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Abstract: This article aims to use beamforming, a covariate-assisted data
projection method to solve the problem of variable selection for multivariate
random-effects regression models. The new approach attempts to explore
the covariance structure in the data with a small number of random-effects
covariates. The basic premise behind the proposal is to scan through a
covariate space with a series of forward filters named null-beamformers;
each is tailored to a particular covariate in the space and resistant to in-
terference effects originating from other covariates. Applying the proposed
method to simulated and real multivariate regression data, we show that
it can substantially outperform the existing methods of multivariate vari-
able selection in terms of sensitivity and specificity. A theory on selection
consistency is established under certain regularity conditions.
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1. Introduction

The advance of high-throughput technology in science has generated various
types of correlated data. Integrative analysis holds great promises for uncover-
ing hidden links between these data. For this purpose, a class of multivariate
random-effects regression models are investigated in this paper, where subject-
specific random effects are introduced to account for the variations among sub-
jects [11]. Suppose that there are J subjects (or responses in the terminology of
multivariate regression) under study, each depending on the same set of random-
effects covariates indexed by {1, ..., p}. Let yj and xk are column vectors of n
measurements on subject j and on covariate k respectively. Then, a multivariate
random-effects regression model can be written as

yj = x1μ1 + · · ·+ xpμp + x1(β1j − μ1) + · · ·+ xp(βpj − μp) + εj , 1 ≤ j ≤ J,

with fixed-effects μk ∈ R, random-effects coefficients βkj ∈ R and error vectors
εj ∈ Rn. We assume that coefficient vectors βj = (β1j , ..., βpj)

T have mean μ =

(μ1, ..., μp)
T and covariance matrix Σ and that error vectors εj have mean zero

and unknown covariance matrix Λ. We further assume that the random-effects
coefficients and the error vectors are independent of each other. As estimation
of the fixed-effects has already been studied in [17], we focus on inference of the
random-effects coefficients in the above model.

Denote by X = (x1, ...,xp) the observations on all covariates. Then the con-
ditional covariance matrix cov(yj |X) admits the following decomposition

cov(yj |X) =

p∑
k=1

σkkxkx
T
k + 2

∑
1≤k<l≤p

σklxkx
T
l + Λ,

where σkk is called variance component associated with covariate k. This shows
that the above random-effects model provides a way to describe the covariance
structure of the data. However, when the number of covariates, p, is larger
than both n and J , the problem of estimating either these variance components
or random-effects coefficients is ill-posed, where the commonly used multivari-
ate least squares criterion does not provide a unique solution. To tackle this
issue, we impose a sparsity assumption on the model that only a small num-
ber of variance components in the above covariance matrix decomposition have
positive values. We are interested in the problem of identifying these non-zero
variance components. We refer to covariate k as an non-active covariate when
βk1 = · · · = βkJ = constant. By definition, σkk = 0 holds if and only if
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P (covariate k is non-active) = 1. So the above problem is equivalent to a mul-
tivariate variable selection problem where we want to infer active covariates for
a multivariate regression model [17]. A conventional remedy for variable selec-
tion is to penalize the magnitudes of regression coefficients in the least squares.
When the penalty is increasing, estimates are zeroed out, and a subset model
is then identified and estimated. Such a remedy is particularly of interest when
the dimension p is large and candidate covariates contain many redundant or
irrelevant variables. The variable selection procedure LASSO [19] followed this
remedy. Over the past two decades, much progress has been made along this
direction [6, 26], among others. As the recent research on variable selection
mainly focuses on a univariate response setting, limited research has been done
on multiple responses settings, e.g., [2, 15, 16, 4, 17, 24, 13].

Despite of the above progress, a few issues remain to be addressed. First,
most of these methods have been developed for independent measurements.
There are various applications in which measurements on each subject are de-
pendent. For instance, sensitivity measurements of a drug can be dependent as
cell lines used in these measurements exhibit genetic relatedness when they are
associated with the same types of cancers [10]. In multiple genome-wide asso-
ciation studies, individual genotypes in a subject group are correlated [25]. In
neuroimaging, measurements from different sensors outside a brain are depen-
dent as they are generated from the same neuronal sources inside the brain [20].
In finance, returns of different stocks are correlated due to the so-called cross-
sectional dependence [9]. Secondly, the existing methods mentioned above are
mainly for multivariate fixed-effects regression models, where given the values
of covariates X, the response covariance structure is determined only by error
terms. In contrast, multivariate random-effects regression models are hierarchi-
cal, where conditional on the values of covariates, the responses depend not only
on error terms but also on random-effects coefficients [11]. Although, in prin-
ciple, multivariate regression data can be fitted by either a fixed-effects model
or a random-effects model, a comparison between these two approaches has not
been made in literature [2]. Finally, most of the existing inference procedures are
not computationally scalable to large-scale data with many subjects or many
responses. This prohibits their applications to big data.

Here, we address these issues by generalizing the idea of beamforming, a
covariate-assisted data projection method [23] to multivariate regression set-
tings. Our contributions are three-fold. First, we develop a novel algorithm
called principal variable analysis (PVA) to identify important covariates by
covariate-interference-adjusted data projections (called forward beamforming
or null-beamforming) that account for the maximum amount of variation in the
data. Such a procedure provides a principled way to extract information about
covariates from the multivariate regression data. In the PVA, unlike the existing
methods, we gauge the importance of each covariate with respect to the multi-
variate response by its information index (called power), which is defined by its
variance component. The higher the power of a covariate, the more amount of
variations in the response data it can account for. We estimate the power of each
covariate by performing null-beamforming on the data. To adjust for varying
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background noises, we replace the power by signal-to-noise ratio (SNR), a rela-
tive information index for each covariate. In each forward step, after nulling the
previously selected covariates, we are able to adjust the SNR values of the re-
maining covariates and to conduct iteratively screening for these covariates. The
iteration will be terminated once no covariate significantly stands out in the cur-
rent step. The above procedure produces a list of highly ranked covariates called
principal variables along with their estimated regression coefficients. Based on
these selected covariates, the response covariance matrix can be decomposed into
two parts: one for the selected variance components and the other for noises.
In this sense, the PVA is viewed as a covariate-assisted principal component
analysis. As the beamforming can be implemented through parallel computing,
the PVA is scalable to large-scale data. Secondly, we establish a global prop-
erty of selection consistency for the PVA under some regularity conditions. In
particular, a sufficient condition for a consistent selection was imposed on the
number of subjects, J , the number of covariates, p, the number of measurements
per subject, n, and the number of non-zero entries in cov(yj |X), mn, that is,

n−α0 log(p) is bounded for some positive constant α0 and mn

√
log(n)/J → 0,

as n, J and p tend to infinity. This implies that the proposed procedure can han-
dle the variable selection problem in an ultra-high dimensional covariate space.
Finally, we conduct a set of simulation studies to evaluate the performance of
the PVA compared to the existing variable selection methods. The numerical
results demonstrate that in terms of sensitivity and specificity the PVA can
substantially outperform the existing methods such as the multivariate group
LASSO, the multivariate elastic-net, the multivariate LASSO, the multivariate
sparse group LASSO, among others. We also apply our method to some anti-
cancer drug data, identifying a novel set of genes for predicting drug sensitivity
in cancer cell lines. Using the information extracted from the Human Protein
Atlas Portal at http://www.proteinatlas.org/cancer, we show that most of
the identified genes have significantly high protein staining levels at least in one
or more than one of common cancers.

The remaining of the paper is organized as follows. The details of the proposed
methodology and algorithm are provided in Section 2. An asymptotic theory on
the proposed procedure is developed in Section 3. The simulation studies and a
real data application are presented in Section 4. The discussion and conclusion
are made in Section 5. The technical details, proofs, and extra theorems can be
found in the Appendices A and B. Throughout the paper, we denote by λmax(·)
and λmin(·) the largest and smallest eigenvalues of a square matrix respectively.

For any matrix Fn, we define the spectral norm ||Fn|| as λ
1/2
max(F

T
nFn). For a

sequence of real numbers {un}, we say Fn = O(un) if ||Fn||/|un| is bounded
from above and Fn = o(un) if ||Fn||/|un| tends to zero as n tends to infinity.

2. Methodology

Let Y = Yn×J = (yij)n×J = (y1,y2, · · · ,yJ) and X = Xn×p = (xik)n×p =
(x1, · · · ,xp). We reformulate the multivariate random-effects regression model

http://www.proteinatlas.org/cancer
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in the previous section in the following matrix form:

Y = XB+ ε, (2.1)

where unknown random regression coefficient matrix B = Bp×J = (β1,β2, · · · ,
βJ) and ε = εn×J = (ε1, ε2, · · · , εJ) with βj and εj , respectively, containing
the regression coefficients and the error terms related to the jth subject. As
usual, we start with a least squares-based regression analysis. It can be shown
that when p < n, the least square solution, B̂ = (XTX)−1XTY gives the same
coefficients as fitting univariate multiple regression models to (yj ,X), 1 ≤ j ≤ J
separately. Note that treating βkj , 1 ≤ j ≤ J as correlated random coefficients
allows us to explore the dependence between yj , 1 ≤ j ≤ J . As pointed out

before, when p > n, XTX is not invertible and thus the above least squares
solution is not unique. To tackle the problem, we make the assumption that
variance components in a decomposition of cov(yj |X) are sparse, that is, σkk = 0
for the majority of covariates k ∈ {1, 2, ..., p}. The goal of this paper is to identify
these covariates of non-zero variance component and to estimate their regression
coefficients given observations (Y,X).

2.1. Power and signal-to-noise ratio

To rank covariates, we define an information index called power for each co-
variate by projecting the response data to the covariate space. The concept
of power, defined as the variance of a signal, is borrowed from the research
field of signal processing, where sensor observations yj , 1 ≤ j ≤ J are often
assumed weakly stationary [20, 23]. In genetics, the above concept describes
the so-called pleiotropic genetic effect of a single gene on multiple phenotypic
traits, where multivariate linear models have been developed to connect genetic
variant data to multiple quantitative traits [5]. In the multivariate random-
effects regression setting, the power is the variance component of a covariate
in conditional covariance matrix C = cov(yj |X) given X, where we model re-
gression coefficients of the multiple responses to each covariate as realizations
from a random variable with a finite second moment. Then, the amount of in-
formation on each covariate in these regression coefficients can be measured by
variability in these coefficients. The larger the variability, the higher degree of
variation in the response data is accounted for by this covariate. In practice,
the regression coefficients (βkj)1≤j≤J at covariate k (therefore its approximate

power
∑J

j=1(βkj − β̄k)
2/J with β̄k =

∑J
j=1 βkj/J as J tends to infinity) are un-

known. We estimate (βkj)1≤j≤J by projecting response data into the coefficient
space of the kth covariate along the direction w that can minimize interferences
with the other covariates and with the background noise. That is, for the kth
covariate, we estimate its regression coefficients by the projected data wTY in
which var(wTyj |X) = wTCw attains the minimum, subject to wTxk = 1. To

this end, we consider the Lagrange multiplier L(w, λ) = wTCw− λ(wTxk − 1)



Multivariate variable selection 3433

and solve partial derivative equations

∂L(w)

∂w
= 2Cw − λxk = 0,

∂L(w)

∂λ
= wTxk − 1 = 0.

We have the solution wk = C−1xk/x
T
kC

−1xk. We project Y along the direc-
tion wk to give an estimator wT

kY = xT
kC

−1Y/xT
kC

−1xk for (βkj)1≤j≤J [23].
If let C = constant × In, where In is an n × n identity matrix (i.e., ignoring
correlations in the measurements on each subject), then the above estimator
reduces to a marginal multivariate least squares estimator. To explain why the
above approach can provide an interference-minimized estimator of the under-
lying power, we assume that error term εj is independent of the p-dimensional
regression coefficient βj and with cov(εj) = Λ and cov(βj) = Σ = (σi1j1)p×p.

Then, we have C = XΣXT + Λ. Note that under the constraint wTxk = 1, we
have

wTCw = var(wTyj |X) = σkk +

⎛
⎝ ∑

i1 �=k,j1 �=k

σi1j1w
Txi1x

T
j1w +wTΛw

⎞
⎠

=̂ power of the kth covariate +w-dependent interference,

which yields

min{wTCw : wTxk = 1} = power of the kth covariate

+min{w-dependent interference : wTxk = 1}.

This implies that the constraint wTxk = 1 is a linear filter which allows the
power σkk to pass through it, whereas interferences with other covariates and
with the background noise are reduced via the minimization. So, min{wTCw :
wTxk = 1} is an interference-minimized estimator for the theoretical power σkk.
The above Lagrange multiplier shows that the power of the kth covariate, can
be expressed as

γk = min{var(wTyj |X) : wTxk = 1} = (xT
kC

−1xk)
−1.

When observations on responses are white noises with noise level σ2, the power
of the kth covariate reduces to σ2wT

kwk. So we define the SNR at the kth
covariate by γk(σ

2wT
kwk)

−1.
Analogously, for a subset of covariates indexed by ν = {k1, k2, ..., km}, their

joint power (called the power matrix) can be defined by γν =
(
xT
ν C

−1xν

)−1
,

where the data matrix xν = (xk1 , ...,xkm) consists of the observations on the
covariates in ν and the columns in xν are assumed linearly independent. Abus-
ing the above notation, we let w and wν denote n ×m matrices below. Then,
we can also define the SNR of covariate set ν as SNRν = tr

(
γν(σ

2wT
ν wν)

−1
)
.

Using the corresponding Lagrange multiplier, we can show that γν is the covari-
ance matrix of the projected data wT

ν Y along interference-minimized directions
wν = C−1xν(x

T
ν C

−1xν)
−1, in the sense that tr(γν) = min{tr(cov(wTY|X)) :
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wTxν = Im}, where tr(·) is the trace operator and Im is an m × m identity
matrix. Note that wTxν = Im define m linear filters which null each other.
The projection of Y along interference-minimized directions gives an estimator,
(xT

ν C
−1xν)

−1xT
ν C

−1Y, for random coefficient matrix B. The above estimator
will reduce to a marginal least squares estimator if let C = constant× In. How-
ever, in practice, C is unknown and often not diagonal. We need estimate C by
the data.

Covariates can be correlated. For example, in the cancer genomic data, genes
as covariates can be highly correlated if they are located in the same pathway.
Consequently, the finite sample power estimator of a covariate may have a bias
due to interferences with other covariates. To address this problem, we further
null the previously identified covariates by adding more constraints on the linear
filter in each step as follows. Let ω and ν be two disjoint subsets of the covariates
with sizes m1 and m respectively. To define a ω-nulled power matrix of ν, adding
null constraints wTxω = 0m×m1 into the linear filters wTxν = Im, we consider
the following optimization problem:

min tr(wTCw), subject to wTxν = Im, wTxω = 0m×m1 .

