ̃n, δn))1An . (53)

For a given t > 0, we write G∞ = B−1
t GtBt the Jordan-like decomposition of

G∞, where the ones of the second diagonal of the usual Jordan decomposition
are replaced by t, and where Bt is some invertible matrix. We define Sn �
Bt(ζ̃n − z�). Setting G

(t)
n � BtGnB

−1
t , we obtain

Sn+1 = (I3d + γn+1G
(t)
n )Sn + γn+1Bt

(
gn(ζ̃n)−Gn(ζ̃n − z�)

)
1‖ζ̃n−z�‖≤M

− γn+1(K +G(t)
n )Sn1‖ζ̃n−z�‖>M + γn+1Bt(ηn+1 + rn(ζ̃n, δn))1An .
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Choose A ∈ (0, 2L′) and A′ ∈ (A, 2L′). There exists γ̄ and t > 0 s.t. for every
γ < γ̄, ‖I + γGt‖2 ≤ 1 − γ(A′ + 2L′)/2, where ‖ · ‖2 is the spectral norm. As

G
(t)
n → Gt, there exists n2 ≥ n1, such that for all n ≥ n2, ‖I+γG

(t)
n ‖2 ≤ 1−γA′.

Recall the notation En = E[· |Fn]. We expand ‖Sn+1‖2 and use the inequality∥∥∥gn(ζ̃n)−Gn(ζ̃n − z�)
∥∥∥2 1‖ζ̃n−z�‖≤M ≤ C‖Sn‖2 to obtain after straightforward

algebra

En‖Sn+1‖2 ≤ (1− γn+1A
′)‖Sn‖2 + Cγ2

n+1‖Sn‖2

+ Cγ2
n+1(En‖ηn+1‖2 + ‖rn(ζ̃n, δn)‖2)1An

+ 2γn+1Re
(
S∗
nBt

(
gn(ζ̃n)−Gn(ζ̃n − z�)

))
1‖ζ̃n−z�‖≤M

−2γn+1Re
(
S∗
n(K +G(t)

n )Sn

)
1‖ζ̃n−z�‖>M +2γn+1Re

(
S∗
nBtrn(ζ̃n, δn)

)
1An .

Choose c � (A′ −A)/2. If M is chosen small enough,

‖gn(ζ̃n)−Gn(ζ̃n − z�)‖1‖ζ̃n−z�‖≤M ≤ c

2
‖Bt‖−1‖B−1

t ‖‖ζ̃n − z�‖ .

Moreover, choosing K > supn ‖G
(t)
n ‖2, it holds that Re

(
S∗
n(K +G

(t)
n )Sn

)
≥ 0.

Then,

En‖Sn+1‖2 ≤ (1− γn+1(A
′ − c))‖Sn‖2 + Cγ2

n+1‖Sn‖2

+Cγ2
n+1(En‖ηn+1‖2 + ‖rn(ζ̃n, δn)‖2)1An +2γn+1‖Bt‖‖Sn‖‖rn(ζ̃n, δn)‖1An .

Using Eq. (52),

En‖Sn+1‖2 ≤ (1− γn+1(A
′ − c− wn))‖Sn‖2 + Cγ2

n+1(1 + w2
n)‖Sn‖2

+ Cγ2
n+1En‖ηn+1‖21An .

Therefore, there exists n3 ≥ n2 s.t. for all n ≥ n3,

E‖Sn+1‖2 ≤ (1− γn+1A)E‖Sn‖2 + Cγ2
n+1E(‖ηn+1‖21‖xn−x�‖≤M ) .

The second expectation in the righthand side is bounded uniformly in n by the
condition (7). Using [19, Lem. 4 and Lem. 5], we conclude that supn γ

−1
n E‖Sn‖2<

∞. Therefore, supn γ
−1
n E‖ζ̃n−z�‖2 < ∞, which in turn implies supn γ

−1
n E(‖ζn−

z�‖21Ω(0)
N0

) < ∞.

Strongly perturbed iterations We define ỹn =
√
γn

−1(ζ̃n − z�). Define

Ḡn � γ−1
n+1

(√
γn

γn+1
− 1

)
I3d +

√
γn

γn+1
Gn .

The sequence Ḡn converges to Ḡ∞ � G∞ + 1α=1

2γ0
I3d. Recalling Eq. (53), we can

write
ỹn+1 = (I3d + γn+1Ḡ∞)ỹn + γn+1r̄n +

√
γn+1η̄n+1
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where η̄n+1 = ηn+11An and r̄n = r̄n,1 + r̄n,2 + r̄n,3, where

r̄n,1 � √
γn+1

−1rn(ζ̃n, δn)1An + (Ḡn − Ḡ∞)ỹn

r̄n,2 � √
γn+1

−1
(
gn(ζ̃n)−Gn(ζ̃n − z�)

)
1‖ζ̃n−z�‖≤M

r̄n,3 � −√
γn+1

−1(K +Gn)(ζ̃n − z�)1‖ζ̃n−z�‖>M .

We now check that the assumptions of Th. 6.2 are fulfilled. On the event Ω
(0)
N0

,

we recall that ζ̃n = ζn, hence r̄n,3 is identically zero. Moreover, using Eq. (52),
it holds that for all n large enough,

‖r̄n,1‖ ≤ C

(√
γn

γn+1
(γn+1 + wn) + ‖Ḡn − Ḡ∞‖

)
‖ỹn‖

and therefore, E[‖r̄n,1‖2] → 0. Now consider the term r̄n,2. By Eq. (51),

‖r̄n,2‖ ≤ C
√
γn+1

−1‖ζ̃n − z�‖21‖ζ̃n−z�‖≤M .

Thus, ‖r̄n,2‖2 ≤ C‖ỹn‖2 which implies that supn≥N0
E[‖rn,2‖2] < ∞. More-

over, E[‖r̄n,2‖] ≤ C
√
γn+1E‖ỹn‖2 tends to zero. Finally, consider η̄n+1. Using

condition (7), there exist M > 0 and bM > 4 s.t.

