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Abstract: Split-Plot or Repeated Measures Designs with multiple groups
occur naturally in sciences. Their analysis is usually based on the classical
Repeated Measures ANOVA. Roughly speaking, the latter can be shown to
be asymptotically valid for large sample sizes ni assuming a fixed number
of groups a and time points d. However, for high-dimensional settings with
d > ni, this argument breaks down and statistical tests are often based
on (standardized) quadratic forms. Furthermore, analysis of their limit be-
haviour is usually based on certain assumptions on how d converges to ∞
with respect to ni. As this may be hard to argue in practice, we do not
want to make such restrictions. Moreover, sometimes also the number of
groups a may be large compared to d or ni. To also have an impression
about the behaviour of (standardized) quadratic forms as test statistic, we
analyze their asymptotics under diverse settings on a, d and ni. In fact,
we combine all kinds of combinations, where they diverge or are bounded
in a unified framework. To this aim, we assume equal covariance matrices
between all groups. Studying the limit distributions in detail, we follow
Sattler and Pauly (2018) and propose an approximation to obtain critical
values. The resulting test and its approximation approach are investigated
in an extensive simulation study focusing on the exceptional asymptotic
frameworks that are the main focus of this work.
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1. Motivation and introduction

In many studies, it is possible to conduct and handle a large number of mea-
surements, which makes high-dimensionality an increasingly important topic. In
fact, high-dimensional repeated measure designs or split-plot designs for multi-
ple groups are the objectives of many analyses in science. This is the case in life
science, where test persons were examined multiple times during a study, or in
the industry where some parameters are measured on a nearly continuous basis.
Therein we consider d measurements from N subjects, which are divided into
a independent and generally unbalanced groups where the i-th group contains
ni observations. Moreover, factor levels on the groups or repeated measures are
possible. For independent d-dimensional observation vectors Xik ∼ Nd(μi,Σi)
null hypotheses regarding μ = (μ1, ...,μa)

� are investigated, where popular hy-
potheses are the existence of a group effect, a time effect as well as an interaction
effect between time and group. For a classical repeated measures ANOVA design
with d ≤ ni, this was treated for example in [6]. But in many cases, it is eas-
ier, cheaper, or ethically more justifiable to increase the number of repetitions
rather than increasing the sample size. Therefore techniques are needed, which
can handle the case of d > ni.

In the particular case with just two groups but a general distributional setting
and without restriction on the dimension d, this was treated in [7]. For more
groups and a more general setting regarding hypotheses, [9] uses a classical
ANOVA F test statistic, which has just an exact F-distribution for very special
covariance matrices. So under some conditions on ni/d or the relation between
the dimension and some power of traces containing the covariance matrix, they
developed a decent approximation for the test statistic.

In [10] they handle several cases with an increasing number of groups under
some requirements on the covariance matrices and the relation between sample
sizes and the number of factor levels. In contrast, [17] investigated the case with
just one normally distributed group, but fewer assumptions on the covariance
matrix and no specific relation between sample size and dimension.

[18] expand these results especially for a larger number of groups, which is also
allowed to approach infinity, together with the sample sizes and the dimension.
As a result of this, no restrictions on their respective convergence rate were
made. However, this does not treat the small n large a case which was, e.g.,
treated by [2] or [3] for fixed dimensions d and balanced designs ni ≡ n.

The importance of such large a small n cases increased in the last years, for
example, through more interest for personalized medicine, as mentioned in [1].
Here the idea is to develop treatments adapted to the properties of the patients,
see for example [11]. A similar idea is in stratified medicine, where depending on
common biological or other characteristics, appropriate therapies are developed
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for groups of patients. Therefore it is necessary to divide existing groups into
subgroups with smaller numbers of subjects. Also, in other areas like insurance,
there is a trend for more personalized products. Together with the frequent use
of high-dimensional data, there is a demand for more comprehensive asymptotic
frameworks.

Therefore, in addition to the large a small n case, we include the large d
small n case, further combining both and developing a technique that can be
used in each of these settings. To this end, we follow the same approach as
[12] and assume homogenous covariance matrices with Σi = Σ > 0, again
with no further assumptions on the structure of the covariance matrix Σ. The
homoscedastic setting allows some generalizations as well as a smaller number
of other requirements on the underlying statistical model.

This paper is organized as follows. Section 2 introduces the statistical model,
the investigated hypotheses, and the notations used in the paper’s remainder.
In Section 3, the test statistic is presented, as well as their asymptotic behavior
and an alternative small sample approximation. Section 4 contains simulations
regarding the type-I-error rate and the tests’ power, introduced in the previous
chapters. The paper closes with a short conclusion. For brevity and readability,
all proofs are shifted to the appendix.

2. Statistical model and hypotheses

We consider a homogenous split-plot design given by a independent and unbal-
anced groups of d-dimensional random vectors

Xi,j = (Xi,j,1, . . . , Xi,j,d)
� ind∼ Nd (μi,Σ) j = 1, . . . , ni, i = 1, . . . , a, (1)

whereby each vector represents the measurement of one independent subject. It
is assumed that mean vectors E(Xi,1) = μi = (μi,t)

d
t=1 ∈ R

d and one positive
definite covariance matrix Cov(Xi,1) = Σ > 0 exist. As usual j = 1, . . . , ni

denotes the individual subjects or units in group i = 1, . . . , a, a, ni ∈ N, so we
have a total number of N =

∑a
i=1 ni random vectors. This framework allows

a factorial structure regarding time, group or both, by splitting up the indices,
accordingly, see [13] for example.

