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Abstract: Shape restrictions such as monotonicity on functions often arise
naturally in statistical modeling. We consider a Bayesian approach to the
estimation of a monotone regression function and testing for monotonic-
ity. We construct a prior distribution using piecewise constant functions.
For estimation, a prior imposing monotonicity of the heights of these steps
is sensible, but the resulting posterior is harder to analyze theoretically.
We consider a “projection-posterior” approach, where a conjugate normal
prior is used, but the monotonicity constraint is imposed on posterior sam-
ples by a projection map onto the space of monotone functions. We show
that the resulting posterior contracts at the optimal rate n−1/3 under the
L1-metric and at a nearly optimal rate under the empirical Lp-metrics for
0 < p ≤ 2. The projection-posterior approach is also computationally more
convenient. We also construct a Bayesian test for the hypothesis of mono-
tonicity using the posterior probability of a shrinking neighborhood of the
set of monotone functions. We show that the resulting test has a universal
consistency property and obtain the separation rate which ensures that the
resulting power function approaches one.

Keywords and phrases: Monotonicity, posterior contraction, Bayesian
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1. Introduction

We consider the nonparametric regression model Y = f(X) + ε for a response
variable Y with respect to a one-dimensional predictor variable X taking values
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in a bounded interval, and ε a mean-zero random error with finite variance σ2.
Instead of the more commonly imposed smoothness condition, here we assume
that f is a monotone increasing function on a bounded interval, which can be
taken to be [0, 1] without loss of generality. We observe n independent repli-
cations (X1, Y1), . . . , (Xn, Yn), where the design points X1, . . . , Xn are either
deterministic or are randomly sampled from a fixed distribution G. The error ε
is assumed to be distributed independently of the predictor X.

The problem has been widely studied in the frequentist literature, and is com-
monly known as isotonic regression. Barlow and Brunk [5] obtained the great-
est convex minorant (GCM) of a cumulative sum diagram as the least-square
estimator under the monotonicity constraint. The Pool-Adjacent-Violators Al-
gorithm (PAVA) describes a method of successive approximation to the GCM,
and is the most commonly used algorithm for isotonic regression (see Ayer et
al. [2], Barlow et al. [4], or De Leeuw et al. [19]). Brunk [12] showed that the
estimated value of the regression function at a point converges at a rate n−1/3,
and obtained its asymptotic distribution. Durot [20] established the n−1/3 rate
of convergence of the isotonic regression estimator under the L1-metric. Testing
for monotonicity of a regression function has been studied in the frequentist
literature by Akakpo et al. [1], Hall and Heckman [25], Baraud et al. [3], Ghosal
et al. [21] and Bowman et al. [11].

A Bayesian approach to the monotone regression problem involves putting a
prior on functions under the monotonicity constraint. Since step-functions can
approximate monotone functions, a natural approach is to put priors on step
heights under the monotonicity constraint, and possibly also on the locations
and the number of intervals. For smoother sample paths, higher-order splines
can be used instead of the indicator functions of intervals. To put a prior on a
monotone regression function, Neelon and Dunson [28] used a basis consisting of
piecewise linear functions, put a prior on the coefficients, and developed Markov
chain Monte Carlo (MCMC) methods for posterior computation. Shivley et al.
[34] used a spline basis and a mixture of constrained normal distributions as a
prior for the coefficients in the basis expansion. The resulting procedure can be
approximated by a constrained regression spline prior, which leads to an MCMC
algorithm on the space of coefficients. They also discussed posterior consistency.
Bornkamp and Ickstadt [10] modeled a monotone function as a mixture of para-
metric probability distribution functions, used a general random probability
measure as a prior for the mixing distribution and developed MCMC methods
for drawing posterior samples. Chipman et al. [16] put a prior on multivariate
monotone regression function through a Bayesian additive regression tree struc-
ture by restricting the stepheights that leads to multivariate monotonicity of
the function, and devised an MCMC posterior sampling technique.

A Bayesian approach to testing monotonicity was proposed by Salomond [30,
32] based on the posterior probability of the event that the regression function
is nearly monotone in the sense of a distance measure. The relaxation to near
monotonicity instead of the exact monotonicity is needed to avoid the problem
of falsely rejecting the null hypothesis of monotonicity because a monotone
true function may be approximated by non-monotone functions, leading to a
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high probability of type I error (see Section 4). Scott et al. [33] used a more
classical approach based on Bayes factors to test the hypothesis of monotonicity
using an integrated Brownian motion or constrained regression spline prior on
the regression function. They converted the hypothesis of monotonicity to a
statement about the minimum value of the derivative function, and gave formula
and results on the consistency of the Bayes factor. Coverage of Bayesian credible
regions for monotone regression has been recently studied by Chakraborty and
Ghosal [14]. They computed the limit and observed an interesting phenomenon
that a posterior quantile interval for the value of the function has asymptotic
coverage higher than the corresponding credibility level. This is the opposite
of the phenomenon of less asymptotic coverage of Bayesian credible regions
observed by Cox [17] for smooth function estimation. Moreover, they showed
that starting with a suitable lower credibility level, which can be calculated and
depends only on the target coverage, the intended asymptotic coverage can be
obtained. Bayesian nonparametric methods have been developed also for other
shape-constrained problems, such as monotone density and the current status
censoring model. Salomond [31] established the near minimax rate n−1/3 for a
decreasing density using a mixture of uniform densities as a prior. Chakraborty
and Ghosal [15] studied posterior contraction rate and the limiting coverage of
a Bayesian credible interval for a monotone decreasing density, and constructed
a Bayesian test for the hypothesis of monotonicity. For a monotone regression
function, asymptotic coverage of a credible interval for a regression quantile was
obtained by Chakraborty and Ghosal [13]. They also showed that the posterior
contraction rate may be improved by sampling in two stages, where the second
stage samples are collected from the credible interval obtained in the first stage.

A difficulty with the usual Bayesian approach to isotonic regression is that
the monotonicity constraint on the coefficient makes both posterior computa-
tion and study of posterior concentration with increasing sample size a lot more
challenging. This is because a neighborhood of the true regression function con-
tains non-monotone functions, which must be discounted for posterior sampling
and estimating the prior concentration near the true regression function. A very
useful approach that can still utilize the conjugacy structure is provided by
a “projection-posterior” distribution. In this approach, the monotonicity con-
straint on the step size is initially ignored, so that the coefficient may be given
independent normal priors. Hence the posterior distribution is also normal, al-
lowing easy sampling, and large sample analysis of posterior concentration. Then
a posterior distribution is directly induced by a projection map that projects
a step function to the nearest monotone function in terms of the L1-distance
or some other metric. A similar idea based on a Gaussian process prior was
used by Lin and Dunson [27] for monotone regression. Bhaumik and Ghosal
[6, 7, 8] used this idea of embedding in an unrestricted space and then project-
ing a conjugate posterior in regression models driven by ordinary differential
equations. Bhaumik et al. [9] extended their approach to generalized regres-
sion described by partial differential equations. In this paper, we pursue the
projection-posterior approach and show that the resulting projection-posterior
distribution concentrates at the optimal rate n−1/3 in terms of the L1-distance.
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We also obtain nearly optimal posterior concentration under an empirical Lp-
distance for 0 < p ≤ 2 using a different prior. In addition to being extremely
convenient for theoretical studies, the approach is very convenient for posterior
computation as well, allowing the use of the convenient conjugate prior and the
resulting posterior sampling without needing to use more computationally ex-
pensive MCMC sampling. It may be mentioned that Chakraborty and Ghosal
[14, 15, 13] also followed the projection-posterior approach, and indeed the prior
used in the present paper was also used in Chakraborty and Ghosal [14, 13]. In
this paper, we also construct a Bayesian test for the hypothesis of monotonicity
based on the posterior distribution of the difference between the unrestricted
posterior sample and its projection. We show that the resulting test is univer-
sally consistent, in that the Type I error probability goes to zero and the power
goes to one at any fixed alternative, regardless of smoothness. For a sequence of
smooth alternatives, we also compute the needed separation from the null region
to obtain high power. Our proposed test is similar in spirit to Salomond’s [32]
test in that both are based on the posterior probability of a slightly extended
null region, but our use of the L1-metric on the function or the Hellinger metric
on the density of Y , leads to the universal consistency.

The paper is organized as follows. In the next section, we formally introduce
the modeling assumptions and the prior and describe the projection-posterior
approach. In Section 3, we present results on posterior contraction rates of the
projection- posterior distribution. In Section 4, we derive asymptotic properties
of the proposed Bayesian tests. A simulation study assessing the accuracy of the
proposed Bayesian estimator and tests with other Bayesian and non-Bayesian
completing methods is presented in Section 5. Proofs of the main results are
given in Section 6 and those of the auxiliary results in Section 7.