Using the Lagrange multiplier again, we obtain the optimal weighting matrix

wν|ω = C−1xν∪ω

(
xT
ν∪ωC

−1xν∪ω

)−1
φν|ω,

where φν|ω = (Im,0)T with 0 being the m × m1 matrix of 0’s. The nulled
power matrix γ(ν|ω) is then defined as wT

ν|ωCwν|ω, the covariance matrix of
the projected data along wν|ω. It can be shown that γν|ω is equal to the upper

corner m × m block matrix of
(
xT
ν∪ωC

−1xν∪ω

)−1
. The nulled signal-to-noise-

ratio SNRν|ω can be defined as tr
(
γν|ω(σ

2wT
ν|ωwν|ω)

−1
)
.

2.2. Estimation of response covariance matrix

Note that the power estimation needs an estimator of the response covariance
matrix, for example, the sample covariance matrix Ĉ =

∑J
j=1 yjy

T
j /J − ȳȳT =

(ĉij), where ȳ =
∑J

j=1 yj/J = (ȳ1, ..., ȳn)
T and ĉij =

∑J
t=1(yit− ȳi)(yjt− ȳj)/J .

As the sample covariance matrix can be inconsistent with the true one when
the dimension n is larger than J , [1] and [3] amended it by thresholding its
entries: Ĉh = Ĉ(τnJ) = (ĉijI(|ĉij | > hτnJ)), where I(·) is the indicator and

τnJ =
√
log(n)/J with the tuning constant h ≥ 0. Under certain mixing condi-

tions, [23] showed that the thresholded sample covariance matrix was consistent
with the true one with dependent sample. For a finite sample, the thresholded
covariance matrix may still be degenerate when the number of subjects is close
to or smaller than the number of measurements per subject. So, following [12],
we further shrink the thresholded covariance estimator to a diagonal matrix as
follows:

Ĉhs =
b2n
d2n

μ̂nIn +
d2n − b2n

d2n
Ĉh,
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where

b̄2n =
1

J2

J∑
k=1

1

n

n∑
i=1

n∑
j=1

((yik − ȳi)(ykj − ȳj)− ĉij)
2I(|ĉij | > hτnJ),

μ̂n = <Ĉh, In>, d2n = <Ĉh − μ̂nIn, Ĉh − μ̂nIn>, b2n = min{b̄2n, d2n},

and <D1,D2> = tr(D1D
T
2 )/n for any n×n matrices D1 and D2. Having defined

Ĉhs, we estimate the power matrices γν and γν|ω by γ̂ν = (xνĈhsxν)
−1 and

γ̂ν|ω = φT
ν|ω(x

T
ν∪ωĈhsxν∪ω)

−1φν|ω respectively. Similarly, the ω-nulled SNR can
be estimated by

ˆSNRν|ω ∝ tr
(
γ̂ν|ω(ŵ

T
ν|ωŵν|ω)

−1
)
, (2.2)

where ŵν|ω = Ĉ
−1

hs xν∪ω

(
xT
ν∪ωĈ

−1

hs xν∪ω

)−1

φν|ω.

2.3. Principal variable analysis

We are now ready to describe the PVA for multivariate variable selection. Al-
though we focus on the SNR-based PVA below, the power-based PVA can also
be defined similarly.

Initialization: To start with, find 1 ≤ k1 ≤ p at which the SNR attains the
maximum. Set ω0 = ∅ and ω1 = {k1}.

Nulling: In the iteration m, m ≥ 2, let ωm−1 denote the set of covariates
selected in the first m− 1 iterations. For any covariate k not in ωm−1, using the
formula (2.2), we calculate the nulled SNR, ˆSNR{k}|ωm−1

, as well as an estimated
optimal projection direction ŵ. We then find km 	∈ ωm−1 in which ˆSNR{k}|ωm−1

attains the maximum.
Forward selection and stopping criteria: After a number of iterations,

the nulled SNR values will start leveling off, which indicates that the remaining
covariates have no significant contributions to the covariance structure of the re-
sponse. This motivates us to set the following stopping criteria in each iteration:
For m ≥ 2, at the end of the mth iteration, we make a scree plot of the nulled
SNR values and identify an elbow point. To find the elbow point, we consider
the vector which links the highest and the lowest points on the scree plot. Then
we find the orthogonal distance from each point on the plot to this vector. The
point on the plot with the largest distance is selected as the elbow point. The
elbow point partitions the remaining covariates into two subsets, namely upper
set and lower set. The lower set, containing those covariates with SNR values
lower than the elbow point, is uninformative about the responses. To test the
hypothesis that the upper set is uninformative, we calculate the mean μl and
standard deviation θl for the lower subset. The hypothesis is accepted if the
maximum nulled SNR value, ˆSNRmax = max{ ˆSNRk|ωm−1

: k 	∈ ωm−1}, of the up-
per set falls into the following confidence interval, | ˆSNRmax−μl| ≤ c0θl, where c0
is a tuning constant. We set the default value c0 = 5. Applying the central limit
theorem to the SNR values in the lower set, the above interval can be shown to
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have the asymptotic confidence level of 1 − 5.73 × 10−7 after multiple testing
adjustment. The iteration will be terminated when the upper subset is uninfor-
mative. Otherwise, we update ωm−1 and xωm−1 by letting ωm = {km} ∪ ωm−1

and xωm = (xkm ,xωm−1), and the iteration will continue. Note that our simula-
tions (not shown here) did indicate that the performance of PVA was not very
sensitive to the choice of c0 when it took values between 3 and 5.

2.4. Covariate network

Statistical connectivity patterns in the selected covariates are a hallmark fea-
ture for connecting pleiotropic traits such as drug inhibitory concentrations to
genetic variants in genetics and for studying functional networks in neuroscience
[5, 14]. Here, to quantify such patterns, we compute the regression coefficient-
based Pearson correlation coefficient for each pair of the selected covariates.
The details are as follows. Suppose that q covariates are selected by the PVA.
Based on the multivariate least squares, we obtain B̂0, an estimator of the q×J
regression coefficient matrix for these covariates. For any pair of rows (i, j)
in B̂0, we calculate Fisher’s z-transformation of their correlation coefficient rij ,
zij = 0.5 ln ((1− rij)/(1 + rij)). For rows i < j, we want to test whether zij (i.e.,
rij) is significantly away from 0. There are q(q − 1)/2 such tests in total. Note
that if the underlying correlation coefficient is zero, then zij ≈ N(0, 1/(J−3)) in
distribution. After Bonferroni correction to multiple testing, we can claim that
zij is significantly away from zero if

√
J − 3|zij | > zα/2, where zα/2 is the critical

value of N(0, 1) at the level α/2 = 0.01/q(q − 1). For example, for our cancer
data in Section 4 where q = 37, J = 131, we obtained zα/2 = 4.33. We are now
ready to construct a network with q nodes, each stands for a selected covariate
(a row in B̂0). We assign an edge to link nodes i and j if zij is significantly away
from zero.

3. Theory

In literature, no general asymptotic theory was provided on variable selection
for high dimensional multivariate regression models with the exception of [17].
In [17], Sofer et al. developed a selection consistency theory for a special class
of multivariate fixed-effects regression models, where regression coefficients did
not change across responses (i.e., β1 = · · · = βJ). In this section, we develop
a general theory on selection consistency of the proposed procedure PVA for
multivariate random-effects regression models. We divide the theory into two
parts according to whether C is known or not. Here, we present only the case
where C is estimated. The remaining is deferred into the Appendix B.

As before, assume that regression coefficient matrix B and error terms ε in
the model (2.1) are independent and that given X, the covariance matrices of
yj , βj and εj , denoted by C = (cik)n×n, Σ = (σik)p×p and Λ respectively,

are independent of index j. Then, we have C = XΣXT + Λ. Assume that Λ
is positively definite. For ease of presentation, we consider the special case,
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where Λ = σ2In and xT
k xk = n, 1 ≤ k ≤ n. If Λ 	= σ2In, we can change Y

and X by the transformations Λ−1/2Y and Λ−1/2X (under which the power
is invariant), followed by rescaling Λ−1/2X and B (see [23]). Then a general
theory can be derived from the special case. We denote the full set of covariates
by [1 : p] = {1, 2, · · · , p} corresponding to x1, · · · ,xp, and the true covariate
set by ν0. Let ν = {k1, · · · , kp1} denote any subset of [1 : p] with size |ν|. The
(k1, · · · , kp1)th columns ofX forms a data matrix xν for the covariate set ν. If let
eν be a p× p1 selection matrix in which for 1 ≤ j ≤ p1, its (kj , j)th entry takes
value of 1 and the other entries take values of 0, then we can write xν = Xeν .
Let σ2

k denote σkk in Σ, which shows the underlying power at the kth covariate.
Let ν0 be the underlying set of covariates. Let Aν0 = C − xν0e

T
ν0
Σeν0x

T
ν0
, the

underlying noise covariance matrix. For any subset ν, if Aν0 is invertible, then we
define the coherence (i.e., collinearity) matrices within and between xν and xν0 :
Rνν = xT

ν A
−1
ν0

xν/n, Rνν0 = xT
ν A

−1
ν0

xν0/n, Rν0ν0 = xT
ν0
A−1

ν0
xν0/n. Suppose

that for ν0 = {k1, ..., kp0} and for any ν ⊆ ν0, we can find j[1:m] = {j1, ..., jm} ⊆
{1, ..., p0} such that ν = {kj : j ∈ j[1:m]}. Let eν�ν0 be a |ν0| × |ν| indicator
matrix with the (jl, l)th entry equal to 1, 1 ≤ l ≤ |ν| and with other entries
equal to zeros. Using eν�ν0 , we select sub-columns from xν0 to form xν , namely
xν = xν0eν�ν0 .

To identify active covariates, we impose the following regularity conditions on
the covariance structures of the multivariate response variable and covariates,
where X is treated as deterministic. If we treat X as a random design matrix,
some parallel conditions can be assumed through replacing O(·) by Op(·) in the
following conditions.

(C0). There exists a permutation on yj , 1 ≤ j ≤ J so that the resulted
sequence is strictly stationary with covariance matrix C and that (yj ,X), 1 ≤
j ≤ J follow the model (2.1). The error term εj and the p-dimensional regression
coefficient βj are independent of each other.

(C1). There are a constant 0 < r ≤ 1 and a set of active covariates ν0 of size
|ν0| ≤ rn such that xν0 is of full column rank and that eTν0

Σeν0 and Aν0 are
invertible.

(C2). For ν0 and r in Condition (C1), as n tends to infinity, there is a constant
0 ≤ α0 < 1 such that uniformly for any set ν ⊆ [1 : p] with |ν| ≤ rn, Rνν =
O(nα0) and R−1

νν = O(nα0).
(C3). For ν0 and r in Condition (C1), as n tends to infinity, uniformly for

any ν ⊆ [1 : p] \ ν0 with the size |ν| ≤ rn, (Rνν − Rνν0R
−1
ν0ν0

Rν0ν)
−1 = O(nα0).

(C4). For ν0 and r in Condition (C1), as n tends to infinity, uniformly for
any ν ⊆ [1 : p] \ ν0 with the size |ν| ≤ rn, xT

ν0
A−2

ν0
xν = ζ0x

T
ν0
A−1

ν0
xν + O(1),

where ζ0 and O(1) are independent of ν.
(C5). There exist positive constants κ1 and τ1 such that for any u > 0,

1 ≤ j ≤ J ,
max
1≤i≤n

P (|yij | > u) ≤ exp(1− τ1u
κ1)

and max1≤i≤n E|yi1|4η0 < +∞, where η0 > 1 is a constant.
In the last condition, we assume that there exists a permutation π on {1, ..., J}

so that yπ(j), 1 ≤ j ≤ J are strong mixing. Let Fk0
0 and F∞

k denote the σ-
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algebras generated by {yπ(j) : 0 ≤ j ≤ k0} and {yπ(j) : j ≥ k} respectively.
Define the mixing coefficient

α(k) = sup
A∈Fk0

0 ,B∈F∞
k

|P (A)P (B)− P (AB)|.

The mixing coefficient α(k) quantifies the degree of the dependence of the pro-
cess {yπ(j)} at lag k. We assume that α(k) is decreasing exponentially fast as
lag k is increasing, i.e.,

(C6). There exist positive constants κ2 and τ2 such that α(k) ≤ exp(−τ2k
κ2).

Remark 3.1. Note that under Condition (C0), yj’s (therefore εj’s) can be mu-
tually dependent on each other. Condition (C1) says that there are no redundant
covariates in ν0. Condition (C2) implies that ||Rνν0 || ≤ ||Rνν ||1/2||Rν0ν0 ||1/2 =
O(nα0). Note that for ν ⊆ [1 : p] \ ν0, R

−1
νν /n = (xTν A

−1
ν0

xν)
−1 is the power of

ν after adjusting the influence of ν0. So, Condition (C2) says that the adjusted
power of ν is of order n−1+α0 = o(1), which is negligible. This is natural as ν
may contain noisy covariates. Similarly, Condition (C3) says that ν0-adjusted
power of ν is also negligible. Conditions (C2) to (C3) are the assumptions com-
monly used in the large sample theory for linear regression models (e.g., [21]). To
verify Conditions (C1)∼(C3), we refer readers to [8, 21] under the assumptions
that σ2

k = 0, k 	∈ ν0 and that X is assumed to be a random matrix satisfying
some moment conditions and that the growth of the dimension p is not too fast
compared to the number of measurements per response, n. For example, follow-
ing [8], we assume that X has a concentration property, i.e., for some constant
c1, any u > 0 and ν ⊆ [1 : p], |ν| ≤ rn,

P
(
λmax(Rνν) > u or λmin(Rνν) < u−1

)
≤ c1 exp(−nu/c1).