En[‖η̄n+1‖bM/2] ≤ En[‖ηn+1‖bM/2]1‖xn−x�‖≤M

≤ CEn[‖∇f(xn, ξn+1)‖bM ]1‖xn−x�‖≤M ≤ C .

Moreover, En[η̄n+1] = 0 and finally, almost surely on Ω
(0)
N , En[η̄n+1η̄

T
n+1] con-

verges to

Σ �

⎡⎢⎣ Eξ

[[
p∞(∇f(x�, ξ)

�2 − S(x�))
h∞∇f(x�, ξ)

] [
p∞(∇f(x�, ξ)

�2 − S(x�))
h∞∇f(x�, ξ)

]T]
0
0

0 0 0

⎤⎥⎦.
(54)

Therefore, the assumptions of Th. 6.2 are fulfilled for the sequence ỹn. We
obtain the desired result for the sequence (mn, xn−1). We now show that the
same result also holds for the sequence (mn, xn). For this purpose, observe that

1
√
γn

[
mn

xn − x�

]
=

1
√
γn

[
mn

xn−1 − x�

]
+

[
0

1√
γn

(xn − xn−1)

]
.

Then, notice that ‖xn−xn−1√
γn

‖ =
√
γn‖ mn√

vn+ε
‖ ≤

√
γn

ε ‖mn‖ → 0 as n → ∞ since

it is assumed that zn → z� (which implies in particular that mn → 0). Hence,
it holds that

√
γn

−1(xn − xn−1) converges a.s. to 0. We conclude by invoking
Slutsky’s lemma.

Proof of Eq. (10). We have the subsystem:

H̃Γ + ΓH̃T =

[
−h2

∞Q 0
0 0

]
where H̃ �

[
(θ − r∞)Id h∞∇2F (x�)

−V θId

]
(55)
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and where Q � Cov (∇f(x�, ξ)). The next step is to triangularize the matrix H̃
in order to decouple the blocks of Γ. For every k = 1, . . . , d, set ν±k � − r∞

2 ±√
r2∞/4− h∞πk with the convention that

√
−1 = ı (inspecting the characteristic

polynomial of H, these are the eigenvalues of H). Set M± � diag (ν±1 , · · · , ν±d )

and R± � V − 1
2PM±PTV − 1

2 . Using the identities M+ + M− = −r∞Id and
M+M− = h∞ diag (π1, · · · , πd), it can be checked that

RH̃ =

[
R−V + θId 0

−V V R+ + θId

]
R, where R �

[
Id R+

0 Id

]
.

Set Γ̃ � RΓRT. Denote by (Γ̃i,j)i,j=1,2 the blocks of Γ̃. Note that Γ̃2,2 = Γ2,2.
By left/right multiplication of Eq. (55) respectively by R and RT, we obtain

(R−V + θId)Γ̃1,1 + Γ̃1,1(V R− + θId) = −h2
∞Q (56)

(R−V + θId)Γ̃1,2 + Γ̃1,2(R
+V + θId) = Γ̃1,1V (57)

(V R+ + θId)Γ̃2,2 + Γ̃2,2(R
+V + θId) = V Γ̃1,2 + Γ̃T

1,2V . (58)

Set Γ̄1,1 = P−1V
1
2 Γ̃1,1V

1
2P . Define C � P−1V

1
2QV

1
2P . Eq. (56) yields

(M− + θId)Γ̄1,1 + Γ̄1,1(M
− + θId) = −h2

∞C .

Set Γ̄1,2 = P−1V
1
2 Γ̃1,2V

− 1
2P . Eq. (57) is rewritten (M−+θId)Γ̄1,2+Γ̄1,2(M

++
θId) = Γ̄1,1. The component (k, �) is given by

Γ̄k,�
1,2 = (ν−k + ν+� + 2θ)−1Γ̄k,�

1,1 =
−h2

∞Ck,�

(ν−k + ν+� + 2θ)(ν−k + ν−� + 2θ)
.

Set finally Γ̄2,2 = P−1V − 1
2Γ2,2V

− 1
2P . Eq. (58) becomes

(M+ + θId)Γ̄2,2 + Γ̄2,2(M
+ + θId) = Γ̄1,2 + Γ̄T

1,2 .

Thus,

Γ̄k,�
2,2 =

Γ̄k,�
1,2 + Γ̄�,k

1,2

ν+k + ν+� + 2θ

=
−h2

∞Ck,�

(ν+k + ν+� + 2θ)(ν−k + ν−� + 2θ)

(
1

ν−k + ν+� + 2θ
+

1

ν+k + ν−� + 2θ

)
.

After tedious but straightforward computations, we obtain

Γ̄k,�
2,2 =

h2
∞Ck,�

(r∞ − 2θ)(h∞(πk + π�) + 2θ(θ − r∞)) +
h2
∞(πk−π�)2

2(r∞−2θ)

,

and the result is proved.
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7. Proofs for Section 4

7.1. Preliminaries

Most of the avoidance of traps results in the stochastic approximation literature
deal with the case where the ODE that underlies the stochastic algorithm under
study is an autonomous ODE ż = h(z). In this setting, a point z� ∈ zerh
is called a trap if h(z) admits an expansion around z� of the type h(z) =
D(z − z�) + o(‖z − z�‖), where the matrix D has at least one eigenvalue which
real part is (strictly) positive. Initiated by Pemantle [38] and by Brandière and
Duflo [12], the most powerful class of techniques for establishing avoidance of
traps results makes use of Poincaré’s invariant manifold theorem for the ODE
ż = h(z) in a neighborhood of some point z� ∈ zerh. The idea is to show
that with probability 1, the stochastic algorithm strays away from the maximal
invariant manifold of the ODE where the convergence to z� of the ODE flow
can take place. As previously mentioned, since we are dealing with algorithms
derived from non-autonomous ODEs, we extend the results of [38, 12] to this
setting. The proof of Th. 4.1 relies on a non-autonomous version of Poincaré’s
theorem. We borrow this result from the rich literature that exists on the subject
[16, 30].