2. Model, prior and projection-posterior

The following notations will be used throughout the paper. Let Im stand for the
m×m identity matrix. By Z ∼ NJ (μ,Σ), we mean that Z has a J-dimensional
normal distribution with mean μ and covariance matrix Σ. For a vector x,
the Euclidean norm will be denoted by ‖x‖. The transpose of a vector x is
denoted by xT and that of a matrix A is denoted by AT. If f is a function
and H is a measure, the Lp-norm of f is given by ‖f‖p,H = (

∫
|f |pdH)1/p for

1 ≤ p < ∞, and the Lp-distance between two functions f and g is given by
dp,H(f, g) = ‖f − g‖p,H for 1 ≤ p < ∞ and dp,H(f, g) =

∫
|f − g|pdH for

0 < p < 1. The indicator function will be denoted by 1 and # will stand for the
cardinality of a finite set.

For two sequences of real numbers an and bn, an � bn means that an/bn is
bounded, an � bn means that both an � bn and bn � an, and an � bn means
that an/bn → 0. For a random variable X and a sequence of random variables
Xn, Xn →P X means that Xn converges to X in P -probability.

Let F and F+ respectively denote the space of real-valued measurable func-
tions and monotone increasing functions on [0, 1], and for K > 0, let F+(K) =
{f ∈ F+ : |f | ≤ K}. For f : [0, 1] �→ R and d a distance on F , let the projection
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of f on F+ be the function f∗ that minimizes d(f, h) over h ∈ F+, provided such
a minimizer exists. The projection need not be unique, in which case any choice
may be taken. If a minimizer does not exist, a near minimizer may be used as is
commonly adopted for M-estimation; see van der Vaart [35], page 45. However,
in this paper, we need to use the projection map only on piece-wise constant
functions with respect to nicely behaved metrics like L1 or L2, for which the
projection exists and is unique. The topological closure of F+ is denoted by
F̄+. The ε-covering number of a set A with respect to a metric d, denoted by
N (ε, A, d), is the minimum number of balls of radius ε needed to cover A.

Let Gn(x) = n−1
∑n

i=1 1{Xi ≤ x}, the empirical distribution of the predic-
tors X.

A prior distribution Π on the regression function f will be given by a random
step function f(x) =

∑J
j=1 θj1{x ∈ Ij}, x ∈ [0, 1], where I1, . . . , IJ are disjoint

intervals partitioning [0, 1] given by I1 = [ξ0, ξ1] and Ij = (ξj−1, ξj ], j = 2, . . . , J .
The knot points are 0 = ξ0 < ξ1 < . . . < ξJ−1 < ξJ = 1. With a given set of
J knots, the corresponding collection of step functions is denoted by FJ . The
counts of these intervals are denoted by Nj =

∑n
i=1 1{Xi ∈ Ij}, j = 1, . . . , J .

For the prior, J or ξ = (ξ1, . . . , ξJ−1) or both may be given, or these may be
distributed according to a prior. Depending on their choices, the following three
types of prior distributions will be considered in this paper.

1. Type 1 prior: The number of steps J is deterministic (but depends on
the sample size n), ξj = j/J , j = 1, . . . , J − 1.

2. Type 2 prior: The number of steps J is deterministic,

P((ξ1, . . . , ξJ−1) = S) =
1(
n

J−1

) , S ⊂ {X1, . . . , Xn},#S = J − 1,

that is, the knots are sampled randomly without replacement from the ob-
served values of the predictor variable (only applicable for a deterministic
X with distinct values).

3. Type 3 prior: The knots are equidistant and the number of steps J is
given a prior satisfying

exp[−b1j(log j)
t1 ] ≤ Π(J = j) ≤ exp[−b2j(log j)

t2 ] (2.1)

for some b1, b2 > 0 and 0 ≤ t2 ≤ t1 ≤ 1.

In all three cases, given σ and J , the coefficients θ1, . . . , θj are given inde-
pendent normal priors θj |σ ∼ N(ζj , σ

2λ2
j ), B1 < λj < B2 for some B1, B2 > 0

and bounded |ζ1|, . . . , |ζJ |. We write Λ = diag(λ2
1, . . . , λ

2
J), the diagonal matrix

with entries λ2
1, . . . , λ

2
J . The choices of these parameters are not important for

asymptotic properties as long as the stated boundedness conditions are satisfied.
In finite samples, the choices may make some impact though. If a prior guess
f̄ about the monotone regression is available, ζj may be taken as the average∫
Ij
f̄(x)dG(x) of f̄ over Ij , while λj indicates the lack of faith in the prior belief

in ζj , j = 1, . . . , J . More commonly, in the absence of any reliable prior infor-
mation, ζj , j = 1, . . . , J , may be set to 0 and λj to relatively large value, for a
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low-information diffuse prior. The Type 1 prior will be used to obtain optimal
posterior contraction in L1-distance, Type 2 prior for posterior contraction in
terms of an empirical L2-distance while Type 3 prior will be used for testing
monotonicity against smooth alternatives of unspecified smoothness.

The variance parameter σ2 is either estimated by maximizing the marginal
likelihood, or is given an inverse-gamma prior σ2 ∼ IG(β1, β2) with β1 > 2 and
β2 > 0.

We write Y = (Y1, . . . , Yn)
T, X = (X1, . . . , Xn)

T, Dn = (Y ,X), ε =
(ε1, . . . , εn)

T, B = ((1{Xi ∈ Ij})), an n × J matrix, and θ = (θ1, . . . , θj)
T.

Thus the model can be written as Y = Bθ + ε, and the prior (given J and σ)
as θ|(J, σ) ∼ NJ(ζ, σ

2Λ) with ζ = (ζ1, . . . , ζJ)
T. Then we have (see, eg., Hoff

[26], page 155) that

θ|(Dn, J, σ, ξ) ∼ NJ ((B
TB +Λ)−1(BTY +Λ−1ζ), σ2(BTB +Λ−1)−1).

Since in our context BTB = diag(N1, . . . , NJ), it follows that θj are a posteriori
independent with

θj |(ξ, σ, J,Dn) ∼ N

(
Nj Ȳj + ζj/λ

2
j

Nj + 1/λ2
j

,
σ2

Nj + 1/λ2
j

)
. (2.2)

The marginal distribution of the observations Y (given X and J, σ2, ξ) is

Y |(σ, ξ, J,X) ∼ Nn

(
Bζ, σ2(BΛBT + In)

)
. (2.3)

As the coefficients θ have not been restricted to the cone of monotone increasing
values Q := {(q1, . . . , qJ) : q1 ≤ q2 ≤ · · · ≤ qJ}, the resulting regression function

f =
∑J

j=1 θj1Ij , sampled randomly from the posterior distribution Π(·|Dn),
may not be monotone. In order to comply with the monotonicity restriction,
a sampled value of the function f from its posterior (obtained through the
posterior sampling of θ) is projected on the set of monotone functions F+ on
[0, 1] to obtain f∗ ∈ F+ nearest to f with respect to some distance d. The
induced distribution of f∗ will be called the projection-posterior distribution.
It will be denoted by Π∗

n and will be the basis for inference on the regression
function f . By its definition, the projection-posterior distribution is restricted
to F+.

We also find that the projection f∗ of a step function f =
∑J

j=1 θj1Ij ∈ FJ

is itself a step function f =
∑J

j=1 θ
∗
j1Ij ∈ FJ , with θ∗1 ≤ · · · ≤ θ∗J . For the

the L2(Gn)-distance, these values are obtained by the weighted isotonization
procedure

minimize

J∑
j=1

Nj(θj − θ∗j )
2 subject to θ∗1 ≤ · · · ≤ θ∗J . (2.4)

The optimizing values θ∗1 , . . . , θ
∗
J can be computed using the PAVA and can

be characterized as the left-derivative at the point n−1
∑j

k=1 Nk of the great-
est convex minorant of the graph of the line segments connecting the points
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{
(0, 0),

(
N1/n,N1θ1/n

)
, . . . ,

( ∑J
k=1 Nk/n,

∑J
k=1 Nkθk/n

)}
(cf. Lemma 2.1 of

Groeneboom and Jongbloed [24]). The same solution is obtained even if the
L2(Gn)-distance is replaced by a wider class; see Theorem 2.1 of Groeneboom
and Jongbloed [24].

We make one of the following design assumptions (DD) or (DR) on the pre-
dictor X and the assumption (E) on the error variables.

Condition (DD) (Deterministic predictor). The predictor variables X is de-
terministic assuming values X1, . . . , Xn, and the counts N1, . . . , NJ of J equis-
paced intervals I1, . . . , IJ satisfy, for J → ∞, max{Nj : 1 ≤ j ≤ J}/n = O(J−1).

The bound is clearly implied by the condition sup{|Gn(x) − G(x)| : x ∈
[0, 1]} = o(J−1), where G has a positive and continuous density g on [0, 1].

Condition (DR) (Random predictor). The predictor X is sampled indepen-
dently from a distribution G, having a density g, which is bounded and bounded
away from zero on [0, 1].

