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Abstract: This article aims to use beamforming, a covariate-assisted data
projection method to solve the problem of variable selection for multivariate
random-effects regression models. The new approach attempts to explore
the covariance structure in the data with a small number of random-effects
covariates. The basic premise behind the proposal is to scan through a
covariate space with a series of forward filters named null-beamformers;
each is tailored to a particular covariate in the space and resistant to in-
terference effects originating from other covariates. Applying the proposed
method to simulated and real multivariate regression data, we show that
it can substantially outperform the existing methods of multivariate vari-
able selection in terms of sensitivity and specificity. A theory on selection
consistency is established under certain regularity conditions.
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1. Introduction

The advance of high-throughput technology in science has generated various
types of correlated data. Integrative analysis holds great promises for uncover-
ing hidden links between these data. For this purpose, a class of multivariate
random-effects regression models are investigated in this paper, where subject-
specific random effects are introduced to account for the variations among sub-
jects [11]. Suppose that there are J subjects (or responses in the terminology of
multivariate regression) under study, each depending on the same set of random-
effects covariates indexed by {1,...,p}. Let y; and x; are column vectors of n
measurements on subject 7 and on covariate k respectively. Then, a multivariate
random-effects regression model can be written as

yi =%+ Xppp FX0(Bry —pn) o+ xp(Bpy — 1) +&5,1 <5 <

with fixed-effects p, € R, random-effects coefficients f; € R and error vectors
ej € R". We assume that coefficient vectors 3; = (815, ..., Byj)* have mean p =
(15 -y pp)T and covariance matrix ¥ and that error vectors €; have mean zero
and unknown covariance matrix A. We further assume that the random-effects
coefficients and the error vectors are independent of each other. As estimation
of the fixed-effects has already been studied in [17], we focus on inference of the
random-effects coefficients in the above model.

Denote by X = (x1,...,X,) the observations on all covariates. Then the con-
ditional covariance matrix cov(y;|X) admits the following decomposition

P
COV(Yj‘X) = Z Ukakxg +2 Z oklxkxlT + A,
k=1 1<k<I<p

where oy, is called variance component associated with covariate k. This shows
that the above random-effects model provides a way to describe the covariance
structure of the data. However, when the number of covariates, p, is larger
than both n and J, the problem of estimating either these variance components
or random-effects coefficients is ill-posed, where the commonly used multivari-
ate least squares criterion does not provide a unique solution. To tackle this
issue, we impose a sparsity assumption on the model that only a small num-
ber of variance components in the above covariance matrix decomposition have
positive values. We are interested in the problem of identifying these non-zero
variance components. We refer to covariate k as an non-active covariate when
Br1 = -+ = Bry = constant. By definition, ox; = 0 holds if and only if
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P(covariate k is non-active) = 1. So the above problem is equivalent to a mul-
tivariate variable selection problem where we want to infer active covariates for
a multivariate regression model [17]. A conventional remedy for variable selec-
tion is to penalize the magnitudes of regression coefficients in the least squares.
When the penalty is increasing, estimates are zeroed out, and a subset model
is then identified and estimated. Such a remedy is particularly of interest when
the dimension p is large and candidate covariates contain many redundant or
irrelevant variables. The variable selection procedure LASSO [19] followed this
remedy. Over the past two decades, much progress has been made along this
direction [6, 26], among others. As the recent research on variable selection
mainly focuses on a univariate response setting, limited research has been done
on multiple responses settings, e.g., [2, 15, 16, 4, 17, 24, 13].

Despite of the above progress, a few issues remain to be addressed. First,
most of these methods have been developed for independent measurements.
There are various applications in which measurements on each subject are de-
pendent. For instance, sensitivity measurements of a drug can be dependent as
cell lines used in these measurements exhibit genetic relatedness when they are
associated with the same types of cancers [10]. In multiple genome-wide asso-
ciation studies, individual genotypes in a subject group are correlated [25]. In
neuroimaging, measurements from different sensors outside a brain are depen-
dent as they are generated from the same neuronal sources inside the brain [20].
In finance, returns of different stocks are correlated due to the so-called cross-
sectional dependence [9]. Secondly, the existing methods mentioned above are
mainly for multivariate fixed-effects regression models, where given the values
of covariates X, the response covariance structure is determined only by error
terms. In contrast, multivariate random-effects regression models are hierarchi-
cal, where conditional on the values of covariates, the responses depend not only
on error terms but also on random-effects coefficients [11]. Although, in prin-
ciple, multivariate regression data can be fitted by either a fixed-effects model
or a random-effects model, a comparison between these two approaches has not
been made in literature [2]. Finally, most of the existing inference procedures are
not computationally scalable to large-scale data with many subjects or many
responses. This prohibits their applications to big data.

Here, we address these issues by generalizing the idea of beamforming, a
covariate-assisted data projection method [23] to multivariate regression set-
tings. Our contributions are three-fold. First, we develop a novel algorithm
called principal variable analysis (PVA) to identify important covariates by
covariate-interference-adjusted data projections (called forward beamforming
or null-beamforming) that account for the maximum amount of variation in the
data. Such a procedure provides a principled way to extract information about
covariates from the multivariate regression data. In the PVA, unlike the existing
methods, we gauge the importance of each covariate with respect to the multi-
variate response by its information index (called power), which is defined by its
variance component. The higher the power of a covariate, the more amount of
variations in the response data it can account for. We estimate the power of each
covariate by performing null-beamforming on the data. To adjust for varying
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background noises, we replace the power by signal-to-noise ratio (SNR), a rela-
tive information index for each covariate. In each forward step, after nulling the
previously selected covariates, we are able to adjust the SNR values of the re-
maining covariates and to conduct iteratively screening for these covariates. The
iteration will be terminated once no covariate significantly stands out in the cur-
rent step. The above procedure produces a list of highly ranked covariates called
principal variables along with their estimated regression coefficients. Based on
these selected covariates, the response covariance matrix can be decomposed into
two parts: one for the selected variance components and the other for noises.
In this sense, the PVA is viewed as a covariate-assisted principal component
analysis. As the beamforming can be implemented through parallel computing,
the PVA is scalable to large-scale data. Secondly, we establish a global prop-
erty of selection consistency for the PVA under some regularity conditions. In
particular, a sufficient condition for a consistent selection was imposed on the
number of subjects, J, the number of covariates, p, the number of measurements
per subject, n, and the number of non-zero entries in cov(y;|X), m,, that is,
n~% log(p) is bounded for some positive constant «g and m,,+/log(n)/J — 0,
as n, J and p tend to infinity. This implies that the proposed procedure can han-
dle the variable selection problem in an ultra-high dimensional covariate space.
Finally, we conduct a set of simulation studies to evaluate the performance of
the PVA compared to the existing variable selection methods. The numerical
results demonstrate that in terms of sensitivity and specificity the PVA can
substantially outperform the existing methods such as the multivariate group
LASSO, the multivariate elastic-net, the multivariate LASSO, the multivariate
sparse group LASSO, among others. We also apply our method to some anti-
cancer drug data, identifying a novel set of genes for predicting drug sensitivity
in cancer cell lines. Using the information extracted from the Human Protein
Atlas Portal at http://www.proteinatlas.org/cancer, we show that most of
the identified genes have significantly high protein staining levels at least in one
or more than one of common cancers.

The remaining of the paper is organized as follows. The details of the proposed
methodology and algorithm are provided in Section 2. An asymptotic theory on
the proposed procedure is developed in Section 3. The simulation studies and a
real data application are presented in Section 4. The discussion and conclusion
are made in Section 5. The technical details, proofs, and extra theorems can be
found in the Appendices A and B. Throughout the paper, we denote by Amax(+)
and Apmin(-) the largest and smallest eigenvalues of a square matrix respectively.
For any matrix F,,, we define the spectral norm ||F,|| as /\Iln/fx(F,Tan) For a
sequence of real numbers {u,}, we say F,, = O(uy) if ||F,||/|un| is bounded
from above and F,, = o(u,) if ||Fy||/|un| tends to zero as n tends to infinity.

2. Methodology

Let Y = Y,xs = (yij)nXJ = (Y1ay23"' 7YJ) and X = anp = (Iik)nxp =
(%1, ,Xp). We reformulate the multivariate random-effects regression model
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in the previous section in the following matrix form:
Y =XB +¢, (2.1)

where unknown random regression coefficient matrix B = Byx s = (8,89, -,
B;) and € = €,x; = (€1,€2,--- ,€7) with B3; and €, respectively, containing
the regression coefficients and the error terms related to the jth subject. As
usual, we start with a least squares-based regression analysis. It can be shown
that when p < n, the least square solution, B= (XTX)*IXTY gives the same
coefficients as fitting univariate multiple regression models to (yj7 X),1<5<J
separately. Note that treating fi;,1 < j < J as correlated random coeflicients
allows us to explore the dependence between y;, 1 < j < J. As pointed out

before, when p > n, X7X is not invertible and thus the above least squares
solution is not unique. To tackle the problem, we make the assumption that
variance components in a decomposition of Cov(yj |X) are sparse, that is, ogr = 0
for the majority of covariates k € {1,2, ..., p}. The goal of this paper is to identify
these covariates of non-zero variance component and to estimate their regression
coefficients given observations (Y, X).

2.1. Power and signal-to-noise ratio

To rank covariates, we define an information index called power for each co-
variate by projecting the response data to the covariate space. The concept
of power, defined as the variance of a signal, is borrowed from the research
field of signal processing, where sensor observations y;,1 < j < J are often
assumed weakly stationary [20, 23]. In genetics, the above concept describes
the so-called pleiotropic genetic effect of a single gene on multiple phenotypic
traits, where multivariate linear models have been developed to connect genetic
variant data to multiple quantitative traits [5]. In the multivariate random-
effects regression setting, the power is the variance component of a covariate
in conditional covariance matrix C = cov(y;|X) given X, where we model re-
gression coefficients of the multiple responses to each covariate as realizations
from a random variable with a finite second moment. Then, the amount of in-
formation on each covariate in these regression coefficients can be measured by
variability in these coefficients. The larger the variability, the higher degree of
variation in the response data is accounted for by this covariate. In practice,
the regression coefficients (8x;)1<j<s at covariate k (therefore its approximate
power Z'j]:l(ﬁkj — Br)?/J with By, = Z;Zl Br;/J as J tends to infinity) are un-
known. We estimate (8x;)1<;<s by projecting response data into the coefficient
space of the kth covariate along the direction w that can minimize interferences
with the other covariates and with the background noise. That is, for the kth
covariate, we estimate its regression coefficients by the projected data w’Y in
which var(w”y;|X) = w”Cw attains the minimum, subject to w’x; = 1. To
this end, we consider the Lagrange multiplier L(w, ) = wTCw — A(wTx; — 1)
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and solve partial derivative equations

OL(w)
ow

OL(w)
O\

=2Cw — A\x; = 0, =wlx,—1=0.

We have the solution wi = Cflxk/xfolxk. We project Y along the direc-
tion wy, to give an estimator wi'Y = x} C™'Y /x} C™'xy for (Br;)i<j<s [23].
If let C = constant x I,,, where I, is an n X n identity matrix (i.e., ignoring
correlations in the measurements on each subject), then the above estimator
reduces to a marginal multivariate least squares estimator. To explain why the
above approach can provide an interference-minimized estimator of the under-
lying power, we assume that error term €; is independent of the p-dimensional
regression coefficient 3; and with cov(e;) = A and cov(B;) = ¥ = (04,5, )pxp-
Then, we have C = XXX7T + A. Note that under the constraint wZx; = 1, we
have

wiCw = var(w’y;|X) =op + Z ailjlexilx}lW +wlAw
17k, j1#k
= power of the kth covariate + w-dependent interference,

which yields

min{w’ Cw : wlx;, =1} = power of the kth covariate

+ min{w-dependent interference : w’x) = 1}.

This implies that the constraint w”xj, = 1 is a linear filter which allows the
power oy to pass through it, whereas interferences with other covariates and
with the background noise are reduced via the minimization. So, min{w’Cw :
wlx), = 1} is an interference-minimized estimator for the theoretical power oy.
The above Lagrange multiplier shows that the power of the kth covariate, can

be expressed as
Vi = min{var(WTyj|X) cwlixy =1} = (xF C'xp) 7

When observations on responses are white noises with noise level o2, the power
of the kth covariate reduces to U2w;fwk. So we define the SNR at the kth
covariate by v (o?wiwy)~ L.

Analogously, for a subset of covariates indexed by v = {k1, ko, ..., kn }, their
joint power (called the power matrix) can be defined by v, = (xfolxl,)_l,
where the data matrix x, = (Xg,,...,Xk,,) consists of the observations on the
covariates in v and the columns in x, are assumed linearly independent. Abus-
ing the above notation, we let w and w, denote n x m matrices below. Then,
we can also define the SNR of covariate set v as sNR, = tr (7, (0?wiw,)™t).
Using the corresponding Lagrange multiplier, we can show that -, is the covari-
ance matrix of the projected data wY along interference-minimized directions
w, = C'x,(xI'C'x,)~!, in the sense that tr(v,) = min{tr(cov(w’Y|X)) :
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wlx, = I,}, where tr(-) is the trace operator and I, is an m x m identity
matrix. Note that wlx, = I, define m linear filters which null each other.
The projection of Y along interference-minimized directions gives an estimator,
(xI'C'x,)"'xLC7Y, for random coefficient matrix B. The above estimator
will reduce to a marginal least squares estimator if let C = constant x I,,. How-
ever, in practice, C is unknown and often not diagonal. We need estimate C by
the data.