Within this model linear hypotheses of repeated measures ANOVA, formu-
lated as

H0(H) : Hμ = 0 μ = (μ�
1 , . . . ,μ

�
a )

�, (2)

are investigated. Here, H = HW ⊗ HS denots a proper hypothesis matrix,
where HW and HS refer to whole-plot (group) and/or subplot (time) effects,
while ⊗ denotes the Kronecker product.

For theoretical considerations it is often more convenient to reformulate
H0(H) through a corresponding projection matrix T = H�[HH�]−H , see
e.g. [17]. Here (·)− denotes some generalized inverse of the matrix and H0(H)
can equivalently be written as H0(T ) : Tμ = 0. As discussed in [18], T has the
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form T = TW ⊗ T S for projection matrices TW and T S . Now hypotheses of
interest are for example given by

(a) No group effect:
Ha

0 :
(
P a ⊗ 1

dJd

)
μ = 0,

(b) No time effect:
Hb

0 :
(
1
aJa ⊗ P d

)
μ = 0,

(c) No interaction effect between time and group:
Hab

0 : (P a ⊗ P d)μ = 0.

Here, Jd is the d-dimensional matrix only containing 1s and P d := Id−1/d ·
Jd is the centering matrix.

It is often useful to split the expectation vector into its components to simplify
the interpretation. With the common conditions

∑
i αi =

∑
t βt =

∑
i,t(αβ)it =

0, this can be done by expanding

μi,t = μ+ αi + βt + (αβ)it, i = 1, . . . , a; t = 1, . . . , d.

Here, αi ∈ R describes the i-th group effect, βt ∈ R the time effect at time point
t and (αβ)it ∈ R the (i, t)-interaction effect between group and time. Thereby
the above hypotheses can alternatively be formulated through

(a) Ha
0 : αi ≡ 0 for all i,

(b) Hb
0 : βt ≡ 0 for all t,

(c) Hab
0 : (αβ)it ≡ 0 for all i, t.

3. Test statistics and their asymptotics

In this work, we consider the following five different asymptotic frameworks,
which are:

a → ∞, (I)

a, d → ∞, (II)

a, nmax → ∞, (III)

d, nmax → ∞, (IV)

a, d, nmax → ∞. (V)

This great diversity is exceptional and distinguishes the present proposal
from nearly all other approaches. Most of the existing procedures just consider
special cases of one of these cases (for example [7] (IV) with a = 1 or [17] (IV)
with a = 2). Others allow for only one as [9] for (IV) or [2] for (I).

In contrast, our framework allows the combination of any of these assump-
tions. However, d → ∞ alone is not included as this would not allow the con-
struction of consistent trace estimators of covariances which are later needed
for inference. Moreover, the case nmax = max(n1, ..., na) → ∞ with fixed a and
d has already been studied in detail in the literature and is thus excluded here,
see, e.g., [8] or [4] and the references cited therein.
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It is apparent that in contrast to [18] and other papers, the common
conditions of ni

N → κi ∈ (0, 1) are missing. This is relevant because it allows
an appreciably larger amount of settings, especially for a → ∞. But it also
clearly generalizes the model for the case of fixed a, e.g. in unbalanced settings,
where we only let some group sample sizes converge to ∞.

To examine the validity of the null hypothesis H0(T ) : Tμ = 0 unattached

from the asymptotic framework, we use QN = N ·X�
TX. Here X = (X

�
1 , . . .

X
�
a )

� with Xi = n−1
i

∑ni

j=1 Xi,j , i = 1, . . . , a, denotes the vector of pooled
group means. Unfortunately for many covariance matrices Σ, the random vari-
able QN tends to converge to infinity, for d → ∞ or a → ∞. To avoid this
behaviour the standardized quadratic form given by

W̃N =
QN − EH0(QN )√

VarH0(QN )
,

is used, which also enables us to evaluate all limit distributions in detail.

For normal distributed observations the expectation and variance of the
quadratic form is known and it follows that

E(QN ) = tr(T SΣ) ·
a∑

i=1

N
ni
(TW )ii

Var(QN ) = 2 · tr((T SΣ)2) ·
a∑

i=1

a∑
r=1

N2

ninr
(TW )2ir.

Observe, that for both values only the first factor tr(T SΣ) resp. tr((T SΣ)2)
depends on the unknown covariance matrix, while all other quantities are known
from the test setting.

Applying the representation theorem for quadratic forms in normaly dis-
tributed random vectors from [16] we can rewrite the standardized statistic W̃N

as

W̃N =
QN − EH0(QN )

VarH0 (QN )
1/2

D
=

ad∑
s=1

λs√∑ad
�=1 λ

2
�

(
Cs − 1√

2

)
. (3)

Here λs are the eigenvalues of TV NT in decreasing order, V N =
⊕a

i=1
N
ni
Σ and

(Cs)s is a sequence of independent χ2
1-distributed random variables. As a conse-

quence, the asymptotic behaviour of the eigenvalues, determine the asymptotic
limit distribution of W̃N . In fact, we obtain in generalization of [17] and [18]:

Theorem 1. Let βs = λs

/√∑ad
�=1 λ

2
� for s = 1, . . . , ad. Then W̃N has, under

H0(T ), and one of the frameworks (I)-(V) asymptotically

a) a distribution of the form
∑r

s=1 bs (Cs − 1) /
√
2+

√
1−

∑r
s=1 b

2
s ·Z, if and

only if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1] with r := #{bi �= 0}, while Ci
i.i.d.∼

χ2
1, Z ∼ N (0, 1).
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b) a distribution of the form
∑∞

s=1 bs (Cs − 1) /
√
2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in (0, 1) with
∑∞

s=1 b
2
s = 1 and Ci

i.i.d.∼ χ2
1.