The assumption of normality on the error is only a working hypothesis. We
only construct the likelihood function using the model ε1, . . . , εn i.i.d. N(0, σ2)
with an unknown σ > 0. We assume the following condition on the true distri-
bution of the error.

Condition (E) (True error distribution). The error variables ε1, . . . , εn are
i.i.d. sub-Gaussian with mean 0 and variance σ2

0 .
We denote the true value of the regression function by f0 and write the

vector of function values at the observed points by F0 = (f0(X1), . . . , f0(Xn)).
The true value of the variance σ2 is thus σ2

0 . We denote true distribution of
(X,Y ) by P0. Let E0(·) and Var0(·) be the expectation and variance operators
taken under the true distribution P0.

The error variance σ2 may be estimated by maximizing the marginal likeli-
hood of σ. From (2.3), it follows that the marginal maximum likelihood estimate
of σ2 is given by

σ̂2
n = n−1(Y −Bζ)T(BΛBT + In)

−1(Y −Bζ). (2.5)

The plug-in posterior distribution of f is then obtained by substituting σ̂n for
σ in (2.2). If instead, we equip σ2 with inverse-gamma prior σ2 ∼ IG(β1, β2),
then a fully Bayes procedure can be based on the posterior distribution

σ2|Dn ∼ IG(β1 + n/2, β2 + (Y −Bζ)T(BΛBT + In)
−1(Y −Bζ)/2); (2.6)

see Hoff [26], page 155.

3. Posterior contraction rates under monotonicity

3.1. Preliminaries

To establish posterior contraction rates for f with unknown σ, we need to ef-
fectively control the range of values of σ.

It will be shown in Lemma 7.2 that the maximum marginal likelihood estima-
tor for σ2 in the plug-in Bayes approach and the marginal posterior distribution
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of σ2 in the fully Bayes approach, are consistent for any f0 ∈ F+, and the con-
vergence is also uniform over F+(K), for any fixed K > 0. This allows us to
treat σ as essentially known in studying the posterior contraction.

As mentioned in the last section, we impose monotonicity on f by projecting
f onto F+ and use the projection-posterior distribution for inference. The fol-
lowing argument shows that the concentration property of the posterior at any
monotone function is not weakened by this procedure.

Let Π∗
n stand for the projection-posterior distribution given by

Π∗
n(B) = Π(f : f∗ ∈ B|Dn), B ⊂ F+, (3.1)

where f∗ is the projection of f on F+ with respect to some metric d on the
space of regression functions. Then for the true regression function f0 ∈ F+ and
ε > 0, we have the following concentration inequality for the projection-posterior
distribution:

Π∗
n(d(f

∗, f0) > 2ε) ≤ Π(f : d(f, f0) > ε|Dn). (3.2)

Consequently, the contraction rate of the unrestricted posterior is inherited by
the projection-posterior, giving a path to the derivation of the posterior contrac-
tion of the projection-posterior distribution. To see this, note that d(f∗, f) ≤
d(f0, f) by the property of the projection. Hence, using the triangle inequality

d(f∗, f0) ≤ d(f∗, f) + d(f, f0) ≤ d(f0, f) + d(f, f0) = 2d(f, f0). (3.3)

For p ≥ 1, the Lp-projection of a step function is easily computable, by algo-
rithms similar to the PAVA (see Section 3.1 of De Leeuw et al. [19]).

It may be noted that the concentration inequality for the projection-posterior
applies well beyond the specific prior based on piece-wise constant functions
used in the paper. For instance, if the regression function is also known to be
smoother, we can use higher order B-splines (piece-wise constant functions are
linear combinations of order 1, while piece-wise linear functions are linear com-
binations of order 2 B-splines) to construct a prior distribution that has better
concentration property at smoother functions; see Section 10.4 of Ghosal and
van der Vaart [23]. The only additional complications are that the posterior
distributions of the coefficients are dependent normal and the projection can-
not be computed by the PAVA. Nevertheless, the optimal posterior contraction
rate obtained at a smooth monotone function may be passed to the projection-
posterior distribution by (3.2). However, if only monotonicity is assumed, piece-
wise linear or higher order B-splines, although can be used to construct prior,
may not be useful for obtaining the contraction rate, due to the lack of optimal
approximation property of such functions at an arbitrary monotone function.

3.2. Contraction rates under the L1-metric

In this subsection, we derive the posterior contraction rate with respect to the
L1-metric. An important factor determining this rate is the approximation rate
of monotone functions by step functions. For the L1-metric, step functions with
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regularly placed knots are adequate for the optimal approximation rate (see
Lemma 7.3), and hence it is sufficient to consider a Type 1 prior. In the following
theorem, we derive the contraction rate at a monotone function in the L1-metric
by directly bounding posterior moments.

Theorem 3.1. Let f0 ∈ F+, and assume that Condition (E) holds. Let the prior
on f be of Type 1, with J → ∞ and J � n. Let σ2 be estimated using the plug-in
Bayes approach or endowed with the inverse-gamma prior using a fully Bayes
approach. Assume that either X is deterministic and Condition (DD) holds, or
X is random and Condition (DR) holds. Then for εn = max{J−1, (J/n)1/2}
and every Mn → ∞,

(a) E0 Π∗
n (‖f − f0‖1,Gn > Mnεn) → 0 for the fixed design;

(b) E0 Π∗
n (‖f − f0‖1,G > Mnεn) → 0 for the random design.

In particular, if we choose J � n1/3, the projection-posterior contracts at the
minimax rate εn = n−1/3. Moreover, the convergence is uniform over F+(K)
for any K > 0.

Under Condition (DR), the L1(G)-distance is equivalent to the usual Lebesgue
L1-metric on [0, 1], and hence the contraction rate may be stated in terms of
the latter. Conditions (DD) or (DR) on X in the theorem above is needed only
to conclude, using Lemma 7.2, that the estimator (or the posterior) for σ is
consistent. The conclusion is only used to get an upper bound for σ. If instead,
we assume an upper bound for σ (and change the prior on σ to comply with the
bound, if the fully Bayes procedure is used), we can remove these conditions.

3.3. Contraction rates under the empirical Lp-metric

When the metric under consideration is Lp with p > 1, step functions based on
equidistant knots do not have the optimal approximation property. To restore
this ability, we need to allow arbitrary knots (see Lemma 7.3), and put a prior
on these. Then the theory of posterior contraction for general (independent, not
identically distributed) observations of Ghosal and van der Vaart [22] can be
applied by computing the prior concentration rate near the truth and bounding
the metric entropy of a suitable subset of the parameter space, called a sieve.
However, due to their ordering requirement and possibly very uneven allocation
of the knots ξ used for the construction of the optimal approximation, the
concentration of the prior distribution of ξ near their values appearing in the
optimal approximation may be low, and hence the posterior concentration rate
may suffer. The problem can be avoided by choosing knots from the observed
values of X when the predictor variable is deterministic and the empirical Lp-
norm ‖f‖p,Gn is used. Then the optimal rate (up to a logarithmic factor) can
be obtained.

Theorem 3.2. Let X be deterministic assuming values X1, . . . , Xn. Let f0 ∈
F+ and the prior on f be of Type 2, with log J � logn. Let ε1, . . . , εn be i.i.d.
normal with mean zero and variance σ2, which is estimated using the plug-in



Bayesian monotone regression 3487

Bayes approach or is endowed with the inverse-gamma prior using a fully Bayes
approach. Then for any 0 < p ≤ 2, E0 Π∗

n (‖f − f0‖p,Gn > Mnεn) → 0, where

εn = max{
√
(J logn)/n, J−1}. In particular, the best rate εn = (n/ logn)−1/3

is obtained by choosing J � (n/ log n)1/3. Moreover, the convergence is uniform
over F+(K) for any K > 0.

If, instead of choosing J , we put a prior also on J following (2.1), then the
contraction rate is given by n−1/3(log n)(5−3t2)/6.

Clearly, with a prior on J given by (2.1), the best rate (n/ log n)−1/3 is ob-
tained when t1 = t2 = 1. A Poisson (or a suitably truncated Poisson) prior meets
the requirement. Again, Condition (DD) is used only to derive the consistency
of the estimator (or the posterior) of σ, and the condition can be removed if σ
is assumed to be bounded.

It would be interesting to obtain nearly optimal contraction rates for the
continuous Lp-metric, but we do not know an appropriate prior on the knot-
locations that would allow sufficient prior concentration to yield the desired
result. For the continuous metric Lp-metric, the weak approximation with equal
intervals allows only a sub-optimal approximation rate J−1/p (see Lemma 7.3),
and consequently a suboptimal posterior contraction rate (n/ logn)−1/(p+2).