Letting Ωn = {ν : ν ⊆ [1 : p], |ν| ≤ [rn]}, where [rn] stands for the integer part
of rn, we have

max
ν∈Ωn

λmax(Rνν) = max
ν∈Ωn,|ν|=[rn]

λmax(Rνν),

min
ν∈Ωn

λmin(Rνν) = min
ν∈Ωn,|ν|=[rn]

λmin(Rνν)

and hence as log(p) ≤ nα0/c1 − 1 + log(r) + (1 − 1/n) log(n) = O(nα0), n and
p tend to infinity,

P

(
max
ν∈Ωn

λmax(Rνν) > nα0 or min
ν∈Ωn

λmin(Rνν) < n−α0

)

≤ c1

(
p

[rn]

)
exp

(
−n1+α0/c1

)
≤ (pe/n)

n
exp

(
−n1+α0/c1

)
≤ c1/n → 0,

This implies that Condition (C2) holds with an overwhelming probability. Anal-
ogously, Condition (C3) holds if xν and xν0 are asymptotically, uniformly non
coherent with respect to ν ⊆ [1 : p] \ ν0, in the sense that Rνν0 = o(1).
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Condition (C4) is a technical condition which holds when σ2
k = 0 (or suf-

ficiently close to zero in a sense), k 	∈ ν0. Note that (C5) holds if yij’s are
Gaussian. And (C6) holds if there exist 1 = j0 < j1 < · · · < jm = J such that
{yj}1≤j≤J can be divided into mutually independent segments {yj}jk−1≤j<jk , 1 ≤
k ≤ m.

Letting ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0, in the next theorem, we show that
the sparsistency property holds for the estimated nulled powers. Recall that
τnJ =

√
log(n)/J .

Theorem 3.1. Suppose that Conditions (C0)∼(C6) hold and that τnJn
2 = o(1)

as both n and J tend to infinity. Then, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0, a 	∈ ν1 ∪ ν2 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-
nulled power of a admits the form

γ̂a|ν1∪ν2
= n−1

(
Raa − Raν0R

−1
ν0ν0

Rν0a −
(
Raν2 − Raν0R

−1
ν0ν0

Rν0ν2

)
×
(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)−1(
Rν2a − Rν2ν0R

−1
ν0ν0

Rν0a

))−1

+Op(n
−2+4α0+2α1 + n2τnJ).

(ii) Uniformly for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled power of
a admits the form

γ̂a|ν1∪ν2
=

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1

+Op(n
−2+6α0+5α1 + n2τnJ)

+n−1eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0 ,

where

Σν1�ν0 =
(
eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)−1

,

Σ−1
ν0\ν1

=
(
eTν0

Σeν0

)−1/2
Pν0\ν1

(
eTν0

Σeν0

)−1/2
,

Pν0\ν1
= I|ν0| −

(
eTν0

Σeν0

)−1/2
eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1/2
,

Fν2 = Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 ,

Φ = R−1
ν0ν0

+ R−1
ν0ν0

Rν0ν2F
−1
ν2

Rν2ν0R
−1
ν0ν0

,

Ψ =
(
I|ν0| − eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1
)
Φ(

I|ν0| − eν1�ν0Σν1�ν0e
T
ν1�ν0

(
eTν0

Σeν0

)−1
)T

.

The above theorem implies that uniformly for a ∈ ν0\ν1 and |ν1∪ν2| < rn, the
(ν1 ∪ ν2)-nulled power of a admits the form γ̂a|ν1∪ν2

= (eTa�ν0
Σ−1

ν0\ν1
ea�ν0)

−1 +

Op(n
−1+3α0+2α1 + n2τnJ). For a 	∈ ν0, γ̂a|ν1∪ν2

= op(1). Note that it can be
seen from the proofs in the Appendix B that n2τnJ=o(1) in Theorem 3.1 can be
replaced by mnτnJ = o(1) which depends on mn, the number of non-zero entries
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in C. We therefore show that the so-called sparsistency property holds for the
nulled-power-based PVA. We further show that the sparsistency property also
holds for the SNR-based PVA as follows.

Theorem 3.2. Suppose that Conditions (C0)∼(C6) hold and that τnJn
2 = o(1)

as both n and J tend to infinity. Then, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0, a 	∈ ν1 ∪ ν2 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-
nulled power of a admits the form ˆSNRa|ν1∪ν2

= 1
ζ0σ2 +Op(n

−2+4α0+2α1 +

n2τnJ).
(ii) Uniformly for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled SNR of

covariate a admits the form

ˆSNRa|ν1∪ν2
=

neTa�ν0
Σ−1

ν0\ν1
ea�ν0

σ2η0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

+Op(n
2τnJ)

+

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)2
eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

σ2ζ0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

,

where Σ−1
ν0\ν1

, Ψ and Φ are defined in Theorem 3.1.

Note that for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn,

λmin

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)
≥ λmin

(
eT{a}∪ν1

(
eTν0

Σeν0

)−1
e{a}∪ν1

)
≥

(
λmax

(
eTν0

Σeν0

))−1
,

which is bounded below from zero as λmax

(
eTν0

Σeν0

)
= O(1). It can also be

shown that σ2ζ0e
T
a�ν0

Σ−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea�ν0 = O(n3α0+2α1). Consequently, the

leading term in Theorem 3.2 (ii) tends to infinity as n1−3α0−2α1 tends to in-
finity. In contrast, for a 	∈ ν0, ˆSNRa|ν1∪ν2

converges to a constant as stated in
Theorem 3.2 (i). Compared to Theorem B.4 in the Appendix B, we can see
that Theorem 3.2 provides a sharper contrast between active and non-active
covariates.

Let ωm̂ denote the set of covariates derived from the (SNR-based) PVA. We
have the following selection consistency for ωm̂.

Corollary 3.1. Under the conditions in Theorem 3.2, as both n and J tend to
infinity, we have the selection consistency in the sense that P (ωm̂ = ν0) → 1.

The above corollary, together with Remark 3.1, implies that along with other
regularity conditions, if the condition on J, p and n that n−α0 log(p) = O(1) for
some positive constant α0 and that n2τnJ = o(1) is satisfied, then the PVA-based
variable selection is consistent. As pointed out before, the condition n2τnJ =
o(1) can be replaced by a sparsity condition where mnτnJ = o(1).
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4. Numerical results

In this section, we assess the performance of the PVA in identifying active co-
variates using synthetic and real data. As our simulations suggest that the SNR-
based PVA performs better than the power-based PVA, we consider four versions
of the SNR-based PVA with the four different estimators of C, namely, Ledoit-
Wolf’s shrinkage estimator and the optimal shrinkage of thresholded estimator
Ĉhs with h = 0.01, 0.005, 0.001. They are denoted by PVA(sh0), PVA(hs1),
PVA(hs2) and PVA(hs3) respectively.

4.1. Synthetic data

We compare the performance of the PVA to those implemented in the R-
packages ‘glmnet’ (Friedman, Hastie, Simon, Tibshirani, version 2.1), ‘lsgl’ (Vin-
cent, version 1.3.5) and ‘mrce’ (Rothman, version 2.1): the multivariate group
LASSO (MGL), the multivariate elastic-net (MENET), the multivariate LASSO
(ML), the multivariate group sparse LASSO (MGSL) and multivariate regres-
sion with covariance estimation (MRCE) when all these procedures fix their
specificity values approximately at the same level as the PVA. A brief introduc-
tion to these methods can be found in the Appendix A. The Bayesian method
of [2] is excluded from our comparison as it is computationally infeasible for the
large scale data considered here.

Specificity and sensitivity are defined as the survival rates of true active
covariates and of true non-active covariates respectively in screening, namely
SEND = |T̂ ∩ T |/|T | and SPED = |T̂ c ∩ T c|/|T c|, where T and T c are respec-
tively the sets of true active covariates and of true non-active covariates, T̂ and
T̂ c are their estimators, and the symbol | · | denotes the size of a set. Note that
if |T̂ | ≤ m and T ∪ T c = T̂ ∪ T̂ c = {1, 2, ..., p}, then we have

SPED =
|T̂ c − T̂ c ∩ T |

|T c| ≥ p−m− |T |
p− |T | .

So the specificity SEND is close to 1 when p � |T |+m. This holds for most of our
simulations, for example for m = 42, p = 2000, |T | = 37, we have SPED ≥ 0.978.

Setting 4.1 (B was uncorrelated both within rows and between rows): Modi-
fying a simulation setting in [16], we simulated 50 data sets of (Y,X) from the
model (2.1). Each dataset was generated in the following steps. First, we drew
an i.i.d. sample of size np from the standard normal N(0, 1) to form an n × p
matrix X. Secondly, we drew n independent auto-regressive row-vectors from
the J-dimensional multivariate normal NJ(0, E0), where E0 = (0.7|i−j|)J×J . We
stacked these row vectors to generate an n×J error term matrix ε. Thirdly, we
generated B = (βkj)p×J = s0B0, where s0 was a scale factor, B0 = (bkj)p×J ,
bkj = ηkjukj , with ηkj and ukj independently sampled from the Bernoulli dis-
tribution Bin(0.1) (0.1 is the success probability) and the uniform distribution
U(s1, s2) respectively. We considered combinations of (n, p, J, p0, α, s0, s1, s2)
with n = 50, p = 100, 1000, J = 20, p0 = 5, α = 0, 1, s0 = 0.45, 0.6,
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(s1, s2) = (−1, 1), (0.5, 1) and (1, 2). Note that α = 0 and 1 corresponded to
row-wise uncorrelated and row-wise correlated Bs respectively. We let (s1, s2) =
(−1, 1), (0.5, 1) and (1, 2) to represent three scenarios of B: (i) rows with non-zero
entries were oscillates around (thus not well separated from) the background 0;
(ii) rows with non-zero entries were uniformly bigger than (thus separated from)
0 by amounts not less than 0.5s0; (iii) rows with non-zero entries were uniformly
bigger than (thus separated from) 0 by amounts not less than s0. Then, we ran-
domly selected a subset Sp0 of size p0 from integers from 1 to p and for any j,
set βkj = 0 when k 	∈ Sp0 . Finally, we let Y = XB + ε.

Setting 4.2 (B was uncorrelated within rows but correlated between rows): We
adopted Setting 4.1 except that we multiplied the above B0 by a matrix factor
Bf = (0.6|k−j|)p×p, resulting in new B = s0BfB0 with correlations between
non-zero rows.

Setting 4.3 (B was weakly correlated within rows): We generated 50 data
sets of (Y,X) from the model (2.1) for each combination of (n, p, J, p0), where
n = 42, 88, 150, p = 2000, J = 20, 34, 131, and p0 = 37, 50, 70 is the number of
true active covariates underpinning the model. Each dataset was generated in
the following steps. We began with calculating a J×J sample covariance matrix
Ω by using the n×J weakly correlated sub-data matrix of the imputed IC50 data.
Given Ω, we randomly generated p row-vectors from a J-dimensional normal
NJ(0,Ω), stacking them together to form a matrix B. We then modified entries
of B so that the resulting matrix contained exactly p0 non-zero rows which would
be taken as p0 active covariates later. The details were omitted. To obtain matrix
X, we let F0 be the p×p sample covariance matrix of the gene expressions in our
cancer drug data which were obtained in the next section. Given F0, we then
generated n iid row vectors from a multivariate normal Np(0,F0), stacking them
together to form matrix X. We generated the error term matrix, ε, by sampling
from Nn(0, σ

2In) J times as its column vectors, where σ2 = 0.1. Finally, we
obtained Y by setting Y = XB+ ε.

Setting 4.4 (B was strongly correlated within rows): Similar to Setting 4.3, we
generated 50 data sets of (Y,X) from the model (2.1) for each combination of
(n, p, J, p0), where n = 42, 88, 150, p = 2000, J = 20, 34, 131, and p0 = 37, 50, 70
is the number of true active covariates underpinning the model. Each dataset was
generated in the same steps as Setting 4.3, except that matrix Ω was replaced
by one with high correlation coefficients. The further details were omitted.

Setting 4.5 (B was moderately correlated within rows): Similar to Setting 4.3,
we generated 50 data sets of (Y,X) from the model (2.1) for each combination of
(n, p, J, p0), where n = 20, 42, p = 2000, J = 131, and p0 = 20, 37. Here, Ω was
generated from the n non-missing rows of the IC50 data while X was produced
by use of the gene expression data corresponding to the above n non-missing
rows. The error term matrix was generated by sampling from Nn(0, σ

2In) J
times as before but with σ2 = 0.0645. The further details were omitted.

For each combination of (n, p, J, p0, s0, s1, s2) in Settings 4.1 and 4.2, we ap-
plied the PVA, MGL, MENET, ML, MSGL and MRCE to each of 50 data sets
respectively and calculated their sensitivity values when the specificity value
was fixed approximately at the same level. Note that in Settings 4.3 to 4.5, it
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Fig 1. Box plots of sensitivity (short for Sen) and specificity (short for Spe) values are for Set-
tings 4.1 with (n, p, J, p0, s0, s1, s2) taking the following values. (a): (50, 100, 20, 5, 0.45,−1, 1).
(b): (50, 100, 20, 5, 0.6,−1, 1). (c): (50, 1000, 20, 5, 0.45,−1, 1). (d): (50, 1000, 20, 5, 0.6,−1, 1).
(e): (50, 100, 20, 5, 0.45, 0.5, 1). (f): (50, 100, 20, 5, 0.6, 0.5, 1). In each panel, from the left to
the right, the odd columns are for sensitivity while the even columns are for specificity. In
each panel, box-plots from the left to the right are for sh0, hs1, hs2, hs3, mgl, menet, mrce, ml
and msgl respectively. B was called “Oscillated” if its non-zero entries were oscillates around
0; “Separated” if non-zero entries were uniformly bigger than 0.

was too time-consuming to run MRCE on a PC. In light of this, we skipped
MRCE in our comparison in these settings. For the MGL, MENET, ML, MSGL
and MRCE, we adjusted their penalty coefficients to achieve approximately the
same specificity as that of the PVA. These sensitivity and specificity values were
summarized using box-plots as shown in Figures 1∼7. In these figures sh0, hs1,
hs2 and hs3 correspond to PVA based on the shrunk and thresholded covari-
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Fig 2. (Continuation of Fig. 1) box plots of sensitivity (short for Sen) and specificity (short
for Spe) values are for Settings 4.1 with (n, p, J, p0, s0, s1, s2) taking the following values.
(g): (50, 1000, 20, 5, 0.45, 0.5, 1). (h): (50, 1000, 20, 5, 0.6, 0.5, 1). (i): (50, 100, 20, 5, 0.45, 1, 2).
(j): (50, 100, 20, 5, 0.6, 1, 2). (k): (50, 1000, 20, 5, 0.45, 1, 2). (l): (50, 1000, 20, 5, 0.6, 1, 2). B was
called “Well-separated” if non-zero entries in B were uniformly bigger than 0 by amounts not
less than a constant.

ance estimators with tuning constants h = 0, 0.01, 0.005, 0.001 respectively. And
mgl, menet, mrce, ml, msgl stand for the multivariate group LASSO, the mul-
tivariate elastic-net, the multivariate regression with covariance estimation, the
multivariate LASSO and the multivariate sparse group LASSO respectively.