Putting the results into context. [7] only considered case a) with r =
0. [18] at least found asymptotic results in case b) but for case a) they need
r ∈ {0, 1}. So this theorem is not only distinct from other results through the
variety of asymptotic settings. It also considerably enhances the continuum of
limit distributions through a mixture of normal distribution and finite sums
of weighted standardized χ2

1-distributed random variables. Furthermore, the if
and only if relation shows the importance of the demands for the standardized
eigenvalues and that it isn’t possible to relax them.

To use this test statistic, it is necessary to construct proper estimators with
the necessary properties. One of these is ratio-consistency, where we call an esti-

mator θ̂n,d for θ ratio-consistent, if it holds θ̂n,d/θ
P→ 1. To get such estimators,

we define

A1 = 1∑a
i=1(ni−1)ni

a∑
i=1

ni∑
�1<�2=1

(Xi,�1 −Xi,�2)
�T S(Xi,�1 −Xi,�2

and

A2 =
a∑

i=1

ni∑
�1,�2=1
�1>�2

ni∑
k2=1

k2 �=�1 �=�2

ni∑
k1=1

�2 �=�1 �=k1>k2

[
(Xi,�1

−Xi,�2)
�
TS(Xi,k1

−Xi,k2)
]2

4·6
∑a

i=1 (
ni
4 )

.

Below we prove that they are unbiased and ratio consistent estimators for

tr(T SΣ) and tr
(
(T SΣ)

2
)
, respectivly, under both, the nullhypothesis and the

alternative. This allows us to define the estimated version of our test statistic
by

WN =
QN −A1 ·

∑a
i=1

N
ni
(TW )ii√

2 ·A2 ·
∑a

i=1

∑a
r=1

N2

ninr
(TW )2ir

.

The following Lemma justifies the usage of the estimated version instead of
the exact one.

Theorem 2. Under H0(T ) : Tμ = 0ad and one of the frameworks (I)-(V) the

statistic WN has the same asymptotic limit distributions as W̃N , if the respective
conditions (a)-(b) from Theorem 1 are fulfilled.

Unfortunately, the calculation of the standardized eigenvalues βs is generally
not simplified through homogeneity. Therefore it is nearly impossible to find
an appropriate estimator which can be used in all our frameworks. Moreover,
simulations showed that large sample sizes, dimensions or number of groups are
necessary for a good approximation, which make quantiles based on Theorem 1
a) difficult to apply. For similar reasons, in [17] and [18] they used the quantiles
of a random variable of the kind

Kf = (χ2
f − f)/

√
2f, (4)
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in case of β1 → {0, 1}. The choice of fP = tr3
(
(TV N )2

)
/ tr2

(
(TV N )3

)
for the

degrees of freedom lead to a third moment approximation. In our homoscedastic
model the usage of this random variable KfP is based on the following theorem.

Theorem 3. Under the conditions of Theorem 1 and one of the frameworks
(I)-(V) the random variable KfP has, under H0 : Tμ = 0ad, asymptotically

a) a standard normal distribution if β1 → 0 as N → ∞,
b) a standardized

(
χ2
1 − 1

)
/
√
2 distribution if β1 → 1 as N → ∞.

With the well known rules for the kronecker product and traces we can de-
compose the parameter fP by

fP =
tr3

(
(T SΣ)

2
)

tr2
(
(T SΣ)

3
) · tr3

(
[diag(N/n1, ..., N/na) · TW ]

2
)

tr2
(
[diag(N/n1, ..., N/na) · TW ]

3
) =:

tr3
(
(T SΣ)

2
)

tr2
(
(T SΣ)

3
) ·ηN,a.

The connection between fP and β1 in the two extreme cases, i.e. β1 → 0 if
and only fP → ∞ and β1 → 1 if and only if fP → 1, have been investigated in
[17] for the case of a = 1 but also translate to the present framework.

Here we have to estimate the first part, while the second one ηN,a just depends
on the asymptotic setting and therefore is known. This allows us to use the same
estimated traces for different hypothesis which differ only in TW .

Moreover, for ηN,a → ∞, we also have fP → ∞, without estimation, because

tr3
(
(T SΣ)

2
)
/tr2

(
(T SΣ)

3
)
≥ 1. Otherwise, however, the behaviour of fP is

unclear and we have to find consistent estimators for tr
(
(T SΣ)

3
)

in all our

different frameworks. This achieved by considering the class of estimators

Ci,1 :=
1

8

ni∑
�1 �=...�=�6=1

Y �
i,�1,�2Y i,�3,�4Y

�
i,�3,�4Y i,�5,�6Y

�
i,�5,�6Y i,�1,�2 ,

with Y i,�1,�2 := T S(Xi,�1 − Xi,�2). These are based on suitable symmetrized
U-statistics, while 	1 �= 	2 �= ... �= 	6 means that all indices are different.

Afterwards these estimators for each individual group are combined, to get
an estimator which uses the observations of each group, given by

C1 :=
1

6! ·
∑a

j=1

(
nj

6

) a∑
i=1

Ci,1.

Together with the estimators from above, we can construct a consistent esti-
mator for fP by f̂P := A3

2/C
2
1 · ηN,a.

Theorem 4. In all our frameworks (I)-(V), it holds that

i) C1 is an unbiased estimator for tr
(
(T SΣ)

3
)
,

ii)
(
f̂P

)−1

− (fP )
−1 P→ 0,
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where P denotes convergence in propabilty.