4. Bayesian testing for monotonicity of f

A natural test for the hypothesis of monotonicity is given by the posterior
probability of F+: reject the hypothesis if Π(f ∈ F+|Dn) is smaller than 1/2,
say. The problem with this test is that for a true regression f0 ∈ F+, even
though the posterior is consistent at f0, the posterior probability Π(f ∈ F+|Dn)
may be low because a large part of a neighborhood of f0 may fall outside F+.
In order to avoid such false rejections, one may quantify a test based on a
discrepancy measure d(f,F+) between f sampled from the posterior, and the
set of monotone functions F+ (that is, a nonnegative function f that vanishes
exactly on F+), or equivalently, based on d(f, f∗), where f∗ is the projection
of f on F+. A reasonable test can be determined by the posterior probability
Π(f : d(f,F+) < τn|Dn) for a sequence τn → 0 slowly. In other words, we reject
for low values of the posterior probability Π(Fτn

+ |Dn) of the τn-neighborhood
Fτn

+ = {f : d(f,F+) < τn} of F+. This approach was also pursued by Salomond
[30, 32], with a discrepancy measure given by d(f,F+) = max{(θj − θi) : 1 ≤
j ≤ i ≤ J} for f =

∑J
j=1 θj1Ij (with equidistant knots) and a cut-off τn =√

(J logn)/n. This test has the probability of Type I error going to zero and
has high power against smooth alternatives, if appropriately separated from the
null. However, the power of this test at a non-smooth alternative may not go to
one. This prompts us to propose an alternative test, based on the L1-distance as
the discrepancy measure, which has the property of universal consistency, that
is, the power at any fixed alternative goes to one.

Let H(α,L) be the Hölder space of α-smooth function with Hölder norm
bounded by L (see Definition C.4 of Ghosal and van der Vaart [23]).
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Theorem 4.1. Consider a Type 1 prior with J � n1/3. Let σ2 be estimated using
the plug-in Bayes approach or endowed with the inverse-gamma prior using a
fully Bayes approach. Assume that X is random and Condition (DR) holds,
and the errors satisfy Condition (E). For the discrepancy measure d(f,F+) =
inf{‖f−h‖1,G : h ∈ F+}, consider a test φn = 1{Π(d(f,F+) ≤ Mnn

−1/3|Dn) <
γ}, where 0 < γ < 1 is a predetermined constant and Mn → ∞ is fixed slowly
growing sequence. Then the following assertions hold.

(a) (Consistency under H0) : For any fixed f0 ∈ F+, E0φn → 0, and further
the convergence is uniform over F+(K).

(b) (Universal Consistency) : For any fixed f0 integrable on [0, 1] and f0 /∈ F̄+,
E0(1− φn) → 0.

(c) (High power at converging smooth alternatives) : For any 0 < α ≤ 1 and
L > 0, sup{E0(1− φn) : f0 ∈ H(α,L), d(f0,F+) > ρn(α)} → 0, where

ρn(α) =

{
Cn−α/3, for some C > 0 if α < 1,

CMnn
−1/3, for any C > 1 if α = 1.

In the above theorem, the L1(G)-distance may be replaced by the L1-distance
under the Lebesgue measure, since under Condition (DR), these two metrics are
equivalent. In this case, part (c) may be strengthened by replacing the Hölder
space H(α,L) by the Sobolev space with (1, α)-Sobolev norm bounded by L (see
Definition C.6 of Ghosal and van der Vaart [23]). Also, if G is replaced by the
empirical distribution Gn (and assuming that Condition (DD) holds instead of
Condition (DR) if X is deterministic), the conclusions in parts (a) and (c) will
still hold. The proof is very similar. If σ has a known bound, then Condition
(DD) or Condition (DR) is not needed.

The procedure involving the test φn is computationally simple as it does not
involve a prior on J . The algorithm for median isotonic regression (see Robertson
and Wright [29] and De Leeuw et al. [19]) allows us to compute d(f,F+) very
efficiently. However, with a deterministic choice of J , the posterior contraction
is not adaptive on classes of functions with different smoothness α, where the
optimal order is n1/(1+2α). This is caused by the deterministic choice of J � n1/3

needed for the optimal rate at a monotone function, which differs from the
optimal order of n1/(1+2α) needed to match the minimax optimal rate n−α/(1+2α)

(up to a logarithmic factor) at a function in H(α,L). This has a consequence
on the degree of separation needed for high asymptotic power at an alternative
regression function f0 ∈ H(α,L) in testing for monotonicity. In order to make
the power go to one, an n−α/3-sized neighborhood of f0 should not contain a
part of F+, that is, the order of separation from f0 to F+ for high power needs
to be at least n−α/3 in the above result. In other words, the order of separation
n−α/3 (up to a logarithmic factor) between f0 and F+ is needed. However, this
is more than what should be ideally needed by a testing procedure. Since the
contraction rate at a function in H(α,L) is n−α/(1+2α) achievable by choosing
J � n−α/(1+2α), in order to make the power go to one, only an n−α/(1+2α)-size
neighborhood should be disjoint from F+. Thus the minimal order of separation
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from f0 to F+ needed for high power by any testing procedure is n−α/(1+2α), or
that, n−α/(1+2α) is the optimal order of separation. As the separation needed
in the above result is larger than the minimal order except for α = 1, the
resulting test is not rate-adaptive. Adaptation can, however, be restored in a
class of uniformly bounded regression functions by using a prior on J , and
letting cut-off value for the discrepancy with F+ depend on J . The idea is
similar to the one used in Salomond [32], except that we use the Hellinger
distance between the underlying densities, instead of the maximum discrepancy
measure on the coefficients used by him. This allows us to retain the universal
consistency property.

Let dH(f1, f2) stand for the Hellinger distance between pf1,σ and pf2,σ, where
pf,σ stands for the joint density of (X,Y ) following Y |X ∼ N(f(X), σ2) and
X ∼ G, with respect to the measure the product of G and the Lebesgue measure.
By an easy calculation,

d2H(f1, f2) = 2
[
1−

∫
(σ
√
2π)−1/2 exp{−(f1(x)− f2(x))

2/(8σ2)}
]
g(x)dx.

It follows that dH(f1, f2) � ‖f1 − f2‖2,G and the reverse inequality also holds if
f1 and f2 belong to a uniformly bounded class.

Theorem 4.2. Let the prior on f be of Type 3 with J given a Poisson prior,
and σ be bounded and be given a positive prior density with bounded support
containing the true value σ0. Assume that X ∼ G and G satisfies Condition
(DR). Let φn = 1{Π(dH(f,F+) ≤ M0

√
(J logn)/n|Dn) < γ}, 0 < γ < 1, be a

predetermined constant and M0 > 0 be a sufficiently large constant.

(a) (Consistency under H0) : For any fixed f0 ∈ F+, E0φn → 0, and the
convergence is uniform over F+(K).

(b) (Universal Consistency) : For any fixed f0 integrable on [0, 1] and f0 /∈ F̄+,
E0(1− φn) → 0.

(c) (Adaptive power at converging smooth alternatives) : For f0 /∈ F+, f0 ∈
H(α,L), there exists C depending on α and L only such that

sup{E0(1− φn) : f0 ∈ H(α,L), dH(f0,F+) > C(n/ logn)−α/(1+2α)} → 0.

In the theorem,G can be replaced by the uniform distribution in the definition
of the test. In this case, the Hölder space H(α,L) in part (c) can be replaced
by the Sobolev space with (2, α)-Sobolev norm bounded by L.

Unlike Theorem 4.1, the proof requires the application of the general theory
of posterior contraction. The weaker Hellinger distance for separation is used so
that a test required for the application of the theory is available automatically
without requiring the regression functions to be bounded by a known constant,
a condition that will rule out the conjugate normal prior needed in the proof.
An alternative is to use the empirical L1-distance and conclude parts (a) and
(c) only, assuming that Nj � n/J uniformly in j = 1, . . . , J .



3490 M. Chakraborty and S. Ghosal

5. Simulation study

In this section, we compare the proposed method with some other Bayesian and
non-Bayesian methods. For estimation, we compare the L1-distance of the Bayes
estimator from the true function, with the L1-distance of other estimators from
the true function. For testing, we compare the level and power of the Bayesian
test with those of the competing tests for monotonicity.

5.1. Simulation for contraction rates

We perform a simulation study to demonstrate the behavior of our projection-
posterior method of estimation in finite samples. We use the Bayesian algorithm
for estimating monotone functions given by Bornkamp and Ickstadt [10], and
the median isotonic regression estimator as benchmarks to compare our results
with. We consider the following monotone functions on [0, 1]:

1. f1(x) = 0,
2. f2(x) = x2 + x/5,

3. f3(x) =

{
0, x ≤ 0.6

1, x > 0.6,

4. f4(x) = (Be(x, 1, 1) + Be(x, 200, 80) + Be(x, 80, 200))/3, where Be(x, a, b)
is the distribution function of a Beta(a, b) random variable evaluated at x.

