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Abstract: The class of observation-driven models (ODMs) includes many
models of non-linear time series which, in a fashion similar to, yet differ-
ent from, hidden Markov models (HMMs), involve hidden variables. In-
terestingly, in contrast to most HMMs, ODMs enjoy likelihoods that can
be computed exactly with computational complexity of the same order as
the number of observations, making maximum likelihood estimation the
privileged approach for statistical inference for these models. A celebrated
example of general order ODMs is the GARCH(p, q) model, for which er-
godicity and inference has been studied extensively. However little is known
on more general models, in particular integer-valued ones, such as the log-
linear Poisson GARCH or the NBIN-GARCH of order (p, q) about which
most of the existing results seem restricted to the case p = q = 1. Here we
fill this gap and derive ergodicity conditions for general ODMs. The consis-
tency and the asymptotic normality of the maximum likelihood estimator
(MLE) can then be derived using the method already developed for first
order ODMs.
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1. Introduction

Since they were introduced in [8], observation-driven models have been receiving
renewed interest in recent years. These models are widely applied in various fields
ranging from economics (see [38]), environmental study (see [2]), epidemiology
and public health study (see [47, 12, 20]), finance (see [33, 39, 23, 27]) and
population dynamics (see [31]). The celebrated GARCH(1, 1) model introduced
in [3] as well as most of the models derived from this one are typical examples
of ODMs; see [4] for a list of some of them. A list of contributions on this class
of models specifically dealing with discrete data includes [42, 10, 29, 20, 22, 28,
23, 30, 36, 11, 19, 13, 21, 6, 7, 9] and [15].

ODMs have the nice feature that the computations of the associated (condi-
tional) likelihood and its derivatives are easy, the parameter estimation is hence
relatively simple, and the prediction, which is a prime objective in many time
series applications, is straightforward. However, it turns out that the asymp-
totic properties of the maximum likelihood estimator (MLE) for this class can
be cumbersome to establish, except when they can be derived using computa-
tions specific to the studied model (the GARCH(1, 1) case being one of the most
celebrated examples). The literature concerning the asymptotic theory of the
MLE when the observed variable has Poisson distribution includes [22, 23, 24]
and [46]. For a more general case where the model belongs to the class of one-
parameter exponential ODMs, such as the Bernoulli, the exponential, the neg-
ative binomial (with known shape parameter) and the Poisson autoregressive
models, the consistency and the asymptotic normality of the MLE have been
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derived in [11]. However, the one-parameter exponential family is inadequate to
deal with models such as multi-parametric, mixture or multivariate ODMs (the
negative binomial with all unknown parameters and mixture Poisson ODMs are
examples of this case). A more general consistency result has been obtained
recently in [13], where the observed process may admit various conditional dis-
tributions. This result has later been extended and refined in [15]. However,
most of the results obtained so far have been derived only under the framework
of GARCH(1, 1)-type or first-order ODMs. Yet, up to our knowledge, little is
known for the GARCH(p, q)-type, i.e. larger order discrete ODMs, as highlighted
as a remaining unsolved problem in [44].

Here, following others (e.g. [42, 29]), we consider a general class of ODMs that
is capable to account for several lagged variables of both hidden and observation
processes. We develop a theory for the class of general-order ODMs parallel to
the GARCH(p, q) family and in particular we investigate the two problems listed
here below.

a) Provide a complete set of conditions for general order ODMs implying
that the process is ergodic.

b) Prove the consistency of the MLE. Under the assumption of well-specified
models, this can be treated in two separate sub-problems.

1) Prove that the MLE is equivalence-class consistent.

2) Characterize the set of identifiable parameters.

In principle, the general-order model can be treated by embedding it into a first-
order one and by applying the results obtained e.g. in [13, 15] to the embedded
model. Yet the particular form of the embedded model does not fit the usual
assumptions tailored for standard first-order ODMs. This is why, as pointed out
in [44], solving Problem a) is not just a formal extension of available results.
To obtain Theorem 8 where Problem a) is addressed, we derive conditions by
taking advantage of the asymptotic behavior of iterated versions of the kernels
involved. Incidentally, this also allows us to improve known conditions for some
first-order models, as explained in Remark 2-(4). Once the ergodicity of the
model is proved, we can solve Sub-problem b) 1). This is done in Theorem 10,
which is obtained almost for free from the embedding in the ODM(1,1) case.
Sub-problem b) 2) is much more involved and has been addressed in [17].

To demonstrate the generality, applicability and efficiency of our approach, we
apply our results to three specific integer-valued ODMs, namely, the log-linear
Poisson GARCH(p, q) model, the negative binomial integer-valued GARCH or
the NBIN-GARCH(p, q) model and the Poisson AutoRegressive model with
eXogenous variables, known as the PARX model. To the best of our knowl-
edge, the stationarity and ergodicity as well as the asymptotic properties of the
MLE for the general log-linear Poisson GARCH(p, q) and NBIN-GARCH(p, q)
models have not been derived so far. For the PARX(p, q) model, which can
be considered as a vector-valued ODM in our study, such results are available
in [1] but our approach leads to significantly different assumptions, as will be
shown in Section 2.3.3. Numerical experiments involving the log-linear Poisson
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GARCH(p, q) and the NBIN-GARCH (p, q) models can be found in [40, Sec-
tion 5.5] for a set of earthquake data from Earthquake Hazards Program [43].

The paper is structured as follows. Definitions used throughout the paper are
introduced in Section 2, where we also state our results on three specific exam-
ples. In Section 3, we present our main results on the ergodicity and consistency
of the MLE for general order ODMs. Finally, Section 4 contains the postponed
proofs and we gather some independent useful lemmas in Section 5.

2. Definitions and examples

2.1. Observation-driven model of order (p, q)

Throughout the paper we use the notation u�:m := (u�, . . . , um) for � ≤ m,
with the convention that u�:m is the empty sequence if � > m, so that, for
instance (x0:(−1), y) = y. The observation-driven time series model can formally
be defined as follows.

Definition 1 (General order ODM and (V)LODM). Let (X,X ), (Y,Y) and
(U,U) be measurable spaces, respectively called the latent space, the observa-
tion space and the reduced observation space. Let (Θ,Δ) be a compact metric
space, called the parameter space. Let Υ be a measurable function from (Y,Y) to

(U,U). Let
{
(x1:p, u1:q) �→ ψ̃θ

u1:q
(x1:p) : θ ∈ Θ

}
be a family of measurable func-

tions from (Xp × Uq,X⊗p ⊗ U⊗q) to (X,X ), called the reduced link functions
and let

{
Gθ : θ ∈ Θ

}
be a family of probability kernels on X × Y , called the

observation kernels.