Let us start by setting the context for the non-autonomous version that we
shall need for the invariant manifold theorem. Given an integer d > 0 and a
matrix D ∈ R

d×d, consider the linear autonomous differential equation

ż(t) = Dz(t), (59)

which solution is obviously z(t) = eDtz(0) for t ∈ R. Let us factorizeD as in (12),

and write D = QΛQ−1 with Λ =

[
Λ−

Λ+

]
where we recall that the Jordan

blocks that constitute Λ− ∈ R
d−×d−

(respectively Λ+ ∈ R
d+×d+

) are those that
contain the eigenvalues λi of D such that �λi ≤ 0 (respectively �λi > 0). Let
us assume here that both d− and d+ are positive. It will be convenient to work
in the basis of the columns of Q by making the variable change

z �→ y =

[
y−

y+

]
= Q−1z,

where y± ∈ R
d±

. In this new basis, the ODE (59) is written as[
ẏ−

ẏ+

]
=

[
Λ−

Λ+

] [
y−

y+

]
, (60)

which solution is y±(t) = exp(tΛ±)y±(0). One can readily check that for each
couple of real numbers α+ and α− that satisfy

0 < α− < α+ < min{�λi : �λi > 0}, (61)
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there exists a so-called exponential dichotomy of the ODE solutions, which
amounts in our case to the existence of two constants K−,K+ ≥ 1 such that

‖ exp(tΛ−)‖ ≤ K−eα
−t for t ≥ 0,

‖ exp(tΛ+)‖ ≤ K+eα
+t for t ≤ 0,

see, e.g., [26].
We now consider a non-autonomous perturbation of this ODE, which is rep-

resented in the basis of the columns of Q as

ẏ(t) = h(y(t), t) with h(y, t) =

[
Λ−

Λ+

]
y + ε(y, t), (62)

and ε : R
d × R → R

d is a continuous function. In the sequel, we shall be
interested in the asymptotic behavior of this equation for the large values of t,
and therefore, restrict our study to the interval I = [t0,∞) for some given
t0 ≥ 0 that we shall fix later. We assume that ε(0, ·) = 0 on I. We denote as
φ : I × I × R

d → R
d the so-called general solution of (62), which is defined by

the fact that φ(·, t, x) is the unique noncontinuable solution of (62) such that
φ(t, t, x) = x for t ∈ I and x ∈ R

d, assuming this solution exists and is unique
for each (x, t) ∈ R

d × I.
In the linear autonomous case provided by the ODE (60), the subspace

G =

{(
t,

[
y−

0

])
∈ R× R

d : y− ∈ R
d−
}

is trivially invariant in the sense that if (t, y) ∈ G, then, (s, φ(s, t, y)) ∈ G
for each s ∈ R. This concept can be generalized to the non-linear and non-
autonomous case. We say that the C1 function w : R

d− × I → R
d+

defines
a global non-autonomous invariant manifold for the ODE (62) if w(0, t) = 0

for all t ∈ I, and, furthermore, if for each t ∈ I and each y− ∈ R
d−

, writing
y = (y−, w(y−, t)), the general solution φ(s, t, y) = (φ−(s, t, y), φ+(s, t, y)) with

φ±(s, t, y) ∈ R
d±

verifies φ+(s, t, y) = w(φ−(s, t, y), s) for each s ∈ I. The non-
autonomous invariant manifold is the set

G =

{(
t,

[
y−

w(y−, t)

])
∈ I× R

d : y− ∈ R
d−
}
,

which obviously satisfies (t, y) ∈ G ⇒ (s, φ(s, t, y)) ∈ G for each s ∈ I.
These invariant manifolds are described by the following proposition, which

is a straightforward application of [39, Th. A.1] (see also [30, Th. 6.3 p. 106,
Rem. 6.6 p. 111]). It is useful to note that under the conditions provided in
the statement of this proposition, the existence of the general solution φ of the
ODE (62) is ensured by Picard’s theorem.

Proposition 7.1. Let I = [t0,∞) for some t0 ≥ 0. Assume that the function
ε(y, t) is such that ε(0, ·) ≡ 0 on I, the function ε(·, t) is continuously differen-
tiable for each t ∈ I, and furthermore, the Jacobian matrix ∂1ε(y, t) satisfies

|ε|1 � sup
(y,t)∈Rd×I

‖∂1ε(y, t)‖ <
α+ − α−

4K
(63)
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with K = K− + K+ + K−K+(K− ∨ K+) and α−, α+ chosen as in Eq. (61).
Then, for each δ ∈ (2K|ε|1, (α+−α−)/2) and each γ ∈ (α−+ δ, α+− δ), the set

G =

{
(t, y) ∈ I× R

d : sup
s≥t

‖φ(s, t, y)‖ exp(γ(t− s)) < ∞
}

is nonempty, and does not depend on γ. Moreover, this set is a global invariant
manifold for the ODE (62) that is defined by a continuously differentiable map-

ping w : Rd− × I → Rd+

. In addition, if the partial derivatives ∂k
1 ε : R

d × I exist
and are continuous for k ∈ {1, . . . ,m} with globally bounded partial derivatives

|ε|k � sup
(y,t)∈Rd×I

‖∂k
1 ε(y, t)‖ < ∞ , (64)

under the gap condition
mα− < α+, m ∈ N

∗, (65)

the partial derivatives ∂k
1w : Rd− × I exist and are continuous with

sup
(y−,t)∈Rd−×I

‖∂k
1w(y

−, t)‖ < ∞ for all k ∈ {1, . . . ,m}. (66)

Finally, if ∂n
2 ∂

k
1 ε exist and are continuous for 0 ≤ n < m and 0 ≤ k + n ≤ m,

then w is m-times continuously differentiable.

Let us partition the function h(y, t) as

h(y, t) =

[
h−(y, t)
h+(y, t)

]
=

[
Λ−y− + ε−(y, t)
Λ+y+ + ε+(y, t)

]
, (67)

where h± : Rd × I → R
d±

, y± ∈ R
d±

and ε± : Rd × I → R
d±

. With these
notations, the previous proposition leads to the following lemma.