Through the usage of U-statistics with a kernel of order 6, for each estimator
C1,i, 6! ·

(
ni

6

)
summations have to be done. In contrast, estimators based on

observations from all groups would require much higher numbers. For example
in [18]

∏a
i=1 6! ·

(
ni

6

)
summations are necessary. Due to homogeneity, we don’t

need this kind of estimator, but C1 also requires 6!·
∑a

j=1

(
nj

6

)
summations, which

is already really high, even for comparatively small samples sizes or numbers
of groups. Thus, as in [18], the usage of subsampling versions of our estimators
is reasonable to make them applicable in practice. Instead of summing up all
possible index combinations of one group, the underlying idea is only to do this
for a randomly chosen subset of combinations.

To define the subsampling version, it is first necessary to introduce some
definitions and notations. A parameter υ ∈ (0,∞) is chosen and used to define
wi =

⌈
υ ·
(
ni

6

)⌉
, i = 1, ..., a as the number of subsampling repetitions done for the

i-th group. It is clear that the choice of υ has a great influence on the calculation
time and accuracy, so it should be chosen suitable for the situation.

Then, random subsamples σi(b) = {σ1i(b), . . . , σ6i(b)} of length 6 from
{1, . . . , ni} are drawn independently for each i = 1, . . . , a and b = 1, . . . , wi,
to define the subsampling version of Ci,1 by

C�
i,1 = C�

i,1(wi) =

wi∑
b=1

Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b)).

Here
Λ1(	1, 	2, 	3, 	4, 	5, 	6) = Y �

i,�1,�2Y i,�3,�4 ,

Λ2(	1, 	2, 	3, 	4, 	5, 	6) = Y �
i,�3,�4Y i,�5,�6 ,

Λ3(	1, 	2, 	3, 	4, 	5, 	6) = Y �
i,�5,�6Y i,�1,�2 .

Combining them, allows to define the subsamling version of C1 by

C�
1 :=

1

8 ·
∑a

j=1 wi
·

a∑
i=1

C�
i,1(wi).

Theorem 5. For
∑a

i=1 wi → ∞, if N → ∞ (which includes frameworks (I)-
(V)) it holds:

a) C�
1 is an unbiased estimator for tr

(
(T SΣ)

3
)
.

b) f̂�
P :=

A3
2

(C�
1 )

2 · ηN,a fullfilles
(
f̂�
P

)−1

− (fP )
−1 P→ 0.

This way of defining the number of subsampling repetitions wi, guarantees
that the relation between the subsampled parts C�

1,i resembles the relation be-
tween the original C1,i. Although this can lead to great differences between the
subsampling sizes for the different groups, it ensures that single groups’ influence
is not too big.

These results allow formulating a more useable version of KfP through the
following theorem.
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Theorem 6. The results of Theorem 3 remains valid if fP is replaced by f̂P or
f̂�
P .

For the estimation of the unknown traces, it would also be possible to con-
struct estimators that use observations from different groups. This is feasible
and seems reasonable, but in practice, we would again need subsampling ver-
sions of these estimators, which take care of the dataset’s structure. This is really
complicated and therefore not usable in practice. So we avoid these difficulties
by using estimators for the separate groups and combine them afterward.

Relaxing the assumption of homogeneous covariance matrices to Xij ∼
Nd(μi,Σi) with T SΣ1 = T SΣ2 = ... = T SΣa, which is essentially easier to ful-
fill, wouldn’t change the validity of the previous results. From a theoretical point
of view it would be even sufficient to assume tr((T SΣ1)

j) = tr((T SΣ2)
j) = ... =

tr((T SΣa)
j) for j ∈ {1, 2, 3}, but this is nearly impossible to justify in practice.

Remark 1. a) The equality of the covariance matrices is a central condition
of our approach. Otherwise the structure of E(QN ) and Var(QN ) changes
considerably, and properties of all estimators holds no longer. The con-
squences of a violation strongly depends on the setting and are difficult
to assess. So if there exists an i ∈ Na with Σi �= Σ then tr((T SΣi)

j)/

tr(T SΣ)j) can be close to one for j = 1, 2 but stronlgy influence Q̂N , de-
pending on the interplay, the sample size and the asymptotic framework.

b) Therefore, in the frameworks (III)-(V), it is preferable to use the approach
from [18], if the condition seems less plausible.

c) All our introduced estimators are composed from estimators for the single
groups. This allows to recognize groups, whose traces vary widley from
the others, and therefore deteced groups with other covariance matrix
and assess their influence.

4. Simulation

For an evaluation of the finite sample behavior of the introduced method, we
have conducted extensive simulations regarding

(i) their ability in keeping the nominal significance level and
(ii) their power to detect certain alternatives in various scenarios.

Here we focus on the frameworks (I) and (II), which are the most interesting
ones because they don’t require the usual condition of increasing sample sizes.
Therefore they are a strict expansion of the settings considered in [18].

4.1. Type-I error

To check the type-I error rate for α = 5% we consider small(d = 5, d = 50),
moderate(d = 200) and large dimension(d = 600) and increasing the number of
groups from 2 to 12. The sample sizes are fixed in a quite unbalanced setting
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given by n = (n1, ..., n12) = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20, 15, 25). We used
10,000 simulation runs and chose υ = 0.05 for our subsampling type estimators.
Thereby, the number of subsamling draws are between 251 and 81,158, one
basis of the quite unbalanced setting. Higher values for υ would increase the
accurancy but noticeable extend the computation time.