Covariates can be correlated. For example, in the cancer genomic data, genes
as covariates can be highly correlated if they are located in the same pathway.
Consequently, the finite sample power estimator of a covariate may have a bias
due to interferences with other covariates. To address this problem, we further
null the previously identified covariates by adding more constraints on the linear
filter in each step as follows. Let w and v be two disjoint subsets of the covariates
with sizes mi and m respectively. To define a w-nulled power matrix of v, adding
null constraints wlx,, = Omxm, into the linear filters wlx, = I,,, we consider
the following optimization problem:

T T

mintr(wTCw), subject to w' x, = I, W Xy = Oy -

Using the Lagrange multiplier again, we obtain the optimal weighting matrix

-1 T -1 -1
Wylw = C™ " Xpuw (XIIUUJC XVUw) ¢V|wa

where ¢, = (I,,0)T with 0 being the m x m; matrix of 0’s. The nulled
power matrix y(v|w) is then defined as wf‘wayw, the covariance matrix of

the projected data along w,,. It can be shown that v, is equal to the upper
corner m X m block matrix of (XZUWCAXVU“J)_I. The nulled signal-to-noise-

ratio SNR,|, can be defined as tr ('yu‘w(02wf|ww,,|w)_1).

2.2. Estimation of response covariance matrix

Note that the power estimation needs an estimator of the response covariance
matrix, for example, the sample covariance matrix C= Z;.Izl yjy;-r /J—yyT =
(éij), where y = Zj:l yj/J = (41, "'7gn)T and ¢;; = Z;f]:l(yit_gi)(yjt_gj)/‘]'
As the sample covariance matrix can be inconsistent with the true one when
the dimension n is larger than J, [1] and [3] amended it by thresholding its
entries: Cp, = C(7ny) = (é;1(|éi5] > hTns)), where I(-) is the indicator and
Tng = /log(n)/J with the tuning constant h > 0. Under certain mixing condi-
tions, [23] showed that the thresholded sample covariance matrix was consistent
with the true one with dependent sample. For a finite sample, the thresholded
covariance matrix may still be degenerate when the number of subjects is close
to or smaller than the number of measurements per subject. So, following [12],
we further shrink the thresholded covariance estimator to a diagonal matrix as

follows: 2 2
Chs - d_gﬂnjn + %Chv

n n
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where
B 1 J 1 n o n
by = =2, SO (wie = 0) (kg — 75) — &)1 (1635 > hrny),
k=1 i=1j=1
fn = <Cp,I,>, d*>=<Cp—findy,Ch— finl,>, b2 =min{b2,d2},

and <Dq,Dy> = tr(DlDQT)/n for any n x n matrices Dy and Ds. Having defined
Chs, we estimate the power matrices v, and v,, by 4 = (xl,Chsxl,)_1 and
Yolw = ¢Z|w(x5UwChsx,,Uw)_l¢,,‘w respectively. Similarly, the w-nulled SNR can
be estimated by

SKR, |y o tr (%lw(wflww,,‘w)*l) , (2.2)

~—1 A—1 —1
< _ T
where W, = Cp, Xpuw (xVUwChs xl,Uw> Gujw-

2.3. Principal variable analysis

We are now ready to describe the PVA for multivariate variable selection. Al-
though we focus on the SNR-based PVA below, the power-based PVA can also
be defined similarly.

Initialization: To start with, find 1 < k; < p at which the SNR attains the
maximum. Set wy = 0 and wy = {k1}.

Nulling: In the iteration m, m > 2, let w,,_1 denote the set of covariates
selected in the first m — 1 iterations. For any covariate k not in w,,_1, using the
formula (2.2), we calculate the nulled SNR, SNR{j}|w,._,, as well as an estimated
optimal projection direction w. We then find k,, & wy,—1 in which SNR{zy(,,_,
attains the maximum.

Forward selection and stopping criteria: After a number of iterations,
the nulled SNR values will start leveling off, which indicates that the remaining
covariates have no significant contributions to the covariance structure of the re-
sponse. This motivates us to set the following stopping criteria in each iteration:
For m > 2, at the end of the mth iteration, we make a scree plot of the nulled
SNR values and identify an elbow point. To find the elbow point, we consider
the vector which links the highest and the lowest points on the scree plot. Then
we find the orthogonal distance from each point on the plot to this vector. The
point on the plot with the largest distance is selected as the elbow point. The
elbow point partitions the remaining covariates into two subsets, namely upper
set and lower set. The lower set, containing those covariates with SNR, values
lower than the elbow point, is uninformative about the responses. To test the
hypothesis that the upper set is uninformative, we calculate the mean p; and
standard deviation 6; for the lower subset. The hypothesis is accepted if the
maximum nulled SNR value, SNRiyax = max{SNRy|,, , : k & wm_1}, of the up-
per set falls into the following confidence interval, [SNRyax — 1| < oy, where ¢
is a tuning constant. We set the default value cg = 5. Applying the central limit
theorem to the SNR values in the lower set, the above interval can be shown to
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have the asymptotic confidence level of 1 — 5.73 x 10~7 after multiple testing
adjustment. The iteration will be terminated when the upper subset is uninfor-
mative. Otherwise, we update w,,—1 and x,,,,_, by letting w,, = {kmn} U wm-1
and x,,, = (Xk,,,Xw,,_, ), and the iteration will continue. Note that our simula-
tions (not shown here) did indicate that the performance of PVA was not very
sensitive to the choice of ¢y when it took values between 3 and 5.

2.4. Covariate network

Statistical connectivity patterns in the selected covariates are a hallmark fea-
ture for connecting pleiotropic traits such as drug inhibitory concentrations to
genetic variants in genetics and for studying functional networks in neuroscience
[5, 14]. Here, to quantify such patterns, we compute the regression coefficient-
based Pearson correlation coefficient for each pair of the selected covariates.
The details are as follows. Suppose that ¢ covariates are selected by the PVA.
Based on the multivariate least squares, we obtain BO, an estimator of the g x J
regression coefficient matrix for these covariates. For any pair of rows (i,7)
in BO, we calculate Fisher’s z-transformation of their correlation coefficient 5,
zi; = 0.5In ((1 —73;)/(1 4+ r;;)). For rows i < j, we want to test whether z;; (i.e.,
ri;) is significantly away from 0. There are g(¢ — 1)/2 such tests in total. Note
that if the underlying correlation coefficient is zero, then z;; =~ N(0,1/(J—3)) in
distribution. After Bonferroni correction to multiple testing, we can claim that
2i; is significantly away from zero if /J — 3|z;;| > 242, Where z, /5 is the critical
value of N(0,1) at the level a/2 = 0.01/¢(q — 1). For example, for our cancer
data in Section 4 where ¢ = 37,J = 131, we obtained z,/, = 4.33. We are now
ready to construct a network with ¢ nodes, each stands for a selected covariate
(a row in By). We assign an edge to link nodes ¢ and j if z;; is significantly away
from zero.

3. Theory

In literature, no general asymptotic theory was provided on variable selection
for high dimensional multivariate regression models with the exception of [17].
In [17], Sofer et al. developed a selection consistency theory for a special class
of multivariate fixed-effects regression models, where regression coefficients did
not change across responses (i.e., 8; = --- = 3;). In this section, we develop
a general theory on selection consistency of the proposed procedure PVA for
multivariate random-effects regression models. We divide the theory into two
parts according to whether C is known or not. Here, we present only the case
where C is estimated. The remaining is deferred into the Appendix B.

As before, assume that regression coefficient matrix B and error terms & in
the model (2.1) are independent and that given X, the covariance matrices of
yj, B; and €;, denoted by C = (cik)nxn, X = (0ik)pxp and A respectively,
are independent of index j. Then, we have C = XEX” + A. Assume that A
is positively definite. For ease of presentation, we consider the special case,
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where A = ¢%I, and xFx; = n,1 < k < n. If A # 02I,, we can change Y
and X by the transformations A~'/?Y and A~'/2X (under which the power
is invariant), followed by rescaling A='/?2X and B (see [23]). Then a general
theory can be derived from the special case. We denote the full set of covariates

by [1:p] = {1,2,---,p} corresponding to xi,--- ,X,, and the true covariate
set by vg. Let v = {ky,--- ,kp, } denote any subset of [1 : p|] with size |v|. The
(k1,- -+, kp, )th columns of X forms a data matrix x, for the covariate set v. If let

e, be a p x p; selection matrix in which for 1 < j < py, its (k;, j)th entry takes
value of 1 and the other entries take values of 0, then we can write x,, = Xe,.
Let o7 denote ok, in ¥, which shows the underlying power at the kth covariate.
Let vy be the underlying set of covariates. Let 4,, = C — x,, el Ye, x, , the
underlying noise covariance matrix. For any subset v, if A, is invertible, then we
define the coherence (i.e., collinearity) matrices within and between x,, and x,,:
Ry, = xJ A%/, Ry, = xDA %, /0, Rug, = X2 A%y, /n. Suppose
that for vy = {k1, ..., kp, } and for any v C vy, we can find jj1.p) = {j1, .., Jm} C
{1,...,po} such that v = {k; : j € j.m}. Let e,q, be a |1g] x [v| indicator
matrix with the (j;,{)th entry equal to 1, 1 < [ < |v| and with other entries
equal to zeros. Using e, , we select sub-columns from x,,, to form x,,, namely
Xy = XypCrayg -

To identify active covariates, we impose the following regularity conditions on
the covariance structures of the multivariate response variable and covariates,
where X is treated as deterministic. If we treat X as a random design matrix,
some parallel conditions can be assumed through replacing O(-) by O,(-) in the
following conditions.

(C0). There exists a permutation on y;,1 < j < J so that the resulted
sequence is strictly stationary with covariance matrix C and that (yj7 X),1 <
j < J follow the model (2.1). The error term €; and the p-dimensional regression
coefficient 3, are independent of each other.

(C1). There are a constant 0 < r < 1 and a set of active covariates vy of size
|| < rn such that x,, is of full column rank and that el Ye,, and A, are
invertible.

(C2). For vy and r in Condition (C1), as n tends to infinity, there is a constant
0 < ap < 1 such that uniformly for any set v C [1 : p] with |v| < rn, R,, =
O(n™) and R} = O(n®).

(C3). For vy and r in Condition (C1), as n tends to infinity, uniformly for
any v C [1: p]\ vy with the size [v| <rn, (R,, — 1:{,,1,0R,701,,0Rl,o,,)*1 = O(n®).

(C4). For vy and r in Condition (C1), as n tends to infinity, uniformly for
any v C [1 : p] \ vo with the size |v| < rn, X?,:)A;fxl, = C()X?;OA;OlXV + O(1),
where (o and O(1) are independent of v.

(C5). There exist positive constants k1 and 71 such that for any u > 0,
1<j<J,

max P(lyi;| > u) < exp(l —mu™)
1<i<n
and maxj <;j<,, E|yi1|*" < +o0, where 79 > 1 is a constant.

In the last condition, we assume that there exists a permutation 7 on {1, ..., J}

so that y.;),1 < j < J are strong mixing. Let ]-'é““ and F° denote the o-
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algebras generated by {y.;y : 0 < j < ko} and {y,(;) : j > k} respectively.
Define the mixing coefficient

a(k) = sup |P(A)P(B) — P(AB)|.
AeFFo BeFg

The mixing coeflicient a(k) quantifies the degree of the dependence of the pro-
cess {y,(;)} at lag k. We assume that a(k) is decreasing exponentially fast as
lag k is increasing, i.e.,

(C6). There exist positive constants ko and 75 such that a(k) < exp(—m2k"2).

Remark 3.1. Note that under Condition (C0), y;’s (therefore €;s) can be mu-
tually dependent on each other. Condition (C1) says that there are no redundant
covariates in vy. Condition (C2) implies that ||Ryuy|| < || Ruu||Y?|| Ruoue ||V/? =
O(n®°). Note that for v C [1: p] \vo, R, /n = (xL A, @,)~! is the power of
v after adjusting the influence of vg. So, Condition (C2) says that the adjusted
power of v is of order n~1T = o(1), which is negligible. This is natural as v
may contain noisy covariates. Similarly, Condition (C3) says that vy-adjusted
power of v is also negligible. Conditions (C2) to (C3) are the assumptions com-
monly used in the large sample theory for linear regression models (e.g., [21]). To
verify Conditions (C1)~(C3), we refer readers to [8, 21] under the assumptions
that 03 = 0, k & vy and that X is assumed to be a random matriz satisfying
some moment conditions and that the growth of the dimension p is not too fast
compared to the number of measurements per response, n. For example, follow-
ing [8], we assume that X has a concentration property, i.e., for some constant
e, anyu >0 and v C[1:p], |v| < rn,

P ()\m,w(RW) > u or Apin(Ruy) < ufl) < cjexp(—nu/cy).