Lemma 7.2. In the setting of Prop. 7.1, for each t in the interior of I and each
vector y = (y−, y+) such that y± ∈ R

d±
and y+ = w(y−, t), it holds that

h+(y, t) = ∂1w(y
−, t)h−(y, t) + ∂2w(y

−, t) . (68)

Assume that α− is small enough so that Ineq. (65) and Eq. (64) hold true with
m = 2. Assume in addition that ∂n

2 ∂
k
1 ε exists and is continuous for 0 ≤ n < 2

and 0 ≤ k+ n ≤ 2, and furthermore, that there exists a bounded neighborhood
V ⊂ R

d of zero such that

sup
(y,t)∈V×I

‖∂2ε(y, t)‖ < +∞. (69)

Then, there exists a neighborhood V− ⊂ R
d−

of zero such that

sup
(y−,t)∈V−×I

∥∥∂1∂2w(y−, t)∥∥ < +∞ , (70)

sup
(y−,t)∈V−×I

∥∥∂2
2w(y

−, t)
∥∥ < +∞ . (71)
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Proof. By Prop. 7.1, the general solution φ(s, t, y) of the ODE (62) can be
written as φ(s, t, y) = (φ−(s, t, y), φ+(s, t, y)) with φ+(s, t, y) = w(φ−(s, t, y), s)
for each s ∈ I. Equating the derivatives with respect to s of the two members
of this equation and taking s = t, we get the first equation.

Writing g : Rd−× I → R
d, (y−, t) �→ (y−, w(y−, t)), Eq. (68) can be rewritten

as
∂2w(y

−, t) = h+(g(y−, t), t)− ∂1w(y
−, t)h−(g(y−, t), t). (72)

By Prop. 7.1, the function w is twice differentiable, and we can write

∂2
2w(y

−, t) = ∂1h
+∂2g + ∂2h

+ − (∂1∂2w)h
− − (∂1w)(∂1h

−∂2g + ∂2h
−), (73)

where, e.g., h+ is a shorthand notation for h+(g(y−, t), t). It holds from Eq. (67)
and the assumptions of Prop. 7.1 that for each (y, t) ∈ R

d × I,

‖∂1h(y, t)‖ ≤ ‖Λ‖+ ‖∂1ε(y, t)‖ ≤ C, (74)

where the constant C > 0 is independent of (y, t) and can change from an
inequality to another in the remainder of the proof. By the mean value inequality
and Prop. 7.1, we also get that

‖w(y−, t)‖ = ‖w(y−, t)− w(0, t)‖ ≤ sup
(u,s)

‖∂1w(u, s)‖ ‖y− ‖ ≤ C‖y−‖,

thus, ‖g(y−, t)‖ ≤ C‖y−‖. By the mean value inequality again,∥∥h(g(y−, t), t)∥∥ =
∥∥h(g(y−, t), t)− h(0, t)

∥∥ ≤ sup
(u,t)

‖∂1h(u, t)‖
∥∥g(y−, t)∥∥

≤ C
∥∥g(y−, t)∥∥ ≤ C‖y−‖.

By Eq. (72) and Prop. 7.1, this implies that∥∥∂2g(y−, t)∥∥ =
∥∥∂2w(y−, t)∥∥ = ∥∥h+ − (∂1w)h

−∥∥ ≤ C
∥∥y−∥∥ , and (75)∥∥∂1∂2w(y−, t)∥∥ = ∥∥∂1h+∂1g − (∂2

1w)h
− − (∂1w)(∂1h

−∂1g)
∥∥ ≤ C(

∥∥y−∥∥+ 1).
(76)

Let V− ⊂ R
d−

be a small enough neighborhood of zero so that g(y−, t) ∈ V for
each y− ∈ V−, which is possible by the inequality ‖g(y−, t)‖ ≤ C‖y−‖. By the
assumption on ‖∂2ε(y, t)‖ in the statement of Lem. 7.2, we have

∀y− ∈ V−,
∥∥∂2h(g(y−, t), t)∥∥ = ∥∥∂2ε(g(y−, t), t)∥∥ ≤ C. (77)

The bound (70) is an immediate consequence of Eq. (76). Getting back to
Eq. (73), the bound (71) follows from the inequalities (74)–(77).

Prop. 7.1 deals with the case where the function ε is globally Lipschitz contin-
uous. In practical cases, such a strong assumption is not necessarily verified. In
particular, for the ODEs we consider for our application, it is not satisfied (see
the function e defined in Subsec. 7.3.1 below). Nonetheless, recall that we only
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need the existence of a local non-autonomous invariant manifold, i.e. defined in
the vicinity of an arbitrary solution such as the trivial zero solution (since we
suppose here ε(0, ·) = 0) whereas the aforementioned strong assumption pro-
vides a global non-autonomous invariant manifold. Indeed, as for the avoidance
of traps result we intend to show, we will only need to look at the behavior of
our ODE in the neighborhood of a trap z�. Therefore, in prevision of the proof
of Th. 4.1, we localize the ODE (62) in the neighborhood of zero. This is the
purpose of the next proposition.

Proposition 7.3. Let I = [t0,+∞) for some t0 ≥ 0 and let h : Rd × I → Rd be
defined as in Eq. (62). Assume that ε(0, ·) ≡ 0 on I, that the function ε(·, t) is
continuously differentiable for every t ∈ I and that

lim
(y,t)→(0,+∞)

‖∂1ε(y, t)‖ = 0 . (78)

Then, there exist σ > 0, t1 > 0, a function ε̃ : R
d × I1 → R

d where I1 �
[t1,+∞) and a function h̃ : Rd × I1 → R

d defined for every y ∈ R
d, t ∈ I1 by

h̃(y, t) = Λy + ε̃(y, t) s.t. h̃ and ε̃ verify the assumptions of Prop. 7.1 and for
every (y, t) ∈ B(0, σ) × I1, we have that h̃(y, t) = h(y, t) and ε̃(y, t) = ε(y, t).
Moreover, for any δ > 0, we can choose σ, t1 respectively small and large enough
s.t. the mapping w : Rd− × I1 → R

d+

obtained from Prop. 7.1 (applied to h̃ and
ε̃) satisfies

|w|1 = sup
(y,t)∈Rd−×I1

‖∂1w(y, t)‖ < δ . (79)