Two different null hypotheses are investigated to have a situation with β1 → 0
as well as with β1 → 1. These hypotheses are

• Ha
0 : (P a ⊗ P d)μ = 0,

• Hb
0 :
(
1
aJa ⊗ 1

dJd

)
μ = 0.

For both hypotheses the same distributional setting is choosen, with Σ as a
autoregressive covariance matrix with parameter 0.6 e.g. (Σ)i,j = 0.6|i−j| and
μi = 0d for i = 1, ..., a, to achieve better comparabilty. For Hb

0 it holds τP ≡ 1
while the values for Ha

0 can be seen in Table 1

Table 1

τP for T = 1
a
Ja ⊗ 1

d
Jd and (Σ)ij = 0.6|j−i| with different dimension and numbers of

groups.

τP a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9 a=10 a=11 a=12

d=5 .524 .268 .189 .146 .122 .105 .097 .092 .080 .074 .070

d=50 .100 .051 .036 .028 .023 .020 .019 .018 .015 .014 .013

d=200 .025 .013 .009 .007 .006 .005 .005 .004 .004 .004 .003

d=600 .008 .004 .003 .002 .002 .002 .002 .001 .001 .001 .001

All tests ψz = 11(WN > z1−α), ψχ = 11(WN > χ2
1;1−α) and ϕ�

N = 11{WN >
Kf̂P ;1−α} are used while χ2

1;1−α denotes the 1− α quantile of a χ2
1 distribution

and Kf̂P ;1−α the 1 − α quantile of Kf̂P
. It must be noted that in the follow-

ing figures, we use different axes for each setting to make them as detailed as
possible.

In Figure 1 it can be seen that for β1 → 0, the usage of ψχ results in too
conservative test decisions, especially for larger dimension. So, in this case, a
rate that is in most cases lower than 0.04 would lead to a raised number of
rejections when the null hypothesis is true. However, ψz has too high type-I
error rates, especially in the case of small d=5. But, this improves for a higher
dimension as well as a larger number of groups. For all dimensions, ϕ�

N shows
by far the best type-I error control rates and performs well with comparatively
low dimensions or just a few groups. It can be seen that the error rates have
less fluctuation for higher numbers of groups. The reason for this is that for
fixed comparatively small sample sizes, an increasing number of groups not
only improves the approximation but also is necessary to get reliable estima-
tors.

In contrast, there is nearly no difference between ψχ and ϕ�
N in Figure 2.

This similarity is not surprising because from Figure 1 we know that fP always
has the value one. Furthermore, the small difference between both curves shows
once more the good performance of the used estimators. Apart from that, again,
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Fig 1: Simulated Type-I error rates (α = 5%) for ψz(—), ψχ (· · ·) and ϕ�
N (- -)

under the null hypothesis Ha
0 : (P a ⊗ P d)μ = 0 for increasing dimension.

the performance of ϕ�
N is quite good, particularly for a higher number of groups.

Using the test ϕz that is based on the wrong limit distribution under Hb
0 results

in considerably larger type-I error rates between 0.065 and 0.085.

To sum up, ϕ�
N shows really good type-I error rates, overall settings, di-

mensions, and group numbers, even for substantially unbalanced sample sizes,
containing groups with just a few observations.

4.1.1. Power

The property to detect deviations from the nullhypothesis is investigated by
considering the same distributional setting as for the type-I error rate, with
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Fig 2: Simulated Type-I error rates (α = 5%) for ψz(—), ψχ (· · ·) and ϕ�
N (- -)

under the null hypothesis Hb
0 :
(
1
aJa ⊗ 1

dJd

)
μ = 0 for increasing dimension.

the same hypotheses. For this analysis we choose d = 50 and small(a = 2),
moderate(a = 4) and large(a = 8, a = 10) number of factor levels.

We are interested in three kinds of alternatives:

• a trend-alternative with μ1 = μ3 = ....,μ9 = 0d and (μ2)k = (μ4)k, ...,
(μ10)k = δ · k/d, k = 1, ..., d, δ ∈ [0, 2],

• a one-point-alternative with μ1 = μ3 = ....,μ9 = 0d and μ2 = μ4, ...,
μ10 = δ · e1, δ ∈ [0, 3.5] and

• a shift-alternative with μ1 = μ3 = ....,μ9 = 0 and (μ2) = (μ4), ..., (μ10) =
δ · 1d for Hb

0, δ ∈ [0, 2]

Here e� denotes the vector containing 1 in the 	 − th component, and 0
elsewhere and 1d contains just 1’s in each component.
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Fig 3: Simulated power curves of ϕ�
N for a trend alternative with d = 50, 10000

simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The sample
size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20) and different numbers of groups
were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a = 10(· − ·−).

From the simulation result given in [18], it directly follows that it is challeng-
ing to detect the one-point alternative for d = 50 depending on the hypothesis.
For this reason, we here consider a much larger value for δ.

For the trend alternative(Figure 3), ϕ�
N has a high power for both null hy-

potheses where the power is essential higher for Hb
0. Increasing the number of
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Fig 4: Simulated power curves of ϕ�
N for a one-point alternative with d = 50,

10000 simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The
sample size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20)and different numbers of
groups were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a =
10(· − ·−).

groups also increases the power in both hypotheses. It is noticeable that for Ha
0

increasing the number from 8 to 10 groups has substantially more effect than
from 2 to 4 groups while for Hb

0 it’s vice versa.

As expected, detecting the one-point alternative(Figure 4) is challenging for
both hypotheses, so the power is low in both cases, even for larger δ- values in
particular for Ha

0 . This observation coincides with the power calculations from
[18]. But it can be seen that an increasing number of groups increase the power
essentially.