(i) A time series {Yk : k ≥ −q + 1} valued in Y is said to be distributed
according to an observation-driven model of order (p, q) (hereafter, ODM(p, q))
with reduced link function ψ̃θ, admissible mapping Υ and observation kernel Gθ

if there exists a process {Xk : k ≥ −p+1} on (X,X ) such that for all k ∈ Z≥0,

Yk | Fk ∼ Gθ(Xk; ·),
Xk+1 = ψ̃θ

Uk−q+1:k
(X(k−p+1):k),

(2.1)

where Fk = σ
(
X(−p+1):k, Y(−q+1):(k−1)

)
and Uj = Υ(Yj) for all j > −q.

(ii) We further say that this model is a vector linearly observation-driven model
of order (p, q, p′, q′) (shortened as VLODM(p, q, p′, q′)) if moreover for some
p′, q′ ∈ Z>0, X is a closed subset of Rp′

, U ⊂ R
q′ and, for all x = x0:(p−1) ∈ Xp,

u = u0:(q−1) ∈ Uq, and θ ∈ Θ,

ψ̃θ
u(x) = ω(θ) +

p∑
i=1

Ai(θ)xp−i +

q∑
i=1

Bi(θ)uq−i , (2.2)

for some mappings ω, A1:p and B1:q defined on Θ and valued in Rp′
,
(
Rp′×p′

)p

and
(
R

p′×q′
)q

. In the case where p′ = q′ = 1, the VLODM(p, q, p′, q′) is
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simply called a linearly observation-driven model of order (p, q) (shortened as
LODM(p, q)).

Remark 1. Let us comment briefly on this definition.

(1) The standard definition of an observation driven model does not include
the admissible mapping Υ and indeed, we can define the same model
without Υ by replacing the second equation in (2.1) by

Xk+1 = ψθ
Yk−q+1:k

(X(k−p+1):k),

where
{
(x1:p, y1:q) �→ ψθ

y1:q
(x1:p) : θ ∈ Θ

}
is a family of measurable func-

tions from (Xp × Yq,X⊗p ⊗ Y⊗q) to (X,X ), called the (non-reduced) link
functions, and defined by

ψθ
y(x) = ψ̃θ

Υ⊗q(y)(x) , x ∈ Xp , y ∈ Yq . (2.3)

However by inserting the mapping Υ, we introduce some flexibility and this
is useful for describing various ODMs with the same reduced link function
ψ̃θ. For instance all LODMs or VLODMs use the form of reduced link
function in (2.2) although they may use various mappings Υ’s. This is the
case for the GARCH, log-linear Poisson GARCH and NBIN-GARCH, see
below, but also of the bivariate integer-valued GARCH model [9].

(2) When p = q = 1, then the ODM(p, q) defined by (2.1) reduces to the (first-
order) ODM considered in [13] and [15]. Note also that if p 
= q, setting
r := max(p, q), the ODM(p, q) can be embedded in an ODM(r, r), but
this requires augmenting the parameter dimension which might impact
the identifiability of the model.

(3) Note that in our definition, Υ does not depend on θ. In some cases, one
can simplify the link function ψ̃θ, by allowing one to let Υ depend on the
unknown parameter. To derive identifiability conditions or to prove the
consistency of the MLE, the dependence of the distribution with respect
to the unknown parameter θ is crucial. In contrast, proving that the pro-
cess is ergodic is always done for a given θ and it is thus possible to use
our set of conditions to prove ergodicity with Υ depending on θ, hence rea-
soning for a given θ and a given Υ. Moreover our set of conditions (namely
Conditions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8) in Theorem 8) de-
pends on Υ only through the image space U, which can usually be taken
to be the same even in situations where Υ may depend on θ.

The GARCH model has been extensively studied, see, for example, [5, 25, 26,
34, 27] and the references therein. Many other examples have been derived in
the class of LODMs. An important feature of the GARCH is the fact that x �→
Gθ(x; ·) maps a family of distributions parameterized by the scale parameter√
x, which is often expressed by replacing the first line in (2.1) by an equation

of the form Yk =
√
Xkεk with the assumption that {εn : n ∈ Z} is i.i.d. Such

a simple multiplicative formula no longer holds when the observations Yk’s are
integers, which seriously complicates the theoretical analysis of such models,
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as explained in [44].Our results will apply to the GARCH case but we do not
improve the existing results in this case. The real interest of our approach lies
in being able to address general-order integer-valued ODMs for which existing
results are scarce.

Definition 2 (Space (Z,Z), Notation P
θ
ξ ,E

θ
ξ). Consider an ODM as

in Definition 1. Then, for all k ≥ 0, the conditional distribution of (Yk, Xk+1)
given Fk only depends on

Zk =
(
X(k−p+1):k, U(k−q+1):(k−1)

)
∈ Z , (2.4)

where we defined

Z = Xp ×Uq−1 endowed with the σ-field Z = X⊗p ⊗ U⊗(q−1). (2.5)

For all θ ∈ Θ and all probability distributions ξ on (Z,Z), we denote by Pθ
ξ the

distribution of {Xk, Yk′ : k > −p, k′ > −q} satisfying (2.1) and Z0 ∼ ξ, with
the usual notation P

θ
z in the case where ξ is a Dirac mass at z ∈ Z. We replace

P by E to denote the corresponding expectations.

We always assume that the observation kernel is dominated by a σ-finite
measure ν on (Y,Y), that is, for all θ ∈ Θ, there exists a measurable function
gθ : X × Y → R≥0 written as (x, y) �→ gθ(x; y) such that for all x ∈ X, gθ(x; ·)
is the density of Gθ(x; ·) with respect to ν. Then the inference about the model
parameter is classically performed by relying on the likelihood of the observa-
tions (Y0, . . . , Yn) given Z0. For all z ∈ Z, the corresponding conditional density
function pθ(y0:n|z) with respect to ν⊗(n+1) under parameter θ ∈ Θ is given by

y0:n �→
n∏

k=0

gθ (xk; yk) , (2.6)

where, setting uk = Υ(yk) for k = 0, . . . , n, the sequence x0:n is defined through
the initial conditions and recursion equations⎧⎪⎨⎪⎩

xk = Πp+k (z) , −p < k ≤ 0 ,

uk = Πp+q+k (z) , −q < k ≤ −1 ,

xk = ψ̃θ
u(k−q):(k−1)

(
x(k−p):(k−1)

)
, 1 ≤ k ≤ n ,

(2.7)

where, throughout the paper, for all j ∈ {1, . . . , p+ q− 1}, we denote by Πj (z)
the j-th entry of z ∈ Z. Note that xk+1 only depends on z and y0:k for all k ≥ 0.
Throughout the paper, we use the notation: for all n ≥ 1, y0:n−1 ∈ Yn and
z ∈ Z,

ψθ〈y0:(n−1)〉(z) := xn , with xn defined by (2.7). (2.8)