Furthermore, Eq. (68) holds for h̃ and w for all (y, t) ∈ B(0, σ) × I1. If, addi-
tionally, Eq. (69) holds for ε, then there exists σ1 ≤ σ such that

sup
(y−,t)∈B(0,σ1)×I1

∥∥∂1∂2w(y−, t)∥∥ < +∞ , (80)

sup
(y−,t)∈B(0,σ1)×I1

∥∥∂2
2w(y

−, t)
∥∥ < +∞ . (81)

Proof. The idea of the proof is to localize the function h(y, t) to a neighborhood
of zero in the variable y for the purpose of applying Prop. 7.1. This cut-off tech-
nique is known in the non-autonomous ODE literature, see, e.g., [30, Th. 6.10].
Let ψ : Rd → [0, 1] be a smooth function such that ψ(y) = 1 if ‖y‖ ≤ 1, and
ψ(y) = 0 if ‖y‖ ≥ 2. Let C = maxy ‖∇ψ(y)‖ where ∇ψ is the Jacobian ma-
trix of ψ. Thanks to the convergence (78), we can choose t1 > 0 large enough
and σ > 0 small enough so that

sup
(t,y)∈[t1,∞)×B(0,2σ)

‖∂1ε(y, t)‖ <
α+ − α−

4K(1 + 2C)
,

and we set I1 = [t1,∞). Writing ε̃(y, t) = ψ(y/σ)ε(y, t), it holds that for each
(t, y) ∈ I1 × R

d,

‖∂1ε̃(y, t)‖ ≤ σ−1C1‖y‖≤2σ‖ε(y, t)‖+ 1‖y‖≤2σ‖∂1ε(y, t)‖
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≤
(

max
‖y‖≤2σ

‖∂1ε(y, t)‖
)(

σ−1C‖y‖+ 1
)
1‖y‖≤2σ

≤ α+ − α−

4K
,

where we used the mean value inequality along with ε(0, t) = 0 to obtain the
second inequality. Thus, the function h̃(y, t) = Λy + ε̃(y, t) satisfies all the as-
sumptions of Prop. 7.1. In addition, the function ε̃ coincides with the function ε
on B(0, σ1)× I1, and so it is for the functions h̃ and h. Finally, it follows from
[30, Th. 6.3] that

|w|1 ≤ 2K2

α+ − α− − 4K|ε̃|1
|ε̃|1

(note that L in [30, Th. 6.3] corresponds to |ε̃|1 with our notations). Using
Eq. (78), we can make |ε̃|1 as small as needed by choosing σ, t1 respectively small
and large enough, which gives us Eq. (79). The proof of the last two equations
follows from the application of Lemma 7.2 to h̃ and w. The result is immediate
after noticing that for (y, t) ∈ R

d × I1, we have ‖∂2ε̃(y, t)‖ ≤ ‖∂2ε(y, t)‖.

7.2. Proof of Th. 4.1

We shall rely on the following result of Brandière and Duflo. Recall that (Ω,F ,P)
is a probability space equipped with a filtration (Fn)n∈N.

Proposition 7.4. ([12, Prop. 4]) Given a sequence (γn) of deterministic non-
negative stepsizes such that

∑
k γk = +∞ and

∑
k γ

2
k < +∞, consider the

R
d–valued stochastic process (zn)n∈N given by

zn+1 = (I + γn+1Hn)zn + γn+1ηn+1 + γn+1ρn+1.

Assume that z0 is F0–measurable and that the sequences (ηn), (ρn) together
with the sequence of random matrices (Hn) are (Fn)–adapted. Moreover, on a
given event A ∈ F , assume the following facts:

i)
∑

n ‖ρn‖2 < ∞.
ii) lim supE[‖ηn+1‖2+a |Fn] < ∞ for some a > 0, and E[ηn+1 |Fn] = 0.
iii) lim inf E[‖ηn+1‖2 |Fn] > 0.

Let H ∈ R
d×d be a deterministic matrix such that the real parts of its eigenval-

ues are all positive. Then,

P (A ∩ [zn → 0] ∩ [Hn → H]) = 0.

We now enter the proof of Th. 4.1. Recall the development (11) of b(z, t)
near z� and the spectral factorization (12) of the matrix D. To begin with, it
will be convenient to make the variable change y = Q−1(z − z�), and set

h(y, t) = Q−1b(Qy + z�, t) = Λy + ẽ(y, t),
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with ẽ(y, t) = Q−1e(Qy + z�, t), in such a way that our stochastic algorithm is
rewritten as

yn+1 = yn + γn+1h(yn, τn) + γn+1η̃n+1 + γn+1ρ̃n+1

where η̃n is as in the statement of the theorem and ρ̃n = Q−1ρn. Observe that
the assumptions on the function e in the statement of the theorem remain true
for ẽ with z� replaced by zero.

If the matrix Λ has only eigenvalues with (strictly) positive real parts, i.e.,
d− = 0, then we can apply Prop. 7.4 to the sequence (zn). Henceforth, we deal
with the more complicated case where d− > 0.

Apply Prop. 7.3 to h to obtain h̃ and σ, t1 respectively small and large enough
and w : Rd− × I1 → R

d+

where I1 := [t1,+∞). By Assumption iv) of Th. 4.1
and Prop. 7.3 we can choose σ1 ≤ σ such that Eq. (80) and Eq. (81) hold. Now,
given p ∈ N, let us define the event

Ep = [∀n ≥ p, ‖yn‖ < σ1, τn ∈ I1] .