The results indicated that the PVA substantially outperformed the MGL,
MENET, ML, MSGL and MRCE in terms of sensitivity and specificity in all
the scenarios under consideration. In Settings 4.1 and 4.2, the results sug-
gested that the performances of the MGL, MENET, ML, MGSL and MRCE
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Fig 3. Box plots of sensitivity (short for Sen and specificity (short for Spe) values are for Set-
ting 4.2 with (n, p, J, p0, s0, s1, s2) taking the following values. (a): (50, 100, 20, 5, 0.45,−1, 1).
(b): (50, 100, 20, 5, 0.6,−1, 1). (c): (50, 1000, 20, 5, 0.45,−1, 1). (d): (50, 1000, 20, 5, 0.6,−1, 1).
(e): (50, 100, 20, 5, 0.45, 0.5, 1). (f): (50, 100, 20, 5, 0.6, 0.5, 1). In each panel, from the left to
the right, the odd columns are for sensitivity while the even columns are for specificity. In
each panel, box-plots from the left to the right are for sh0, hs1, hs2, hs3, mgl, menet, mrce,
ml and msgl respectively. Adopt the same notations in Figures 1 and 2.

had deteriorated sharply when the separation between active and non-active
covariates, in terms of regression coefficients, was decreasing. In contrast, the
performance of the PVA was much more robust than the other procedures to
interferences between active and non-active covariates. This was due to inter-
ferences being minimized through the optimization in the null-beamforming.
This explained why the PVA substantially outperformed the other procedures
as the separation between active and non-active covariates was decreasing.
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Fig 4. (Continuation of Fig. 3) box plots of sensitivity and specificity values are for Setting
4.2 with (n, p, J, p0, s0, s1, s2) taking the following values. (g): (50, 1000, 20, 5, 0.45, 0.5, 1).
(h): (50, 1000, 20, 5, 0.6, 0.5, 1). (i): (50, 100, 20, 5, 0.45, 1, 2). (j): (50, 100, 20, 5, 0.6, 1, 2). (k):
(50, 1000, 20, 5, 0.45, 1, 2). (l): (50, 1000, 20, 5, 0.6, 1, 2). Here, we adopt the same notations in
Figures 1 and 2.

For example, for the oscillated case where p = 1000, (n, J, p0, s0, s1, s2) =
(50, 20, 5, 0.45,−1, 1), the average percentage improvements of PVA(hs3) in sen-
sitivity over the MGL, MENET, MRCE, ML and MSGL were respectively 130%,
190%, 202%, 343% and 853% when the specificity values were fixed roughly
at the same level. In contrast, for the well-separated case where p = 1000,



Multivariate variable selection 3447

Fig 5. Box plots of sensitivity (short for Sen) and specificity (short for Spe) values for Setting
4.3 (Low correlations within rows, short for LCW) with (n, J, p0) indicated in the title of each
plot, p = 2000 and c0 = 5. Here, we adopt the same notations as in Figure 1.

(n, J, p0, s0, s1, s2) = (50, 20, 5, 0.45, 1, 2), the average percentage sensitivity im-
provements of the PVA(hs3) over the MGL, MENET, MRCE, ML and MSGL
were respectively 42%, 44%, 98%, 12% and 35% when the specificity values were
also fixed roughly at the same level. Only in the well-separated case, the other
five procedures had competitive performances with the PVA.

A similar conclusion can be made for the other settings. For example, for p =
2000, (n, J, p0) = (88, 20, 50), (150, 20, 50), (88, 34, 50), (150, 34, 50) in Setting
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Fig 6. (Continuation of Fig. 5) box plots of sensitivity (short for Sen) and specificity (short
for Spe) values for Setting 4.3 (Low correlations within rows, short for LCW) and Setting
4.4 (High correlations within rows, short for HCW) with (n, J, p0) indicated in the title of
each plot, p = 2000 and c0 = 5. Here, we adopt the same notations as in Figure 1.

4.4, when the specificity values were fixed roughly at the same level, compared
to the MGL, on average the sensitivity values of the PVA(hs3) were increased
by 74%, 97%, 136%, and 237% respectively. Compared to the MENET, on
average the sensitivity values were increased by 312%, 478%, 443% and 968%
respectively. In comparison to the ML, on average the sensitivity values were
increased by 103%, 133%, 163% and 250% respectively. In comparison to the
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Fig 7. Box plots of sensitivity and specificity values for Setting 4.4 (HCW) and Setting 4.5
(Moderated correlations within rows, short for MCW) with (n, J, p0) indicated in the title of
each plot, p = 2000 and c0 = 5. Here, we adopt the same notations as in Figure 1.
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MSGL, on average the sensitivity values were increased by 53%, 85%, 110% and
169%. The results also suggested that the improvements of the PVA(hs3) over
the other procedures in sensitivity were decreasing when p0 changed from 50 to
70, although they were still large. This was expected as the model complexity
increased but the number of measurements per response did not increase.

In Setting 4.3, we considered a weakly correlated regression coefficient matrix
B. With the same combinations of (n, p, J, p0) as before, compared to highly
correlated B setting, the improvements over the other procedures reduced but
they were still substantial. This reflected a fact that the higher the correlations
in columns or rows of B, the stronger intra-correlations the response variable
would receive. Therefore, more accurate variable selection would be derived from
the PVA as it could explore correlation structures in the data better than the
other methods. The results also indicated that the sensitivity improvements of
the PVA over the other procedures were increasing in J and n. The similar
result was also obtained in Setting 4.5.

We recorded the running times of performing the above procedures on each
of the 50 data sets in each setting. The results showed that on average the PVA
was run much faster than the ML and MSGL and was also very competitive
with the MGL and MENET when we applied them to these data sets in terms
of log-CPU-times in seconds. The details were omitted.

4.2. Anti-cancer drug data

Cancer drugs exert their function through binding to one or more protein targets
[22]. Early “one gene, one drug, one cancer” paradigm considers the role of
individual genes and their changes in drug-perturbed states, which largely ignore
a target’s cellular and physiological context. Meanwhile, cancer gene-centric
methods largely ignore the multi-factor-driven attribute of cancer diseases at
the cellular level. With the generation of rich data resources for genome-wide
gene expressions and drug- and cancer-induced perturbations, data integrative
approaches such as PVA try to provide systematic insights into mechanisms
of drugs and cancers in a “multiple genes, multiple drugs, multiple types of
cancers” paradigm.

In this section, we focus on the following two data sets: IC50 values of drug
sensitivity in cancer cell lines and the corresponding gene expression DNA mi-
croarrays [10]. According to cancer encyclopedia, IC50 is a concentration of drug
that reduces a biochemical activity such as cell multiplication to 50 percent of its
normal value in the absence of the inhibitor. The data sets contain gene expres-
sion levels of 13321 genes and median inhibitory concentrations (IC50s) of 131
drugs across 586 cell lines. Among these cell lines, only 42 had complete records
of their response to 131 drugs. Here, we considered only the 42 completed cell
lines. The challenging problem of imputing remaining cell lines will be addressed
in a separate work. We aim to identify biomarkers (a set of genes) that underpin
the drug sensitivity in cancer cell lines. Multivariate random-effects regression
models can be used to recover these biomarkers, where we treat drugs as sub-
jects (or responses), IC50 values of each drug on cell lines as measurements and
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genes as random-effects covariates. Note that, in the above regression, multiple
drugs are simultaneously linked to the same set of covariates. So, the higher the
number of drugs, the more information about these covariates can be extracted
from the drug sensitivity data.

Letting X be log-gene-expression levels and Y be IC50 values of 42 com-
pletely observed cell lines, we considered the model (2.1) for (Y,X) with the
number of measurements per response n = 42, the number of covariates p =
13321 and the number of the responses J = 131. As p � n and p � J , the
model estimation was ill-posed. To reduce the number of covariates, we per-
formed PVA(hs3)-based variable selection on the dataset, identifying 37 ac-
tive covariates (i.e., genes) for the response variable (i.e., IC50s) as follows:
C18ORF24 (SKA1), IARS, CLASP1, STAMBPL1, GSTM3, EML1, TRIM6-
TRIM34, DECR1, EP400, RPL39L, FAIM3, CD1A, CIDEB, TP53, QKI,
SNTB1, SEMA4C, NUDT2, RFX2, GPSN2 (TECR), C21ORF45 (MIS18A),
COL5A1, RP1.153G14.3 (ZNF391), MKL1, FKSG44, KIAA1856, HDGF2,
CROCC, WDR76, RPS14, MAP3K6, MAP3K6, LY6E, SLCO2B1, NR1D2,
RHBDD3 and STX7. We then fitted a reduced multivariate regression model to
the dataset by restricting the covariates to the selected, obtaining an estimated
vector of the 131-dimensional regression coefficients for each selected gene.

We constructed a network, displayed in Figure 8, for the selected genes based
on their regression coefficients across 131 drugs. The network was strongly con-
nected as there always existed a path from any node to any other node. Sur-
prisingly, although by the iterative nulling, the selected genes were uncorrelated
in their expression levels, they were strongly correlated when they reacted to
cancer drugs as shown in Figure 8. This suggests that these genes are potentially
correlated in a high function level (e.g., protein level).

To reveal the potential roles of these selected genes played in cancer drug sen-
sitivity, as their protein products would dictate their functions, we investigated
their protein stainings in the following 20 common cancers [18]: Breast, Carci-
noid, Cervical, Colorectal, Endometrial, Glioma, Hand and neck, Liver, Lung,
Lymphoma, Melanoma, Ovarian, Pancreatic, Prostate, Renal, Skin, Stomach,
Testis, Thyroid and Urothelial. We extracted such information from the Human
Protein Atlas Portal at http://www.proteinatlas.org/cancer. As in the Por-
tal, we classified the protein expression/staining levels into 4 categories: high,
medium, low and not detected. We assigned the scores of 3, 2, 1 and 0 to the
above categories respectively. If a gene did not play a role in a cancer, it would
receive a score of zero as its protein staining at that cancer would be hardly
detectable. We found 34 of the selected genes, which had positive staining levels
on at least one of these cancers. This implied that these genes might play certain
functional roles in growths of some of these cancers. In the Portal, there was no
information available on the remaining 3 of the selected genes.

5. Conclusion

High dimensional multivariate regression data, where columns stand for mea-
surements on responses (or subjects) can be fitted by both fixed-effects models

http://www.proteinatlas.org/cancer
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Fig 8. A network of the 37 selected genes based on their regression coefficients across 131
drugs. The size (called degree) of each node is proportional to the number of connections of
that node with other nodes. The thickness of each edge represents the magnitude of the corre-
lation coefficient between the nodes linked by this edge. The higher the correlation coefficient,
the thicker the edge is. The largest degree of 22 and the smallest degree of 3 were attained by
gene QKI and gene STX7 respectively.

and random-effects models with helps of variable selection. The existing multi-
variate variable selection methods have been put forward mainly for fixed-effects
models. In this paper, we have developed a novel approach called PVA for select-
ing random-effects covariates in multivariate random-effects regression models.
PVA is covariate-assisted, in which we project the response data matrix into the
space spanned by each covariate and define a relative information index SNR by
the variance component ratio between this covariate and the background noise.
The resulting SNR values are then used to rank covariates. The highly ranked
covariates are called principal variables. By the PVA, we try to find a small
number of principal variables to explain the maximum amount of variation in
the data. Our approach allows us to consider correlations between measurements
and between responses (between rows and columns in the response data matrix)
while the existing methods are only able to deal with correlation structures be-
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tween responses. In a multivariate fixed-effects model with many responses, for
each covariate, we need to estimate many regression coefficients, which is a high-
dimensional problem when the number of responses (or subjects) is very large.
In contrast, in a multivariate random-effects model, for each covariate, we only
need to estimate its variance component, which is a low-dimensional problem.
This difference provides a foundation for the PVA approach to multivariate
variable selection. In multivariate regression models, all responses are related
to the same set of covariates, which implies that the larger the number of re-
sponses, the more information on covariates can be extracted from the response
data. Therefore, the accuracy of random-effects covariate selection is expected
to increase as the number of responses is increasing. However, when all covari-
ate variance components are zeros, the models reduce to a class of fixed-effects
models, where the methods in [17] can be employed while the PVA approach is
not applicable.

We have established a novel theory on selection consistency for the pro-
posed method when along with other regularity conditions, the number of co-
variates p, the number of non-zero entries mn in covariance matrix. the num-
ber of measurements per response n and the number of responses J satisfy
mn

√
log(n)/J = o(1) and log(p) = O(nα0). In particular, we have shown that

under these regularity conditions, true active covariates are asymptotically sep-
arable from non-active covariates in terms of their power or SNR values as n
and J tend to infinite. We have also shown that the nulled power has a higher
value than a non-nulled power and is adaptive to response covariance struc-
tures. We have conducted a wide range of simulation studies to compare the
PVA with the multivariate group LASSO, the multivariate elastic-net, the mul-
tivariate LASSO, the multivariate sparse group LASSO and the MRCE. This
has explained why the PVA can outperform the existing multivariate variable
selection procedures in the literature as these methods are not adaptive to re-
sponse covariance structures. The simulation results have shown that the PVA
can substantially perform better than its competitors in all the scenarios under
considerations while the PVA is scalable to the data size by iteratively calculat-
ing the power or SNR values. The simulation studies in Settings 4.1∼4.5 have
shown that even when the response covariance matrix is not sparse or when J
is much smaller than n, PVA can still have a superior performance than the
existing methods.

To demonstrate the usage of the PVA in practice, we have conducted PVA
on a cancer drug dataset and identified a list of principal genes and the related
network to predict the drug’s sensitivity to cancers in a “multiple genes, multiple
drugs, multiple types of cancers” paradigm. The correlations of the selected
genes in the RNA expression levels are largely different from those in their
functional levels (their contributions to the IC50 values). The results have been
further validated by the protein expression levels of these genes in 20 common
cancers. We should mention that we have applied the cross-validation-based
multivariate group LASSO and the multivariate elastic-net to the same dataset.
Unfortunately, we have ended up with a few thousand genes being selected,
which were very difficult to interpret in practice.
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Appendix A: The existing approaches to multivariate variable
selection

To introduce the multivariate group LASSO (MGL) and the multivariate elastic-
net (MENET), we consider the following penalization problem

min
B

⎧⎨
⎩ 1

2n
||Y −XB||2F + λ

⎡
⎣(1− α) ‖ B ‖2F +α

p∑
k=1

√√√√ J∑
j=1

β2
kj

⎤
⎦
⎫⎬
⎭ ,

where ||B||F =
√∑

kj β
2
kj denotes the standard Forbinus norm of B = (βkj),

||Y−XB||F is the Forbinus norm of Y−XB, n is the number of observations,
0 ≤ α ≤ 1 is a pre-determined constant and λ ≥ 0 is the penalty coefficient.
The solution defines the multivariate group LASSO when α = 1, ridge estimator
when α = 0 corresponds to the ridge estimation, and the multivariate elastic
net when α = 0.5.