Note that for n = 0, y0:−1 is the empty sequence and (2.8) is replaced by
ψθ〈∅〉(z) = x0 = Πp (z). Given the initial condition Z0 = z(i), the (conditional)

maximum likelihood estimator θ̂z(i),n of the parameter θ is thus defined by

θ̂z(i),n ∈ argmax
θ∈Θ

Lθz(i),n, (2.9)
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where, for all z(i) ∈ Z,

Lθz(i),n := n−1
n∑

k=1

ln gθ
(
ψθ〈Y0:(k−1)〉(z(i));Yk

)
. (2.10)

Note that since {Xn : n ∈ Z} is unobserved, to compute the conditional like-
lihood, we used some arbitrary initial values for X(−p+1):0, (the first p entries

of z(i)). We also use arbitrary values for the last q − 1 entries of z(i). Note that
we index our set of observations as Y0:n (hence assuming 1 + n observations to
compute Lθ

z(i),n
). The iterated function ψθ〈Y0:k〉 can be cumbersome but is very

easy to compute in practice using the recursion (2.7). Moreover, the same kind
of recursion holds for its derivatives with respect to θ, allowing one to apply
gradient steps to locally maximize the likelihood.

In this contribution, we investigate the convergence of θ̂z(i),n as n → ∞ for

some (well-chosen) value of z(i) under the assumption that the model is well
specified and the observations are in the steady state. The first problem to solve
in this line of results is thus to show the following.

(A-1) For all θ ∈ Θ, there exists a unique stationary solution satisfying (2.1).

This ergodic property is the cornerstone for making statistical inference theory
work and we provide simple general conditions in Section 3.2. We now introduce
the notation that will allow us to refer to the stationary distribution of the model
throughout the paper.

Definition 3. If (A-1) holds, then

a) Pθ denotes the distribution on ((X × Y)Z, (X × Y)⊗Z) of the stationary
solution of (2.1) extended on k ∈ Z, with Fk = σ(X−∞:k, Y−∞:(k−1));

b) P̃θ denotes the projection of Pθ on the component YZ.

We also use the symbols Eθ and Ẽ
θ to denote the expectations corresponding to

P
θ and P̃

θ, respectively. We further denote by πθ
X and πθ

Y the marginal distribu-
tions of X0 and Y0 under Pθ, on (X,X ) and (Y,Y), respectively. As a byproduct
of the proof of (A-1), one usually obtains a function VX : X → R≥0 of interest,
common to all θ ∈ Θ, such that the following property holds on the stationary
distribution (see Section 3.2).

(A-2) For all θ ∈ Θ, πθ
X(VX) < ∞.

It is here stated as an assumption for convenience. Note also that, in the fol-
lowing, for V : X → R≥0 and f : X → R, we denote the V -norm of f by

|f |V = sup

{
|f(x)|
V (x)

: x ∈ X

}
,

with the convention 0/0 = 0 and we write f � V if |f |V < ∞. With this
notation, under (A-2), for any f : X → R such that f � VX, π

θ
X(|f |) < ∞ holds,

and similarly, since πθ
Y = πθ

XG
θ as a consequence of (2.1), for any f : Y → R

such that Gθ(|f |) � VX, we have πθ
Y(|f |) < ∞.
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2.2. Equivalence-class consistency and identifiability

For all θ, θ′ ∈ Θ, we write θ ∼ θ′ if and only if P̃
θ = P̃

θ′
. This defines an

equivalence relation on the parameter set Θ and the corresponding equivalence
class of θ is denoted by [θ] := {θ′ ∈ Θ : θ ∼ θ′}.

The equivalence relationship ∼ was introduced by [32] as an alternative to the

classical identifiability condition. Namely, we say that θ̂z(i),n is equivalence-class
consistent at the true parameter θ� if

lim
n→∞

Δ(θ̂z(i),n, [θ�]) = 0, P̃
θ� -a.s. (2.11)

Recall that Δ is the metric endowing the parameter space Θ. Therefore,
in (2.11), Δ(θ̂z(i),n, [θ�]) is the distance between the MLE and the set of pa-
rameters having the same stationary distribution as the true parameter, and
the convergence is considered under this common stationary distribution.

Identifiability can then be treated as a separate problem which consists in
determining all the parameters θ� for which [θ�] reduces to the singleton {θ�},
so that equivalence-class consistency becomes the usual consistency at and only
at these parameters. The identifibility problem is treated in [17, Proposition 11
and Theorem 12] for general order ODMs, where many cases of interest are
specifically detailed. We will use in particular [17, Theorem 17 and Section 5.5].

2.3. Three examples

To motivate our general results we first make explicit three models of interest,
namely, the log-linear Poisson GARCH(p, q), the NBIN-GARCH(p, q) and the
PARX(p, q) models. To the best of our knowledge, the stationarity and ergod-
icity as well as the asymptotic properties of the MLE for the general log-linear
Poisson GARCH(p, q) and NBIN-GARCH(p, q) models have not been derived
so far. Such results are available for PARX model in [1] but our approach leads
to significantly different assumptions, as will be shown in Section 2.3.3.

Once the ergodicity of the model is established, we can investigate the con-
sistency of the MLE. This is done by first investigating the equivalence-class
consitency of the MLE and then we only need to add an identifiability condi-
tion to get the consistency of the MLE, see Theorems 4, 5 and 7 hereafter. Such
results pave the way for investigating the asymptotic normality. This is done in
[40, Proposition 5.4.7(iii) and Proposition 5.4.15] for the first two examples and
in [1, Theorems 2 and 3] for the third one.

2.3.1. Log-linear Poisson GARCH model

The Log-linear Poisson GARCH model is defined as follows in our setting.
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Example 1. The Log-linear Poisson GARCH(p, q) Model parameterized by
θ = (ω, a1:p, b1:q) ∈ Θ ⊂ R

1+p+q is a LODM(p, q) with affine reduced link
function of the form (2.2) with coefficients given by

ω(θ) = ω , Ai(θ) = ai for 1 ≤ i ≤ p

and Bi(θ) = bi for 1 ≤ i ≤ q ,
(2.12)

with observations space Y = Z≥0, hidden variables space X = R, admissible
mapping Υ(y) = ln(1+y), and observation kernel Gθ(x; ·) defined as the Poisson
distribution with mean ex.

Our condition for showing the ergodicity of general order log-linear Poisson
GARCH models requires the following definition. For all x = x(1−(p∨q)):0 ∈
Rp∨q, m ∈ Z≥0, and w = w(−q+1):m ∈ {0, 1}q+m, define ψ̂θ〈w〉(x) as xm+1

obtained by the recursion

xk =

p∑
j=1

aj xk−j +

q∑
j=1

bj wk−j xk−j , 1 ≤ k ≤ m+ 1 (2.13)

We can now state our result on general order log-linear Poisson GARCH model.