On Ep, it holds that h(yn, τn) = h̃(yn, τn) and

∀n ≥ p, yn+1 = yn + γn+1h(yn, τn) + γn+1η̃n+1 + γn+1ρ̃n+1

=

[
y−n
y+n

]
+ γn+1

[
h−(yn, τn)
h+(yn, τn)

]
+ γn+1

[
η̃−n+1

η̃+n+1

]
+ γn+1

[
ρ̃−n+1

ρ̃+n+1

]
(82)

where h is partitioned as in (67), and where η̃±n , ρ̃
±
n ∈ Rd±

. Note that, by
Prop. 7.3 and Assumptions vi) and vii) on the sequence (ηn), we can choose
σ, t1 respectively small and large enough s.t.

lim inf E[
∥∥η̃+n+1

∥∥2 |Fn]1Ep(yn)

− 2 lim supE[
∥∥∂1w(y−n , τn)η̃−n+1

∥∥2 |Fn]1Ep(yn) >
c2

2
. (83)

This inequality will be important in the end of our proof. Let t be in the interior
of I1, and let y = (y−, y+) be in a neighborhood of 0. Make the variable change
(y−, y+) �→ (u−, u+) with

u+ = y+ − w(y−, t),

u− = y−,

where w is the function defined in the statement of Prop. 7.3, and let

W (u−, u+, t) = h+(y, t)− ∂1w(y
−, t)h−(y, t)− ∂2w(y

−, t)

= h+((u−, u+ + w(u−, t)), t)

− ∂1w(u
−, t)h−((u−, u+ + w(u−, t)), t)− ∂2w(u

−, t).
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By Prop. 7.3 and Lem. 7.2, it holds thatW (u−, 0, t) = 0. Moreover,W (u−, ·, t) ∈
C1 by the assumptions on h. Therefore, writing y(r) = (u−, ru+ +w(u−, t)) for
r ∈ [0, 1], and using the decomposition (67), we get that

W (u−, u+, t) =

∫ 1

0

∂2W (u−, ru+, t)u+ dr

= Λ+u+

+

∫ 1

0

(
∂1ε

+(y(r), t)

[
0
Id+

]
− ∂1w(u

−, t)∂1ε
−(y(r), t)

[
0
Id+

])
u+dr.

We can also write y(r) = (y−, ry+ + (1 − r)w(y−, t)). Recalling that w(0, t) =

0 and that ‖∂1w(y−, t)‖ is bounded on Rd− × I, we get by the mean value
inequality that ‖w(y−, t)‖ ≤ C ‖y−‖ where C > 0 is a constant. Thus, ‖y(r)‖ ≤
(1 + C) ‖y‖. Moreover, ε(y, t) = Q−1e(Qy, t) for ‖y‖ < σ. Thus, we get by (13)
that ‖∂1ε(y(r), t)‖ → 0 as (y, t) → (0,∞) uniformly in r ∈ [0, 1]. Using again
the boundedness of ‖∂1w(·, ·)‖, we eventually obtain that

W (u−, u+, t) =
(
Λ+ +Δ(y, t)

)
u+, with lim

(y,t)→(0,∞)
Δ(y, t) = 0.

On the event Ep, assume that n ≥ p, and write

u+
n = y+n − w(y−n , τn), u−

n = y−n ,

(see Eq. (82)). Choosing α− > 0 small enough so that the gap condition (65) is
satisfied with m = 2, we have by Taylor’s expansion

w(y−n+1, τn+1)− w(y−n , τn)

= w(y−n+1, τn+1)− w(y−n , τn+1) + w(y−n , τn+1)− w(y−n , τn)

= ∂1w(y
−
n , τn+1)(y

−
n+1 − y−n ) + γn+1∂2w(y

−
n , τn) + εn+1 + εγn+1 ,

with ‖εn+1‖ ≤ sup
y−∈[y−

n ,y−
n+1]

∥∥∂2
1w(y

−, τn+1)
∥∥ ∥∥y−n+1 − y−n

∥∥2 ,

and
∥∥εγn+1

∥∥ ≤ sup
τ∈[τn,τn+1]

∥∥∂2
2w(y

−
n , τ)

∥∥ γ2
n+1 .

Using this equation, we obtain

u+
n+1 − u+

n = γn+1W (u−
n , u

+
n , τn) + γn+1

(
η̃+n+1 − ∂1w(y

−
n , τn+1)η̃

−
n+1

)
+ γn+1

(
ρ̃+n+1 − ∂1w(y

−
n , τn+1)ρ̃

−
n+1

)
− εn+1 − εγn+1

+ γn+1

(
∂1w(y

−
n , τn)− ∂1w(y

−
n , τn+1)

)
h−(yn, τn) ,

which leads to

u+
n+1 = u+

n + γn+1

(
Λ+ +Δ(yn, τn)

)
u+
n + γn+1η̄n+1 + γn+1ρ̄n+1, (84)
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with η̄n+1 = η̃+n+1 − ∂1w(y
−
n , τn)η̃

−
n+1 and

ρ̄n+1 = ρ̃+n+1 − ∂1w(y
−
n , τn)ρ̃

−
n+1 − 1γn+1>0

εn+1 + εγn+1

γn+1

+
(
∂1w(y

−
n , τn)− ∂1w(y

−
n , τn+1)

)
h−(yn, τn) . (85)

To finish the proof, it remains to check that the noise sequence satisfies the
assumptions of Prop. 7.4 on the event Ap = Ep ∩ [yn → 0]. In the remainder,
C ′ will indicate some positive constant which can change from an inequality to
another one.

First, we verify that
∑

n ‖ρ̄n‖2 < ∞ on Ap by controlling each one of the
terms of ρ̄n. Combining the boundedness of ∂1w(·, ·) with the summability as-
sumption

∑
n ‖ρ̃n+1‖21zn∈W < +∞ a.s., we immediately obtain on Ap that∑

n ‖ρ̃+n+1 − ∂1w(y
−
n , τn)ρ̃

−
n+1‖2 < +∞ given our choice of σ. Moreover, it holds

that
(
‖εγn+1‖/γn+1

)2 ≤ C ′γ2
n+1 by invoking Prop. 7.3. In addition, using the

boundedness of ∂2
1w(·, ·), we can write

1γn+1>0

∥∥∥∥ εn+1

γn+1

∥∥∥∥2 ≤ 1γn+1>0
C ′

γ2
n+1

‖yn+1 − yn‖4

≤ C ′γ2
n+1(‖h(yn, τn)‖

4
+ ‖η̃n+1‖4 + ‖ρ̃n+1‖4) .