The multivariate LASSO (ML) and the multivariate sparse LASSO (MSGL)
can be derived by the following penalization problem with

min
B

⎧⎨
⎩ 1

2n
||Y −XB||2F + λ

⎡
⎣(1− α)|B|+ α

p∑
k=1

√√√√ J∑
j=1

β2
kj

⎤
⎦
⎫⎬
⎭ ,

by setting α = 0 and α = 0.5 respectively, where |B| =
∑

kj |βkj | is the L1 norm
of B. The sparse multivariate regression with covariance estimation (MRCE) is
referred to Rothman et al. (2010).

Appendix B: Extra theorems, technical details and proofs

In this appendix, for a n × n square matrix D, let ||D|| be the operator norm,
the square root of the largest eigenvalue of DDT . Slightly abusing the notation,
now let ||D||F denote the size-normalized Forbinus norm,

√
tr(DDT )/n, where

tr(·) is the trace.

B.1. Theory on principal variable analysis with known covariance

We begin with an ideal setting where C is known. This includes the case of
J = ∞ in which we can estimate C exactly. We establish lower bounds for the
SNRs below.

Proposition B.1. Under Condition (C0), SNRν ≥ 1 holds for any ν ⊆ [1 : p]
of the size |ν| ≤ n and SNRν|ω ≥ 1 holds for any ν, ω ⊆ [1 : p] of the size
|ν ∪ ω| ≤ n. The lower bound is attained when all predictors in [1 : p] are not
active.
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The above proposition shows that the SNR-based map has a sharp lower
bound of 1 when Λ = σ2In. However, when Λ 	= σ2In, we apply the proposition
to (Λ−1/2Y,Λ−1/2X) to obtain a Λ-dependent lower bound for the SNR values.

To investigate the asymptotic properties of the power-based and the SNR-
based maps, let Aν0 = C−xν0e

T
ν0
Σeν0x

T
ν0
, the remainder of C after subtracting

the term xν0e
T
ν0
Σeν0x

T
ν0
. In the next proposition, we shows that a local con-

sistency of the predictive power with the underlying power eTν0
Σeν0 at ν0: the

power at ν0 can be written as the underlying power plus the interferences with
the predictors not in ν0 and with the white noise. These interferences can be
negligible if predictors outside ν0 have zero powers.

Proposition B.2. If both eTν0
Σeν0 and Aν0 are invertible and xν0 has a full

column rank, then the predictive power matrix

γν0 = eTν0
Σeν0 +

(
xTν0

A−1
ν0

xν0

)−1
.

If σ2
k = 0, k 	∈ ν0 and λmin(x

T
ν0
xν0/n) is bounded below from zero as the sample

size n tends to infinity, then γν0 = eTν0
Σeν0 +O(n−1).

We now in position to state a theorem on the global sparsistency property
of the power map. In the theorem, we show that for an active predictor, the
predictive power has a positive limit whereas for a non-active predictor, the
predictive power tends to zero. This allows us to separate active predictors from
non-active ones by thresholding the power map.

Theorem B.1. Suppose that there exist constants 0 ≤ α1 ≤ (1 − 3α0)/2
and c2 > 0, c2n

−α1 ≤ λmin(e
T
ν0
Σeν0) ≤ λmax(e

T
ν0
Σeν0) = O(1). Let Σν�ν0 =

(eTν�ν0
(eTν0

Σeν0)
−1eν�ν0)

−1, a partial covariance matrix of ν with respect to ν0.
Then, under Conditions (C0)∼(C3), as n tends to infinity, we have:

(i) Uniformly for any ν ⊆ ν0 with |ν| ≤ rn,

γν = Σν�ν0 + n−1Σν�ν0e
T
ν�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν�ν0Σν�ν0

+O(n−2+2α0+4α1)

= Σν�ν0 +O(n−1+α0+2α1).

(ii) Uniformly for any ν ⊆ [1 : p] \ ν0 with |ν| ≤ rn,

γν = n−1
(
Rνν − Rνν0R

−1
ν0ν0

Rν0ν

)−1
+O(n−2+4α0+α1) = O(n−1+α0).

(iii) Uniformly for any ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0 and
|ν| ≤ rn, γν can be partitioned into

γν =

(
γ11
ν γ12

ν

γ21
ν γ22

ν

)

with

γ11
ν = Σν1�ν0 +O(n−1+3α0+2α1),
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γ12
ν = −n−1Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

×
(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)−1
+ o(n−1+2α0+α1)

= O(n−1+2α0+α1),

γ21
ν = −n−1

(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)−1
Rν2ν0R

−1
ν0ν0

×
(
eTν0

Σeν0

)−1
eν1�ν0Σν1�ν0 + o(n−1+2α0+α1)

= O(n−1+2α0+α1),

γ22
ν = n−1

(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)−1
+O(n−2+4α0+2α1)

= O(n−1+α0).

The above theorem also indicates that compared to the underlying power
matrix, eTν Σeν , the predictive power matrix γν may be not consistent if the
collinearity between a pair of the predictors does not converge to zero as n
tends infinity. This can be seen from the derivation of the predictive power at
the predictor kj ∈ ν0 below. Let σkj [−kj ] denote (σkjki : i 	= j), the jth row in

eTν0
Σeν0 excluding the jth coordinate. Let σ[−kj ]kj

denote (σkikj : i 	= j), the jth
column in Σ excluding the jth coordinate. Let σ[−kj ][−kj ] denote the remaining

matrix after removing the jth row and the jth column from eTν0
Σeν0 . Then, the

(j, j)th entry in (eTν0
Σeν0)

−1 is equal to (σ2
kj
−σkj [−kj ]σ

−1
[−kj ][−kj ]

σ[−kj ]kj
)−1. The

following corollary says that under Condition (C1), the predictor kj does have
positive predictive power although the power has deteriorated due to the inter-
ferences with other predictors. Therefore, if we employ the estimated predictive
power to screen predictors and if Ĉ is consistent with C, then under Conditions
(C0)∼(C3), the screening procedure can have a sure screening property that for
an appropriately chosen threshold, all predictors in ν0 can be detected with a
probability approaching to one.

Corollary B.1. Under the conditions in Theorem B.1, as n tends infinity, we
have:

(i) Uniformly for any kj ∈ ν0, the predictive power of the predictor kj can be
expressed as

γkj = σ2
kj

− σkj [−kj ]σ
−1
[−kj ][−kj ]

σ[−kj ]kj
+O(n−1+α0+2α1).

(ii) Uniformly for any k 	∈ ν0, the predictive power of the predictor k can be
expressed as γk = O(n−1+α0).

Let a be the current predictor under investigation and ν1∪ν2 be the predictors
identified in the previous steps by PVA, with the size |ν1 ∪ ν2| < rn, where
0 < r ≤ 1, ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0. For a = kj ∈ ν0, let ea�ν0 =
e{a}�ν0

, a |ν0|-dimensional column vector with the j the coordinate equal to
1 and other coordinates equal to zero. In the next theorem, we show that the
global sparsistency property continues holds for the nulled predictive power and
that the nulling can improve the accuracy of power estimation.
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Theorem B.2. Suppose that there exist constants 0 ≤ α1 ≤ (1 − 6α0)/5 and
c2 > 0, c2n

−α1 ≤ λmin

(
eTν0

Σeν0

)
≤ λmax

(
eTν0

Σeν0

)
= O(1). Then, under

Conditions (C0)∼(C3), as n tends to infinity, we have:

(i) Uniformly for a ∈ [1 : p]\ν0 and a 	∈ ν1∪ν2 with |ν1∪ν2| < rn, the (ν1∪ν2)-
nulled predictive power of a admits the form γa|ν1∪ν2

= O(n−1+α0).
(ii) Uniformly for a ∈ ν0 and a 	∈ ν1∪ν2 with |ν1∪ν2| < rn, the (ν1∪ν2)-nulled

predictive power of predictor a admits the form

γa|ν1∪ν2
=

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1

+n−1eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+6α0+5α1),

where

Σν1�ν0 =
(
eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)−1

,

Σ−1
ν0\ν1

=
(
eTν0

Σeν0

)−1/2
Pν0\ν1

(
eTν0

Σeν0

)−1/2
,

Pν0\ν1
= I|ν0| −

(
eTν0

Σeν0

)−1/2
eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1/2
,

Fν2 = Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 ,

Φ = R−1
ν0ν0

+ R−1
ν0ν0

Rν0ν2F
−1
ν2

Rν2ν0R
−1
ν0ν0

,

Ψ =
(
I|ν0| − eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1
)
Φ(

I|ν0| − eν1�ν0Σν1�ν0e
T
ν1�ν0

(
eTν0

Σeν0

)−1
)T

.

Here, abusing the notation, we let Σ−1
ν0\ν1

denote the generalized inverse of

Σν0\ν1
. Note that Pν0\ν1

is a projection matrix of the ν1-nulled precision space
spanned by predictors ν0 \ ν1. Therefore, Σν0\ν1

can be viewed as an ν1-nulled

projected precision matrix for ν0 \ ν1 and eTa�ν0
Σ−1

ν0\ν1
ea�ν0 can be viewed as a

weighted, ν1-nulled precision for predictor a. It can be seen that for a ∈ ν0,(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1

= λmin

((
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1
)

≥ λmin

((
eT{a}∪ν1

(
eTν0

Σeν0

)−1
e{a}∪ν1

)−1
)

=
(
λmax

(
eT{a}∪ν1

(
eTν0

Σeν0

)−1
e{a}∪ν1

))−1

≥
(
λmax

((
eTν0

Σeν0

)−1
))−1

= λmin

(
eTν0

Σeν0

)
≥ c2n

−α1 .

The last inequality above follows from the assumption on the growth rate of

eTν0
Σeν0 . Note also that when a = kj ,

(
eTa�ν0

(eTν0
Σeν0)

−1ea�ν0

)−1
= σ2

kj
−
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σkj [−kj ]σ
−1
[−kj ][−kj ]

σ[−kj ]kj ]. Therefore, it follows from the definition of γa|ν1∪ν2
,

Corollary B.1 and Theorem B.1 that γa ≤ γa|ν1∪ν2
and that both γa and γa|ν1∪ν2

can be asymptotically less than or equal to σ2
kj

due to interferences with other
predictors. Furthermore, we have a sharp result as follows.

Corollary B.2. Under conditions in Theorem B.2, as n tends to infinity, we
have:

(i) Uniformly for a ∈ [1 : p] \ ν0 and |ν1 ∪ ν2| < rn, both γa and γa|ν1∪ν2

converge to zero in the rate of O(n−1+α0).
(ii) Uniformly for a ∈ ν0 and |ν1∪ν2| < rn, γa

γa|ν1∪ν2

= (1−fa|ν1
)(1+o(1)) < 1,

where gaν1 = eTν1�ν0

(
eTν0

Σeν0

)−1
ea�ν0 and

fa|ν1
=

gTaν1

(
eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)−1

gaν1

eTa�ν0

(
eTν0

Σeν0

)−1
ea�ν0

.

The power-based variable screening may not be efficient due to the inho-
mogeneous power background σ2wT

kwk. This calls for the SNR-based variable
screening. We show that active predictors can be asymptotically separated from
non-active ones by means of the nulled-SNR.

Theorem B.3. Under the conditions in Theorem B.2 and Condition (C4), as
n tends to infinity, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0 and a 	∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn,
SNRa|ν1∪ν2

= 1
ζ0σ2 +O(n−2+5α0+2α1) > 0.

(ii) Uniformly for a ∈ ν0 and a 	∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn,

SNRa|ν1∪ν2
=

neTa�ν0
Σ−1

ν0\ν1
ea�ν0

σ2ζ0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

+

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)2
eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

σ2ζ0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

→ ∞,

where Σ−1
ν0\ν1

, Φ and Ψ are defined in Theorem B.2.

B.2. Theory on principal variable analysis with estimated
covariance

We will show later in Lemma B.4 that under Conditions (C1)∼(C6), the optimal
shrinkage covariance estimator Ĉhs is consistent with the true covariance C.
This allows us to state the following theorems for the case where unknown C is
estimated by Ĉhs.

Theorem B.4. Suppose that Conditions (C0)∼(C6) hold and that τnJn
2 = o(1)

as both n and J tend to infinity. Then, we have:
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(i) Uniformly for any ν ⊆ ν0 with |ν| ≤ rn, γ̂ν = Σν�ν0 + Op(n
−1+α0+2α1 +

n2τnJ), where Σν�ν0 = (eTν�ν0
(eTν0

Σeν0)
−1eν�ν0)

−1.
(ii) Uniformly for any ν ⊆ [1 : p]\ν0 with |ν| ≤ rn, γ̂ν = Op(n

−1+α0 +n2τnJ).
(iii) Uniformly for any ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0 of size

|ν| ≤ rn,

γ̂ν =

(
γ̂11
ν γ̂12

ν

γ̂21
ν γ̂22

ν

)
,

where

γ̂11
ν = Σν1�ν0 +Op(n

−1+α0+2α1 + n2τnJ),

γ̂12
ν = Op(n

−1+α0+2α1 + n2τnJ), γ̂21
ν = Op(n

−1+α0+2α1 + n2τnJ),

γ̂22
ν = Op(n

−1+α0 + n2τnJ),

where Σν1�ν0 = (eTν1|ν0
(eTν0

Σeν0)
−1eν1|ν0

)−1.

The above theorem implies that the sparsistency property holds for the es-
timated predictor power γ̂a. Using γ̂a, we can screen the predictors with a pre-
specified threshold, say n−1+α0 log(n), obtaining an estimated set of active pre-
dictors, ν̂d = {1 ≤ a ≤ p : γ̂a > n−1+α0 log(n)}. We can prove the following sure
screening property for ν̂d.

Corollary B.3. Under the conditions in Theorem B.4, if α1 < min{(1 −
α0)/3, (1 − 3α0)/2}, n2+α0τnJ = o(1) and n2+α1τnJ = o(1), then as both n
and J tend to infinity, P (ν0 = ν̂d) → 1.