Theorem 4. Consider the log-linear Poisson GARCH(p, q) model, which sat-
isfies Eq. (2.1) under the setting of Example 1. Suppose that, for all θ ∈ Θ, we
have

lim
m→∞

max
{∣∣∣ψ̂θ〈w〉(x)

∣∣∣ : w ∈ {0, 1}q+m
}
= 0 for all x ∈ R

p∨q , (2.14)

and define

Pp(z; a1:p) = zp −
p∑

k=1

akz
p−k and Qq(z; b1:q) =

q−1∑
k=0

bk+1 zq−1−k . (2.15)

Then, the following assertions hold.

(i) For all θ ∈ Θ, there exists a unique stationary solution {(Xk, Yk) : k ∈
Z≥0} to (2.1), that is, (A-1) holds. Moreover, for any τ > 0, (A-2) holds with
VX : R → R≥0 defined by

VX(x) = eτ |x|, x ∈ R. (2.16)

(ii) For any x
(i)
1 ∈ R and y

(i)
1 ∈ Z≥0, setting z(i) =

(x
(i)
1 , . . . , x

(i)
1 ,Υ(y

(i)
1 ), · · · ,Υ(y

(i)
1 )) ∈ R

p × R
q−1, the MLE θ̂z(i),n as de-

fined by (2.9) is equivalence-class consistent, that is, (2.11) holds for any
θ� ∈ Θ.
(iii) If the true parameter θ� = (ω�, a�1:p, b

�
1:q) moreover satisfies that the poly-

nomials Pp(·; a�1:p) and Qq(·; b�1:q) defined by (2.15) have no common complex

roots, then the MLE θ̂z(i),n is consistent.
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The proof is postponed to Section 4.4.

Remark 2. Let us provide some insights about Condition (2.14).

(1) Using the two possible constant sequences w, wk = 0 for all k or wk = 1
for all k in (2.13), we easily see that (2.14) implies

a1:p ∈ Sp and a1:(p∨q) + b1:(p∨q) ∈ Sp∨q ,

where we used the usual convention ak = 0 for p < k ≤ q and bk = 0 for
q < k ≤ p and where

Sp =

{
c1:p ∈ R

p : ∀z ∈ C, |z| ≤ 1 implies 1−
p∑

k=1

ckz
k 
= 0

}
. (2.17)

(2) A sufficient condition to have (2.14) is

sup
{∣∣∣ψ̂θ〈w〉(x)

∣∣∣ : w ∈ {0, 1}q, x ∈ [−1, 1]p∨q
}
< 1 . (2.18)

Indeed, defining ρ as the left-hand side of the previous display, we clearly
have, for all m > p ∨ q, w ∈ {0, 1}q+m and x ∈ R

p∨q,∣∣∣ψ̂θ〈w〉(x)
∣∣∣ ≤ ρ max

{∣∣∣ψ̂θ〈w′〉(x)
∣∣∣ : w′ ∈ {0, 1}q+m−j , 1 ≤ j ≤ p ∨ q

}
.

(3) The first iteration (2.13) implies, for all w ∈ {0, 1}q and x ∈ [−1, 1]p∨q,

|ψ̂θ〈w〉(x)| ≤
[
p∨q∑
k=1

(|ak| ∨ |ak + bk|)
]

.

Hence a sufficient condition to have (2.18) (and thus (2.14)) is

p∨q∑
k=1

(|ak| ∨ |ak + bk|) < 1 . (2.19)

(4) When p = q = 1, by Points (1) and (3) above, Condition (2.14) is equiva-
lent to have |a1| < 1 and |a1 + b1| < 1. This condition is weaker than the
one derived in [13] where |b1| < 1 is also imposed.

2.3.2. NBIN-GARCH model

Our next example is the NBIN-GARCH(p, q), which is defined as follows in our
setting.

Example 2. The NBIN-GARCH(p, q) model is a LODM(p, q) parameterized
by θ = (ω, a1:p, b1:q, r) ∈ Θ ⊂ R>0 × R

p+q
≥0 × R>0 with affine reduced link

function of the form (2.2) with coefficients given by (2.12), observations space
Y = Z≥0, hidden variables space X = R≥0, admissible mapping Υ(y) = y, and
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observation kernels Gθ(x; ·) defined as the negative binomial distribution with
shape parameter r > 0 and mean r x, that is, for all y ∈ Z≥0,

Gθ(x; {y}) = Γ(r + y)

y ! Γ(r)

(
1

1 + x

)r (
x

1 + x

)y

.

We now state our result for general order NBIN-GARCH model.

Theorem 5. Consider the NBIN-GARCH(p, q) model, which satisfies Eq. (2.1)
under the setting of Example 2. Suppose that, for all θ = (ω, a1:p, b1:q, r) ∈ Θ,
we have

p∑
k=1

ak + r

q∑
k=1

bk < 1. (2.20)

Then the following assertions hold.

(i) For all θ ∈ Θ, there exists a unique stationary solution to (2.1), that is, (A-1)
holds. Moreover, (A-2) holds with VX(x) = x for all x ∈ R+.

(ii) For any x
(i)
1 ∈ R>0 and y

(i)
1 ∈ Z≥0, setting z(i) =

(x
(i)
1 , . . . , x

(i)
1 , y

(i)
1 , · · · , y(i)1 ) ∈ R

p
≥0 ×Z

q−1
≥0 , the MLE θ̂z(i),n as defined by (2.9) is

equivalence-class consistent, that is, (2.11) holds for any θ� ∈ Θ.
(iii) If the true parameter θ� = (ω�, a�1:p, b

�
1:q, r

�) moreover satisfies that the
polynomials Pp(·; a�1:p) and Qq(·; b�1:q) defined by (2.15) have no common complex

roots, then the MLE θ̂z(i),n is consistent.

The proof is postponed to Section 4.5.

Remark 3. Clearly, under the setting of Example 2, if Eq. (2.1) has a station-
ary solution such that μ =

∫
xπX(dx) < ∞, taking the expectation on both

sides of the second equation in (2.1) and using that
∫
y πY(dy) = r

∫
xπX(dx),

then (2.20) must hold, in which case we get

μ =

(
1−

p∑
k=1

ak − r

q∑
k=1

bk

)−1

.

Hence (2.20) is in fact necessary and sufficient to get a stationary solution
admitting a finite first moment, as was already observed in [48, Theorem 1]
although the ergodicity is not proven in this reference. However, we believe
that, similarly to the classical GARCH(p, q) processes, we can find stationary
solutions to Eq. (2.1) in the case where (2.20) does not hold. This is left for
future work.