A coupling argument (see [12, p. 401]) shows that we can simplify the condition
lim supE[‖ηn+1‖4 |Fn]1zn∈W < ∞ to E[‖ηn+1‖4 |Fn]1zn∈W < C ′. The lat-

ter condition implies that E[1Ap

∑
n γ

2
n+1 ‖ηn+1‖4] ≤

∑
n C

′γ2
n+1, and therefore∑

n γ
2
n+1 ‖ηn+1‖4 1Ap < +∞ a.s. As a consequence, noticing also the bounded-

ness of (h(yn, τn)) and (ρ̃n) on Ap, we deduce that
∑

n 1γn+1>0

∥∥∥ εn+1

γn+1

∥∥∥2 < +∞
on Ap. We now briefly control the last term of ρ̄n. By the mean value inequality,
we obtain that∥∥(∂1w(y−n , τn)− ∂1w(y

−
n , τn+1)

)
h−(yn, τn)

∥∥
≤ γn+1 sup

(y−,t)

∥∥∂2∂1w(y−, t)∥∥ ‖h−(yn, τn)‖ ≤ C ′γn+1 ,

where the last inequality stems from Prop. 7.3-Eq. (80) together with the bound-
edness of the sequence (h(yn, τn)). In view of Eq. (85) and the above estimates,
we deduce that

∑
n ‖ρ̄n+1‖21Ap < +∞ a.s. on Ap.

We verify the remaining conditions on the noise sequence (η̄n). We can
easily remark that E[η̄n+1|Fn] = 0 and ‖η̄n+1‖ ≤ C ′ ‖ηn+1‖ on Ap. Hence,
lim supE[‖η̄n+1‖4 |Fn]1zn∈W < ∞. The last condition, meaning that the noise
is exciting enough, stems from noting that

2 lim inf E[‖η̄n+1‖2 |Fn]1Ap ≥ lim inf E[
∥∥η̃+n+1

∥∥2 |Fn]1Ap

− 2 lim supE[
∥∥∂1w(y−n , τn)η̃−n+1

∥∥2 |Fn]1Ap
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>
c2

2
,

where we used our choice of σ, t1 and Eq. (83).
Noticing that [yn → 0] ⊂ [Δ(yn, τn) → 0], we can now apply Prop. 7.4 to the

sequence (u+
n ) (see Eq. (84)) with A = Ap to obtain

P
(
Ap ∩ [u+

n → 0]
)
= P

(
Ap ∩ [u+

n → 0] ∩ [Δ(yn, τn) → 0]
)
= 0 .

We now show that [yn → 0] ⊂ [u+
n → 0], which amounts to prove that

w(y−n , τn) → 0 given yn → 0. To that end, upon noting that w(0, ·) ≡ 0 and
that ∂1w(·, ·) is bounded, it suffices to apply the mean value inequality, writing:

‖w(y−n , τn)‖ = ‖w(y−n , τn)− w(0, τn)‖ ≤ sup
(y−,t)

‖∂1w(y−, t)‖ ‖y−n ‖ ≤ K‖y−n ‖ .

We have shown so far that P(Ap) = 0. Since yn = Q−1zn and [yn → 0] ⊂⋃
p∈N

Ep, we finally obtain that

P[zn → 0] = P[yn → 0] = P

⎛⎝⋃
p∈N

([yn → 0] ∩ Ep)

⎞⎠ = P

⎛⎝⋃
p∈N

Ap

⎞⎠ = 0.

Th. 4.1 is proven.

7.3. Proofs for Section 4.2.1

7.3.1. Proof of Lem. 4.2

The matrix D coincides with ∇g∞(z�), where the function g∞ is defined in (20).
As such, its expression is immediate. Recalling that p∞S(x�) − q∞v� = 0, we
get

g(z, t)−D(z − z�)

=

⎡⎢⎣p(t)S(x)− q(t)v − p∞∇S(x�)(x− x�) + q∞(v − v�)
h(t)∇F (x)− r(t)m− h∞∇2F (x�)(x− x�) + r∞m

−m
(
(v + ε)−

1
2 − (v� + ε)−

1
2

)
⎤⎥⎦

=

⎡⎢⎣−q(t) + q∞ 0 (p(t)− p∞)∇S(x�)
0 r∞ − r(t) (h(t)− h∞)∇2F (x�)
m

2(v�+ε)
3
2

0 0

⎤⎥⎦
⎡⎣v − v�

m
x− x�

⎤⎦

+

⎡⎢⎢⎣
p(t)(S(x)− S(x�)−∇S(x�)(x− x�))

h(t)(∇F (x)−∇2F (x�)(x− x�))

−m�
(

1√
v+ε

− 1√
v�+ε

+ v−v�

2(v�+ε)
3
2

)
⎤⎥⎥⎦+

⎡⎣p(t)S(x�)− q(t)v�
0
0

⎤⎦
� e(z, t) + c(t).

Under the assumptions made, it is easy to see that the function e(z, t) has the
properties required in the statement of Th. 4.1.
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7.3.2. Proof of Th. 4.3

Consider the matrix D defined in the statement of Lem. 4.2. A spectral analysis
of this matrix as regards its eigenvalues with positive real parts is done in the
following lemma.

Lemma 7.5. Let D be the matrix provided in the statement of Lem. 4.2. Each
eigenvalue ζ of the matrix D such that �ζ > 0 is real, and its algebraic and ge-
ometric multiplicities are equal. Moreover, there is a one-to-one correspondence
ϕ between these eigenvalues and the negative eigenvalues of V

1
2∇2F (x�)V

1
2 .

Let d+ be the dimension of the eigenspace of V
1
2∇2F (x�)V

1
2 that is associated

with its negative eigenvalues, let

W =

⎡⎢⎣ w1

...
wd+

⎤⎥⎦ ∈ R
d+×d

be a matrix which rows are independent eigenvectors of V
1
2∇2F (x�)V

1
2 that

generate this eigenspace, and denote as βk < 0 the eigenvalue associated with wk.
Then, the rows of the rank d+-matrix

A+ =
[
0d+×d, WV

1
2 , −diag(r∞ + ϕ−1(βk))WV − 1

2

]
∈ R

d+×3d

generate the left eigenspace of D, the row k being an eigenvector for the eigen-
value ϕ−1(βk).