Letting Q,, ={v :v C[1:p|,|v| < [rn]}, where [rn] stands for the integer part
of rn, we have

>\maz Rw, = )\maz Rl/l/ )

i Ama(Br) = o Amao(Fon)
i )\min RVZI = i )\m'm RVV

i dmolRuw) = it A

and hence as log(p) < n®/c; —1+log(r) + (1 —1/n)log(n) = O(n®), n and
p tend to infinity,

P (m%x Amaz(Ruy) > 1% or min Apin(Ry,) < nao)

veQ, veQ,
< ([p ]> exp (—n1+°‘°/cl) < (pe/n)" exp (—n1+°‘°/01) <eci1/n—0,
™m

This implies that Condition (C2) holds with an overwhelming probability. Anal-
ogously, Condition (C3) holds if x, and x,, are asymptotically, uniformly non
coherent with respect to v C [1: p] \ vy, in the sense that R,,, = o(1).
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Condition (C4) is a technical condition which holds when o2 = 0 (or suf-
ficiently close to zero in a sense), k & vy. Note that (C5) holds if y;;’s are
Gaussian. And (C6) holds if there exist 1 = jo < j1 < -++ < Jm = J such that
{y;}1<j<s can be divided into mutually independent segments {y;}j,_, <j<j., 1 <
kE<m.

Letting 11 C vy and vo C [1 : p] \ vy, in the next theorem, we show that
the sparsistency property holds for the estimated nulled powers. Recall that

Tng = /log(n)/J.
Theorem 3.1. Suppose that Conditions (C0)~(C6) hold and that T, ;n* = o(1)
as both n and J tend to infinity. Then, we have:

(i) Uniformly for a € [1:p]\ vy, a & v1 Uve and |11 Uve| < rn, the (11 Uvs)-
nulled power of a admits the form

’Aya\VIUVQ = TL71 (Raa - RauoR_l Ruoa - (Raug - RaVUR_l Ruoug)

Yolo Yolo

—1
X (RV2V2 - RuzuoRil Ruguz)_l(Ruga - RuzuoRil Rl/ga))

Yoo volo

+Op(n—2+4ao+20(1 + nzTnJ).

(i) Uniformly for a € vy \ v1 and vy Uve| < rn, the (11 Uvs)-nulled power of
a admits the form

—1
2 _ T -1 —2+6ao0+5a1 2
YalpyrUve = (eaqyozyg\yl ea<11/g> + Op (n +n TnJ)
-1,T T -1 T -1
+n €advy (euozevo) L4 (euozeuo) €adavg >
where
T T -1 -1
El/1<1l/0 = (equyo (eyozeuo) eV1<11/0) )
1 _ T —1/2 T -1/2
Eug\ul - (eVOEeVO) PVO\Vl (eVOEeVO) ’
_ T —1/2 T T —-1/2
PVD\VI = I\Vo\ - (euozel/o) eV1<1V02V1<1V0 €11 avg (equeVo) ’
_ —1
Fl’z - RVsz - RVzVo Ruouo RV0V27
_ -1 1 1 1
@ - RVOVD + RV[)VO RVDV2 F’;z RV?’/O RV0V07
_ T T -1
v = (I\Vol - eV1<1VoEV1<1Vo €L avp (euoxevo) ) ®

T
T T -1
(I\Vol - eV1<1V02V1<Wo €L (euozevo) )

The above theorem implies that uniformly for a € vp\v; and |v1Urs| < rn, the
(v1 U vo)-nulled power of a admits the form 4g),,u, = (efQUOZ;Ol\Vl €aavy) L+
Op(n~1H3a0t200 4 n27 7). For a & v, Yajuuvs = 0p(1). Note that it can be
seen from the proofs in the Appendix B that n?7, y=0(1) in Theorem 3.1 can be
replaced by m,, 7,7 = o(1) which depends on m,,, the number of non-zero entries
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in C. We therefore show that the so-called sparsistency property holds for the
nulled-power-based PVA. We further show that the sparsistency property also
holds for the SNR-based PVA as follows.

Theorem 3.2. Suppose that Conditions (C0)~(C6) hold and that 7, n* = o(1)
as both n and J tend to infinity. Then, we have:

(i) Uniformly for a € [1: p]\ vy, a € v1 Uve and |vy Uws| < rn, the (11 Uws)-
nulled power of a admits the form SNRq|,, Uy, = Co% + Op(n~2Hdaot2on 4

n%1,7).

(i) Uniformly for a € vy \ v1 and |vy Uvs| < rn, the (11 Uwa)-nulled SNR of
covariate a admits the form
-1
(7;41/0 vo\v1 €aqvy

a?no egquo 2;01\1,1 (I)Z;Ol\yl €aawo (1 +0(1))

ne

I 2
SNRg|uUvy = + O;D(n TnJ)

2
T -1 T T -1 T -1
(eaqyo ZVO\VI eaql,o) €aavo (el,U Zel,o) A\ (el,o Ze,,o) €aavy

02(pel, S\ ®Y | eqaq, (14 0(1))

l/(]\l/l V[)\l/l

b

where 1
vo\v1

¥ and ® are defined in Theorem 3.1.

Note that for a € vy \ 11 and |11 Uws| < rn,

)\min (e?;qyoz;ol\yleaquo> > )\min (e?a}uyl (e?:ozevo)7 e{a}Um)
> (Amax (€] eu,))

which is bounded below from zero as Apax (eZOEeyO) = O(1). It can also be
shown that UQCOQZ;]VOZ;:\W‘I’E;Ol\yleaauo = O(n3**221)  Consequently, the
leading term in Theorem 3.2 (ii) tends to infinity as n!=3@0=2%1 tends to in-
finity. In contrast, for a & vo, SNRg|,, U, converges to a constant as stated in
Theorem 3.2 (i). Compared to Theorem B.4 in the Appendix B, we can see
that Theorem 3.2 provides a sharper contrast between active and non-active
covariates.

Let wy;, denote the set of covariates derived from the (SNR-based) PVA. We
have the following selection consistency for w.s;.

Corollary 3.1. Under the conditions in Theorem 3.2, as both n and J tend to
infinity, we have the selection consistency in the sense that P(wys = 1g) — 1.

The above corollary, together with Remark 3.1, implies that along with other
regularity conditions, if the condition on J,p and n that n=?° log(p) = O(1) for
some positive constant ag and that n?7,; = o(1) is satisfied, then the PVA-based
variable selection is consistent. As pointed out before, the condition n?r,; =
o(1) can be replaced by a sparsity condition where m,,7,; = o(1).
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4. Numerical results

In this section, we assess the performance of the PVA in identifying active co-
variates using synthetic and real data. As our simulations suggest that the SNR-
based PVA performs better than the power-based PVA, we consider four versions
of the SNR-based PVA with the four different estimators of C, namely, Ledoit-
Wolf’s shrinkage estimator and the optimal shrinkage of thresholded estimator
Chs with A = 0.01,0.005,0.001. They are denoted by PVA(sh0), PVA(hsl),
PVA(hs2) and PVA(hs3) respectively.

4.1. Synthetic data

We compare the performance of the PVA to those implemented in the R-
packages ‘glmnet’ (Friedman, Hastie, Simon, Tibshirani, version 2.1), ‘Isgl’ (Vin-
cent, version 1.3.5) and ‘mrce’ (Rothman, version 2.1): the multivariate group
LASSO (MGL), the multivariate elastic-net (MENET), the multivariate LASSO
(ML), the multivariate group sparse LASSO (MGSL) and multivariate regres-
sion with covariance estimation (MRCE) when all these procedures fix their
specificity values approximately at the same level as the PVA. A brief introduc-
tion to these methods can be found in the Appendix A. The Bayesian method
of [2] is excluded from our comparison as it is computationally infeasible for the
large scale data considered here.

Specificity and sensitivity are defined as the survival rates of true active
covariates and of true non-active covariates respectively in screening, namely
SENp = [T'NT|/|T| and SPEp = [T N T¢|/|T¢|, where T and T are respec-
tively the sets of true active covariates and of true non-active covariates, 7' and
T are their estimators, and the symbol | - | denotes the size of a set. Note that
if |T| <mand TUT =T UT® = {1,2,...,p}, then we have

|Tc—TeNT] _p—m—|T|

SPEp = >
7| p—IT]|

So the specificity SENp is close to 1 when p > |T'|4+m. This holds for most of our
simulations, for example for m = 42, p = 2000, |T'| = 37, we have SPEp > 0.978.

Setting 4.1 (B was uncorrelated both within rows and between rows): Modi-
fying a simulation setting in [16], we simulated 50 data sets of (Y, X) from the
model (2.1). Each dataset was generated in the following steps. First, we drew
an i.i.d. sample of size np from the standard normal N(0,1) to form an n x p
matrix X. Secondly, we drew n independent auto-regressive row-vectors from
the J-dimensional multivariate normal N;(0, Ey), where Ey = (0.71°=71) 7, ;. We
stacked these row vectors to generate an n x J error term matrix €. Thirdly, we
generated B = (Bi;)pxs = S0Bo, where sg was a scale factor, By = (bxj)px.J,
br; = Mijuk;, with ni; and uy; independently sampled from the Bernoulli dis-
tribution Bin(0.1) (0.1 is the success probability) and the uniform distribution
U(s1, s2) respectively. We considered combinations of (n,p, J, po, @, So, 1, $2)
with n = 50, p = 100,1000, J = 20, po = 5, a = 0,1, s = 0.45, 0.6,
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(s1,82) = (—1,1),(0.5,1) and (1,2). Note that « = 0 and 1 corresponded to
row-wise uncorrelated and row-wise correlated Bs respectively. We let (s1, s2) =
(—1,1),(0.5,1) and (1, 2) to represent three scenarios of B: (i) rows with non-zero
entries were oscillates around (thus not well separated from) the background 0;
(ii) rows with non-zero entries were uniformly bigger than (thus separated from)
0 by amounts not less than 0.5sq; (iii) rows with non-zero entries were uniformly
bigger than (thus separated from) 0 by amounts not less than sg. Then, we ran-
domly selected a subset Sp, of size py from integers from 1 to p and for any j,
set Bi; = 0 when k € S, . Finally, we let Y = XB + €.

Setting 4.2 (B was uncorrelated within rows but correlated between rows): We
adopted Setting 4.1 except that we multiplied the above By by a matrix factor
By = (0.61F=71),,,, resulting in new B = soB;B, with correlations between
NON-Zero rows.

Setting 4.3 (B was weakly correlated within rows): We generated 50 data
sets of (Y, X) from the model (2.1) for each combination of (n,p, J, pg), where
n = 42,88,150, p = 2000, J = 20, 34,131, and py = 37,50, 70 is the number of
true active covariates underpinning the model. Each dataset was generated in
the following steps. We began with calculating a J x J sample covariance matrix
Q by using the nxJ weakly correlated sub-data matrix of the imputed IC50 data.
Given €2, we randomly generated p row-vectors from a J-dimensional normal
N;(0,9), stacking them together to form a matrix B. We then modified entries
of B so that the resulting matrix contained exactly py non-zero rows which would
be taken as pg active covariates later. The details were omitted. To obtain matrix
X, we let Fy be the p x p sample covariance matrix of the gene expressions in our
cancer drug data which were obtained in the next section. Given Fg, we then
generated n iid row vectors from a multivariate normal N, (0, Fy), stacking them
together to form matrix X. We generated the error term matrix, €, by sampling
from N, (0,02%I,) J times as its column vectors, where o2 = 0.1. Finally, we
obtained Y by setting Y = XB + €.

Setting 4.4 (B was strongly correlated within rows): Similar to Setting 4.3, we
generated 50 data sets of (Y, X) from the model (2.1) for each combination of
(n,p, J,po), where n = 42,88, 150, p = 2000, J = 20, 34, 131, and py = 37,50, 70
is the number of true active covariates underpinning the model. Each dataset was
generated in the same steps as Setting 4.3, except that matrix {2 was replaced
by one with high correlation coefficients. The further details were omitted.

Setting 4.5 (B was moderately correlated within rows): Similar to Setting 4.3,
we generated 50 data sets of (Y, X) from the model (2.1) for each combination of
(n,p, J,po), where n = 20,42, p = 2000, J = 131, and py = 20, 37. Here, Q) was
generated from the n non-missing rows of the IC50 data while X was produced
by use of the gene expression data corresponding to the above n non-missing
rows. The error term matrix was generated by sampling from N, (0,0%1,) J
times as before but with o2 = 0.0645. The further details were omitted.