2.3.3. The PARX model

The PARX model is similar to the standard INGARCH(p, q) model but with
additional exogenous variables in the linear link function for generating the
hidden variables. Following [1], these exogenous variables are assumed to satisfy
some Markov dynamic of order 1 independently of the observations and of the
hidden variables (see their Assumption 1). This leads to the following definition.
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Definition 6 (PARX model). Let d, p, q and r be positive integers. For γ =

γ1:d ∈ R
d
≥0, we set fγ : ξ = (ξ1, . . . , ξd) �→

∑d
j=1 γjfj(ξj) where fi : R

r → R≥0

are given functions for all i ∈ {1, . . . , d}. Let P(x) denote the Poisson distribu-
tion with parameter x and L be a given Markov kernel on R

r×B(Rr). We define
the Poisson AutoRegressive model with eXogenous variables, shortly written as
PARX(p, q), as a class of processes parameterized by θ = (ω, a1:p, b1:q, γ1:d) ∈ Θ,

where Θ is a compact subset of R>0 × R
p+q+d
≥0 , and satisfying

Xt = ω +

p∑
i=1

aiXt−i +

q∑
i=1

biYt−i + fγ(Ξt−1)

(Yt,Ξt)|Ft ∼ P(Xt)⊗ L(Ξt−1; ·) , (2.21)

where Ft = σ
(
X(−p+1):t, Y(−q+1):(t−1),Ξ(−q+1):(t−1)

)
.

Remark 4. Note that our a1, . . . , ap and b1, . . . , bq correspond to β1, . . . , βq

and α1, . . . , αp of [1]. Here we allowed r to be different from d whereas in [1] it
is assumed that d = r and they are denoted by dx.

Since the exogenous variables are observed we can recast the PARX model
into a VLODM(p, q) by including the exogenous variables into the observations
Yt and the hidden variable Xt. Namely, we can formally see the above PARX
model as a special case of VLODM as follows.

Example 3 (PARX model as a VLODM). Consider a PARX model as
in Definition 6. Set Ȳt = (Yt,Ξt), X̄t = (Xt,Ξt−1), which are valued in
Ȳ = Z≥0 × R

r and X̄ = R≥0 × R
r. Then {Ȳk : k ≥ −q + 1} is a

VLODM(p, q, 1 + r, 1 + d+ r) by setting

a) the admissible mapping as Υ(ȳ) := (y, f1(ξ), . . . , fd(ξ), ξ) ∈ Ū := Z≥0 ×
R

d
≥0 × R

r for all ȳ = (y, ξ) ∈ Z≥0 × R
r;

b) for all θ = (ω, a1:p, b1:q, γ1:d), ω(θ) :=

[
ω
0r,1

]
, Ak(θ) :=

[
ak 01,r
0r,1 0r,r

]
for k = 1, . . . , p, B1(θ) :=

[
b1

[
γ1 . . . γd

]
01,r

0r,1 0r,d Ir

]
and Bk(θ) :=[

bk 01,d+r

0r,1 0r,d+r

]
for k = 1, . . . , q;

c) for all x̄ = (x, ξ) ∈ R≥0 × R
r, Gθ(x̄; ·) := P(x)⊗ L(ξ; ·).

We end up this section by stating our result for general PARX model. For
establishing the ergodicity of the PARX model, we need some assumptions on
the dynamic of the exogeneous variables through the Markov kernel L. Namely
we consider the following assumptions on the kernel L.

(L-1) The Markov kernel L admits a kernel density � with respect to some measure
νL on Borel sets of Rr such that

(i) for all (ξ, ξ′) ∈ R
r × R

r, �(ξ; ξ′) > 0;
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(ii) for all ξ ∈ R
r, there exists δ > 0 such that∫

Rr

sup
‖ξ′−ξ‖≤δ

�(ξ′; ξ′′) νL(dξ
′′) < ∞,

where ‖ · ‖ denotes the Euclidean norm on R
r.

(L-2) The Markov kernel L is weak-Feller (Lf is bounded and continuous for any
f that is bounded and continuous).

(L-3) There exist a probability measure πL on Borel sets of Rr, a measurable
function VL : Rr → [1,∞) and constants (�, C) ∈ (0, 1)× R≥0 such that

(i) L is πL-invariant,

(ii) πL(VL) < ∞ and {VL ≤ M} is a compact set for any M > 0,

(iii) for all i ∈ {1, . . . , d}, we have fi � VL.

(iv) for all Borel functions h : Rr → R such that h � VL, we have for all
(ξ, n) ∈ Z≥0,

|Lnh(ξ)− πL(h)| ≤ C �n |h|VL
VL(ξ).

(L-4) There exists a constant M ≥ 1 such that for all (ξ, ξ′) ∈ R
2r,

dTV(L(ξ, ·), L(ξ′, ·)) ≤ M‖ξ − ξ′‖

where dTV(ν, ν
′) is the total variation distance between two probability mea-

sures ν, ν′ on R
r.

(L-5) There exist CL ≥ 0, hL : R+ → R+ and a measurable function φ̄L : Rr →
R≥0 such that the following assertions hold for L, its kernel density � intro-
duced in (L-1) and its drift function introduced in (L-3).

(i) For all ξ′ ∈ R
r, the mapping ξ �→ �(ξ, ξ′) is continuous.

(ii) We have supξ,ξ′∈Rr �(ξ, ξ′) < ∞.

(iii) For all ξ ∈ R
r, we have 1 + ‖ξ‖ ≤ φ̄L(ξ).

(iv) For all (ξ, ξ′, ξ′′) ∈ R
3r,∣∣∣∣ln �(ξ; ξ′′)

�(ξ′; ξ′′)

∣∣∣∣ ≤ hL(‖ξ − ξ′‖) eCL (1+‖ξ‖∨‖ξ′) φ̄L(ξ
′′) .

(v) hL(u) = O(u) as u → 0.

(vi) If CL = 0, then ln+ φ̄L � VL. Otherwise, φ̄L � VL.

(L-6) We have L(v; {f1:d(·) ∈ A}) < 1 for all v ∈ V and affine hyperplanes
A ⊂ R

d.

We can now state our main result for the PARX model.
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Theorem 7. Consider the PARX(p, q) model of Definition 6, seen as the
VLODM of Example 3. Suppose that (L-1)–(L-4) hold, and that, for all θ =
(ω, a1:p, b1:q, γ1:d) ∈ Θ, we have

p∑
i=1

ai +

q∑
i=1

bi < 1 . (2.22)

Then the following assertions hold.

(i) for all θ ∈ Θ, there exists a unique stationary solution {(Xk, Yk,Ξk) :
k ∈ Z≥0} to (2.1), that is, (A-1) holds for the VLODM of Example 3. More-
over, (A-2) holds with VX(x̄) = x+ VL(ξ) for all x̄ = (x, ξ) ∈ R≥0 × R

r.