B.3. Proofs

Proof of Proposition B.1. Note that C = XΣXT + σ2In ≥ σ2In. Therefore,

σ2wT
ν|ωwν|ω = σ2eTν|ω

(
xT
ν∪ωC

−1xν∪ω

)−1
C−2xν∪ω

(
xT
ν∪ωC

−1xν∪ω

)−1
eν|ω

≤ eTν|ω
(
xT
ν∪ωC

−1xν∪ω

)−1
xT
ν∪ωC

−1Inxν∪ω

(
xT
ν∪ωC

−1xν∪ω

)−1
eν|ω

= γν|ω,

which implies SNRν|ω ≥ 1. When all predictors in 1 : p = {1, 2, ..., p} are not
active and C = σ2In, γν|ω = σ2wT

ν|ωwν|ω. Therefore, SNRν|ω = 1, which attains
its lower bound. This completes the proof.

Proof of Proposition B.2. It follows from the Woodbury matrix identity.

Proof of Corollary B.1. It follows from Theorem B.1.

Proof of Corollary B.2. It follows from Theorem B.2.

To prove Theorems B.1∼B.3, we needs the following lemma which gives a
xν0 -projection based decomposition of the quadratic form xT

ν C
−1xν .
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Lemma B.1. Under Conditions (C0)∼(C3), for any ν ⊆ 1 : p, if α1 < (1 −
3α0)/2, then

xTν C
−1xν = n

(
Rνν − Rνν0R

−1
ν0ν0

Rν0ν

)
+ Rνν0R

−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν

+O(n−1+3α0+2α1).

In particular, for ν ⊆ ν0, if α1 < (1− α0)/2, then

xTν C
−1xν = eTν�ν0

(
eTν0

Σeν0

)−1
eν�ν0 +O(n−1+α0+2α1).

For a ∈ ν0 and ν1 ⊆ ν0, if α1 < (1− α0)/2, then

xTaC
−1xν1 = eTa�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

−n−1eTa�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+5α0+3α1).

For ν1 ⊆ ν0 and ν2 ⊆ 1 : p \ ν0, if α1 < (1− 2α0)/2, then

xTν1
C−1xν2 = eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2 +O(n−1+2α0+2α1),

xTν2
C−1xν1 = Rν2ν0R

−1
ν0ν0

(eTν0
Σeν0)

−1eν1�ν0 +O(n−1+2α0+2α1).

Proof of Lemma B.1. Note that

||R−1/2
ν0ν0

Rν0ν || ≤ ||R−1/2
ν0ν0

Rν0νR
−1/2
νν ||||R1/2

νν || ≤ ||R1/2
νν || = O(nα0/2).

When ν ⊆ ν0, we have xν = xν0eν�ν0 , Rνν0 = eTν�ν0
Rν0ν0 , Rν0ν = Rν0ν0eν�ν0

and Rνν = eTν�ν0
Rν0ν0eν�ν0 . These together with the Woodbury matrix identity

and a Taylor expansion complete the proof.

Proof of Theorem B.1. To prove (i), let Σν�ν0 = (eTν�ν0
(eTν0

Σeν0)
−1eν�ν0)

−1.
Then, by using the assumption,

λmax

(
Σ

1/2
ν�ν0

)
≤
(
λmin

((
eTν0

Σeν0

)−1
))−1/2

= λ1/2
max

(
eTν0

Σeν0

)
= O(1).

This together with Lemma B.1 yields (i).
To prove (ii), we apply Lemma B.1 to calculate xT

ν C
−1xν . We have

xT
ν C

−1xν = nF1/2
ν

(
I|ν| + n−1F−1/2

ν Rνν0R
−1
ν0ν0

(eTν0
Σeν0)

−1R−1
ν0ν0

Rν0νF
−1/2
ν

+F−1/2
ν O(n−2+3α0+2α1)F−1/2

ν

)
F1/2
ν ,

where Fν = (Rνν − Rνν0R
−1
ν0ν0

Rν0ν). Therefore, when α1 ≤ 1− 3α0,

γν = n−1F−1/2
ν

(
I|ν| −O(n−1+3α0+α1)−O(n−2+4α0+2α1)

)
F−1/2
ν = O(n−1+α0),

which completes the proof of (ii).
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To prove (iii), we note that

xT
ν C

−1xν =

(
xT
ν1
C−1xν1 xT

ν1
C−1xν2

xT
ν2
C−1xν1 xT

ν2
C−1xν2

)
.

Invoking Lemma B.1, we have

xT
ν1
C−1xν1 = eTν1�ν0

(eTν0
Σeν0)

−1eν1�ν0 +O(n−1+α0+2α1),

xT
ν2
C−1xν2 = n

(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)
+O(n2α0+α1).

Similarly, we can show that

xT
ν1
C−1xν2 = eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2 +O(n−1+2α0+2α1),

xT
ν2
C−1xν1 = Rν2ν0R

−1
ν0ν0

(eTν0
Σeν0)

−1eν1�ν0 +O(n−1+2α0+2α1).

Let Σν1�ν0 = (eTν1�ν0
(eTν0

Σeν0)
−1eν1�ν0)

−1. Then,

λmax(Σν1�ν0) ≤ λmax(e
T
ν0
Σeν0) = O(1).

The proof is completed by applying Lemma B.1 to each block.

Proof of Theorem B.2. To prove (i), let ν denote ν1 ∪ ν2 ∪ {a}. We partition
xT
ν C

−1xν into the block matrix below:

xT
ν C

−1xν =

(
xT
ν1
C−1xν1 xT

ν1
C−1xν2∪{a}

xT
ν2∪{a}C

−1xν1 xT
ν2∪{a}C

−1xν2∪{a}

)

and that xν1 = xν0eν1�ν0 . Invoking Lemma B.1, we have

xT
ν1
C−1xν1 = eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0 +O(n−1+α0+2α1),

xT
ν1
C−1xν2∪{a} = eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0(ν2∪{a}) +O(n−1+2α0+2α1),

xT
ν2∪{a}C

−1xν1 = R(ν2∪{a})ν0
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0 +O(n−1+2α0+2α1),

xT
ν2∪{a}C

−1xν2∪{a} = n
(
R(ν2∪{a})(ν2∪{a}) − R(ν2∪{a})ν0

R−1
ν0ν0

Rν0(ν2∪{a})
)

+O(n2α0+α1).

We partition (xT
ν C

−1xν)
−1 in the same as we did above for xT

ν C
−1xν :

(xT
ν C

−1xν)
−1 =

(
A11 A12

A21 A22

)
.

Then, by definition we have

γa|ν1∪ν2
= (0T

|ν2|, 1)A
22(0T

|ν2|, 1)
T . (B.1)
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And let Fν2∪{a} = R(ν2∪a)(ν2∪a) − R(ν2∪a)ν0
R−1

ν0ν0
Rν0(ν2∪a) and define Σν1 as in

the proof of Theorem B.1. We have

A22 =
1

n

(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2 Rν2a − Rν2ν0R
−1
ν0ν0

Rν0a

Raν2 − Raν0R
−1
ν0ν0

Rν0ν2 Raa − Raν0R
−1
ν0ν0

Rν0a

)−1

+O(n−2+4α0+2α1). (B.2)

Note that any main block matrix has a larger smallest eigenvalue than that of
the whole matrix. Therefore, by Condition (C3) we have

λmax

((
Raa − Raν0R

−1
ν0ν0

Rν0a − (Raν2 − Raν0R
−1
ν0ν0

Rν0ν2)

×(Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2)
−1(Rν2a − Rν2ν0R

−1
ν0ν0

Rν0a)
)−1

)
≤ λmax

(
F−1
ν2∪{a}

)
= O(nα0).

This together with equations (B.1) and (B.2) shows that γa|ν1∪ν2
= O(n−1+α0).

The proof of (i) is completed.
To prove (ii), we let ν = {a}∪ν1∪ν2 and write xT

ν C
−1xν as the block matrix

below:

xT
ν C

−1xν =

⎛
⎝ xT

aC
−1xa xT

aC
−1xν1 xT

aC
−1xν2

xT
ν1
C−1xa xT

ν1
C−1xν1 xT

ν1
C−1xν2

xT
ν2
C−1xa xT

ν2
C−1xν1 xT

ν2
C−1xν2

⎞
⎠ .

Applying Lemma B.1 to each block, we have

xT
aC

−1xa = eTa�ν0

(
eTν0

Σeν0

)−1
ea�ν0

− n−1eTa�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+2α0+3α1),

xT
aC

−1xν1 = Raν0R
−1
ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

− n−1eTa�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+2α0+3α1),

xT
aC

−1xν2 = eTa�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

− n−1eTa�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

+O(n−2+5α0+3α1),

xT
ν1
C−1xa = eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0a

− n−1eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+2α0+3α1),

xT
ν1
C−1xν1 = eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

− n−1eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+2α0+3α1),
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xT
ν1
C−1xν2 = eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

− n−1eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

+O(n−2+5α0+3α1).

xT
ν2
C−1xa = Rν2ν0R

−1
ν0ν0

(
eTν0

Σeν0

)−1
ea�ν0

− n−1Rν2ν0R
−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+5α0+3α1),

xT
ν2
C−1xν1 = Rν2ν0R

−1
ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

− n−1Rν2ν0R
−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+5α0+3α1),

xT
ν2
C−1xν2 = n

(
Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2

)
+Rν2ν0R

−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

+O(n−1+3α0+2α1),(
xT
ν2
C−1xν2

)−1
= n−1

(
F−1
ν2

− n−1F−1
ν2

Rν2ν0R
−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2F

−1
ν2

+O(n−2+5α0+2α1)
)

with Fν2 = Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 . Therefore, we have

xT
aC

−1xa − xT
aC

−1xν2(x
T
ν2
C−1xν2)

−1xT
ν2
C−1xa

= eTa�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

−n−1eTa�ν0

(
eTν0

Σeν0

)−1 (
R−1

ν0ν0
+R−1

ν0ν0
Rν0ν2F

−1
ν2

Rν2ν0R
−1
ν0ν0

)
×
(
eTν0

Σeν0

)−1
eν1�ν0 +O(n−2+6α0+3α1).

xT
ν1
C−1xa − xT

ν1
C−1xν2(x

T
ν2
C−1xν2)

−1xT
ν2
C−1xa

= eTν1�ν0

(
eTν0

Σeν0

)−1
ea�ν0 − n−1eTν1�ν0

(
eTν0

Σeν0

)−1

×
(
R−1

ν0ν0
+R−1

ν0ν0
Rν0ν2F

−1
ν2

Rν2ν0R
−1
ν0ν0

) (
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+6α0+3α1).

Letting Σν1�ν0 = (eTν1�ν0
(eTν0

Σeν0)
−1eν1�ν0)

−1, by the conditions in Theorem
B.2, we have Σν1�ν0 = O(1) and

{
xT
ν1
C−1xν1 − xT

ν1
C−1xν2(x

T
ν2
C−1xν2)

−1xT
ν2
C−1xν1

}−1

=
{
Σ−1

ν1�ν0
− n−1eTν1�ν0

(
eTν0

Σeν0

)−1 (
R−1

ν0ν0
+R−1

ν0ν0
Rν0ν2F

−1
ν2

Rν2ν0R
−1
ν0ν0

)
×
(
eTν0

Σeν0

)−1
eν1�ν0 +O(n−2+6α0+3α1)

}−1
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= Σν1�ν0

+n−1Σν1�ν0e
T
ν1�ν0

(
eTν0

Σeν0

)−1 (
R−1

ν0ν0
+R−1

ν0ν0
Rν0ν2F

−1
ν2

Rν2ν0R
−1
ν0ν0

)
×
(
eTν0

Σeν0

)−1
eν1�ν0Σν1�ν0 +O(n−2+6α0+3α1).

The above asymptotic expressions together with the definition of γa|ν1∪ν2
entail

γa|ν1∪ν2
=
{
xT
aC

−1xa − xT
aC

−1xν2(x
T
ν2
C−1xν2)

−1xT
ν2
C−1xa

−
(
xT
aC

−1xν1 − xT
aC

−1xν2(x
T
ν2
C−1xν2)

−1xT
ν2
C−1xν1

)
×(xT

ν1
C−1xν1 − xT

ν1
C−1xν2(x

T
ν2
C−1xν2)

−1xT
ν2
C−1xν1)

−1

×(xT
ν1
C−1xa − xT

ν1
C−1xν2(x

T
ν2
C−1xν2)

−1xT
ν2
C−1xa)

}−1

=
(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1

+ n−1eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

+O(n−2+6α0+5α1),

where Σ−1
ν0\ν1

is defined in Theorem B.2 and Ψ is equal to(
I|ν0| − eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1
) (

R−1
ν0ν0

+R−1
ν0ν0

Rν0ν2F
−1
ν2

Rν2ν0R
−1
ν0ν0

)
×
(
I|ν0| − eν1�ν0Σν1�ν0e

T
ν1�ν0

(
eTν0

Σeν0

)−1
)T

.

The proof of (ii) is completed.

To prove Theorem B.3, we need a more lemma as follows.

Lemma B.2. Suppose that there exist constants 0 ≤ α1 ≤ (1 − 3α0)/2 and
c2 > 0, c2n

−α1 ≤ λmin

(
eTν0

Σeν0

)
≤ λmax

(
eTν0

Σeν0

)
= O(1). Under Conditions

(C1)∼(C4), for any set ν ⊆ 1 : p, we have:

(i) If ν ⊆ ν0, then

xTν C
−2xν =

1

n
eTν�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

×(xTν0
A−2

ν0
xν0/n)R

−1
ν0ν0

(
eTν0

Σeν0

)−1
eν�ν0

+O(n−2+3α0+3α1).

(ii) If ν ⊆ 1 : p \ ν0, then

xTν C
−2xν = n

{
xTν A

−2
ν0

xν/n− Rνν0R
−1
ν0ν0

xTν0
A−2

ν0
xν/n

−
(
xTν A

−2
ν0

xν0/n
)
R−1

ν0ν0
Rν0ν + Rνν0R

−1
ν0ν0

(
xTν0

A−2
ν0

xν0/n
)

×R−1
ν0ν0

Rν0ν

}
+O(n−1+4α0+α1).