Proof. It is obvious that the block lower-triangular matrix D has d eigenvalues
equal to −q∞ and 2d eigenvalues which are those of the sub-matrix

D̃ =

[
−r∞Id h∞∇2F (x�)
−V 0

]
.

Given λ ∈ C, we obtain by standard manipulations involving determinants that

det(D̃ − λ) = det(λ(r∞ + λ) + h∞V∇2F (x�))

= det(λ(r∞ + λ) + h∞V
1
2∇2F (x�)V

1
2 ).

Denoting as {βk}dk=1 the eigenvalues of h∞V
1
2∇2F (x�)V

1
2 counting the mul-

tiplicities, we obtain from the last equation that the eigenvalues of D̃ are the
solutions of the second order equations

λ2 + r∞λ+ βk = 0, k = 1, . . . , d.

The product of the roots of such an equation is βk, and their sum is −r∞ ≤ 0.
Thus, denoting as ζk,1 and ζk,2 these roots, it is easy to see that if βk ≥ 0, then
�ζk,1,�ζk,2 ≤ 0, while if βk < 0, then both ζk,i are real, and only one of them is
positive. Thus, we have so far shown that the eigenvalues of D which real parts
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are positive are themselves real, and there is a one-to-one map ϕ from the set of
positive eigenvalues of D to the set of negative eigenvalues of V

1
2∇2F (x�)V

1
2 .

Moreover, the algebraic multiplicity of the eigenvalue ζ > 0 of D is equal to the
multiplicity of ϕ(ζ).

Let us now turn to the left (row) eigenvectors of D that correspond to these
eigenvalues. To that end, we shall solve the equation

uD = ζu with u = [0, u1, u2], u1,2 ∈ R
1×d, (86)

for a given eigenvalue ζ > 0 of D. Developing this equation, we get

−r∞u1 − u2V = ζu1, h∞u1∇2F (x�) = ζu2.

If we now write ũ1 = u1V
− 1

2 and ũ2 = u2V
1
2 , this system becomes

−r∞ũ1 − ũ2 = ζũ1, h∞ũ1V
1
2∇2F (x�)V

1
2 = ζũ2,

or, equivalently,

ũ2 = −(r∞ + ζ)ũ1, ũ1

(
ζ2 + r∞ζ + h∞V

1
2∇2F (x�)V

1
2

)
= 0,

which shows that ũ1 is a left eigenvector of V
1
2∇2F (x�)V

1
2 associated with the

eigenvalue ϕ(ζ). What’s more, assume that r is the multiplicity of ϕ(ζ), and,
without generality loss, that the submatrix Wr,· made of the first r rows of W
generates the left eigenspace of ϕ(ζ). Then, the matrix[

0r×d Wr·V
1
2 −(r∞ + ζ)Wr·V

− 1
2

]
is a r-rank matrix which rows are independent left eigenvectors that generate
the left eigenspace of D for the eigenvalue ζ. In particular, the algebraic and
geometric multiplicities of this eigenvalue are equal. The same argument can be
applied to the other positive eigenvalues of D.

We now have all the elements to prove Th. 4.3. Recall Eq. (14):

zn+1 = zn + γn+1b(zn, τn) + γn+1ηn+1 + γn+1ρn+1,

where b(z, t) = g(z, t) − c(t) = D(z − z�) + e(z, t) and ρn = c(τn−1) + ρ̃n.
With these same notations, we check that Assumptions i)–vi) in the statement
of Th. 4.1 are satisfied. The function e(z, t) satisfies Assumptions i)–iv) by
Lem. 4.2. We now verify that the sequence (ρn) fulfills Assumption v). First,
observe that

∑
n ‖c(τn)‖2 < ∞ under Assumption 4.3-i). Then, we control the

second term (ρ̃n). After straightforward derivations, one can show the existence
of a positive constant C (depending only on ε and a neighborhood W of z�)
such that

‖ρ̃n+1‖21zn∈W ≤ C(‖mn −mn+1‖2 + ‖vn+1 − vn‖2)1zn∈W . (87)
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Using the boundedness of the sequences (hn) and (rn) together with the up-
date rule of mn and Assumption 4.3-iii), there exists a positive constant C ′

independent of n (which may change from an inequality to another) such that

E
[
‖mn −mn+1‖21zn∈W

]
≤γ2

n+1C
′
E
[
(1+Eξ

[
‖∇f(xn, ξ)‖2

]
)1zn∈W

]
≤C ′γ2

n+1.
(88)

A similar result holds for E
[
‖vn − vn+1‖21zn∈W

]
following the same arguments.

In view of Eqs. (87)-(88) and the assumption
∑

n γ
2
n+1 < +∞, it holds that

E
[∑

n ‖ρ̃n+1‖21zn∈W
]
< +∞. Therefore,

∑
n ‖ρ̃n+1‖21zn∈W < +∞ a.s., which

completes our verification of condition v) of Th. 4.1. Assumption vi) follows from
condition 4.3-iii). Finally, let us make Assumption vii) of Th. 4.1 more explicit.

Partitioning the matrix Q−1 as Q−1 =

[
B−

B+

]
where B± has d± rows, Lem. 7.5

shows that the row spaces of B+ and A+ are the same, which implies that
Assumption vii) can be rewritten equivalently as E[‖A+ηn+1‖2 |Fn]1zn∈W ≥
c21zn∈W . By inspecting the form of ηn provided by Eq. (28) (written as a column
vector), one can readily check that Assumption 4.3-iv) implies Assumption vii)
of Th. 4.1 for a small enough neighborhood W , using the continuity of the
covariance matrix V

1
2Eξ(∇f(x, ξ)−∇F (x))(∇f(x, ξ)−∇F (x))TV

1
2 when x is

near x�.

7.4. Proof of Th. 4.4

As mentioned in Section 4.2.2, the proof of Th. 4.4 is almost identical to the
one of Th. 4.3. We point out the main differences here. In Lem. 4.2, replace D

by D̃ =

[
0 h∞∇2F (x�)

−Id 0

]
and set c(t) = 0. Then, in Lem. 7.5, replace the

matrix V 1/2∇2F (x�)V
1/2 by the Hessian ∇2F (x�).
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