For each combination of (n,p, J, po, So, 51, $2) in Settings 4.1 and 4.2, we ap-
plied the PVA, MGL, MENET, ML, MSGL and MRCE to each of 50 data sets
respectively and calculated their sensitivity values when the specificity value
was fixed approximately at the same level. Note that in Settings 4.3 to 4.5, it
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F1G 1. Box plots of sensitivity (short for Sen) and specificity (short for Spe) values are for Set-
tings 4.1 with (n, p, J, po, so, S1, s2) taking the following values. (a): (50,100, 20, 5,0.45, —1,1).
(b): (50,100, 20, 5,0.6,—1,1). (¢): (50,1000, 20, 5,0.45,—1,1). (d): (50,1000, 20, 5,0.6, —1,1).
(e): (50,100, 20, 5,0.45,0.5,1). (f): (50,100,20,5,0.6,0.5,1). In each panel, from the left to
the right, the odd columns are for sensitivity while the even columns are for specificity. In
each panel, box-plots from the left to the right are for shg, hsl, hs2, hs8, mgl, menet, mrce, ml
and msgl respectively. B was called “Oscillated” if its non-zero entries were oscillates around
0; “Separated” if non-zero entries were uniformly bigger than 0.

was too time-consuming to run MRCE on a PC. In light of this, we skipped
MRCE in our comparison in these settings. For the MGL, MENET, ML, MSGL
and MRCE, we adjusted their penalty coefficients to achieve approximately the
same specificity as that of the PVA. These sensitivity and specificity values were
summarized using box-plots as shown in Figures 1~7. In these figures shg, hsl,
hs2 and hs3 correspond to PVA based on the shrunk and thresholded covari-
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Fic 2. (Continuation of Fig. 1) boz plots of sensitivity (short for Sen) and specificity (short
for Spe) wvalues are for Settings 4.1 with (n,p, J,po, So, S1,s2) taking the following values.
(9): (50,1000, 20, 5,0.45,0.5,1). (h): (50,1000, 20,5,0.6,0.5,1). (i): (50,100, 20,5,0.45,1, 2).
(4): (50,100, 20, 5,0.6,1,2). (k): (50,1000, 20,5,0.45,1,2). (1): (50,1000, 20, 5, 0.6,1,2). B was
called “Well-separated” if non-zero entries in B were uniformly bigger than 0 by amounts not
less than a constant.

ance estimators with tuning constants A = 0,0.01, 0.005, 0.001 respectively. And
mgl, menet, mrce, ml, msgl stand for the multivariate group LASSO, the mul-
tivariate elastic-net, the multivariate regression with covariance estimation, the
multivariate LASSO and the multivariate sparse group LASSO respectively.
The results indicated that the PVA substantially outperformed the MGL,
MENET, ML, MSGL and MRCE in terms of sensitivity and specificity in all
the scenarios under consideration. In Settings 4.1 and 4.2, the results sug-
gested that the performances of the MGL, MENET, ML, MGSL and MRCE
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F1G 3. Boz plots of sensitivity (short for Sen and specificity (short for Spe) values are for Set-
ting 4.2 with (n, p, J, po, so, s1, s2) taking the following values. (a): (50,100,20, 5,0.45, —1,1).
(b): (50,100, 20, 5,0.6,—1,1). (¢): (50,1000, 20, 5,0.45,—1,1). (d): (50,1000, 20, 5,0.6, —1,1).
(e): (50,100, 20, 5,0.45,0.5,1). (f): (50,100,20,5,0.6,0.5,1). In each panel, from the left to
the right, the odd columns are for sensitivity while the even columns are for specificity. In
each panel, box-plots from the left to the right are for shg, hsl, hs2, hs3, mgl, menet, mrce,
ml and msgl respectively. Adopt the same notations in Figures 1 and 2.

had deteriorated sharply when the separation between active and non-active
covariates, in terms of regression coefficients, was decreasing. In contrast, the
performance of the PVA was much more robust than the other procedures to
interferences between active and non-active covariates. This was due to inter-
ferences being minimized through the optimization in the null-beamforming.
This explained why the PVA substantially outperformed the other procedures
as the separation between active and non-active covariates was decreasing.
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Fic 4. (Continuation of Fig. 3) box plots of sensitivity and specificity values are for Setting
4.2 with (n,p, J,po, o, s1,82) taking the following values. (g): (50,1000, 20, 5,0.45,0.5,1).
(h): (50,1000, 20,5,0.6,0.5,1). (3): (50,100, 20,5,0.45,1,2). (5): (50,100,20,5,0.6,1,2). (k):
(50,1000, 20, 5,0.45,1,2). (1): (50,1000, 20,5, 0.6,1,2). Here, we adopt the same notations in
Figures 1 and 2.

For example, for the oscillated case where p 1000, (n,J,po, So, S1,52) =
(50,20, 5,0.45, —1, 1), the average percentage improvements of PVA (hs3) in sen-
sitivity over the MGL, MENET, MRCE, ML and MSGL were respectively 130%,
190%, 202%, 343% and 853% when the specificity values were fixed roughly
at the same level. In contrast, for the well-separated case where p = 1000,
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F1G 5. Boz plots of sensitivity (short for Sen) and specificity (short for Spe) values for Setting
4.8 (Low correlations within rows, short for LCW) with (n, J, po) indicated in the title of each
plot, p = 2000 and co = 5. Here, we adopt the same notations as in Figure 1.

(n, J, po, S0, $1,52) = (50,20,5,0.45,1,2), the average percentage sensitivity im-
provements of the PVA (hs3) over the MGL, MENET, MRCE, ML and MSGL
were respectively 42%, 44%, 98%, 12% and 35% when the specificity values were
also fixed roughly at the same level. Only in the well-separated case, the other
five procedures had competitive performances with the PVA.

A similar conclusion can be made for the other settings. For example, for p =
2000, (n,J,po) = (88,20,50), (150,20,50), (88,34,50), (150,34,50) in Setting
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(a) Sen and Spe for LCW, (88,34, 70) (b) Sen and Spe for LCW, (150, 34, 70)
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Fic 6. (Continuation of Fig. 5) box plots of sensitivity (short for Sen) and specificity (short
for Spe) wvalues for Setting 4.3 (Low correlations within rows, short for LCW) and Setting
4.4 (High correlations within rows, short for HCW) with (n,J,po) indicated in the title of
each plot, p = 2000 and co = 5. Here, we adopt the same notations as in Figure 1.

4.4, when the specificity values were fixed roughly at the same level, compared
to the MGL, on average the sensitivity values of the PVA (hs3) were increased
by 74%, 97%, 136%, and 237% respectively. Compared to the MENET, on
average the sensitivity values were increased by 312%, 478%, 443% and 968%
respectively. In comparison to the ML, on average the sensitivity values were
increased by 103%, 133%, 163% and 250% respectively. In comparison to the
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(a) Sen and Spe for HCW, (88, 20, 70) (b) Sen and Spe for HCW, (150, 20, 70)
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F1G 7. Boz plots of sensitivity and specificity values for Setting 4.4 (HCW) and Setting 4.5
(Moderated correlations within rows, short for MCW) with (n, J,po) indicated in the title of
each plot, p = 2000 and co = 5. Here, we adopt the same notations as in Figure 1.
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MSGL, on average the sensitivity values were increased by 53%, 85%, 110% and
169%. The results also suggested that the improvements of the PVA (hs3) over
the other procedures in sensitivity were decreasing when py changed from 50 to
70, although they were still large. This was expected as the model complexity
increased but the number of measurements per response did not increase.

In Setting 4.3, we considered a weakly correlated regression coefficient matrix
B. With the same combinations of (n,p,J,py) as before, compared to highly
correlated B setting, the improvements over the other procedures reduced but
they were still substantial. This reflected a fact that the higher the correlations
in columns or rows of B, the stronger intra-correlations the response variable
would receive. Therefore, more accurate variable selection would be derived from
the PVA as it could explore correlation structures in the data better than the
other methods. The results also indicated that the sensitivity improvements of
the PVA over the other procedures were increasing in J and n. The similar
result was also obtained in Setting 4.5.

We recorded the running times of performing the above procedures on each
of the 50 data sets in each setting. The results showed that on average the PVA
was run much faster than the ML and MSGL and was also very competitive
with the MGL and MENET when we applied them to these data sets in terms
of log-CPU-times in seconds. The details were omitted.

4.2. Anti-cancer drug data

Cancer drugs exert their function through binding to one or more protein targets
[22]. Early “one gene, one drug, one cancer” paradigm considers the role of
individual genes and their changes in drug-perturbed states, which largely ignore
a target’s cellular and physiological context. Meanwhile, cancer gene-centric
methods largely ignore the multi-factor-driven attribute of cancer diseases at
the cellular level. With the generation of rich data resources for genome-wide
gene expressions and drug- and cancer-induced perturbations, data integrative
approaches such as PVA try to provide systematic insights into mechanisms
of drugs and cancers in a “multiple genes, multiple drugs, multiple types of
cancers” paradigm.

In this section, we focus on the following two data sets: IC50 values of drug
sensitivity in cancer cell lines and the corresponding gene expression DNA mi-
croarrays [10]. According to cancer encyclopedia, IC50 is a concentration of drug
that reduces a biochemical activity such as cell multiplication to 50 percent of its
normal value in the absence of the inhibitor. The data sets contain gene expres-
sion levels of 13321 genes and median inhibitory concentrations (IC50s) of 131
drugs across 586 cell lines. Among these cell lines, only 42 had complete records
of their response to 131 drugs. Here, we considered only the 42 completed cell
lines. The challenging problem of imputing remaining cell lines will be addressed
in a separate work. We aim to identify biomarkers (a set of genes) that underpin
the drug sensitivity in cancer cell lines. Multivariate random-effects regression
models can be used to recover these biomarkers, where we treat drugs as sub-
jects (or responses), IC50 values of each drug on cell lines as measurements and
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genes as random-effects covariates. Note that, in the above regression, multiple
drugs are simultaneously linked to the same set of covariates. So, the higher the
number of drugs, the more information about these covariates can be extracted
from the drug sensitivity data.

Letting X be log-gene-expression levels and Y be IC50 values of 42 com-
pletely observed cell lines, we considered the model (2.1) for (Y,X) with the
number of measurements per response n = 42, the number of covariates p =
13321 and the number of the responses J = 131. As p > n and p > J, the
model estimation was ill-posed. To reduce the number of covariates, we per-
formed PVA (hs3)-based variable selection on the dataset, identifying 37 ac-
tive covariates (i.e., genes) for the response variable (i.e., IC50s) as follows:
C180RF24 (SKA1), TARS, CLASP1, STAMBPL1, GSTM3, EML1, TRIM6-
TRIM34, DECR1, EP400, RPL39L, FAIM3, CD1A, CIDEB, TP53, QKI,
SNTB1, SEMA4C, NUDT2, RFX2, GPSN2 (TECR), C210RF45 (MIS18A),
COL5A1, RP1.153G14.3 (ZNF391), MKL1, FKSG44, KIAA1856, HDGF2,
CROCC, WDR76, RPS14, MAP3K6, MAP3K6, LY6E, SLCO2B1, NR1D2,
RHBDD3 and STX7. We then fitted a reduced multivariate regression model to
the dataset by restricting the covariates to the selected, obtaining an estimated
vector of the 131-dimensional regression coefficients for each selected gene.

We constructed a network, displayed in Figure 8, for the selected genes based
on their regression coefficients across 131 drugs. The network was strongly con-
nected as there always existed a path from any node to any other node. Sur-
prisingly, although by the iterative nulling, the selected genes were uncorrelated
in their expression levels, they were strongly correlated when they reacted to
cancer drugs as shown in Figure 8. This suggests that these genes are potentially
correlated in a high function level (e.g., protein level).

To reveal the potential roles of these selected genes played in cancer drug sen-
sitivity, as their protein products would dictate their functions, we investigated
their protein stainings in the following 20 common cancers [18]: Breast, Carci-
noid, Cervical, Colorectal, Endometrial, Glioma, Hand and neck, Liver, Lung,
Lymphoma, Melanoma, Ovarian, Pancreatic, Prostate, Renal, Skin, Stomach,
Testis, Thyroid and Urothelial. We extracted such information from the Human
Protein Atlas Portal at http://www.proteinatlas.org/cancer. As in the Por-
tal, we classified the protein expression/staining levels into 4 categories: high,
medium, low and not detected. We assigned the scores of 3,2,1 and 0 to the
above categories respectively. If a gene did not play a role in a cancer, it would
receive a score of zero as its protein staining at that cancer would be hardly
detectable. We found 34 of the selected genes, which had positive staining levels
on at least one of these cancers. This implied that these genes might play certain
functional roles in growths of some of these cancers. In the Portal, there was no
information available on the remaining 3 of the selected genes.

5. Conclusion

High dimensional multivariate regression data, where columns stand for mea-
surements on responses (or subjects) can be fitted by both fixed-effects models
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Fic 8. A network of the 37 selected genes based on their regression coefficients across 131
drugs. The size (called degree) of each node is proportional to the number of connections of
that node with other nodes. The thickness of each edge represents the magnitude of the corre-
lation coefficient between the nodes linked by this edge. The higher the correlation coefficient,
the thicker the edge is. The largest degree of 22 and the smallest degree of 3 were attained by
gene QKI and gene STX7 respectively.

and random-effects models with helps of variable selection. The existing multi-
variate variable selection methods have been put forward mainly for fixed-effects
models. In this paper, we have developed a novel approach called PVA for select-
ing random-effects covariates in multivariate random-effects regression models.
PVA is covariate-assisted, in which we project the response data matrix into the
space spanned by each covariate and define a relative information index SNR, by
the variance component ratio between this covariate and the background noise.
The resulting SNR values are then used to rank covariates. The highly ranked
covariates are called principal variables. By the PVA, we try to find a small
number of principal variables to explain the maximum amount of variation in
the data. Our approach allows us to consider correlations between measurements
and between responses (between rows and columns in the response data matrix)
while the existing methods are only able to deal with correlation structures be-
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tween responses. In a multivariate fixed-effects model with many responses, for
each covariate, we need to estimate many regression coefficients, which is a high-
dimensional problem when the number of responses (or subjects) is very large.
In contrast, in a multivariate random-effects model, for each covariate, we only
need to estimate its variance component, which is a low-dimensional problem.
This difference provides a foundation for the PVA approach to multivariate
variable selection. In multivariate regression models, all responses are related
to the same set of covariates, which implies that the larger the number of re-
sponses, the more information on covariates can be extracted from the response
data. Therefore, the accuracy of random-effects covariate selection is expected
to increase as the number of responses is increasing. However, when all covari-
ate variance components are zeros, the models reduce to a class of fixed-effects
models, where the methods in [17] can be employed while the PVA approach is
not applicable.