(ii) Suppose moreover that (L-5) holds. Then, for any x
(i)
1 ∈ R≥0, ξ

(i)
1 ∈ R

r and

y
(i)
1 ∈ Z≥0, setting z(i) = ((x

(i)
1 , ξ

(i)
1 ), . . . , (x

(i)
1 , ξ

(i)
1 ), (y

(i)
1 , ξ

(i)
1 ), · · · , (y(i)1 , ξ

(i)
1 )) ∈

(R≥0×R
r)p× (Z≥0×R

r)q−1, the MLE θ̂z(i),n as defined by (2.9) is equivalence-
class consistent, that is, (2.11) holds for any θ� ∈ Θ.

(iii) Suppose in addition that (L-6) holds. Then the MLE θ̂z(i),n is consistent.

The proof is postponed to Section 4.6. Let us briefly comment on our as-
sumptions.

Remark 5. Contrary to the previous example, the PARX model requires an
additional Markov kernel L and therefore additional assumptions on this kernel.
We briefly comment on them hereafter and compare our assumptions to those
in [1].

(i) Assumptions (L-1)–(L-3) are classical assumptions on Markov kernels to
ensure its stability and ergodicity. In [1, Assumption 2], a different ap-
proach is used and instead a first order contraction of the random iterative
functions defining the Markov transition is used. Their assumption would
typically imply our (L-3) with VL(ξ) = 1+ ‖ξ‖s for some s ≥ 1, with their
Assumption(3)(ii) implying our (L-3)(iii).

(ii) Our Assumption (L-4) is inherited from our approach for proving ergod-
icity using the embedding of the PARX model into a VLODM model
detailed in Example 3. It is not clear to us whether it can be omitted for
proving ergodicity. This question is left for future work. Note that we pro-
vide another formulation of this assumption in Remark 10, see Section 4.6.
There is no equivalent of our Assumption (L-4) in [1] as their technique for
proving ergodicity is different. However, although we have the same condi-
tion (2.22) as them for ergodicity, see their Assumption 3(i), they require
an additional condition, Assumption 3(iii), which we do not need here.
This condition involves both the coefficients ai and bi and the contraction
constant ρ used in their stability assumption for the Markov transition of
the covariates. In contrast, our condition on the parameters ai and bi of
the model, merely imposed through (2.22), are completely separated from
our assumptions (L-1)–(L-4) on the dynamics of the covariates.

(iii) Assumptions (L-5) and (L-6) are not required to get ergodicity. they are
needed to establish the equivalence class consistency of the MLE and the
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identifiability of the model. Like our Assumption (L-4) for proving ergodc-
ity, Assumption (L-5) is inherited from the embedding of the PARX model
into a VLODM model here used for proving the equivalent class consis-
tency. Assumption (L-6) is a mild and natural identifiability assumption.
It basically says that the covariates f1(ξk), . . . , fd(ξk) are not linearly re-
lated conditionally to ξk−1. If they were, it would suggest using a smaller
set of covariates. The identifiability condition of [1] is different as it in-
volves a condition both on the covariate distribution and on the parame-
ters a1, . . . , ap and b1, . . . , bq, see their Assumption 5.

To conclude this section, let us carefully examine the simple case where the
covariates are assumed to follow a Gaussian linear dynamic and see, in this
specific case, how our assumptions compare to that of [1]. More precisely, assume
that L is defined by the following equation on the exogenous variables

Ξt = ℵ Ξt−1 + σηt , (2.23)

where ℵ is an r × r matrix with spectral radius ρ(ℵ) ∈ (0, 1), σ > 0, and
ηt ∼ N (0, Ir). Then Assumption (L-1) holds with

�(ξ, ξ′) = (2πσ2)−r/2e−‖ξ′−ℵξ‖2/(2σ2) ,

and νL being the Lebesgue measure on R
r. It is straightforward to check (L-2)

and (L-3) with VL(ξ) = eλ ‖ξ‖ for any λ > 0.
Let us now check that Assumption (L-4) holds. First note that, setting f(x) =

e−x2/2, we have �(ξ, ξ′′) = 1
(2πσ2)r/2

f(‖ξ′′ − ℵξ‖). Then, for all ξ, ξ′, ξ′′ ∈ Rr

such that ‖ξ − ξ′‖ ≤ ε, which implies ‖ℵ(ξ − ξ′)‖ ≤ ‖ℵ‖ε, where ‖ℵ‖ denotes
the operator norm of ℵ, and thus

|�(ξ, ξ′′)− �(ξ′, ξ′′)| ≤ ‖ℵ‖
(2πσ2)r/2

‖ξ − ξ′‖ sup
‖ξ′′‖−‖ℵ‖ε≤x≤‖ξ′′‖+‖ℵ‖ε

|f ′ (x)|

≤ ‖ℵ‖
(2πσ2)r/2

‖ξ − ξ′‖ (‖ξ′′‖+ ‖ℵ‖ε) e
−(‖ξ′′‖−‖ℵ‖ε)2

+
/2

.

Then we get that for all ξ, ξ′ ∈ R
r such that ‖ξ − ξ′‖ ≤ ε,

dTV(L(ξ, ·), L(ξ′, ·)) =
1

2

∫
Rr

|�(ξ, ξ′′)− �(ξ′, ξ′′)| dξ′′ ≤ M0‖ξ − ξ′‖,

for some positive constant M0 only depending on ‖ℵ‖, σ and ε. Finally, for all
ξ, ξ′ ∈ R

r,

dTV(L(ξ, ·), L(ξ′, ·)) ≤
(
M01‖ξ−ξ′‖≤ε + ε−11‖ξ−ξ′‖>ε

)
‖ξ − ξ′‖,

and Assumption (L-4) holds.
Let us now check Assumption (L-5). Assumptions (L-5)(i) and (L-5)(ii) are

immediate. For all (ξ, ξ′, ξ′′) ∈ R
3r, we have∣∣∣∣ln �(ξ; ξ′′)

�(ξ′; ξ′′)

∣∣∣∣ = 1

2σ2

∣∣‖ξ′′ − ℵξ‖2 − ‖ξ′′ − ℵξ′‖2
∣∣
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≤ ‖ℵ‖
2σ2

‖ξ − ξ′‖ (1 + ‖ℵ‖ (‖ξ‖+ ‖ξ′‖)) (1 + ‖ξ′′‖)

≤ hL(‖ξ − ξ′‖) eCL (1+‖ξ‖∨‖ξ′) φ̄L(ξ
′′) .

Thus (L-5)(iv) holds with hL(u) = (‖ℵ‖/2σ2)u, CL = ‖ℵ‖ and φ̄L(ξ) = 1+ ‖ξ‖.
Then, (L-5)(iii) and (L-5)(v) follow from these choices of hL and φ̄L. We also
get (L-5)(vi) since VL(ξ) = eλ‖ξ‖ for some λ > 0.