Finally, we considered a shift alternative(Figure 5), but just for Hb
0. As in

other cases([17],[18]), this alternative is comparatively easy to detect. This holds
in particular for an increasing number groups.

All in all, except for the one-point alternative, ϕ�
N has very high power even

for these small sample sizes, especially n1 = n2 = 15. Moreover, Hb
0 is much

easier to detect in all settings.
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Fig 5: Simulated power curves of ϕ�
N for a shift alternative with d = 50, 10000

simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The sample
size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20)and different numbers of groups
were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a = 10(· − ·−).

5. Conclusion

The present paper investigated a procedure for homoscedastic split-plot designs
under various settings containing different kinds of potential high-dimensionality.
Under equal covariance matrices or similar conditions (as mentioned in Sec-
tion 2), results for settings with, for example, a large number of small indepen-
dent groups are found. These kinds of data sets nowadays get more important
because there is a trend to divide data sets more, e.g., in the context of personal-
ized medicine or personalized insurance. Different from existing approaches, we
take this development into account by considering a variety of different frame-
works.

We were able to expand the central theorem of [18] also to cover this case for
the price of the additional assumption of equal covariance matrices. Moreover,
we generalized it to some more cases, in some sense completing the scope of the
theorem. For all settings, we approximate the critical value of the test statistic
by a standardized χ2

f distribution with appropriate f . To use these results, we
developed estimators that can be used unattached of the asymptotic framework.

We conducted simulations to investigate the level of the resulting test as well
as its power. The outcomes were convincing, especially for a larger number of
groups.

Unfortunately, it is not that easy to verify the assumption of equal covariance
matrices or just equal powers of traces. The most popular test under normality,
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Box’s M-test [5], has quite good results but doesn’t take care of our asymptotic
frameworks. High-dimensional tests of equal covariance matrices are a field of
great interest, which was, for example, investigated in [14] and [15]. We plan to
combine their techniques with the results obtained in [19] in the near future.

Finally, various adjustments of estimators are planned to improve their per-
formance when the homogeneity is violated.

6. Appendix

Proof of Theorem 1. For this proof, it is helpful to present the theorem in a
more detailed way.

Let βs = λs

/√∑ad
�=1 λ

2
� for s = 1, . . . , ad. Then W̃N has, under H0(T ), and

one of the frameworks I-V asymptotically

a) a standard normal distribution if and only if

β1 = max
s≤ad

βs → 0 as N → ∞,

b) a standardized
(
χ2
1 − 1

)
/
√
2 distribution if and only if

β1 → 1 as N → ∞,

c) a distribution of the shape
∑r

s=1 bs (Cs − 1) /
√
2 +

√
1−

∑r
s=1 b

2
s · Z, if

and only if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1) with r ∈ N \ {1} with br > 0 and

br+1 = 0 with Ci
i.i.d.∼ χ2

1, Z ∼ N (0, 1).
d) a distribution of the shape

∑∞
s=1 bs (Cs − 1) /

√
2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in (0, 1) with
∑∞

s=1 b
2
s = 1 and Ci

i.i.d.∼ χ2
1.

The first two parts as well as the last one were proved in [18].

For part c) from Cramers theorem it is well known that it needs an infinite
number of summands to get a normal distribution as limit distribution. So it
exists a infinite amount M ⊂ N with

∑
�∈M

β�

(
C� − 1√

2

)
D→

√√√√1−
r∑

s=1

b2s · Z.

The proof of part a) shows, that β� → 0 for all 	 ∈ M , and because of the
decreasing order there exists an r′ ∈ N with br′ > 0 and br′+1 = 0. Assume
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now that β� → b′� for 	 = 1, ..., r′ otherwise consider the subsequence where this
holds. It remains to show that from

r′∑
�=1

β�

(
C� − 1√

2

)
→

r′∑
�=1

b′�

(
C� − 1√

2

)
D
=

r∑
�=1

b�

(
C� − 1√

2

)
,

it follows r = r′ as well as b� = b′�. To this aim, we consider the Moment-
generating functions, so we know, for all t ∈ R

r′∏
�=1

(
1− 2b′�t√

2

)−1/2

exp
(
−t

b′�√
2

)
=

r∏
�=1

(
1− 2b�t√

2

)−1/2

exp
(
−t b�√

2

)
.

Thus, applying the continous mapping theorem we have for all t ∈ R(
r′∏
�=1

(
1− 2b′�t√

2

)−1/2

exp
(
− b′�t√

2

))−2

=

(
r∏

�=1

(
1− 2b�t√

2

)−1/2

exp
(
− b�t√

2

))−2

⇔
r′∏
�=1

(
1−

√
2b′�t

)
exp(−

√
2b′�t) =

r∏
�=1

(
1−

√
2b�t

)
· exp(−

√
2b�t).

Now we consider the zero points of both sides, which are a consequence of
the polynomial parts and can be written by 1√

2b�
resp. 1√

2b′�
. It can be directly

inferred from this that both polynomials has the same degree and therefore r′ =
r. Moreover, both of them have the same zero points with the same multiplicity.
So the coefficients are the same on both sides, and because of the decreasing
order, it follows b� = b′� for 	 = 1, ..., r. Therefore the result follows.

Given the fact that framework III is not really high-dimensional, and I just
partwise, it would be possible to use other more classical estimators for the
unknown traces. Nevertheless, our focus was to develop preferably general esti-
mators that can be used in various settings.