For every true regression function, we generate samples of size n from the model
Y = f(X) + ε, with X as points equally distributed on (0, 1), ε generated from
N(0, σ2), with σ = 0.1. We take the number of pieces J as the greatest integer
less than or equal to n1/3 logn. We generate 1000 posterior samples for each
dataset, project them onto the monotone class of functions and use the mean
of projection-posterior samples as our estimator.

We compare the performance of our method with that of the median isotonic
estimator and the algorithm by Bornkamp and Ickstadt [10]. The R package
“isotone” efficiently computes the L1-projection of a step function on F+. We
use 5000 burn-in samples and 20000 MCMC samples to estimate f using the
method of Bornkamp and Ickstadt [10], implemented in the R package “bnpmr”.

To evaluate the performance of an estimator f , we find the L1-distance be-
tween f and the true function f0 on a fine grid, calculated as

D(f, f0) =
1

K

K∑
k=1

∣∣f(k/K)− f0(k/K)
∣∣, K = 100.

We report the results in Table 1. Each entry is D(f, f0) averaged over 1000
replications, and the standard deviation across these replications is reported in
the bracket. We use “projection”, “BNPMR” and “isotone” respectively to de-
note the estimators obtained from our method, Bornkamp and Ickstadt [10], and
median isotonic regression. We observe that while no single method performs
better than others in all the cases considered, the projection-posterior method
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Fig 1. Scatterplot, 95% projection-posterior credible interval, projection-posterior estimate
and true function, displayed for one dataset generated from models with f = f2 and f = f4.

seems to do better than Bornkamp and Ickstadt [10] for f = f2 when n = 100
and f = f4. For f = f1, projection-posterior and isotonic regression give very
similar results. In the experimental setup of Table 1, the approximate com-

Table 1

Comparison of the L1-distance of the true function from the proposed estimate. Each entry
is the error averaged over 1000 replications and the number in bracket is the standard

deviation across the replications.

n = 100 n = 200
projection BNPMR isotone projection BNPMR isotone

f1 0.019(0.007) 0.011(0.006) 0.019(0.008) 0.013(0.005) 0.008(0.004) 0.013(0.006)
f2 0.059(0.008) 0.065(0.007) 0.036(0.005) 0.042(0.007) 0.018(0.019) 0.029(0.004)
f3 0.065(0.006) 0.020(0.006) 0.024(0.007) 0.045(0.004) 0.016(0.004) 0.018(0.006)
f4 0.056(0.008) 0.068(0.002) 0.033(0.007) 0.039(0.005) 0.067(0.001) 0.026(0.004)

puting times needed to generate the posterior samples from one dataset of size
100 were 0.57 seconds for projection-posterior, and 1 second for Bornkamp and
Ickstadt [10]. This is expected, as our method does not involve drawing MCMC
samples and is therefore computationally simpler than MCMC-based Bayesian
methods.

We display the scatter-plot of a dataset of size 100 generated from f = f2 and
f = f4 with σ = 0.1, along with our estimator and a 95% projection-posterior
credible region in Figure 1. The estimator is seen to approximate the flat parts
of f4 and most parts of f2 quite well.

5.2. Simulation for testing monotonicity

In this section we report the results from a simulation study comparing the
performance of our test for monotonicity with that of two other methods. The
first method is the one by Salomond [32], and the second is a non-Bayesian test
proposed by Ghosal et. al. [21].

We generate samples of size n from the model Yi = f(Xi) + εi, with Xi’s
equally spaced on (0, 1). The errors εi are i.i.d. N(0, 0.12). We generate 500
such datasets for each test function f on [0, 1]. We choose three monotone func-
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tions: m1(x) = 0, m2(x) = 0.21{x>0.6}, m3(x) = (Be(x, 1, 1) + Be(x, 200, 80) +
Be(x, 80, 200))/3. For non-monotone functions, we choose f as m4(x) = −0.1x,
m5(x) = −0.1 exp{−50(x − 0.5)2}, m6(x) = 0.1 cos(6πx), m7 = 0.2x +m6(x),
m8(x) = x+ 0.415 exp(−50x2), m9(x) = x+ 1− 0.45 exp{−50(x− 0.5)2}. The
functions m4 to m8 have been considered by Scott [33], Salomond [32] and
Ghosal et. al. [21] as examples of non-monotone functions with small depar-
tures from monotonicity. The test by Salomond [32] is for monotone decreasing
functions, so we use his algorithm on the negative of our simulated Y -values.

We choose the number of knots J as the greatest integer less than or equal to
n1/3. The hyperparameters are chosen as ζj = 0 and λ2

j = 100 for all 1 ≤ j ≤ J .

For the error variance, we use the marginal maximum likelihood estimate of σ2.
For our test and that of Salomond’s [32], we use 1000 posterior samples for each
dataset to make inference. The γ in Theorem 4.1 is chosen as 1/2.

To determine an appropriate cutoff point for our test, we find a slowly growing
sequence Mn such that using Mnn

−1/3 as the cutoff in Theorem 4.1 results in
low Type 1 error for f = 0. We let Mn = M0(log n)

κ for M0, κ > 0. We run
our test across different combinations of (M0, κ) on datasets generated from the
model with f = 0 for several values of n, ranging from n = 50 to n = 10000,
and choose the combinations that result in the misclassification error rate being
less than 0.10. We then select the combination that maximizes the power when
the test is used on datasets generated from non-monotone functions. From this
analysis, we found Mn = 0.8(logn)0.1 to be an appropriate candidate for Mn.

The Type 1 errors of the tests are presented in Table 2. The error rate cor-
responding to m1 gives us an idea about the level of the test. The power of
the tests are displayed in Table 3. We find that our test has low Type 1 error
rate and it outperforms Salomond’s [32] test in samples of sizes 50 and 100 in
datasets generated from monotone functions. In terms of power, our test does
slightly worse than the other tests in small and moderate sample sizes. However,
as n grows, the power approaches one.

The computing time for our procedure was found to be quite reasonable. We
evaluated d(f,F+) using the gpava function in the R package “isotone”. For a
dataset with n = 500, using 2500 posterior draws, our test took 0.75 seconds to
execute. On the same dataset, Salomond’s [32] test took 2.03 seconds to run on
the same processor, for 2500 posterior samples. As mentioned before, our test
is computationally simpler than Salomond’s [32] as it does not draw posterior
samples of J , which is possibly the reason for the faster computational time.

6. Proofs of the main results

Proof of Theorem 3.1. In view of (3.2), it is enough to obtain the contraction
rate of the unrestricted posterior. We prove the result for the plug-in Bayes
approach; the fully Bayes case can be dealt with similarly. From Lemma 7.2,
get a shrinking neighborhood Un of σ0 with P0(σ̂n ∈ Un) → 1. Hence for the
purpose of the proof, we may assume that σ̂n ∈ Un.

We first consider the case that X is deterministic. Let f0J =
∑J

j=1 θ0j1Ij

with θ0j = N−1
j

∑
i:Xi∈Ij

f0(Xi) for all 1 ≤ j ≤ J . By Lemma 7.3 (a), we
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Table 2

Type 1 error: the proportion of instances out of 500 when H0 was rejected. Our test based
on the L1-distance, the test by Salomond [32] and that of Ghosal et al. [21]

are denoted by T1, T∞ and TG respectively.

n = 50 n = 100 n = 200 n = 500
f T1 T∞ TG T1 T∞ TG T1 T∞ TG T1 T∞ TG

m1 0.070 0.180 0.020 0.082 0.066 0.032 0.060 0.038 0.035 0.072 0.006 0.038
m2 0.000 0.358 0.086 0.002 0.200 0.069 0.016 0.058 0.078 0.004 0.014 0.031
m3 0.000 0.468 0.104 0.000 0.264 0.086 0.000 0.146 0.068 0.000 0.100 0.058

Table 3

Power: the proportion of instances out of 500 when H0 was rejected. Our test based on the
L1-distance, the test by Salomond [32] and that of Ghosal et al. [21]

are denoted by T1, T∞ and TG respectively.

n = 200 n = 500 n = 600 n = 700
f T1 T∞ TG T1 T∞ TG T1 T∞ TG T1 T∞ TG

m4 0.982 0.929 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m5 0.816 0.965 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m6 0.950 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000
m7 0.232 1.000 0.898 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000
m8 0.004 1.000 0.936 0.858 1.000 0.995 0.934 1.000 1.000 0.964 1.000 1.000
m9 0.334 1.000 0.903 0.858 1.000 0.979 0.980 1.000 1.000 1.000 1.000 1.000

have ‖f0J − f0‖1,Gn � J−1 and the bound is also uniform for f0 ∈ F+(K). To
complete the proof, we now show that

E0Π(‖f − f0J‖1,Gn > Mn

√
J/n

∣∣Dn) → 0 for any Mn → ∞. (6.1)