Finally (L-6) immediately holds since νL is the Lebesgue measure on Rr.
Having shown (L-1)–(L-6) for covariates satisfying the dynam-

ics (2.23), Theorem 7 applies in this case under the sole condition (2.22).
In comparison, checking the assumptions for ergodicity in [1] require the
additional assumption

p∑
i=1

ai +

q∑
i=1

bi < 1−
((

1−
p∑

i=1

ai

)
(ρ(ℵ)− b1)

)
+

,

see their Assumption 3(iii).

3. General results

3.1. Preliminaries

In the well-specified setting, a general result on the consistency of the MLE for
a class of first-order ODMs has been obtained in [13]. Let us briefly describe the

approach used to establish the convergence of the MLE θ̂z(i),n in this reference
and in the present contribution for higher order ODMs. Let θ� ∈ Θ denote the
true parameter. The consistency of the MLE is obtained through the following
steps.

Step 1 Find sufficient conditions for the ergodic property (A-1) of the model.
Then the convergence of the MLE to θ� is studied under P̃θ� as defined
in Definition 3.

Step 2 Establish that, as the number of observations n → ∞, the normalized
log-likelihood Lθ

z(i),n
as defined in (2.10), for some well-chosen z(i) ∈ Xp,

can be approximated by

n−1
n∑

k=1

ln pθ(Yk|Y−∞:k−1),

where pθ(·|·) is a P̃
θ� -a.s. finite real-valued measurable function defined

on (YZ,Y⊗Z). To define pθ(·|·), we set, for all y−∞:0 ∈ YZ≤0 and y ∈ Y,
whenever the following limit is well defined,

pθ (y | y−∞:0) = lim
m→∞

gθ
(
ψθ〈y−m:0〉(z(i)); y

)
. (3.1)
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Step 3 By (A-1), the observed process {Yk : k ∈ Z} is ergodic under P̃
θ� and

provided that

Ẽ
θ�

[
ln+ pθ(Y1|Y−∞:0)

]
< ∞,

it then follows that

lim
n→∞

Lθz(i),n = Ẽ
θ�

[
ln pθ(Y1|Y−∞:0)

]
, P̃

θ� -a.s.

Step 4 Using an additional argument (similar to that in [37]), deduce that the

MLE θ̂z(i),n defined by (2.9) eventually lies in any given neighborhood
of the set

Θ� = argmax
θ∈Θ

Ẽ
θ�

[
ln pθ(Y1|Y−∞:0)

]
, (3.2)

which only depends on θ�, establishing that

lim
n→∞

Δ(θ̂z(i),n,Θ�) = 0, P̃
θ� -a.s., (3.3)

where Δ is the metric endowing the parameter space Θ.
Step 5 Establish that Θ� defined in (3.2) reduces to the equivalent class [θ�]

of Definition 3. The convergence (3.3) is then called the equivalence-
class consistency of the MLE.

Step 6 Establish that [θ�] reduces to the singleton {θ�}. The convergence (3.3)
is then called the strong consistency of the MLE.

In [15], we provided easy-to-check conditions on first order ODMs for obtain-
ing Step 1 to Step 4. See [15, Theorem 2] for Step 1, and [15, Theorem 1]
for the following steps. In [16], we proved a general result for partially observed
Markov chains, which include first order ODMs, in order to get Step 5, see The-
orem 1 in this reference. Finally, Step 6 is often carried out using particular
means adapted to the precise considered model.

We present in Section 3.2 the conditions that we use to prove ergodicity
(Step 1) and, in Section 3.3, we adapt the conditions already used in [15, 16]
to carry out Step 2 to Step 5 for first order model to higher order ODMs.

Using the embedding described in Section 4.1, all the steps from Step 1
to Step 5 can in principle be obtained by applying the existing results to the
first order ODMs in which the original higher order model is embedded. This
approach is indeed successful, up to some straightforward adaptation, for Step 2
to Step 5. Ergodicity in Step 1 requires a deeper analysis that constitutes the
main part of this contribution. As for Step 6, it is treated in [17].

3.2. Ergodicity

In this section, we provide conditions that yield stationarity and ergodicity of
the Markov chain {(Zk, Yk) : k ∈ Z≥0}, that is, we check (A-1) and (A-2).
We will set θ to be an arbitrary value in Θ and since this is a “for all θ (...)”
condition, to save space and alleviate the notational burden, we will drop the
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superscript θ from, for example, Gθ and ψθ and respectively write G and ψ,
instead.

Ergodicity of Markov chains is usually studied using ϕ-irreducibility. This
approach is well known to be quite efficient when dealing with fully domi-
nated models; see [35]. It is not at all the same picture for integer-valued
observation-driven models, where other tools need to be invoked; see [23, 13, 15]
for ODMs(1,1). Here we extend these results for general order ODMs(p, q). Let
us now introduce our list of assumptions. They will be further commented after
they are all listed.

We first need some metric on the space Z and assume the following.

(A-3) The σ-fields X and U are Borel ones, respectively associated to (X, δX) and
(U, δU), both assumed to be complete and separable metric spaces.

For an LODM(p, q), the following condition, often referred to as the invertibility
condition, see [41], is classically assumed.

(I-1) For all θ ∈ Θ, we have A1:p(θ) ∈ Sp,

where Sp is defined in (2.17). For an ODM(p, q) with a possibly non-linear link
function, (I-1) is replaced by a uniform contracting condition on the iterates of
the link function, see (A-4) below. In order to write this condition in this more
general case, recall that any finite Y-valued sequence y, ψθ〈y〉 is defined by (2.8)
with the recursion (2.7). Next, we may rewrite these iterates directly in terms
of u0:(n−1) instead of y0:(n−1). Namely, we can define

ψ̃θ〈u0:(n−1)〉(z) := xn , with xn defined by (2.7) (3.4)

so that ψθ〈y0:(n−1)〉(z) = ψ̃θ〈Υ⊗n(y0:(n−1))〉(z) for all z ∈ Z and y0:(n−1) ∈ Yn.

Now define, for all n ∈ Z>0, the Lipschitz constant for ψ̃θ〈u〉, uniform over
u ∈ Un,

Lipθn = sup

{
δX(ψ̃

θ〈u〉(z), ψ̃θ〈u〉(z′))
δZ(z, z′)

: (z, z′, u) ∈ Z2 ×Un

}
, (3.5)

where we set, for all v ∈ Z2,

δZ(v) =

(
max
1≤k≤p

δX ◦Π⊗2
k (v)

) ∨ (
max

p<k<p+q
δU ◦Π⊗2

k (v)

)
. (3.6)

We use the following assumption on a general link function.

(A-4) For all θ ∈ Θ, we have Lipθ1 < ∞ and Lipθn → 0 as n → ∞.

The following assumption is mainly related to the observation kernel G and
relies on the metrics introduced in (A-3) and on the iterates of the link functions
defined in (3.4).
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(A-5) The space (X, δX) is locally compact and if q > 1, so is (U, δU). For all
x ∈ X, there exists δ > 0 such that∫

sup {g(x′; y) : x′ ∈ X , δX(x
′, x) < δ} ν(dy) < ∞ . (3.7)

Moreover, one of the two following assertions hold.