Lemma 1. With

Ai,1 =
1

2

ni∑
�1 �=�2=1

(Xi,�1 −Xi,�2)
�T S(Xi,�1 −Xi,�2)

we can define

A1 =
1∑a

i=1(ni − 1)ni

a∑
i=1

Ai,1,

which is an unbiased and ratio consistent estimator for tr(T SΣ), in all of our
frameworks.

Proof. It is obvious that this is a unbiased estimator of tr(T SΣ). With well
known rules and analogous to [18] we calculate

Var(A1) ≤ 1

[
∑a

i=1 (
ni
2 )]

2

a∑
i=1

(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
· O(tr2(T SΣ)).



3628 P. Sattler

Now we need a case analysis which is done for some of the following proofs.
So the first one is in detail and the other proofs are shorter. At first we consider
the case where nmax → ∞. Then

Var(A1) ≤ 1

[
∑a

i=1 (
ni
2 )]·(

nmax
2 )

a∑
i=1

(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
· O(tr2(T SΣ))

≤ 1

[
∑a

i=1 (
ni
2 )]·(

nmax
2 )

a∑
i=1

(
ni

2

) ((
nmax

2

)
−
(
nmax−2

2

))
· O(tr2(T SΣ))

=
((nmax

2 )−(nmax−2
2 ))

(nmax
2 )

· O(tr2(T SΣ))

= O
(
n−1
max

)
· O(tr2(T SΣ)).

For the other case nmax is bound and a → ∞. In this situation it holds

Var(A1) ≤ 1

[
∑a

i=1 (
ni
2 )]·a·(

nmin
2 )

a∑
i=1

(
ni

2

) ((
nmax

2

)
−
(
nmax−2

2

))
· O(tr2(T SΣ))

=
((nmax

2 )−(nmax−2
2 ))

a·(nmin
2 )

· O(tr2(T SΣ))

= O
(
a−1

)
· O(tr2(T SΣ))

So dividing by tr2(T SΣ) and then using the Tschebyscheff inequality leads
to the results in both cases.

For the estimated version of the standardized quadratic form, one more esti-
mator is needed.

Lemma 2. The estimator, given by

A2 =

a∑
i=1

ni∑
�1,�2=1
�1>�2

ni∑
k2=1

k2 �=�1 �=�2

ni∑
k1=1

�2 �=�1 �=k1>k2

[
(Xi,�1 −Xi,�2)

�
T S (Xi,k1 −Xi,k2)

]2
4 · 6

∑a
i=1

(
ni

4

) ,

is an unbiased and ratio-consistent estimator of tr
(
(T SΣ)

2
)
in all our asymp-

totic frameworks.

Proof. Again the unbiasedness is clear, and we consider the variance.
We calculate, with Y i,�1,�2 := T S (Xi,k1 −Xi,k2),

Var(A2)

=

[
24

a∑
i=1

(
ni

4

)]−2 a∑
i=1

Var

⎛⎝ ni∑
�1,�2=1
�1>�2

ni∑
k2=1

k2 �=�1 �=�2

ni∑
k1=1

�2 �=�1 �=k1>k2

[
Y �

i,�1,�2Y i,k1,k2

]2⎞⎠
≤

∑a
i=1 (

ni
4 )((

ni
4 )−(

ni−4
4 ))

[4·
∑a

i=1 (
ni
4 )]

2 O
(
tr2

(
(T SΣi)

2
))

.

Similar as before for nmax → ∞ we get

Var(A2) ≤ O
(
nmax

−1
)
· O

(
tr2

(
(T SΣi)

2
))
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and for nmax bound and a → ∞

Var(A2) ≤ O
(
a−1

)
· O

(
tr2

(
(T SΣi)

2
))

.

Again the result follows by using Tschebyscheff’s inequality.

With these theorems, the usage of the estimated standardized quadratic form
can be justified.

Proof of Theorem 2. The result follows directly by theorem 3.2 from [18].

For the proof of Theorem 4, we need to show different properties that com-
bined lead to the result.

Proof of Theorem 4. We conduct this proof in several steps:

a) E(C1) = tr
(
(T SΣ)

3
)
,

b) Var(C1) =
∑a

j=1 (
nj
6 )((

nj
6 )−(

nj−6

6 ))
(
∑a

i=1 (
ni
6 ))

2 · O
(
tr3 ((T SΣ))

)
,

c) C1

tr3/2((TSΣ)2)
− tr((TSΣ)3)

tr3/2((TSΣ)2)
P→ 0 in our frameworks I-V,

d)
C2

1

A4
2
− (fP )

−1 P→ 0 in our frameworks I-V.

The results from [18] directly yield to

E(C1) = tr
(
(T SΣ)

3
)

and

Var(C1) =

a∑
i=1

Var(Ci,1)

6! ·
a∑

j=1

(
nj

6

) ≤
∑a

j=1

(
nj

6

) ((
nj

6

)
−
(
nj−6

6

))(∑a
i=1

(
ni

6

))2 · O
(
tr3 ((T SΣ))

)

which proves a) and b). Together with Tschebychefs inequality this leads to an

unbiased ratio consistent estimator for tr
(
(T SΣ)

3
)
.