We have established a novel theory on selection consistency for the pro-
posed method when along with other regularity conditions, the number of co-
variates p, the number of non-zero entries m,, in covariance matrix. the num-
ber of measurements per response n and the number of responses J satisfy
mpy/log(n)/J = o(1) and log(p) = O(n*°). In particular, we have shown that
under these regularity conditions, true active covariates are asymptotically sep-
arable from non-active covariates in terms of their power or SNR values as n
and J tend to infinite. We have also shown that the nulled power has a higher
value than a non-nulled power and is adaptive to response covariance struc-
tures. We have conducted a wide range of simulation studies to compare the
PVA with the multivariate group LASSO, the multivariate elastic-net, the mul-
tivariate LASSO, the multivariate sparse group LASSO and the MRCE. This
has explained why the PVA can outperform the existing multivariate variable
selection procedures in the literature as these methods are not adaptive to re-
sponse covariance structures. The simulation results have shown that the PVA
can substantially perform better than its competitors in all the scenarios under
considerations while the PVA is scalable to the data size by iteratively calculat-
ing the power or SNR values. The simulation studies in Settings 4.1~4.5 have
shown that even when the response covariance matrix is not sparse or when J
is much smaller than n, PVA can still have a superior performance than the
existing methods.

To demonstrate the usage of the PVA in practice, we have conducted PVA
on a cancer drug dataset and identified a list of principal genes and the related
network to predict the drug’s sensitivity to cancers in a “multiple genes, multiple
drugs, multiple types of cancers” paradigm. The correlations of the selected
genes in the RNA expression levels are largely different from those in their
functional levels (their contributions to the IC50 values). The results have been
further validated by the protein expression levels of these genes in 20 common
cancers. We should mention that we have applied the cross-validation-based
multivariate group LASSO and the multivariate elastic-net to the same dataset.
Unfortunately, we have ended up with a few thousand genes being selected,
which were very difficult to interpret in practice.
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Appendix A: The existing approaches to multivariate variable
selection

To introduce the multivariate group LASSO (MGL) and the multivariate elastic-
net (MENET), we consider the following penalization problem

J

2%

1 P
min ¢ o (|Y ~XB|}+A[(1-a) B} +a )
Jj=1

k=1

where |[B|[r = />, sz denotes the standard Forbinus norm of B = (f;),

[[lY — XB||F is the Forbinus norm of Y — XB, n is the number of observations,
0 < a <1 is a pre-determined constant and A > 0 is the penalty coefficient.
The solution defines the multivariate group LASSO when o = 1, ridge estimator
when « = 0 corresponds to the ridge estimation, and the multivariate elastic
net when a = 0.5.

The multivariate LASSO (ML) and the multivariate sparse LASSO (MSGL)
can be derived by the following penalization problem with

J
> 8| ¢

J=1

1 p
mBin %||Y7XB||% +A|Q-a)Bl+a)
k=1

by setting o = 0 and a = 0.5 respectively, where B[ =}, . |By;| is the L; norm
of B. The sparse multivariate regression with covariance estimation (MRCE) is
referred to Rothman et al. (2010).

Appendix B: Extra theorems, technical details and proofs

In this appendix, for a n x n square matrix D, let ||D|| be the operator norm,
the square root of the largest eigenvalue of DDT . Slightly abusing the notation,
now let ||D||r denote the size-normalized Forbinus norm, /tr(DDT)/n, where
tr(+) is the trace.

B.1. Theory on principal variable analysis with known covariance

We begin with an ideal setting where C is known. This includes the case of
J = oo in which we can estimate C exactly. We establish lower bounds for the
SNRs below.

Proposition B.1. Under Condition (C0), sNr, > 1 holds for any v C [1 : p]
of the size |v| < n and SNR,|, > 1 holds for any v,w C [1 : p| of the size
v Uw| < n. The lower bound is attained when all predictors in [1 : p| are not

active.
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The above proposition shows that the SNR-based map has a sharp lower
bound of 1 when A = ¢%1,,. However, when A # o21,,, we apply the proposition
to (A~1/2Y,A~1/2X) to obtain a A-dependent lower bound for the SNR values.

To investigate the asymptotic properties of the power-based and the SNR-
based maps, let A,, = C—x,,e, Ze,,x{ , the remainder of C after subtracting
the term xquZ;Eeyon;. In the next proposition, we shows that a local con-
sistency of the predictive power with the underlying power efo Ye,, at vp: the
power at 1y can be written as the underlying power plus the interferences with
the predictors not in vy and with the white noise. These interferences can be

negligible if predictors outside vy have zero powers.

Proposition B.2. If both €], Ye,, and A,, are invertible and x,, has a full
column rank, then the predictive power matrix

_ -1
Yoo = efOZe,,O + (wZOAVOI:BVO) .
If a,% =0, k &y and )\mm(wa) T, /n) is bounded below from zero as the sample
size n tends to infinity, then vy, = el Ye,, +O(n™1).

We now in position to state a theorem on the global sparsistency property
of the power map. In the theorem, we show that for an active predictor, the
predictive power has a positive limit whereas for a non-active predictor, the
predictive power tends to zero. This allows us to separate active predictors from
non-active ones by thresholding the power map.

Theorem B.1. Suppose that there exist constants 0 < a1 < (1 — 3ag)/2
and co > 0, con™ 1 < )\mm(eZOEe,,O) < )\maz(e?,;Eel,o) = 0(1). Let £,q,, =
(efm,o(eZ;ZeVO)_leNVO)_l, a partial covariance matrix of v with respect to vy.
Then, under Conditions (C0)~(C3), as n tends to infinity, we have:

(i) Uniformly for any v C vy with |v| < rn,

—1 T T -1 51 T -1
Y = quuo +n Euquo eyqyo (eyozeyg) R (eyozeuo) €ravg Z)1/<11/0

Voo
+O(n*2+2ao+4a1)
= Yiay + O(ﬂ71+a0+2a1).
(ii) Uniformly for any v C [1: p] \ vo with |v| < rn,
Y = n_l (RVV - RVI/()R;OlVORVOV)71 + O(n—2+4ao+a1) - O(n_1+“°),

(ii3) Uniformly for any v = vy Uy with v1 C vy and va C [1 : p] \ vy and
lv| < rn, v, can be partitioned into

with

11 —143 2
T = 2l/1<11/0 +O(n Flao® al)v
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12 _ -1 T T -1 51
T = —-n ZV1<1Vo eV1<ll/0 (eyozello) RV(JI/(] RDUV2
-1 -1 — 142043
X (RV2V2 - RVzVo RV()V(] RVon) + O(?’L )
_ 0(7,L—1-|-2u0+a1)7
21 _ -1 -1 -1 -1
Yo = —-n (Ru2u2 - Ru2uo Ruol/o RV0V2) RVWO Rl/ovo
T -1 —14+2ap+«
X (eVOZe,,O) €y, avo D ave + 01 oTaL)
— O(n_1+2°‘°+a1),
22 _ -1 -1 -1 —2+44ap+2a
Yv = n (RV2V2 - RVQVO Ruovo RVOVQ) + O(n 0 1)

= O(n 1t0),

The above theorem also indicates that compared to the underlying power
matrix, el Ye,, the predictive power matrix 7, may be not consistent if the
collinearity between a pair of the predictors does not converge to zero as n
tends infinity. This can be seen from the derivation of the predictive power at
the predictor k; € vy below. Let oy, denote (ok;k, : i # j), the jth row in
efo Ye,, excluding the jth coordinate. Let o_,jx, denote (o, : i # j), the jth
column in ¥ excluding the jth coordinate. Let o[_,j—x,;] denote the remaining
matrix after removing the jth row and the jth column from efo Ye,,. Then, the
(7,7)th entry in (e, Ye,,) ! is equal to (o*,%] —akj[_kj]a[__lkj][_kj]cr[_kj]kj)’1. The
following corollary says that under Condition (C1), the predictor k; does have
positive predictive power although the power has deteriorated due to the inter-
ferences with other predictors. Therefore, if we employ the estimated predictive
power to screen predictors and if C is consistent with C, then under Conditions
(C0)~(C3), the screening procedure can have a sure screening property that for
an appropriately chosen threshold, all predictors in 1y can be detected with a
probability approaching to one.

Corollary B.1. Under the conditions in Theorem B.1, as n tends infinity, we
have:

(i) Uniformly for any k; € vy, the predictive power of the predictor k; can be
expressed as
—1 _
Vk; = 0’,%]_ — Ukj[7kj]O.[—kj][—kj]o-[fkj]kj + O(TL 1+o¢0+20¢1).
(ii) Uniformly for any k & vy, the predictive power of the predictor k can be
expressed as v, = O(n=1+e0),

Let a be the current predictor under investigation and v Uy, be the predictors
identified in the previous steps by PVA, with the size |v; U v»| < rn, where
0<r <1,y Cwand vy C[1:p\wv. Fora=k; € v, let egq, =
€{a}avy, @ |Vo|-dimensional column vector with the j the coordinate equal to
1 and other coordinates equal to zero. In the next theorem, we show that the
global sparsistency property continues holds for the nulled predictive power and
that the nulling can improve the accuracy of power estimation.
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Theorem B.2. Suppose that there exist constants 0 < ay < (1 — 6)/5 and
ca > 0, con™ ™ < Ain (e Zeyo) < Anaz (efoEeyo) = O(1). Then, under
Conditions (C0)~(C3), as n “tends to infinity, we have:

(1) Uniformly fora € [1 : p]\vy and a & v1Uvs with |11Urs| < rn, the (11Urs)-
nulled predictive power of a admits the form Yaju, Uy, = O(n~1tao),

(i) Uniformly for a € vy and a & v1Uvy with |v1Us| < rn, the (11 Uvs)-nulled
predictive power of predictor a admits the form

—1
_ T —1
’70,\1/1 Urey — (eaqzzo EVU\Vl ecml/o)

-1 —1
—|—7’L a<11/o (61’1/:;)261/0) ‘I’ (e?/—(‘)zeuo) ea<11/0
+O(n—2+600+5a1)
)

where
—1
T T -1
Yoiaw, = (equyo (e),Sew) el,ml,o) ,
1 . T —1/2 T -1/2
Zyo\yl = (euoEeVO) Pyuo\v, (eVOZeVO) )
B T —-1/2 T T -1/2
PVO\VI - I\l/o\ - (euozeVo) eV1<1V02V1<1V0 €1 avo (euozevo) )
_ 1
FV2 - RVzl/z - Rl/zl/o Ryoyo RV0V27
_ 1 1
i’ - Ruovo + Rvoyo RVOVZF RVQVO Ry0u07
_ T -1
v = (I\V0| - eV1<V02V1<1V0 evl<11/g (eVUEeVU) ) ®

_N\T
(I\V0| - eV1<1VOZV1<1Vo 617;141/0 (el’];UEeVO) )
Here, abusing the notation, we let 2;01\V1 denote the generalized inverse of
Y o\vi - Note that P, \,, is a projection matrix of the v;-nulled precision space
spanned by predictors vg \ v;. Therefore, ¥,,\,, can be viewed as an v;-nulled

projected precision matrix for vy \ v1 and eaql,OET €qar, Ccan be viewed as a

1
Vo\l/l
weighted, v1-nulled precision for predictor a. It can be seen that for a € vy,

-1
)\min (( Z;ql,o Ey_g\ul eadug) )

-1
T —_
( CL<1V021/0\1/1 eaqyo)

> Amin <<e{a}uw (ezoze”‘))il e{a}UU1)1>
= (e (eFuyonn (5 5e0) " epin))
e (250 )
= Amin (€, S€y,) > con™ .

The last inequality above follows from the assumption on the growth rate of

e} Ye,,. Note also that when a = k;, (el (el Ye, )~ eaql,o)f1 = O',%j -
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Tk [k [ =) Ok 1k, Therefore, it follows from the definition of v, ., v,
Corollary B.1 and Theorem B.1 that v, < 7,1, U, and that both v, and v4, U,
can be asymptotically less than or equal to U]% due to interferences with other
predictors. Furthermore, we have a sharp result as follows.

Corollary B.2. Under conditions in Theorem B.2, as n tends to infinity, we
have:

(i) Uniformly for a € [1 : p] \ vy and |v1 U s < rn, both v and Yaju,uw,
converge to zero in the rate of O(n=1Ta0),
(ii) Uniformly for a € vy and \1/1UV2| <rn, —12— = (1—fa,,)(1+0(1)) < 1,

? YalvqUvg

- _
where oy, = €& o, (eyoEeyo) €aav, and

-1
T T T -1
gaul <el/1<ll/0 (eyozevo) eV1<1Vo> Javy

—1
T T
ea<11/0 (el/o E el/o ) ea<1110

fa|1/1 =

The power-based variable screening may not be efficient due to the inho-
mogeneous power background a2w£wk. This calls for the SNR-based variable
screening. We show that active predictors can be asymptotically separated from
non-active ones by means of the nulled-SNR.

Theorem B.3. Under the conditions in Theorem B.2 and Condition (C4), as
n tends to infinity, we have:

(i) Uniformly for a € [1 : p]\ vy and a &€ v1 U vy with vy Uwvs| < rn,
SNRajuyUny = gz + O(n72H500t201) >,
(i) Uniformly for a € vy and a € v1 U vy with |11 U] < rn,

T -1 ¢
advo “yg\vy WMo

02<0 eaduozyol\yl i’zyol\yl ea<1Vo (1 + 0(1))

2
T -1 T T -1 T -1
(eaquo Zyo\yl eaql’o) €aavg (e Zel’o) v (euo Eel/o) €aavy

o2(o eaqyozyol\yléz;}\yl €aavy (1 +0(1))

ne

SNRG|U1UU2 =

— 00,

where Z;Ol\yl, ® and ¥ are defined in Theorem B.2.