Since f = θj and f0 = θ0j on Ij , ‖f − f0J‖1,Gn = n−1
∑J

j=1 Nj |θj − θ0j |.
Hence by the Cauchy-Schwarz inequality followed by Markov’s inequality,

Π(‖f − f0J‖1,Gn > Mn

√
J/n

∣∣Dn) � 1

M2
nJ

J∑
j=1

NjE(|θj − θ0j |2
∣∣Dn). (6.2)

For 1 ≤ j ≤ J , we bound E(|θj − θ0j |2
∣∣Dn) = Var(θj

∣∣Dn) + |E(θj
∣∣Dn) − θ0j |2,

bound the expectation of both terms, and put in (6.2) to obtain the desired
result. For the first term,

NjVar(θj
∣∣Dn) ≤ sup

σ∈Un

Njσ
2

[Nj + λ−2
j ]

� 1. (6.3)

We bound E0[Nj |E(θj
∣∣Dn)− θ0j |2] as

E0

[
Nj

∣∣∣∣Nj Ȳj + ζj/λ
2
j

Nj + 1/λ2
j

−
∑

i:Xi∈Ij
f0(Xi)

Nj

∣∣∣∣
2]

� 1 + E0

[
N−1

j

∣∣∣∣ ∑
i:Xi∈Ij

(Yi − f0(Xi))

∣∣∣∣
2]
.
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This follows because, by the boundedness of ζj and λ−2
j , |E(θj |Dn)−Ȳj | � N−1

j .

The second term in the last expression is σ2
0 , and hence the expression is bounded

above by a constant.
For random predictors, we use the ‖ · ‖1,G-distance, which involves another

integration with respect to X1, . . . , Xn on the left side of (6.1).

Proof of Theorem 3.2. Because of (3.2), it suffices to obtain the contraction
rate of the unrestricted posterior. Since for 0 < p < 2, the Lp(Gn)-distance
is dominated by the L2(Gn)-distance, it suffices to prove the result for p = 2.
We shall apply the general theory of posterior contraction (Ghosal and van der
Vaart [23], Chapter 8) using the sieve

Pn =
{
f =

J∑
j=1

θj1[ξj−1,ξj), ξ1, . . . , ξJ−1 ∈ X,max
j

|θj | ≤ n
}
. (6.4)

Let p
(n)
f,σ denote the joint density of Y1, . . . , Yn for a regression function f . We

verify the conditions of Theorem 8.26 of Ghosal and van der Vaart [23] for
εn = max{

√
(J logn)/n, J−1}. Note that by Lemma 7.2, we can restrict σ to

an arbitrarily small neighborhood of σ0, so the test construction in Lemma 8.27
of Ghosal and van der Vaart [23] is applicable.

By direct calculations, the Kullback-Leibler divergence and the squared
Kullback-Leibler variation are respectively equal to

K(p
(n)
f0,σ0

; p
(n)
f,σ) = E0

(
log

p
(n)
f0,σ0

p
(n)
f,σ

)
=

n

2σ2
‖f − f0‖22,Gn

+
n

2

[σ2
0

σ2
− 1− log

σ2
0

σ2

]
,

V2,0(p
(n)
f0,σ0

; p
(n)
f,σ) = Var0

(
log

p
(n)
f0,σ0

p
(n)
f,σ

)
=

n

4

(σ2
0

σ2
− 1

)2
+

nσ2
0

σ4
‖f − f0‖22,Gn

.

Therefore for a sufficiently small ε, there exists C1 > 0 such that

Bn,0((f0, σ0), ε) := {(f, σ) : K(p
(n)
f0,σ0

, p
(n)
f,σ) ≤ nε2, V2,0(p

(n)
f0,σ0

; p
(n)
f,σ) ≤ nε2}

⊃ {(f, σ) : ‖f − f0‖22,Gn
≤ C1ε

2, |σ2 − σ2
0 |2 ≤ C1ε

2}.

By Lemma 7.3, there exists f0J such that f0J(·) =
∑J

j=1 θ0j1Ij , where I1, . . . , IJ
are an interval partition with knots {ξ0,1, . . . , ξ0,J−1} ⊂ {X1, . . . , Xn} and
‖f0J − f0‖22,Gn

� ε2n. By the prior independence of f and σ, and because

− log Π(|σ − σ0|2 ≤ Cε2n) � log(1/εn) � logn, it suffices that

Π(‖f − f0J‖22,Gn
≤ C2ε

2
n) = Π

( n∑
i=1

Nj(θj − θ0j)
2 ≤ C2nε

2
n

∣∣ξ = ξ0
)
Π(ξ = ξ0)

≥ Π
( J⋂
j=1

{
|θj − θ0,j | ≤

√
C2εn

}) 1(
n

J−1

) ,
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since
∑n

i=1(f(Xi)−f0J(Xi))
2 =

∑J
j=1 Nj |θj−θ0j |2 and

∑J
j=1 Nj = n. The last

expression is at least of the order (C3εn)
J n−(J−1) for some C3 > 0. Putting

these together, we have − log Π(Bn,0((f0, σ0), εn)) � J [log(1/εn) + log J ] �
J logn � nε2n by the definition of εn, fullfilling the condition of prior proba-
bility concentration needed for posterior contraction rate εn.

Observe that the metric entropy logN (ε,Pn, ‖·‖p,Gn) of the sieve Pn in (6.4)
is bounded above by J log(n/εn) � J logn � nε2n. Finally, the prior probability

Π(Pc
n) of the complement of the sieve Pn is bounded by Je−n2/2 � e−cnε2n

for any c > 0, establishing the condition (8.33) of Ghosal and van der Vaart
[23]. This leads to the rate εn = max(

√
(J logn)/n, J−1) when J is chosen

deterministically. Clearly, the best choice is J � (n/ log n)1/3, giving the nearly
optimal rate (n/ logn)−1/3.

When J is given a prior, to lower bound Π(Bn,0((f0, σ0), ε)), we intersect
the set with {J = J0}, where J0 � (n/ log n)1/3. This gives an additional fac-

tor e−b1J0(log J0)
t1
, which is absorbed in e−cnε̄2n by adjusting the constant for

a pre-rate ε̄n = (n/ logn)−1/3, because t1 ≤ 1. Modify the sieve in (6.4) by
intersecting with {J ≤ J1}, where J1 is to be determined. The prior probability
of the complement Pc

n then contributes an extra factor a constant multiple of

e−b2J1(log J1)
t2

to J1e
−n2/2. To obtain the final rate, we need to choose J1 such

that J1(logn)
t2 exceeds a sufficiently large multiple of nε̄2n, and then the rate is

given by
√

(J1 logn)/n = n−1/3(logn)(5−3t2)/6.

Proof of Theorem 4.1. (a) Let f0 ∈ F+. Using the definition of the projection,

E0Π(‖f − f∗‖1,G > Mnn
−1/3|Dn) ≤ E0Π(‖f − f0‖1,G > Mnn

−1/3|Dn) → 0

for J � n1/3 by Theorem 3.1. Then it follows that E0φn = P0(Π(d(f,F+) ≤
Mnn

−1/3|Dn) < γ) → 0. Further, the convergence is uniform over f0 ∈ F+(K)
for any K > 0.

(b) Let f0 /∈ F̄+ be fixed and integrable. Using the properties of the pro-
jection, d(f0,F+) = ‖f0 − f∗

0 ‖1,G is bounded by ‖f0 − f∗‖1,G, which, by the
triangle inequality, is further bounded above by

‖f0 − f‖1,G + ‖f − f∗‖1,G = ‖f − f0‖1,G + d(f,F+).

This leads to d(f,F+) ≥ d(f0,F+)− ‖f − f0‖1,G, and hence

Π(d(f,F+) ≤ Mnn
−1/3

∣∣Dn) ≤ Π(‖f0 − f‖1,G +Mnn
−1/3 ≥ d(f0,F+)

∣∣Dn).