(iii) If ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ 1 : p \ ν0, then

xTν C
−2xν =

(
xTν1

C−2xν1 xTν1
C−2xν2

xTν2
C−2xν1 xTν2

C−2xν2

)
,
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where

xTν1
C−2xν1 =

1

n
eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
(xTν0

A−2
ν0

xν0/n)R
−1
ν0ν0

×
(
eTν0

Σeν0

)−1
eν1�ν0 +O(n−2+3α0+3α1).

xTν1
C−2xν2 =

1

n
eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

((
eTν0

Σeν0

)−1
ζ0 +O(1)

)
×R−1

ν0ν0
Rν0ν2 +O(n−2+4α0+3α1).

xTν2
C−2xν2 = n

(
xTν2

A−2
ν0

xν2/n− Rν2ν0R
−1
ν0ν0

xTν0
A−2

ν0
xν2/n

−(xTν2
A−2

ν0
xν0/n)R

−1
ν0ν0

Rν0ν2 + Rν2ν0R
−1
ν0ν0

(xTν0
A−2

ν0
xν0/n)

×R−1
ν0ν0

Rν0ν2

)
+O(n−1+4α0+α1).

Proof of Lemma B.2. Note that

C−2 =

(
A−1

ν0
−A−1

ν0
xν0

((
eTν0

Σeν0

)−1
+ xT

ν0
A−1

ν0
xν0

)−1

xT
ν0
A−1

ν0

)2

= A−2
ν0

−A−1
ν0

xν0

((
eTν0

Σeν0

)−1
+ xT

ν0
A−1

ν0
xν0

)−1

xT
ν0
A−2

ν0

−A−2
ν0

xν0

((
eTν0

Σeν0

)−1
+ xT

ν0
A−1

ν0
xν0

)−1

xT
ν0
A−1

ν0

+A−1
ν0

xν0

((
eTν0

Σeν0

)−1
+ xT

ν0
A−1

ν0
xν0

)−1

xT
ν0
A−2

ν0
xν0

×
((

eTν0
Σeν0

)−1
+ xT

ν0
A−1

ν0
xν0

)−1

xT
ν0
A−1

ν0
.

The proof is completed by some algebraic manipulation.

Proof of Theorem B.3. To prove the part (i), let ν = ν1 ∪ {a} ∪ ν2 and abusing
the notation, let eTa|ν1∪ν2

= (0T|ν1|, 0
T
|ν2|, 1) and eTa|ν2

= (0T|ν2|, 1), where 0|ν1| and

0|ν2| are |ν1|-dimensional and |ν2|-dimensional vectors of zeros. Then, we have

wT
a|ν1∪ν2

wa|ν1∪ν2
= eTa|ν1∪ν2

γνx
T
ν C

−2xνγνea|ν1∪ν2
. (B.3)

Note that xT
ν C

−1xν can be naturally partitioned as follows:

xT
ν C

−1xν =

(
xT
ν1
C−1xν1 xT

ν1
C−1xν2∪{a}

xT
ν2∪{a}C

−1xν1 xT
ν2∪{a}C

−1xν2∪{a}

)
,

Following the same block dimensions as above, we partition γν and xT
ν C

−2xν ,
namely

γν =

(
A11 A12

A21 A22

)
, xT

ν C
−2xν =

(
B11 B12

B21 B22

)
.

Substituting them into the equation (B.3), we have

wT
a|ν1∪ν2

wa|ν1∪ν2
= eTa|ν2

(
A21B11A

12 +A22B21A
12 +A21B12A

22

+A22B22A
22
)
ea|ν2

, (B.4)
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where it follows from Lemmas B.1 and B.2 that

A11 =
(
eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)−1

+O(n−1+3α0+2α1).

A12 = −n−1
(
eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)−1

eTν1�ν0

(
eTν0

Σeν0

)−1

×R−1
ν0ν0

Rν0(ν2∪{a})F
−1
ν2∪{a} +O(n−2+5α0+3α1),

A21 = −n−1F−1
ν2∪{a}R(ν2∪{a})ν0

R−1
ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

(
eTν1�ν0

(
eTν0

Σeν0

)−1

×eν1�ν0)
−1

+O(n−2+5α0+3α1).

A22 = n−1F−1
ν2∪{a} +O(n−2+4α0+2α1).

with Fν2∪{a} = R(ν2∪{a})(ν2∪{a}) − R(ν2∪{a})ν0
R−1

ν0ν0
Rν0(ν2∪{a}). And

B11 = n−1eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
(xT

ν0
A−2

ν0
xν0/n)R

−1
ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+3α0+3α1),

B12 = n−1eTν1�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
ζ0
(
eTν0

Σeν0

)−1
+O(1)

)
R−1

ν0ν0
Rν0(ν2∪{a})

+O(n−2+4α0+3α1),

B21 = n−1R(ν2∪{a})ν0
R−1

ν0ν0

(
ζ0
(
eTν0

Σeν0

)−1
+O(1)

)
R−1

ν0ν0

(
eTν0

Σeν0

)−1
eν1�ν0

+O(n−2+4α0+3α1),

B22 = n
{
xT
ν2∪{a}A

−2
ν0

xν2∪{a}/n− R(ν2∪{a})ν0
R−1

ν0ν0
xT
ν0
A−2

ν0
xν2∪{a}/n

−(xT
ν2∪{a}A

−2
ν0

xν0/n)R
−1
ν0ν0

Rν0(ν2∪{a})

+R(ν2∪{a})ν0
R−1

ν0ν0
(xT

ν0
A−2

ν0
xν0/n)R

−1
ν0ν0

Rν0(ν2∪{a})
}
+O(n−1+4α0+α1).

Using the above asymptotic expressions, we obtain
A21B11A

12 = O(n−3+7α0+4α1), A22B21A
12 = O(n−3+5α0+3α1), A21B12A

22 =
O(n−3+5α0+3α1), and A22B22A

22 is equal to

n−1F−1
ν2∪{a}

(
xT
ν2∪{a}A

−2
ν0

xν2∪{a}/n− R(ν2∪{a})ν0
R−1

ν0ν0
xT
ν0
A−2

ν0
xν2∪{a}/n

−(xT
ν2∪{a}A

−2
ν0

xν0/n)R
−1
ν0ν0

Rν0(ν2∪{a})

+R(ν2∪{a})ν0
R−1

ν0ν0
(xT

ν0
A−2

ν0
xν0/n)R

−1
ν0ν0

Rν0(ν2∪{a}) +O(n−2+4α0+α1)
)
F−1
ν2∪{a}

+O(n−2+6α0+2α1).

Combining these equations with the equation (B.4) and Condition (C4), we
show that wT

a|ν1∪ν2
wa|ν1∪ν2

is equal to

ζ0n
−1eTa|ν2

F−1
ν2∪{a}ea|ν2

+O(n−2+4α0+α1)

= ζ0n
−1
(
Raa − Raν0R

−1
ν0ν0

Rν0a − (Raν2 − Raν0R
−1
ν0ν0

Rν0ν2)
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×(Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2)
−1(Rν2a − Rν2ν0R

−1
ν0ν0

Rν0a)
)−1

+O(n−2+4α0+α1).

This together with Theorem B.2 yields

SNRa|ν1∪ν2
=

γa|ν1∪ν2

σ2wT
a|ν1∪ν2

wa|ν1∪ν2

=
1

ζ0σ2
+O(n−2+5α0+2α1).

This completes the proof of the part (i).

To prove the part (ii), let ν = {a}∪ ν1 ∪ ν2. Let e
T
a|ν1∪ν2

= (1, 0T|ν1|, 0
T
|ν2|) and

eTa|ν1
= (1, 0T|ν1|), where 0|ν1| and 0|ν2| are |ν1|-dimensional and |ν2|-dimensional

vectors of zeros. Then, we have

wT
a|ν1∪ν2

wa|ν1∪ν2
= eTa|ν1∪ν2

γνx
T
ν C

−2xνγνea|ν1∪ν2
. (B.5)

We partition xT
ν C

−1xν into the following block matrix:

xT
ν C

−1xν =

(
xT
{a}∪ν1

C−1xν2 xT
{a}∪ν1

C−1xν2

xT
ν2
C−1x{a}∪ν1

xT
ν2
C−1xν2

)
,

Following the same block dimensions as above, we partition γν =
(
xT
ν C

−1xν

)−1

and xT
ν C

−2xν into the block matrices as follows:

γν =

(
F11 F12

F21 F22

)
, xT

ν C
−2xν =

(
G11 G12

G21 G22

)
.

To derive the asymptotic expressions for these block matrices, we applied the
matrix inverse formula for each block matrix. We have

F11 = Σ{a}∪ν1
−O(n−1+3α0+2α1),

where

Σ{a}∪ν1
=

(
eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
e({a}∪ν1)�ν0

)−1

,

λmax(Σ{a}∪ν1
) ≤ λmax(e

T
ν0
Σeν0) = O(1).

A similar derivation gives

F22 =
(
nFν2 +O(n2α0+2α1)

)−1
= n−1F−1

ν2
+O(n−2+4α0+2α1) = O(n−1+α0),

where Fν2 = Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 and

F12 = −n−1Σ({a}∪ν1)e({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2F

−1
ν2

+O(n−2+5α0+3α1),
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F21 = −n−1F−1
ν2

Rν2ν0R
−1
ν0ν0

(
eTν0

Σeν0

)−1
eT({a}∪ν1)�ν0

Σ{a}∪ν1

+O(n−2+5α0+3α1).

Using Condition (C4), we can show that

G11 = n−1eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
(xT

ν0
A−2

ν0
xν0/n)R

−1
ν0ν0

(
eTν0

Σeν0

)−1

×e({a}∪ν1)�ν0
+O(n−2+3α0+3α1)

= ζ0n
−1eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
e({a}∪ν1)�ν0

+O(n−2+3α0+3α1),

G12 = ζ0n
−1eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0
Rν0ν2

+O(n−2+4α0+3α1),

G21 = ζ0n
−1Rν2ν0R

−1
ν0ν0

(
eTν0

Σeν0

)−1
R−1

ν0ν0

(
eTν0

Σeν0

)−1
e({a}∪ν1)�ν0

+O(n−2+4α0+3α1),

G22 = ζ0n
(
Fν2 +O(n−1+2α0)

)
.

Consequently, substituting the above expressions into the equation (B.5), we
have

wT
a|ν1∪ν2

wa|ν1∪ν2
= eTa|ν1

(
F11G11F

11 + F12G12F
11 + F11G12F

21

+F12G22F
21
)
ea|ν1

(B.6)

with

F11G11F
11 + F12G12F

11 + F11G12F
21 + F12G22F

21

= ζ0n
−1Σ{a}∪ν1

eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)
Φ
(
eTν0

Σeν0

)−1
e({a}∪ν1)�ν0

Σ{a}∪ν1

×(1 + o(1)),

where
Φ = R−1

ν0ν0
+R−1

ν0ν0
Rν0ν2F

−1
ν2

Rν2ν0R
−1
ν0ν0

.

We partition Σ−1
{a}∪ν1

into a block matrix, namely

Σ−1
{a}∪ν1

=

(
eTa�ν0

(
eTν0

Σeν0

)−1
ea�ν0 eTa�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

eTν1�ν0

(
eTν0

Σeν0

)−1
ea�ν0 eTν1�ν0

(
eTν0

Σeν0

)−1
eν1�ν0

)
,

where its inverse can be parallelly written as

Σ{a}∪ν1
=

(
D11 D12

D21 D22

)
.

Similarly, we write

eT({a}∪ν1)�ν0

(
eTν0

Σeν0

)−1
Φ
(
eTν0

Σeν0

)−1
e({a}∪ν1)�ν0

=

(
H11 H12

H21 H22

)
,
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where

H11 = eTa�ν0

(
eTν0

Σeν0

)−1
Φ
(
eTν0

Σeν0

)−1
ea�ν0 ,

H12 = eTa�ν0

(
eTν0

Σeν0

)−1
Φ
(
eTν0

Σeν0

)−1
eν1�ν0 ,

H21 = eTν1�ν0

(
eTν0

Σeν0

)−1
Φ
(
eTν0

Σeν0

)−1
ea�ν0 ,

H22 = eTν1�ν0

(
eTν0

Σeν0

)−1
Φ
(
eTν0

Σeν0

)−1
eν1�ν0 .

Combining these partitions with the equation (B.6), we have

wT
a|ν1∪ν2

wa|ν1∪ν2
= ζ0n

−1(D11H11D
11 +D12H21D

11 +D11H12D
21

+D12H22D
21)(1 + o(1)). (B.7)

Note that

D11 =
(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)−1

,

D12 = −D11eTa�ν0

(
eTν0

Σeν0

)−1
eν1�ν0Σν1�ν0 ,

D21 = −Σν1�ν0e
T
ν1�ν0

(
eTν0

Σeν0

)−1
ea�ν0D

11.

Therefore, the equation (B.7) implies that

wT
a|ν1∪ν2

wa|ν1∪ν2
= ζ0n

−1(D11)2eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1)).

Finally, by definition, we have

SNRa|ν1∪ν2
=

D11 + n−1eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

σ2ζ0n−1(D11)2eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

+
O(n−2+6α0+5α1)

σ2ζ0n−1(D11)2eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

=
neTa�ν0

Σ−1
ν0\ν1

ea�ν0 +O(n−2+6α0+5α1)

σ2ζ0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

+

(
eTa�ν0

Σ−1
ν0\ν1

ea�ν0

)2
eTa�ν0

(
eTν0

Σeν0

)−1
Ψ
(
eTν0

Σeν0

)−1
ea�ν0

σ2ζ0eTa�ν0
Σ−1

ν0\ν1
ΦΣ−1

ν0\ν1
ea�ν0(1 + o(1))

.

The proof is completed.

Note that in Lemma B.4, under Conditions (C1)∼(C6), we show that the
optimal shrinkage covariance estimator Ĉhs is consistent with the true covariance
C. This allows us to extend Theorems B.1∼B.3 to the case where unknown C
is estimated by Ĉhs.

Let κ = max{2(2/κ1 +1/κ2)− 1, (4/3)(1/κ1 +1/κ2)− 1/3, 1}. As before, let
||D||F =

√
tr(DDT )/n be the size-normalized Frobenius norm and ||D|| be the

spectral norm of D respectively. Let μn = tr(C)/n. We have ||D||F ≤ ||D||.



3470 J. Zhang and E. Oftadeh

Lemma B.3. Under Conditions (C0)∼(C3), if τnJ = o(1) as n → ∞ and
J → ∞,

E max
1≤i,j≤n

|ĉij − cij | = O(τnJ), E max
1≤i,j≤n

(ĉij − cij)
2
= O(τ2nJ),

max
1≤i,j≤n

|ĉij − cij | = Op(τnJ).