B.2. Theory on principal variable analysis with estimated
covariance

We will show later in Lemma B.4 that under Conditions (C1)~(C6), the optimal
shrinkage covariance estimator Chs is comnsistent with the true covariance C.
This allows us to state the following theorems for the case where unknown C is
estimated by Chs.

Theorem B.4. Suppose that Conditions (C0)~ (C6) hold and that 7, yn* = o(1)
as both n and J tend to infinity. Then, we have:
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(i) Uniformly for any v C vy with \1/| <rn, Yy = Bpay, + Op(n~1Taot2on 4
n%7,7), where Soave = (ezquo( Eeuo) Ye,a,)™ 1

(i) Uniformly for any v C [1 : p] \VQ “with lv| <rn, 4, = Op(n=1re0 4n2r, ;).
(ii1) Uniformly for any v = vy Uwvg with vy C vy and va C [1: p] \ vy of size

lv] < rn,
5 = ( oA )
’YV ,}/l/
where
’%1 = Yyan t Op(n_1+a0+2a1 + nzTnJ)a
'%2 = Op(n_1+ao+2al + WQTnJ)v '731 = Op(n_1+ao+2al + WQTnJ)v
2= 0y fnry),

where Xy, quy = (e,:fl‘,,o( D) e ,)

The above theorem implies that the sparsistency property holds for the es-
timated predictor power 4,. Using 4,, we can screen the predictors with a pre-
specified threshold, say n~=1t20log(n), obtaining an estimated set of active pre-
dictors, oy = {1 < a < p: 4, >n" % log(n)}. We can prove the following sure
screening property for 7y.

Corollary B.3. Under the conditions in Theorem B.4, if a; < min{(l —
@0)/3, (1 — 3ap)/2}, n*Tor,; = o(1) and n***i1,; = o(1), then as both n
and J tend to infinity, P(vg = 0gq) — 1.

B.3. Proofs
Proof of Proposition B.1. Note that C = XXX’ + 021, > 02I,,. Therefore,

2. T _ 2T 1 ~—2 T —1 -1
O Wy wWulw = 0 €, ( waC XVUw) C™ " %puw ( X, C XuUw) Culw
- -1
< eu\w ( VUUJC XVUW) VUwC I nXyUw ( I/UUJC XVUW) el/\w

= Tv|w>

which implies sNR,|, > 1. When all predictors in 1 : p = {1,2,...,p} are not

active and C = 021,,, Y, = aQWZ‘ww,,w. Therefore, SNR,,|,, = 1, which attains

its lower bound. This completes the proof. O
Proof of Proposition B.2. It follows from the Woodbury matrix identity. O
Proof of Corollary B.1. It follows from Theorem B.1. O
Proof of Corollary B.2. It follows from Theorem B.2. O

To prove Theorems B.1~B.3, we needs the following lemma which gives a
X,,-projection based decomposition of the quadratic form xfolxy.
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Lemma B.1. Under Conditions (C0)~(C3), for any v C 1 :p, if oy < (1 —
3ap)/2, then

T 1 -1 -1 T -1 -1
T, c- r, = N (Ryy - RVVO Ryoyo RVQV) + RVVO Ryouo (euoze’/o) RVOVO RVO”
+O(n—1+3a0+2041).
In particular, for v C vy, if a1 < (1 — ap)/2, then
T 1 T T -1 -1 2
x,Cw, = e,,, (eyoEeyo) €yav, + O(n~1Toot2on)
Fora € vy and v1 C v, if an < (1 —p)/2, then
T 1 T T -1
Z, ¢ Ly, = €iqy (eyozevo) €v1avp
-1.T T -1 51 T -1
-n ea<1u0 (euozelfo) Ruouo (eV()EeVO) €viavg
_~_O<n—2+5a0+3a1).
Forvy Cuvg andva C1:p\wy, if a1 < (1 —2a0)/2, then
T 1 _ T T -1 51 —14+2a0+2
:1:1/1 C_ sz - eu1<1u0 (euozeuo) RVOVDRVon + O(n a0 a1)7
T A1 -1 /T —1 —14+2a0+2
wuzc_ Ly, = RVzl/ORVouo(euozeVo) €y avy T O(n Hreot al)'

Proof of Lemma B.1. Note that

1Ry Ruowl| < IR0 Rugw Rou RG] < [RZ]| = O(n/?).

Vovo Volo

_ _ T _
When v C 1y, we have x, = X,€pa,, Ruvy = €/, Rugros Bugr = Rugro€ran,

and R,, = efqyo Ruyvo€var, - These together with the Woodbury matrix identity
and a Taylor expansion complete the proof. O

Proof of Theorem B.1. To prove (i), let ¥y, = (€], (el Se,,) teva,) !
Then, by using the assumption,

Mo (252,) < (s (8, Ze) 1)) = M2 (€1, Zes) = O().

This together with Lemma B.1 yields (i).
To prove (ii), we apply Lemma B.1 to calculate x2' C~'x,. We have

Yovo Yoo

xIC %, = nFY? (I|V‘+n’1F;1/2RWOR’1 (eF Se,,) 'Rk Ry, F) /2

+F;1/2O(n72+3a0+2a1 )F;1/2> Fll/z’

where F, = (R,, — R,,VOR;(}VOR,,W). Therefore, when a7 < 1 — 3ay,

Ny = n—lF;l/Z (I|V| _ O(n—1+3a0+a1) - O(n—2+4a0+2a1)) F;1/2 _ O(n_1+°‘°),

which completes the proof of (ii).
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To prove (iii), we note that

T (-1 T (-1
xfClxu(X"lc X %, O X, >

T ~—1 T -1
x,,C7 %, x,C7 %y,

Invoking Lemma B.1, we have

T ~—1 T T -1 —14ao+2a1
Xl/lC Xuy - el/1<]l/(] (el/(] Eel’o) Cu1avo + O(n )7
T -1 o —1 20+
XVQC Xyg = N (RV2V2 - RV2V0 R‘ll(]l/() RVon) + O(TL )
Similarly, we can show that
T ~—1 _ T T -1, — 142004201
quC XV2 - eulquo (euo Eel’o) Ruguo RVon + O(?’L )7
T ~—1 _ —1 T —1 —14+2a0+2a1
XVZC Xy, = R‘VQVORV()I/() (euo Zel/()) €1 avy + O(TL )

— (o T -1 -1
Let X, vy = (€}, 4, (€1, 2€0,) " €y ) . Then,

)\max(zulquo) < )\max(eazeuo) = O(l)

The proof is completed by applying Lemma B.1 to each block. O

Proof of Theorem B.2. To prove (i), let v denote v1 U vy U {a}. We partition
xI'C™'x, into the block matrix below:

T ~—1 T ~—1
N TXV1 C 'x,, Xy, C XyyU{a}
v v X

—1 —
vufa}C X Xiu{a}c XyyUfa}

and that x,, = X,,€,,«,. Invoking Lemma B.1, we have

X0y, = €, (€1, Desy) ™ vy + Ol 5
XL C %00} = €y (€2 Tery) T Rirh Rugmaugay) + O(n~ 200201,
%}, 0t} C 7 %0 = Rivputa o Rugre (efoEeyo)_1 Cuyavy + O(n~1+200+20a1),
X0,0t03 C Xuautay = 1 (Rvautan) autad) — Rvautadwo Rugro Reo (raifa))
+ O(n?e0ton),

We partition (xI'C~'x,)~! in the same as we did above for x7C™'x,:

B B All A12
(XSC 1Xu) t= ( A2l A22 )

Then, by definition we have

Yalrrowe = (0F,, DAZ (0], )T (B.1)
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And let Fo,ufa) = Rusua)(waua) — R(VQUG)VOR;()IVOR’VO(Vzua) and define ¥, as in
the proof of Theorem B.1. We have

_ _ —1
A22 _ l ( RV2V2 - R’VZVORVfllIO RVon RVza - RVQVQRZ/ 11/0R1/0a )
n RaVQ - Rauo R;o Vo Ruo 12 Raa - Rauo R;U Vo Rl/o(l
+O(n~ o0t 201). (B.2)

Note that any main block matrix has a larger smallest eigenvalue than that of
the whole matrix. Therefore, by Condition (C3) we have

>\max ((Raa - RauoR_l Ruoa - (Rallz - P{aVo]‘:{_1 R‘VOVZ)

Voo Voo
-1 -1 -1 -1
X (RV2V2 - RVzVoRuouoRroz) (Ru2a - RVzVoRuouoRuoa)) )

< nas (F 0y ) = O(™).

This together with equations (B.1) and (B.2) shows that v, = O(n™110).
The proof of (i) is completed.
To prove (ii), we let v = {a} Ury Uvy and write xfole as the block matrix
below:
xfolxa xaTC*lxl,1 xfole
xfC_lxl, = xaC_lxa X,TIC_lxl,1 XZIC_lx,,2
X,ZC_lxa xsz_lx,,1 szC_lxl,2
Applying Lemma B.1 to each block, we have

Tr~—1, _ T T -1
xe Clxq = el (€], Zen,)  €aa

-1,.T T 11 T -1
N Cuqy, (el/g Eel’n) R‘V[)l/(] (euo Zel/o) Caavg

+ O(n72+2a0+3a1)
)
1

T -1 _ -1 (T -
x,C7'x,, = Ray R (eoneuo) €, avg

VoVo
-1.T T 151 T -1
-n ea<1uo (evo EeVU) RV[)V(J (euo Zel/o) €y

4 O(n—2+2a0+3a1)

T -1 _ T T 1o
x,C'x,, =€ (er,Xew,)  RyoRuows

a<vg voro
-1,.T T 151 T 151
-n eaquo (euo Zel’o) Ruoug (euo Eel/o) RVQVOR’VOV2
+ O(n72+aao+3a1)’
T-1, _ T T —lnh-1
lec Xa = eD1<]DU (euo Eelfo) Rl/ol/o RV()a
-1,.T T “1n-1 T -1
N €, (euozeuo) Ruouo (euozevo) €aavy
4 O(n—2+2a0+3a1)’
T ~—1 _ T T -1
Xlllc Xy, = el/1<11/0 (eljoze’/o) €u1avo
-1,.T T —1h-1 T -1
-n el/1<11/0 (el/[) ZeVO) R’IJQV@ (el/o ZeVO) eV1<”/O

+ O(n—2+2a0+3a1 )7



Multivariate variable selection 3463

T ~—1 T T 151
x, CT'x,, =e (eVUEeyo) R, L. Rugrs

V1 V1<]l/0 Vol
-1.T T “l1h-1 T 151
-n el/1<11/0 (eVUEe’/O) Ruouo (eyozevo) R’V()I/(JRVOV2
+ O(n—2+5a0+3a1).

T -1y, _ -1 (T -1
X, C7 % = Ruyuo Ry (€ 2€0,)  €aang

-1 -1 T 151 T -1
-n RVzVo Ruoug (euo 2el/o) Ruouo (eVo Ee”ﬂ) €aarg

+ O(n72+5a0+30¢1)
)
1

T ~—1 _ -1 T -
XDQC Xy = RVQVORDQVQ (euo Zel/o) Cu1avg

-1 —1 T “lnh-1 T -1
-n R’VQVO Rvoyo (e]/(] EeVo) Ruouo (evo Eevo) €1 avy

4 O(n—2+5ao+3o¢1 )

T ~—1 -1
XWC Xyy =T (RV2V2 —Ru,R RV0V2)

volo

-1 T —1nh-1
+ RV2V0RVO”O (el/o Eel’O) RVoVoRVol/’z
+ O(n_1+3a°+20‘1),

T ~—1 -1 1 (-1 11 -1 T -151 -1
(L7 x0) =0 (B = 0T L R R, (e, Tew) Ry, Runss
+O(n72+5a0+2a1))
. _ ~1
with Fu, = R, — Ruswe Ry Rugr, - Therefore, we have

T -1 T -1 T -1, \—1,T -1
X, C ' xq —x,C7'x,,(x,,C7'x,,) x,C7 %,

-1

_ T T
- ea<11/0 (euo 2el/o) €y avg

7n—1e(7;<wo (ezj;o Eem))_l (R;Oluo + R;()luo Rugvs F;QlR’V2VOR;01Uo)
o (efOEeuo)fl ey, av + O(n~2F000+30a1),
XZIC_lxa - xZIC_lx,,2 (xZQC_lx,,z,)_le;C_lxa
=el (ef0 Eel,o) ! €qavy — ntel (ezo Ee,,o) -

v1dvo v1dvo

x (Rt + Ry Ruos Fo RusoRick, ) (€ Seyy) ™ eaan

volo vovo vovo

+O(n—2+6ao+3a1 )

Letting ¥, a, = (el ., (e} Yey,) tes, a,) ", by the conditions in Theorem
B.2, we have ¥, 4, = O(1) and

T ~—1 T ~—1 T ~—1 —1,T ~—1 -1

{x,,C7'x,, —x,, C7'x,,(x),C 'x,,) " 'x),C7'x, }
_ -1 —1,.T T -1/ n-1 -1 -1 -1
- {Equug -n eu1<1u0 (euozevo) (Rvoyg + RVQVORVOV2FV2 RV2VoRy0u0)

-1 _ -
< (e, Seu,) " ey +On 20019
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- EV1<11/0

0 S a0el o (€ ey, ) T (R, 4+ Rih Rugim i Rusuo R

Voo Vol

—1 _
X (el]f:)EeVU) eV1<1V02V1<1V0 + O(’FL 2+6a0+3a1)'

VOVO)

The above asymptotic expressions together with the definition of v,,, ., entail

YalpiUve = {XTCflxa — TC xyg(x Cc™ xy2) 1 TCflxa
— (xfc7'x,, —xIC7'x,, (x], C'x,,) %] CTxy,)
x (xZ G 'x,, —xZ C xuz(x C'x,,)7! Z;C*lxyl)*l
x(x2 C'x, — xL C'x,, (x], C 7 'x,,,) 7! VQCflxa)}_1

—1

_ (T - - 1,.T T T -1
= ( aqUOZuo\Vlea@O) +n e, (evOEeyo) lIl(eVOEeVO) €advy

4 O(n—2+6ao+5a1)

where 2;01\111 is defined in Theorem B.2 and ¥ is equal to

T T — —1
(I|V0| - eV1<1VDZV1<1V0eu1<1V0 (euozelfo) ) (Ruouo + R’IJQIJOR’VDV2 RVzVoRVOVo)
T
T T -1
X <I\V0\ - eV1<1VoEV1<1Voey1<1y0 (euozeVo) ) .