For part c) we calculate

E

⎛⎝ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)
⎞⎠ = 0

and

Var

⎛⎝ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)
⎞⎠

=
Var (C1)

tr3
(
(T SΣ)

2
) ≤ 27 ·

∑a
j=1

(
nj

6

) ((
nj

6

)
−
(
nj−6

6

))(∑a
i=1

(
ni

6

))2 · O(1)
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Again this number is in O(n−1
max) for nmax → ∞ and in O(a−1) for a → ∞. So

in both cases the result follows with the Tschebyscheff-inequality.
At last, the proof of part d) is done using the above results. A similar proof

is part of [18], but we repeat it for better understanding.
With the last lemma it follows for both cases that

C2
1

tr3
(
(T SΣ)

2
) − 1

fP

=

⎛⎝ C1

tr3/2
(
(T SΣ)

2
)
⎞⎠2

−

⎛⎝ tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)
⎞⎠2

=

⎡⎣ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)
⎤⎦⎡⎣ C1

tr3/2
(
(T SΣ)

2
) +

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)
⎤⎦

= OP (1) ·
[

C1

tr3/2((TSΣ)2)
− tr((TSΣ)3)

tr3/2((TSΣ)2)
+ 2

tr((TSΣ)3)
tr3/2((TSΣ)2)

]
=OP (1),

were for the last step the trace inquality was used together with Slutzky’s theo-

rem. With the ratio-consistency of A2 it follows A2/ tr ((T SΣ))
P→ 1 and because

of continous mapping tr3 ((T SΣ)) /A3
2

P→ 1. This leads to

C2
1

A3
2

− (fP )
−1 =

tr3
(
(T SΣ)

2
)

A3
2

C2
1

tr3
(
(T SΣ)

2
) − (fP )

−1

= (1 +OP (1)) · 1

f̂P
− 1

fP

=
1

f̂P
− 1

fP
+OP (1) · 1

f̂P
=OP (1).

It is obvious that this estimator needs a sufficiently large amount of groups
with at least six observations. Similar for the other estimators, which were intro-
duced earlier. From a theoretical point of view, a scenario with nmax ≤ 5 is part
of our model. In practice, however, this setting is rarely examined. In this case,
it would be possible to define some estimators which combine observations from
different groups, which would be much more complicated than our estimators.

Proof of Theorem 5. For this proof, some results of [18] are used and adapted.
First the expactation value of the estimator, using the notation w :=

∑a
i=1 wi:

E (C�
1 ) = E

(
1

8 ·
∑a

i=1 wi

a∑
i=1

C�
i,1

)

=
1

8 · w

a∑
i=1

E
(
C�

i,1

)
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=
1

8 · w

a∑
i=1

E

(
wi∑
b=1

Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b))

)

=
1

8 · w

a∑
i=1

wi∑
b=1

E (Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b)))

=
1

8 · w

a∑
i=1

wi · E (Λ1(1, 2, 3, 4, 5, 6) · Λ2(1, 2, 3, 4, 5, 6) · Λ3(1, 2, 3, 4, 5, 6))

=
1

8 · w

a∑
i=1

wi · 8 tr
(
(T SΣ)

3
)

= tr
(
(T SΣ)

3
)
.

With Theorem A.9 Theorem A.10 and Theorem A.16 from [18] for the variance
we get

Var (C�
1 ) = 1

(8·w)2

a∑
i=1

Var
(
C�

i,1

)
≤ 1

(8·w)2

a∑
i=1

w2
i ·
[
0 + 1−

(
1− 1

wi

)
· (

ni−6
6 )

(ni
6 )

]
.

Again there the same two cases. If nmax is bound and therefore max
i=1,...,a

(wi) is

bound, it follows a → ∞ and hereby

1
(8·w)2

a∑
i=1

w2
i ·
[
0 + 1−

(
1− 1

wi

)
· (

ni−6
6 )

(ni
6 )

]
≤ 1

(8·w)·a· min
i=1,...,a

(wi)
· max
i=1,...,a

(wi)
a∑

i=1

wi · 1

= O
(
a−1

)
·

max
i=1,...,a

(wi)

min
i=1,...,a

(wi)

= O
(
a−1

)
while for nmax → ∞ which implies max

i=1,...,a
(wi) → ∞ we calculate first

w2
i ·
[
0 + 1−

(
1− 1

wi

)
·
(
ni−6

6

)(
ni

6

) ]

= wi ·
[
wi ·

(
1−

(
ni−6

6

)(
ni

6

) )
+

(
ni−6

6

)(
ni

6

) ]

≤ wi ·
[(

υ ·
(
ni

6

)
+ 1

)(
1−

(
ni−6

6

)(
ni

6

) )
+

(
ni−6

6

)(
ni

6

) ]

= wi ·
[
υ

((
ni

6

)
−
(
ni − 6

6

))
+ 1

]
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≤ wi ·
[
υ

((
nmin

6

)
−
(
nmin − 6

6

))
+ 1

]
and therefore

≤ 1

(8 · w)2
a∑

i=1

w2
i ·
[
0 + 1−

(
1− 1

wi

)
·
(
ni−6

6

)(
ni

6

) ]

≤ 1

(8 · w)2
a∑

i=1

wi ·
[
υ

((
nmin

6

)
−
(
nmin − 6

6

))
+ 1

]

≤ 1

(64 · w) · max
i=1,...,a

(wi)

a∑
i=1

wi ·
[
υ

((
nmin

6

)
−
(
nmin − 6

6

))
+ 1

]

≤ 1

(64 · w) ·
(
υ ·
(
nmax

6

)
− 1

) a∑
i=1

wi ·
[
υ

((
nmin

6

)
−
(
nmin − 6

6

))
+ 1

]

=

[
υ
((

nmin

6

)
−
(
nmin−6

6

))
+ 1

]
64 ·

(
υ ·
(
nmax

6

)
− 1

) = O
(
n−1
max

)
.

Combining these results, the remainder of the proof follows analogously to the
proof of Theorem 4.
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