Let θ0j =
∫
Ij
f0dG/G(Ij), 1 ≤ j ≤ J . Then as shown in the proof of Theo-

rem 3.1, Π(‖f − f0J‖1,G > Mn

√
J/n

∣∣Dn) →P0 0, and hence for J � n1/3, we

have Π(‖f − f0J‖1,G > Mnn
−1/3

∣∣Dn) →P0 0. Next, since f0 is integrable, by
the martingale convergence theorem, ‖f0 − f0J‖1,G → 0. Hence

E0Π(‖f − f0‖1,G +Mnn
−1/3 ≥ d(f0,F+)|Dn)

≤ E0Π
(
‖f − f0J‖1,G ≥ d(f0,F+)− ‖f0J − f0‖1,G −Mnn

−1/3
∣∣Dn

)
→ 0



3496 M. Chakraborty and S. Ghosal

because d(f0,F+) is fixed and positive. This implies that the probability of Type
2 error P0(Π(d(f,F+) ≤ Mnn

−1/3|Dn) ≥ γ) → 0.
(c) Let f0 /∈ F+ and f0 ∈ H(α,L) such that d(f0,F) ≥ ρn(α). Consider the

step function f0J of f0 as in part (b). By a well-known fact from approxima-
tion theory, we have that ‖f0 − f0J‖1,G ≤ C(L)J−α for some constant C(L)
depending only on L. For instance, the bound follows from de Boor [18] as step
functions with equidistant points are B-splines of order 1. Hence for J � n1/3,
we have Π(‖f − f0‖1,G > Mnn

−1/3 + C(L)n−α/3|Dn) →P0 0, uniformly for
all f0 ∈ H(α,L). Thus by the triangle inequality, d(f,F+) = ‖f − f∗‖1,G is
bounded below by

‖f0 − f∗‖1,G − ‖f − f0‖1,G ≥ d(f0,F+)− ‖f − f0‖1,G ≥ ρn(α)− ‖f − f0‖1,G,

so that

Π(d(f,F+) ≤ Mnn
−1/3|Dn) ≤ Π(‖f − f0‖1,G ≥ ρn(α)−Mnn

−1/3|Dn) →P0 0

because for α < 1,

ρn(α)−Mnn
−1/3 ≥ Mnn

−1/3 + C(L)n−α/3

for C > C(L), while for α = 1,

ρn(α)−Mnn
−1/3 ≥ Mnn

−1/3 + C(L)n−α/3

for C > 1; the last follows because Mn → ∞.

Proof of Theorem 4.2. Let f0 be a bounded, measurable true regression function
(irrespective of monotonicity or smoothness). For a given J , consider f0J =∑J

j=1 θ0j1Ij with θ0j =
∫
Ij
f0dG, j = 1, . . . , J . First, we show that for a given

γ′ > 0 and sufficiently large constant M0 and sample size n,

E0Π(‖f − f0J‖2,G ≥ M0

√
(J logn)/n, J ≤ Jn|Dn) < γ′, (6.5)

provided that log Jn � logn. We write the expression inside the expectation as

Jn∑
J=1

Π(J |Dn)Π
( J∑
j=1

(θj − θ0j)
2G(Ij) ≥ M2

0J(log n)/n
∣∣Dn

)
, (6.6)

and bound

Π
( J∑
j=1

(θj − θ0j)
2G(Ij) ≥ M2

0J(log n)/n
∣∣Dn

)

≤
n

∑J
j=1 G(Ij)[Var(θj |Dn) + (E(θ|Dn)− θ0j)

2]

M2
0J logn

. (6.7)

In view of Condition (DR), G(Ij) are of the order 1/J , and by Lemma 7.1,
Nj are of the order n/J in probability uniformly in j = 1, . . . , J . Under the
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boundedness assumption on the prior parameters and the sampling variance,
Var(θj |Dn) � 1/Nj � J/n with high probability, from the standard expressions
for normal-normal conjugate setting (see the proof of Theorem 3.1).

To estimate (E(θ|Dn) − θ0j)
2, with Ȳj standing for N−1

j

∑
i:Xi∈Ij

Yi and

ε̄j standing for N−1
j

∑
i:Xi∈Ij

εi, we first observe that |ε̄j |2 ≤ N−1
j logn �

(J logn)/n with high probability. Here we have used the maximal norm esti-
mate using the squared-exponential Orlicz norm (see Lemma 2.2.2 of van der
Vaart and Wellner [36]) and #{ε̄j : j ≤ J ≤ Jn} � J2

n. By the same argument
and the boundedness of f0, we also have

|N−1
j

∑
i:Xi∈Ij

f(Xi)− θ0j |2 � N−1
j logn � (J logn)/n

with high probability. Also, |Ȳj | is uniformly bounded with high probability,
because Yi = f0(Xi) + εi. Putting in the expression for E(θj |Dn), we conclude

that
∑J

j=1(E(θj |Dn)− θ0j)
2 ≤ (J logn)/n.

Putting these estimates in (6.7), we find that the expression is bounded by
M−2

0 with high probability simultaneously for all J ≤ Jn. Hence by (6.6), it
follows that (6.5) holds.

We also observe that, if the posterior contracts at the rate εn at f0 in the
sense that E0Π(f : dH(f, f0) > M0εn|Dn) → 0 for some M0 > 0, then for some
other constant M ′

0 > 0,

E0Π(J : dH(f0J , f0) > M ′
0εn|Dn) → 0. (6.8)

To see this, let f̃0J stand for element of FJ closest to f0 in terms of dH . Recall
that f0J is the element of FJ closest to f0 in terms of the ‖ · ‖2,G-distance. The
function f̃0J may be different from f0J , but clearly |f0J | ≤ K and |f̃0J | ≤ K,
whenever |f0| ≤ K. Thus from the definitions of the respective minimizers and
the equivalence of the metrics dH and ‖ · ‖2,G on uniformly bounded functions,
it follows that

dH(f̃0J , f0) ≤ dH(f0J , f0) � ‖f0J − f0‖2,G � ‖f̃0J − f0‖2,G � dH(f̃0J , f0).

Note that, as f̃0J is the closest to f0 in FJ in terms of the metric dH , so if for a
J0, dH(f̃0J0 , f0) > M0εn, then Π(J = J0|Dn) ≤ Π(J : dH(f̃0J , f0) > M0εn|Dn).
In view of the last display, f0J can replace f̃0J in the assertion at the expense
of changing the constant from M0 to some appropriate M ′

0, giving (6.8).
(a) If f0 ∈ F+, then f0J ∈ F+. By Lemma 7.3, the L2-approximation rate of

FJ with equidistant intervals at a monotone function is J−1/2. Stated differently,
in order to achieve an error bound ε, the number of intervals J should be chosen
to be of the order ε−2. Then standard arguments as in the proof of Theorem 3.2
show that the prior probability of a Kullback-Leibler neighborhood of size ε2 is
bounded below by exp{−C1ε

−2 log(1/ε)}. The required test with respect to d
is automatically available, while the sieve can be chosen as in Theorem 3.2 and
its entropy can be bounded in the same way by noting that d is bounded by the
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L2(G)-metric, leading to a (suboptimal) contraction rate εn = (n/ log n)−1/4. It
also follows that for Jn a large constant multiple of ε−1

n , the prior probability of
J > Jn is exponentially small compared with the prior concentration, and hence
{J > Jn} has also exponentially small posterior probability (see Theorem 8.11
(iii′) of Ghosal and van der Vaart [23]). Since log Jn � logn, it follows that (6.5)
holds.

(b) Let f0 /∈ F̄+ be fixed and bounded. By the martingale convergence theo-
rem, ‖f0J−f0‖2,G → 0 as J → ∞, so for a given ε > 0, we can get J0 (depending
on ε but not depending on n) such that ‖f0J0 − f0‖2,G < ε/2. Then for some
δ > 0, we have

Π(‖f − f0‖2,G < ε) ≥ Π(J = J0)Π(max{|θj − θ0j | : 1 ≤ j ≤ J0} < δ) > 0.

Further, for J1n an arbitrarily small multiple of n/ log n, the excess prior prob-
ability Π(J > J1n) can be bounded by e−bn for some b > 0 depending on c.

Considering a sieve Pn =
{
f =

∑J
j=1 θj1Ij ,maxj |θj | ≤ n, J ≤ J1n

}
, standard

estimates gives a bound for its L∞-metric entropy an arbitrarily small multiple
of n. Therefore it follows that (see Theorem 6.17 of Ghosal and van der Vaart
[23]) that E0Π(J > J1n|Dn) → 0 and the posterior is consistent at f0 with
respect to dH , because dH(f1, f2) � ‖f1 − f2‖∞.

Observe that for any f ∈ FJ , h ∈ F+, by the triangle inequality

dH(f, h) ≥ dH(f0, h)− dH(f, f0J)− dH(f0J , f0). (6.9)

Since f0 /∈ F̄+, the first term is bounded below by a fixed positive number for
any h ∈ F+. The second term is bounded above by

√
(J logn)/n with high

posterior probability, and J can be restricted to be at most J1n, which can be
taken to be an arbitrarily small multiple of n/ log n. Hence we can make the
second terms as small as we like, with high posterior probability. By (6.8) and
posterior consistency, the third term can also be made arbitrarily small with
high posterior probability; note that here the posterior variation is due to the
randomness of J only. Minimizing the left-hand side with respect to h ∈ F+,
this shows that dH(f,F+) is larger than some fixed positive number with high
posterior probability in true probability. If J ≤ J1n, this separation will exceed
any fixed multiple of

√
(J logn)/n with high posterior probability for all J ≤

J1n, while the posterior probability of J > J1n is small in true probability.
Hence the posterior probability of the event {dH(f,F+) > M0

√
(J logn)/n}

tends to one in true probability, prompting the test to reject the null hypothesis
of monotonicity with true probability tending to one.