The proof of (ii) is completed. O

To prove Theorem B.3, we need a more lemma as follows.

Lemma B.2. Suppose that there exist constants 0 < oy < (1 — 3ag)/2 and
co >0, con™t < Ain (e Eeyo) < Mnaz (e Eeyo) = O(1). Under Conditions
(CI)~ (C4), for any set v C 1 : p, we have:

(i) If v C 1y, then

xzl C %z, = %eT (eZOEe,,O) R!

(2 24) Voo

( Auo mVo/n) 1/01/0 ( Eel/o) ! €pavg

+O(n 24-3ap+3a1 )

(i) If v C 1:p\ v, then

z, C %z, = n{zlA %z, /n— R, R, = Az, /n
- ( TA 21,‘,,0 /n) R;olllo RVOV + RVVO R;ovo (wl?() A;02w’/0 /n>
XR;Oluo Ryou} + 0 n—1+4ao+a1).

(iii) If v = v1 U with vy Cvg and ve C1:p\ vy, then

T 2 T ~1—2
T2y — < x,, §2myl z, C 2:1:,,2 >
v v va v ’

:BVZC'_ T, :nyzO_ Ty,
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where
1 -1
T 2 T T —1 T A1—2 —1
Ty, ¢ Ty, = Eewa/o (el/ozel/o) RVQVQ(mVOAVO wl’o/n)Rl/gllo
-1 o
x (e, Den,)  evay, +O(n 200t
1 -1 1
T 2 T T -1 T
2, C %, = ey, (ehZen) Bi, ((euozeuo) Co + 0(1))
X R;olvo RV0V2 + O(n—2+4ao+3o¢1 )
T 2 T 41—2 -1 T 4—2
wyg 0 mV2 = n (mug AUO mV2/n - RVQVO RV()VO a:IJOAI/O ml’2/n
T 4—2 —1 -1 T 4—2
7(ml/2Al/0 mVO /n)Ruol/o RV0V2 + RV2VO Rl/ouo (ml/oAllo mVO/n)
XR;olugRl/oVQ) + O(n—1+4ao+a1)'
Proof of Lemma B.2. Note that
1 -1 2
—2 —1 —1 T - T A—1 T A—1
C = <AuO — Ay Xy, ((eVOZel,o) +x,,A,, x,,o) X, AL, >

= A7 A%, ((ef{)zeyo)_1 + xZOA;leVO)fl xI A2
*A;ole/o ((ez; Ye,, ) -t + XZOA;leVO) - x?:o A;Ol
+A;01X,,0 ((e:‘fo Yey, ) -t + X:jFOA,jle,,O) - x,:fo A;fx,,o
X ((efo Sey,) Ty Xp A,jolxl,o) o xp AL
The proof is completed by some algebraic manipulation. O

Proof of Theorem B.3. To prove the part (i), let v = 14 U {a} U vy and abusing

the notation, let eflyluu2 = (OITmI’ O|Tu2\a 1) and eflw = (OITVzl’ 1), where 0y, and

Oj,| are |vq|-dimensional and [v|-dimensional vectors of zeros. Then, we have
T _ T T -2
WQ|V1UV2W‘1|V1UV2 - ea|l/1U1/27l/Xy C Xl/’yllealyluljz . (B3)
Note that xfolxl, can be naturally partitioned as follows:

T ~—1 T ~—1
Ty XUIC Xy, xl,lC XyyU{a}
Xy Xv =\ T C'x xT C 'x
voU{a} Vi voU{a} vaU{a}

Following the same block dimensions as above, we partition 7, and xZCfQXV,

namely o b
(AT A Tr—2. _ ( Bir B2
Y = ( A2l p22 ) %, 07, = < By;, Boy |-

Substituting them into the equation (B.3), we have
W5V1Uy2wa|u1Uy2 _ eT (A21B11A12 + A22B21A12 + A21B12A22

alvs

+A22B22A22) ea‘l,z, (B4)
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where it follows from Lemmas B.1 and B.2 that

AL (eflqyo (efo Eeuo)_l eﬁqyg) -1 n O(n71+3a0+2°‘1),

A12 = (ezlquo (efo Eeuo)_1 eulquo) o ef1<u0 (eZ“O Eeyo)_l
XRyoVoRVO(UZU{a})FD_;U{a} + O(n~ 250 +3a1),

M _n_lF;zU{a}R(V2U{a})”°R;01VO (e:{ozeuo)_l €1 avg (e?;muo (e:{OE&/o)_l
Xev1<1u0)_l + O( 72+56¥0+3a1)

A2 — 1F— JUga) T O(n —2+4a0+2a1)

with Fo,u1a) = Ruufal) (neufa)) — R(u2u{a})u0RuouoRuo(Vzu{a})' And

T —1
l/ol/o ( D[) EeVU) equy()

By =n"tel (eZ:)Eel,o)_lR

v1dvg

WAL xuo/n)

l/()l/()(
+ O(n—2+3ao+3a1)
)

_ 1 -1
Bia=n let:flquo (elz,z)zevo) VoVo (<0 (e Eel’o) + O(]‘)) RVOVORVO(V2U{G’})
+ O(n*2+4ao+3a1)’

_ —_ -1 —1
Bai = 1 "Riuutal)we Roch, ((0 (el Se,,)  + 0(1)) R;L (e Seu, ) evran
+ O(n72+4a0+3a1)’

B22 =n {XZ;U{G}A;fX,/zU{a}/TL — R(VzU{a})l/oRuoll/oxqu Xyzu{a}/n

-2
_(XZQU{G}AUO XVO/n)R’U()UoR‘VO(’/ZU{a})
+R(V2U{a})VUR‘;0%/0 (XVOAI/O XVO /n)R’I/QDORVO(VZ’U{a})} + O(n*1+40‘0+0‘1).
Using the above asymptotic expressions, we obtain

A21B11A12 — O(n—3+7oz0—i-40¢1)7 A22B21A12 _ O(n—3+5o¢o+3a1), A21B12A22 —
O(n—3+5a0+3a1) "and A??ByyA?? is equal to

WUy (Xt A uta) /1 = Risutap Ragse Xt Av 20,00y /1

_(Xz;u{a}A;OQXVo /n)Ruouono(Vgu{a})
+R(V2U{a})V0 R‘;()lllg (Xquuo Xvg /n)RuovoRuo(WU{a}) + O(n_2+4a0+a1 )) F;zlu{a}
+ O(n72+6a0+2a1)'

Combining these equations with the equation (B.4) and Condition (C4), we
show that WZ\WUVQWG‘VIUW is equal to

—-1..T —1 —2+4ap+aq
Con ea\VzFVQU{a}eaWz + O(n )

= COn_l (R RauoR Rl/oa - (RaV2 RaVOR Rl/gl/g)

Voo Voo
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_ _ _ —1
X(RV2V2 - RVZVOR’ ; RVOVQ) 1(RV2(1 - RVQVORVOIVORVOG))

Yoo

+O(n72+4a0+a1 )'

This together with Theorem B.2 yields

7a|u1Uu2 1 —2+5a
_ o+2a;
SNRa|v,Uvy = —57 =—5+0(n ).
o*w w Coo
alviUvs alvUrs

This completes the proof of the part (i).

To prove the part (ii), let v = {a} Uy Urs. Let eglylw2 = (1, O|7;1|,0|7;2|) and
ezlul = (I’O\Tuﬂ)’ where 0),,| and 0y, are |v1|-dimensional and |v,|-dimensional

vectors of zeros. Then, we have
T _ T T -2
Walviuwe WalviUvs = €qjuyuv, TwXy C™ %€l s - (B.5)

We partition x2C~'x, into the following block matrix:

T -1 T -1
Ty x{a}ule Xy X{a}UV1C Xy,
Xl/ Xy, = T Cf Cfl ?
Xl,2 X{a}Uu1 X Xus

Following the same block dimensions as above, we partition 7, = (xfolxy)_1
and x7'C~?x,, into the block matrices as follows:

F'' FY? T ~—2 G111 Gz
’Vu—(le F22)7 x,C 7%, = Goy Coy |-

To derive the asymptotic expressions for these block matrices, we applied the
matrix inverse formula for each block matrix. We have

Fll — E{a}uyl _ O(,7,L714>3Q()<|>20¢1)7

where

—1

1
Z{a}UVl = (eaa}UVl)quo (e:‘fg Eel/o) e({a}Uul)quo) s

/\max(z{a}UVl) < Amax(ezo Eeuo) = 0(1)

A similar derivation gives

1

F22 _ (TLFV2 + O(n2ao+2a1))_ _ n_lF;21 + O(n—2+4a0+2a1) _ O(n_H'aO),

-1
where F,, =R,,., — Ry, R R,,v, and

Vovo

_ —1 _ _
F2 = =07 'Sayum)eauman (€5 5€0)  RopoRugnFry

+O(n—2+5ao+3a1 )7
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21 11 -1 T -1 7
F = —n 1Fy2 Rl/gl/oR (eoneyo) e({a}uyl)qyoE{a}Uyl

Yoo

+O(n*2+50¢0 +3a1 )

Using Condition (C4), we can show that

_ o | ) )
Gii = n 1eaa}Uu1)<luo (e?:ozel,o) Ryouo (XZ;AVO XVo/n)Ryoll,o (eZOEeVO)
X€({a}ur)avo + O(n72+3a0+3a1)
“lel, T 1.4 7 )
- €{a}ur)awo (e"ozeyo) Ruouo (GUOZeuo) €({a}Urr )
+0(n~2H3a0 43y,
_ L L
G12 - Con 1eaa}uu1)<“/0 (e;z’:)zel’o) RVolljo (eazeuo) Rl/olVoRroQ
L O(n-2Haot3an)
_ B L -
Go1 = Con 1RV2V0R1/01V0 (GZOEeUO) Ruoluo (efOEe,,o) €({a}Ur1)avo
+0(n~ 2o t3ay,
Goa = (on (FV2 + O(n_l"‘QOéo)) .

Consequently, substituting the above expressions into the equation (B.5), we
have
WaT\yluVQWa\ulqu = eg‘yl (F“GHFH+F12G12F11+F11G12F21
+F?GaoF?!) ey, (B.6)

with
FUG Y 4 F12G10F ! 4+ FIGoF?! 4 F12Gg,F2!

_ -1
= (on 12{a}uyl eaa}um)dm (eSOEeVO) L (eZOZeVO) €({a}Ur )aro 2{a}Um
x (14 o(1)),

where
® =R, +R, . RuwF RiuR,

Yoo Yoo Voo *

—1

We partition X into a block matrix, namely

{a}uUry
el (el Te )_1 e el (el Te )_1 e
271 _ a<lvg Vo Vo 1 a<vg a<lvg o Vo 1 v1<dvo
{a}urs T T - T T - )
€u1avg (euo Eevo) Caqavy  ©€p (eyo Eeyo) €y, avg

where its inverse can be parallelly written as

Dll D12
Z{a}LJ1/1 = ( D21 D22 )

Similarly, we write

-1

-1 H H
e(T{a}Uul)quo (el Sey,,) @ (el Te,,) 11 Hio ) 7

C{atur)avo = ( Ha: Hao
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where
H = el (eT Ye )_1<I> (eT Ye )_le
11 = a<vg \Cug vo Vo vo advg

_ T T -1 T -1

Hy, = €aavp (euo Eeuo) L] (el,0 Eeyo) €y ave)
_ T T -1 T -1

Hor = e,,4, (el,0 Ze,,o) P (el,0 Zel,o) €aavs
_ T T -1 T -1

Hy = e,, (euo Eeyo) P (el,0 Eeyo) €uiavg-

Combining these partitions with the equation (B.6), we have

Wil Waln, = Con ' (D'HuDY + DP?Hy D' + DYMH D
+D"*Hz,D*!)(1 + o(1)). (B.7)
Note that
D' = (eaTquoz;ol\ulea@o)_l :
Dz — —Dllef@o (efoEel,o)_1 €4 v vy av s
D = =%, ael 0, (6 Vew,)  ean D,

Therefore, the equation (B.7) implies that

WaT\yluVQWa\ulqu = <0n71(D11)29:§<W02’;1\V1Qza)l\ulemuo(1 +0(1)).