Proof of Lemma B.3. Without loss of generality, we assume π(j) = j, 1 ≤ j ≤ J .
We use the methods developed in [7, 23] to prove the lemma. Following the
proof in [23], we can find constants dt, t = 1, ..., 5, such that for any u > 0,

P

(
max

1≤i,j≤n

∣∣∣∣∣ 1J
J∑

k=1

yikykj − cij

∣∣∣∣∣ > u

)

≤ n2J exp

(
− (Ju)κ

d1

)
+ n2 exp

(
− (Ju)2

d2(1 + Jd3)

)

+n2 exp

(
− (Ju)2

d4J
exp

(
(Ju)κ(1−κ)

d5(log(Ju))κ

))
. (B.8)

For notational simplicity, denote Qij =
∣∣∣ 1J ∑J

k=1 yikykj − cij

∣∣∣. For a large se-

quence of constants 0 < hn = O(1), invoking the inequality (B.8), we have

E max
1≤i,j≤n

Qij ≤ hnτnJ + E

[
max

1≤i,j≤n
QijI( max

1≤i,j≤n
Qij > hnτnJ)

]

≤ 2hnτnJ +

∫ ∞

hnτnJ

P

(
max

1≤i,j≤n
Qij > u

)
du

≤ 2hnτnJ +
n2d1

κ(hnJτnJ)κ−1
exp

(
(hnJτnJ)

κ

d1

)

+
n2d2(1/J + d3)

2hnJτnJ
exp

(
− (hn

√
JτnJ)

2

d2(1/J + d3)

)

+
n2

2hnJτnJ
exp

(
− (hn

√
JτnJ)

2(1− o(1))

d4

)

= τnJ(2hn + o(1)) = O(τnJ).

We also have

E[ max
1≤i,j≤n

Q2
ij ] ≤ 2(hnτnJ)

2 +

∫ ∞

(hnτnJ )2
P

(
max

1≤i,j≤n
Qij >

√
u

)
du

= 2(hnτnJ)
2 + 2

∫ ∞

hnτnJ

vP

(
max

1≤i,j≤n
Qij > v

)
dv

≤ (τnJ)
2(2h2

n + o(1)) = O(τ2nJ ).
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Finally, for as ε, n and J tend to infinity,

P

(
max

1≤i,j≤n
Qij > ετnJ

)
≤ E[ max

1≤i,j≤n
Qij ]/(ετnJ) → 0,

which implies max1≤i,j≤n Qij = Op(τnJ).
Similarly, we can show

E max
1≤i,j≤n

|ȳiȳj | = O(τnJ), E max
1≤i,j≤n

|ȳiȳj |2 = O(τ2nJ), max
1≤i,j≤n

|ȳiȳj | = Op(τnJ).

Combining these with the other equalities shown before, we complete the proof.

Let mn be the number of non-zero entries in covariance matrix C. In the next
lemma, we show the convergence rates of the threshold estimator.

Lemma B.4. Under Conditions (C0)∼(C6), if mnτnJ = o(1) as n → ∞ and
J → ∞, then for h > 0,

E||Ĉh − C|| = O(mnτnJ), E||Ĉh − C||2 = O(mnτnJ)
2,

||Ĉh − C|| = Op(mnτnJ).

For h = 0, the above results continue to hold if mn is replaced by n.

Proof of Lemma B.4. Without loss of generality, we assume π(j) = j, 1 ≤ j ≤ J .
We consider h > 0. Denote

T1 = ||(ĉijI(|ĉij | > hτnJ))− (cijI(|cij | > hτnJ))||,

I = max
i

n∑
j=1

|ĉij − cij |I(|ĉij | > hτnJ , |cij | > hτnJ),

II = max
i

n∑
j=1

|ĉij |I(|ĉij | > hτnJ , |cij | ≤ hτnJ),

III = max
i

n∑
j=1

|cij |I(|ĉij | ≤ hτnJ , |cij | > hτnJ).

Then,

||Ĉh − C|| ≤ T1 +max
i

n∑
j=1

|cijI(|cij | ≤ hτnJ) ≤ T1 + hτnJmn

≤ I + II + III + hτnJmn. (B.9)

By Lemma B.3, we have

E[I] ≤ E max
1≤i,j≤n

|ĉij − cij |max
i

n∑
j=1

I(|cij | > 0) = O(τnJ)mn.
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Note that for 0 ≤ δ < 1,

II ≤ max
1≤i,j≤n

|ĉij − cij |

⎛
⎝max

i

n∑
j=1

I(|ĉij − cij | ≥ (1− δ)hτnJ) +mn

⎞
⎠

+hτnJmn. (B.10)

And

E max
1≤i,j≤n

|ĉij − cij |max
i

n∑
j=1

I(|ĉij − cij | ≥ (1− δ)hτnJ)

≤ (mn + ε)E max
1≤i,j≤n

|ĉij − cij | = O(mnτnJ).

This, together with the inequality in (B.10), implies that

E[II] ≤ O(mnτn) +O(τnJ)mn + hτnmn = O(mnτnJ).

Similarly,

E[III] ≤ Emax
i

n∑
j=1

|ĉij − cij |
n∑

j=1

I(|cij | > hτnJ) + hτnJmn

≤ O(τnJ )mn + hτnJmn = O(τnJmn).

Consequently,

E[T1] ≤ E[I] + E[II] + E[III] = O(mnτnJ),

which, together with the inequality in (B.9), implies that

E||Ĉh − C|| = O(mnτnJ).

Invoking the Chebyshev’s inequality, we have

||Ĉh − C|| ≤ Op(mnτnJ).

We now turn to the second inequality. Note that

E||Ĉh − C||2 ≤ 6(E[I2] + E[II2] + E[III2]) + 2h2(τnJmn)
2. (B.11)

E[I2] ≤ 2E max
1≤i,j≤n

|ĉij − cij |2m2
n = O(mnτnJ)

2.

E[II2] ≤ 2E max
1≤i,j≤n

|ĉij − cij |2(mn + ε+mn)
2 + 2(hmnτnJ)

2

= O(mnτnJ)
2.

E[III2] ≤ 2E max
1≤i,j≤n

|ĉij − cij |2m2
n + 2(hτnJmn)

2 = O(mnτnJ)
2.

These with the inequality in (B.11) implies that

E||Ĉh − C||2 ≤ O(mnτnJ)
2 + 2(hmnτnJ)

2 = O(mnτnJ)
2.

When h = 0, the results can be proved similarly. The proof is completed.
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Lemma B.5. Under Conditions (C0)∼(C6), if mnτnJ = o(1) as n → ∞ and
J → ∞, then for h > 0,

1

J2

J∑
k=1

1

n

n∑
i=1

n∑
j=1

((yik − ȳi)(yjk − ȳj)− ĉij)
2I(|ĉij | > hτnJ) = Op(mn/J)

For h = 0, the equality holds if mn is replaced by n.

Proof of Lemma B.5. Without loss of generality, we assume that π(j) = j, 1 ≤
j ≤ J and that ȳi = ȳj = 0. By use of Chebyshev’s inequality, it suffices to show

1

Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)

2I(|ĉij | > hτnJ)
]
= O(mn/J). (B.12)

For this purpose, we first show that

1

Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)

2I(|ĉij | > hτnJ)
∣∣

=
1

Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)

2I(cij | > hτnJ)
]
. (B.13)

Note that for constant 0 < δ < 1,

| 1

Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)

2(I(|ĉij | > hτnJ)− I(|ĉij | > hτnJ))
]

≤ 1

Jn

n∑
i=1

n∑
j=1

E(yi1yj1 − ĉij)
2I(|ĉij | > hτnJ , |cij | ≤ δhτnJ)

+
1

Jn

n∑
i=1

n∑
j=1

E(yi1yj1 − ĉij)
2I(|ĉij | > hτnJ , δhτnJ < |cij | ≤ hτnJ)

+
1

Jn

n∑
i=1

n∑
j=1

E(yi1yj1 − ĉij)
2I(|cij | > hτnJ , |ĉij | ≤ hτnJ))

≤ 1

J
max

1≤i,j≤n

(
E(yi1yj1 − ĉij)

2η0
)1/η0

o(1)

+
2mn

J
max

1≤i,j≤n
E(yi1yj1 − ĉij)

2 = O(mn/J).

The last equality follows from the following facts

E(yi1yj1 − ĉij)
2 ≤ 2max

i
E[y4i1] + o(1),

E(yi1yj1 − ĉij)
2η0 ≤ 22η0 max

i
E[y4η0

i1 ] + o(1).
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The equation (B.13) is proved. Finally, note that

1

J

1

n

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)

2I(cij | > hτnJ)
]

≤ 1

J
max

1≤i,j≤n
E(yi1yj1 − ĉij)

2mn = O(mn/J).

This together with (B.13) shows the equation (B.12). The proof is completed.

Lemma B.6. Under Conditions (C0)∼(C6), if mnτnJ = o(1) as n → ∞ and
J → ∞, then for h > 0,

μ̂n = μn +Op(τnJ), δ2n = ||C− μnIn||2F +O(mnτnJ),

d2n = δ2n +Op(mnτnJ), b2n = Op(mn/J).

For h > 0, the above equalities continue to hold if mn is replaced by n.

Proof of Lemma B.6. Without loss of generality, we assume π(j) = j, 1 ≤ j ≤ J .
We consider h > 0. The proof is similar when h = 0. It follows from Lemma B.3
that

μ̂n =
1

n

n∑
i

ĉii =
1

n

n∑
i

cii +Op(τnJ)

= μn +Op(τnJ).

It follows from [12] that ||C||2F = O(1), if maxi E[y4i1] < ∞. We have

|E
(
||Ĉh − μnIn||2F − ||C− μnIn||2F

)
|

≤ E||Ĉh − C||F (2||C− μnIn||F + ||Ĉh − C||F )
≤ E||Ĉh − C||2F + 2||C− μnIn||FE||Ĉh − C||F
= O(mnτnJ)

2 +O(mnτnJ) = O(mnτnJ).

Note that

|dn − ||Ĉh − μnIn||F | ≤ ||(μ̂n − μn)In||F
= |μ̂n − μn| = Op(τnJ),

which implies that

d2n =
(
||Ĉh − μnIn||F +Op(τnJ)

)2
= (||C− μnIn||F +Op(mnτnJ) +Op(τnJ))

2

= ||C− μnIn||2F +Op(mnτnJ).

Therefore,
d2n = δ2n +Op(mnτnJ).

It follows from Lemma B.5 that b̄2n = O(mn/J). The proof is completed.



Multivariate variable selection 3475

Lemma B.7. Under Conditions (C0)∼(C6), if mnτnJ = o(1) and ||C−μnIn||F
is bounded below from zero as n → ∞ and J → ∞, then ||Ĉhs−C|| = Op(mnτjn),

||Ĉ−1

hs − C−1|| = Op(mnτnJ), ||Ĉ
−2

hs − C−2|| = Op(mnτnJ).

Proof of Lemma B.7. Note that

||Ĉhs − C|| ≤ b2n
d2n

||In − C||+ d2n − b2n
d2n

||Ĉh − C||

= O(mn/J) + (1−O(mn/J))Op(mnτnJ) = Op(mnτnJ).

The remaining proofs are similar to the proof of Lemma 7.3 in [23]. The details
are omitted.

Proof of Theorems B.4, 3.1 and 3.2: Invoking Theorems B.1∼B.3, the proofs
are similar to the proof of Theorem 2 in [23] by using Lemmas B.1∼B.7 and
thus omitted.
Proof of Corollary B.3. For a ∈ ν0, we have

γ̂a =
(
eTa|ν0

(
eTν0

Σeν0

)−1
ea|ν0

)−1

+O(n−1+α0+2α1 + n2τnJ)

≥
(
λmax

((
eTν0

Σeν0

)−1
))−1

+O(n−1+α0+2α1 + n2τnJ)

= λmin

(
eTν0

Σeν0

)
+O(n−1+α0+2α1 + n2τnJ)

≥ ζ0n
−α1 +O(n−1+α0+2α1 + n2τnJ)

= ζ0(1 + o(1))n−α1 > n−1+α0 log(n).

For a 	∈ ν0, we have γ̂a = Op(n
−1+α0 + n2τnJ) = Op(n

−1+α0), which implies
that with probability tending to one, a 	∈ ν̂d as n and J tend to infinity.

Proof of Corollary 3.1. Let ω0 = ∅ and ˆSNRk|ω0
= ˆSNRk. According to the

definition of PVA in Subsection 2.3, wm = {km} ∪ ωm−1, where km =
argmax{ ˆSNRk|ωm−1

: k 	∈ ωm−1}, 0 ≤ m ≤ m̂, with the value of SNRmax at
m̂ falling into the confidence interval defined in the stopping criteria in the first
time. Under the conditions in Theorem B.3, we first prove that P (ωm̂ ⊆ ν0) → 1
as both n and J both tend to infinity. Note that

P (ωm̂ ∩ (1 : p \ ν0) 	= ∅)
≤ P

(
∃km 	∈ ν0 such that km = argmax{ ˆSNRk|ωm−1

: k 	∈ ωm−1}
)

≤ P
(
∃mmax{ ˆSNRk|ωm−1

: k ∈ G2} ≥ min{ ˆSNRk|ωm−1
: k ∈ G1}

)
,(B.14)

where G1 = {k 	∈ ωm−1, k ∈ ν0} and G2 = {k 	∈ ωm−1, k 	∈ ν0}. By Theorem
3.2, uniformly for m, max{ ˆSNRk|ωm−1

: k ∈ G2} converges to (ζ0σ
2)−1 ≥ 1

in probability uniformly for m, while min{ ˆSNRk|ωm−1
: k ∈ G1} converges to

infinity in probability. Combining these with the inequalities in (B.14), we show
that P (ωm̂ ∩ (1 : p \ ν0) 	= ∅) tends to zero, which is equivalent to P (ωm̂ ⊆
ν0) → 1. To complete the proof, we show P (ν0 ⊆ ωm̂) → 1 by contradiction
as follows. If there exists k ∈ ν0 \ ωm̂, then we can divide {k 	∈ ωm̂} into two
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non-empty groups G1 = {k 	∈ ωm̂, k ∈ ν0} and G2 = {k 	∈ ωm̂, k 	∈ ν0}. By
Theorem 3.2, we have min{ ˆSNRk|ωm̂

: k ∈ G1} tends to infinity in probability,
whereas max{ ˆSNRk|ωm̂

: k ∈ G2} converges to (ζ0σ
2)−1 in probability. This is in

contradiction with the definition of m̂.
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