(c) Let f0 /∈ F+ and f0 ∈ H(α,L) such that dH(f0,F+) ≥ ρn(α). The
proof is very similar to that of part (b) with the following changes. First, by
the well-known L∞-approximation rate J−α at functions in H(α,L) by step
functions, and standard arguments as used in part (a) and (b), giving prior
concentration and L∞-metric entropy bounds, the posterior contraction rate
at f0 with respect to dH is εn = (n/ log n)−α/(2α+1), since the L∞-metric is
stronger than dH . Also, with high posterior probability, J can be restricted to
less than J2n � nε2n/ logn = (n/ log n)1/(2α+1). This bounds the second term
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by a multiple of (n/ logn)−α/(2α+1) with high posterior probability. Finally,
by (6.8), the third term is also bounded by a multiple of (n/ log n)−α/(2α+1) with
high posterior probability with the true probability tending to one. Therefore,
the expression on the right side of (6.9) is larger than M0

√
(J logn)/n with high

posterior probability. Thus the test rejects the null hypothesis of monotonicity
with true probability tending to one, that is, the type II error probability goes
to zero.

7. Auxiliary results

Lemma 7.1. If the predictors are random, Condition (DR) holds with A1 ≤
g ≤ a2, and n/J � log J , then for An =

{
a1n/(2J) ≤ min(N1, . . . , NJ) ≤

max(N1, . . . , NJ) ≤ 2a2n/J
}
, we have P0(An) → 1. In other words, N1, . . . , NJ

are simultaneously of the order n/J in probability.

Proof. From Nj ∼ Bin(n;G(Ij)) and a1/J ≤ G(Ij) ≤ a2/J for every 1 ≤ j ≤ J ,
a standard large deviation estimate for P(Nj ≥ 2a2n/J) is 2e−Cn/J for some
constant C > 0, and similarly for P(Nj ≤ a1n/(2J)). Adding these probabilities
J times, we get the desired result because a factor log J can be absorbed in n/J
in the exponential.

Lemma 7.2. Let the predictors be deterministic satisfying Condition (DD) or
be random satisfying Condition (DR). Let f0 ∈ F+, the prior on f of Type 1,
and Condition (E) holds. Then for J → ∞ such that J � n, we have

(a) the maximum marginal likelihood estimator σ̂2
n converges in probability to

σ2
0 at the rate max{n−1/2, n−1J}.

(b) If σ2 ∼ IG(β1, β2) with β1 > 2, β2 > 0, then the marginal posterior
distribution of σ2 contracts at the rate max{n−1/2, n−1J}.

Proof. (a) Let f0 ∈ F+. We first show that there exists θ0J = (θ01, . . . , θ0J) such
that n−1‖F0 −Bθ0J‖2 � J−1 for deterministic X, and n−1EG‖F0 −Bθ0J‖2 �
J−1 for random X.

On a set with min{Nj : 1 ≤ j ≤ J} > 0, let θ0j = N−1
j

∑
i:Xi∈Ij

f0(Xi).

Using the monotonicity of f0, we write n−1‖F0 −Bθ0J‖2 as

1

n

J∑
j=1

∑
i:Xi∈Ij

(f0(Xi)− θ0j)
2 ≤ 1

n

J∑
j=1

∑
i:Xi∈Ij

(f0(j/J)− f0((j − 1)/J))2

=

J∑
j=1

Nj

n
(f0(j/J)− f0((j − 1)/J))

2
. (7.1)

For deterministic X, by Condition (DD) and the monotonicity of f0, (7.1) is
bounded by

max
1≤j≤J

Nj

n

J∑
j=1

[f0(j/J)− f0((j − 1)/J)]2 ≤ max
1≤j≤J

Nj

n
(f0(1)− f0(0))

2 � J−1.

(7.2)
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For random X, using the fact that Nj ∼ Bin(n;G(Ij)), the expectation of (7.1)

under G equals to
∑J

j=1 G(Ij) (f0(j/J)− f0((j − 1)/J))
2
, which, in view of

Condition (DR), has the bound max1≤j≤J G(Ij)(f0(1)− f0(0))
2 � J−1.

For the rest of the proof, we assume that X is fixed, satisfying Condition
(DD); the random case can be dealt with similarly, by taking expectation with
respect to G and using Condition (DR). We imitate the proof of Proposition 4.1
(a) of Yoo and Ghosal [37] but assuming that f0 is monotone instead of smooth.
Define U = (BΛBT + In)

−1. We write

|E0(σ̂
2
n)− σ2

0 | = |n−1σ2
0tr(U)− σ2

0 |+ n−1(F0 −Bζ)TU(F0 −Bζ)

and bound it by a constant multiple of

n−1[tr(In −U) + (F0 −Bθ0J)
TU(F0 −Bθ0J)

+(Bθ0J −Bζ)TU(Bθ0J −Bζ)]. (7.3)

Among these terms, only the middle term arising out of the approximation of
the true function by step functions, is different from Yoo and Ghosal [37] — the
other two terms are bounded by J/n considering step functions as B-splines of
order 1 in one dimension. The second term can also be bounded by a multiple of
J−1 in the same way Yoo and Ghosal [37] did using the L2-approximation rate
J−1/2 for monotone function, leading the upper bound a multiple of J/n+ J−1

for the expression in (7.3).
To complete the proof of part (a), we bound Var0(σ̂

2
n) by a multiple of n−1.

Again, we can follow the same steps in the proof of Proposition 4.1 (a) of Yoo
and Ghosal [37] with the approximate rate for a smooth function replaced by
the L2(Gn)-approximation rate J−1 for a monotone function. We also observe
that the bounds obtained in the proof are uniform over f0 ∈ F+(K) for any
K > 0.

Given part (a), the proof of part (b) follows exactly as in the proof of Propo-
sition 4.1 (a) of Yoo and Ghosal [37].

Lemma 7.3. Let 1 ≤ p < ∞ and K > 0. Then for every f ∈ F+(K) and
J > 1, there exist θ1 ≤ · · · ≤ θJ from [−K,K] such that the following assertions
hold.

(a) For any partition intervals I1, . . . , IJ and probability measure H satisfying

H(Ij) ≤ M/J , with fJ =
∑J

j=1 θj1Ij ∈ F+(K), we have that
∫
|f −

fJ |pdH ≤ MKp/J .
(b) For any probability measure H and 1 ≤ p < ∞, there exist knots 0 = ξ0 <

ξ1 < · · · < ξJ−1 < ξJ = 1 from the topological support of H such that for

any f ∈ F+(K), there exits a function of the form fJ =
∑J

j=1 θj1Ij ∈
F+(K) satisfying

∫
|f − fJ |pdH ≤ Kp/Jp, where I1 = [ξ0, ξ1], and Ij =

[ξj−1, ξj), j = 2, . . . , J .

Proof. Decomposing the integral in integrals over I1, . . . , IJ , we have the dis-
crepancy

∫
|f − fJ |pdH =

∑J
j=1

∫
Ij
|f − fJ |pdH. By the monotonicity of f and
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the constancy of fJ , we have f(x)−fJ(x) ≤ f(j/J)−f((j−1)/J) for all x ∈ Ij ,
and similarly fJ(x) − f(x) ≤ f(j/J) − f((j − 1)/J). Hence

∫
|f − fJ |pdH is

bounded by

J∑
j=1

H(Ij)|f(j/J)− f((j − 1)/J)|p ≤ MJ−1
J∑

j=1

|f(j/J)− f((j − 1)/J)|p,

because H(Ij) ≤ M/J for all j = 1, . . . , J . Using the monotonicity of f , the
last expression is bounded by |f(1) − f(0)|p by the estimate

∑
apk ≤ (

∑
ak)

p

for positive numbers a1, . . . , ak and p ≥ 1.

The proof of part (b) is essentially contained in the proof of Theorem 2.7.5
of van der Vaart and Wellner [36], although their theorem is about a bound for
the bracketing or metric entropy. Implicit in their construction is that, given
ε > 0, there exists a J = J(ε) � ε−1, 0 ≤ ξ1 < · · · < ξJ−1 ≤ 1 and θ1, . . . , θJ
such that fJ =

∑J
j=1 θj1Ij satisfies ‖f − fJ‖p,H < ε, where I1, . . . , IJ form an

interval partition of [0, 1] with knots 0 = ξ0 < ξ1 < · · · < ξJ−1 ≤ ξJ = 1. For
instance, one of the lower brackets in their construction of an ε-bracketing will
satisfy the approximation property. The role of ε and J can be reversed, in that,
given J , we can first obtain ε > 0 such that the corresponding J(ε) is within J .

Finally, we need to conclude that the knot points ξ1 < · · · < ξJ−1 can be
chosen from the support of H. The construction in van der Vaart and Wellner
[36] assumed, without loss of generality, that H is uniform. For a general H, the
quantile transform is applied, transforming the jth knot ξj to H−1(ξj), which
belongs to the support of H.
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