Finally, by definition, we have

-1 1

DY +ntel (el Zey,) ¥ (el Tey)  eaa

N = D e, B, PR a1 o(1)
O(n~2+6a0+50a1)
-i—Crzconfl(Dll)2eaT<“/0Ey_ol\y1 @2;01\1/1 €aavy (1 +0(1))
ne(:quyoz;;\yl Cadry + O(n~2+6a0+5a1)
B UQCOnguoz;ol\yl‘I'E,;l\ul €qare (1 +0(1))
(egqyo 2;01\”1 ea<,u0>2 el (el Yey,) g (el Sey,) -1 €aavy
52C0€L 0, 1 B0 s Cacno (1 + 0(1))
The proof is completed. O

Note that in Lemma B.4, under Conditions (C1)~(C6), we show that the
optimal shrinkage covariance estimator Chs is consistent with the true covariance
C. This allows us to extend Theorems B.1~B.3 to the case where unknown C
is estimated by Chs.

Let k = max{2(2/k1 + 1/k2) — 1,(4/3)(1/k1 + 1/K2) — 1/3,1}. As before, let
[|ID||F = \/tr(DDT)/n be the size-normalized Frobenius norm and || D|| be the
spectral norm of D respectively. Let p,, = tr(C)/n. We have ||D||r < ||D|].
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Lemma B.3. Under Conditions (C0)~(C3), if 1,5 = o(1l) as n — oo and
J — o0,

~ ~ 2 2
E  max leij —cijl = O(tns), FE  max (Cij — cij)” = O(7),
| nax |eij —cizl = Op(Tns)-

Proof of Lemma B.3. Without loss of generality, we assume 7(j) = j,1 < j < J.
We use the methods developed in [7, 23] to prove the lemma. Following the
proof in [23], we can find constants d;,t = 1, ..., 5, such that for any u > 0,

J

1
Vi (12?%(” 7 ];yikykj — Cij| > u)

oo (U0 g ()

dy 1+ Jds)
2 (Ju)? (Ju)< =)
_ . B.8
e ( dyg P (dg,(log(Ju))“ (B8
For notational simplicity, denote @Q;; = ‘% Zizl YikYkj — cij’. For a large se-

quence of constants 0 < h, = O(1), invoking the inequality (B.8), we have

FE max Qij < hnTnJ+E|: max QZJI(

max i+ > h,T,
1<i,j<n ,i,‘SnQ” " "J)]

1<i,j<n 1<i,j

2hnTny + /hnm] P <1gl?jﬂ<(n Qij > u) du

n2dy (hpJTny)"
2hnTn
TnJ + K(hpJTn )51 xp ( dy )

+n2d2(1/J +ds) ox ( (ha/ T s )? )

IN

IN

2thTnJ d2(1/J+d3)

2 2(1 —
L exp _(hn\/anJ) (1—o0(1))
2h, JTh g dy

= 707 (2hn 4 0(1)) = O(T0y).

We also have

E[ max ij] < 2<hnTnJ)2+/oo P( max @Q;; > \/a) du

1<i,j<n (hnrns)? 1<i,j<n
oo
= 2(hnTns)? +2 vP | max Qi >v|dv
bty 1<i,j<n

< (Tan)?(2R2 + 0(1)) = O(72)).
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Finally, for as €, n and J tend to infinity,

P < max Qi > eTnJ> < B[ max Qyj]/(eTns) — 0,

1<i,j<n 1<i,j<n

which implies maxi<; j<n Qi; = Op(Tns)-
Similarly, we can show
* = 0(r3,), , max 57| = Op(Tns)-

E max |gy;] = O(TnJ),E1£7?§n|@i@j  Jax

1<i,j<n

Combining these with the other equalities shown before, we complete the proof.
|

Let m,, be the number of non-zero entries in covariance matrix C. In the next
lemma, we show the convergence rates of the threshold estimator.

Lemma B.4. Under Conditions (C0)~(C6), if mumny = o(1) as n — oo and
J — oo, then for h > 0,

E||Ch—Cl| = O(mnas), B||Ch— Cl> = O(mytns)?,
||Ch_CH = Op(mnTnJ)-

For h =0, the above results continue to hold if m,, is replaced by n.

Proof of Lemma B.4. Without loss of generality, we assume 7(j) = j,1 < j < J.
We consider h > 0. Denote

T = ||(CjI(|eij] > htng)) — (cijI(|ciz| > hrn))ll,
I = maxZ|éw—cw|I(|é”| >h7—nJ7|cij‘ >h7’n]),
j=1
I = max Y |¢;1(|e;j] > hrog, |eijl < hray),
j=1
I = max e |I(|éi] < Mo, leij| > hray).
7 =
Then,
||Ch — C|| < T+ maXZ \cijl(|cij\ < thJ) <Ti+ hrpymy,
j=1
< T4 114101 + hrpymy,. (B.9)

By Lemma B.3, we have

E[I} < Elérzlf;)g(n |61J — Cij| mzaxz:II(|c”| > 0) = O(Tnj)mn.
j=
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Note that for 0 < 6§ < 1,

I < 1;111?;(” |éi; — cijl mzaxz;[ﬂéij —cij| > (1 = 6)hrny) +my
]:
+hTpgmy,. (B.10)

And

n
E G — i I8 — cisl > (1 — 8)h
123'};71'% lem?XZ: (I2ij — il = ( JhTng)
j:
< (mn +€)E max |6 — cij| = O(mnTny).
1<ij<n
This, together with the inequality in (B.10), implies that

EM] < O(mptn) + O(Tng)mp + hmy, = O(mpTy ).

Similarly,
E[III] < EmaxZ|é” _Cij‘zlﬂcz’j' > thJ)+thJmn
R =1
< O(Tng)mp + hrpgmy, = O(Thmy,).
Consequently,

E[Ty] < E[] + E[II] + E[III] = O(my,7ns),
which, together with the inequality in (B.9), implies that
E||Cp, — C|| = O(muTny).
Invoking the Chebyshev’s inequality, we have
ICh = CI| < Op(maTar).

We now turn to the second inequality. Note that

E||Ch — C|? < 6(E[1%] + E[I1?] + E[II%]) + 2h2 (1 my)?. (B.11)
E?] < 2E max [&; — cij|*m2 = O(my,7ay)?
1<4,j<n
E[IIz] < 2F lglapé |éij — cij|2(mn + e+ mn)2 + Q(hmnTnJ)2
<i,j<n
= O(mnTnJ)z.
E[HIQ] < 2E1£I_139)<< |éij — cij|2m,21 + 2(h7nymn)? = O(mptay)>
<i,j<n

These with the inequality in (B.11) implies that
E||C = C||? < O(mnTns)? + 2(hmntns)? = O(mntas)?.

When h = 0, the results can be proved similarly. The proof is completed. O
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Lemma B.5. Under Conditions (C0)~(C6), if mu7ny = o(1) as n — oo and
J — oo, then for h >0,

J n
JL > % > _ (e — G0) ik — 5) — €3)*1(|&55] > hrng) = Op(mn/J)

[ V)

For h =0, the equality holds if m,, is replaced by n.

Proof of Lemma B.5. Without loss of generality, we assume that 7(j) = j,1 <
j < J and that §; = §; = 0. By use of Chebyshev’s inequality, it suffices to show

1 n n . .
=Y B ayn — &) 1(] > hra)] = Olma /). (B12)
i=1 j=1
For this purpose, we first show that

1 n n
In > D Elyayn — &) (e > hras)|

i=1j=1
1 n n A )
= E ZZE [(yilyjl — Cij) I(Cij| > thJ)} . (B13)
i=1 j=1
Note that for constant 0 < § < 1,

7= B iy — 2| > hrg) = 1] > )]

i=1 j=1

1 n n A .
< Tn ZZE(yuyjl - Cij)2[(|cij| > htp,|cij| < 0hTy)

i=1 j=1

1 n n A .
Jrﬁ ZZE(yilyjl - Cij)2-[(|cij| > hpg, 6htny < |cij| < hrng)

i=1 j=1
+% iéE(yuyﬂ — €)1 (Jeij| > h7os, |6ij] < h7og))
< % 1S %n (E(yiryn — éz‘j)zno)l/no o(1)
+2% 127?;(”15(%1%1 —&j)% = O(mn /J).

The last equality follows from the following facts
E(ynyj1 — &;)° < Qm?XE[i‘/?ﬂ +o(1),

E(yinyj — éij)%o < 2% miaXE[yfln"] +o(1).
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The equation (B.13) is proved. Finally, note that

1 1 n n R
=30 B (wayn — ) I(ey] > hr)]
i=1 j=1
1
< = e — 82— .
< 5, max By =)o = Oma/J)

This together with (B.13) shows the equation (B.12). The proof is completed.
U

Lemma B.6. Under Conditions (C0)~(C6), if mp1ny = o(1) as n — oo and
J — o0, then for h > 0,

fn = Nn+0p(TnJ)7 5Z:||C_Mnln||%+0(mnTnJ)v
dqzm = 5Z+Op(mnTnJ)v b%:Op(mn/J).

For h > 0, the above equalities continue to hold if m,, is replaced by n.

Proof of Lemma B.6. Without loss of generality, we assume 7(j) = j,1 < j < J.
We consider h > 0. The proof is similar when A = 0. It follows from Lemma B.3
that

n

[, %Zéii:%zcii+0p(TnJ)

=
s
Il

K2

= Hn+ Op(TnJ)-
It follows from [12] that ||C||2 = O(1), if max; E[y};] < co. We have

1 (11Ch = s Tall® = 1IC = pnTall? ) |

< E||Ch — CllF(2/IC = pnInllF +[|Ch — Clr)

< E||Ch — Clff + 2/|C — pnIn [P E||Cp, — Cllr

= O(MpTns)? + O(MpTns) = O(MpThy).
Note that

|dn — Hch = pnnllrl < (|(fn = pn) Inl| P
= |fin — pin| = Op(T0),

which implies that

d2

(G~ tualle + Oy 7))

([IC = pndnl|F + Op(mnTns) + Op(TnJ))2
|IC — MnInH% + Op(MnTny).

Therefore,
d2 = 52 + Op(myTny).

It follows from Lemma B.5 that b2 = O(m,,/J). The proof is completed. O
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Lemma B.7. Under Conditions (C0)~(C6), if mp7ny = o(1) and || C—pnIy||F

is bounded below from zero asn — oo and J — oo, then ||Chs—C|| = Op(MmypTjn),
A1 ~—2

[1Chs = €Ml = Op(mntis), [|Crg = €72 = Op(mnTay)-

Proof of Lemma B.7. Note that

d2

a b?z n_b%
1Chs =Cll = 5 llIn = Cll +

dz,
= O(mu/J)+ (1 = O(mn/J)Oy(mnTns) = Op(mTas).

ICh = CJ]

The remaining proofs are similar to the proof of Lemma 7.3 in [23]. The details
are omitted. |

Proof of Theorems B.4, 3.1 and 3.2: Invoking Theorems B.1~B.3, the proofs
are similar to the proof of Theorem 2 in [23] by using Lemmas B.1~B.7 and
thus omitted. O
Proof of Corollary B.3. For a € 1y, we have

. -1 -1 _
Goo = (el (e Sen) o)+ OGO )

alvog

_ —1
> (e (L 50) ™)) Ol 4,
= >\min (eZ:) Zeyo) —+ O(n71+040+2a1 + nzTnJ)
> (on~* 4 O(n~treot2on 4 p2e )
Co(1+o(1))n~* > n~ " log(n).

For a ¢ vy, we have 4, = Op(n~ 17 4 n27,;) = Op(n~'12), which implies
that with probability tending to one, a & Py as n and J tend to infinity. O

Proof of Corollary 3.1. Let wog = () and SNRy|,, = SNRg. According to the
definition of PVA in Subsection 2.3, w,, = {kn} U wn_1, where k,, =
argmax{SNRyw,, , : k & Wm-1}, 0 < m < 7, with the value of SNRyax at
m falling into the confidence interval defined in the stopping criteria in the first
time. Under the conditions in Theorem B.3, we first prove that P(wy;, C 1) — 1
as both n and J both tend to infinity. Note that

PlwsnnN(1:p\wvy) #0)
P (Elkm ¢ v such that k,, = argmax{sKRry,,, , : k& wm,l})

<
< P (3Immax{sNRy,, ,:k € G2} > min{s8Rry,, ,: k€ G1})(B.14)

where G1 = {k € wm-1,k € v} and Gy = {k € wim-1,k € 1vp}. By Theorem
3.2, uniformly for m, max{s\Ry,,, , : k € Gz} converges to ({o?)~' > 1
in probability uniformly for m, while min{sN\ry,,, _, : k& € G1} converges to
infinity in probability. Combining these with the inequalities in (B.14), we show
that P(ws N (1 : p\ ) # 0) tends to zero, which is equivalent to P(wy C
vp) — 1. To complete the proof, we show P(vy C wy) — 1 by contradiction
as follows. If there exists k € vy \ wy,, then we can divide {k & wy;,} into two
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non-empty groups G; = {k € wam,k € 1o} and Gy = {k € wp,k & vo}. By
Theorem 3.2, we have min{sNRy|,,, : k¥ € G1} tends to infinity in probability,
whereas max{SNRy|,, : k¥ € G2} converges to (¢oo?)~! in probability. This is in
contradiction with the definition of m. O
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