(a) The kernel G is strong Feller.

(b) The kernel G is weak Feller and the function u �→ ψ̃〈u〉(z) defined
in (3.4) is continuous on U for all z ∈ Z.

The definitions of weak and strong Feller in (a) and (b) correspond to Feller and
strong Feller of [14, Defintion 12.1.1]. Next, we consider a classical drift condition
used for showing the existence of an invariant probability distribution.

(A-6) There exist measurable functions VX : X → R≥0 and VU : U → R≥0 such
that, setting VY = VU◦Υ, GVY � VX, {VX ≤ M} is compact for any M > 0,
and so is {VY ≤ M} if q > 1, and

lim
n→∞

lim
M→∞

sup
z∈Z

Ez [VX(Xn)]

M + V (z)
= 0 , (3.8)

where we defined

V (z) = max
1≤k≤p

p<�<p+q

{
VX(Πk (z)),

VU(Π� (z))

|GVY|VX

}
. (3.9)

The following condition is used to show the existence of a reachable point.

(A-7) The conditional density of G with respect to ν satisfies, for all (x, y) ∈ X×Y,

g(x; y) > 0 , (3.10)

and one of the two following assertions hold.

(a) There exists y0 ∈ Y such that ν({y0}) > 0.

(b) The function (x, u) �→ ψ̃u(x) is continuous on Xp ×Uq.

The last assumption is used to show the uniqueness of the invariant probabil-
ity measure, through a coupling argument. It requires the following definition,
used in a coupling argument. Under (A-8)-(i) (defined below), for any initial

distribution ξ on (Z2,Z⊗2), let Êξ denote the expectation (operator) associ-
ated to the distribution of {Xk, X

′
k, Uk′ , U ′

k′ : k > −p, k′ > −q} satisfying
(X(−p+1):0, U(−q+1):−1, X

′
(−p+1):0, U

′
(−q+1):−1) ∼ ξ and, for all k ∈ Z≥0,

Yk|F ′
k ∼ G(Xk, X

′
k; ·) and Y ′

k = Yk ,

Xk+1 = ψ̃U(k−q+1):k
(X(k−p+1):k) and Uk = Υ(Yk) ,

X ′
k+1 = ψ̃U ′

(k−q+1):k
(X ′

(k−p+1):k) and U ′
k = Υ(Y ′

k) .

(3.11)

where F ′
k = σ

(
X(−p+1):k, U(−q+1):(k−1), X

′
(−p+1):k, U

′
(−q+1):(k−1)

)
.
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(A-8) There exist measurable functions α : X2 → [0, 1], WX : X2 → [1,∞),
WU : U → R≥0 and a Markov kernelG on X2×Y , dominated by ν with kernel
density g(x, x′; y) such that, setting WY = WU ◦ Υ, we have GWY � WX

and the three following assertions hold.

(i) For all (x, x′) ∈ X2 and y ∈ Y,

min {g(x; y), g(x′; y)} ≥ α(x, x′)g (x, x′; y) . (3.12)

(ii) The function WX is symmetric on X2, WX(x, ·) is locally bounded for
all x ∈ X, and WU is locally bounded on U.

(iii) We have 1− α ≤ δX ×WX on X2.

And, defining, for all v = (z, z′) ∈ Z2,

W (v) = max

{
WX ◦Π⊗2

k (v),
WU(Π� (z̃))

|GWY|WX

:
1≤k≤p
z̃∈{z,z′}
p<�<p+q

}
, (3.13)

one of the two following assertions holds.

(iv) lim
ζ→∞

lim sup
n→∞

1

n
ln sup

v∈Z2

Êv [WX(Xn, X
′
n)]

W ζ(v)
≤ 0.

(v) lim
n→∞

lim
M→∞

sup
v∈Z2

Êv [WX(Xn, X
′
n)]

M +W (z)
= 0 and, for all r = 1, 2, . . . , there

exists τ ≥ 1 such that sup
v∈Z2

Êv [WX(Xr, X
′
r)] /W

τ (v) < ∞.

Remark 6. Let us comment briefly on these assumptions.

(1) In many examples, (3.12) is satisfied with

g(x, x′; y) = g(φ(x, x′); y) (3.14)

where φ is a measurable function from X2 to X, in which case, GWY should
be replaced by GWY ◦ φ in (A-8).

(2) If ψ̃θ is of the form (2.2) with p′ = q′ = 1, then (A-4) is equivalent to (I-1).
(3) If q = 1, the terms depending on � both in (3.9) and (3.13) vanish. We

can take VU = WU = 0 without loss of generality in this case.
(4) Recall that a kernel is strong (resp. weak) Feller if it maps any bounded

measurable (resp. bounded continuous) function to a bounded continuous
function. By Scheffé’s lemma, a sufficient condition for G to be weak Feller
is to have that x �→ g(x; y) is continuous on X for all y ∈ Y. But then (3.7)
gives that G is also strong Feller by dominated convergence.

(5) Note that Condition (3.7) holds when G(x; ·) is taken among an expo-
nential family with natural parameter continuously depending on x and
valued within the open set of natural parameters, in which case G is also
strong Feller. We are in this situation for both Examples 1 and 2.

We can now state the main ergodicity result.



General-order observation-driven models 3369

Theorem 8. Let Pz be defined as P
θ
z in Definition 1. Condi-

tions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8) imply that there exists
a unique initial distribution π which makes Pπ shift invariant. Moreover it
satisfies Eπ[VX(X0)] < ∞. Hence, provided that these assumptions hold at each
θ ∈ Θ, they imply (A-1) and (A-2).

For convenience, we postpone this proof to Section 4.2.
The following lemma provides a general way for constructing the instrumental

functions α and φ that appear in (A-8) and in Remark 6-(1). The proof can be
easily adapted from [15, Lemma 1] and is thus omitted.

Lemma 9. Suppose that X = CS for some measurable space (S,S) and C ⊆ R.
Thus for all x ∈ X, we write x = (xs)s∈S, where xs ∈ C for all s ∈ S. Suppose
moreover that for all x = (xs)s∈S ∈ X, we can express the conditional density
g(x; ·) as a mixture of densities of the form j(xs)h(xs; ·) over s ∈ S. This means
that for all t ∈ C, y �→ j(t)h(t; y) is a density with respect to ν and there exists
a probability measure μ on (S,S) such that

g(x; y) =

∫
S

j(xs)h(xs; y)μ(ds), y ∈ Y . (3.15)

We moreover assume that h takes nonnegative values and that one of the two
following assumptions holds.

(H’-1) For all y ∈ Y, the function h(·; y) : t �→ h(t; y) is nondecreasing.
(H’-2) For all y ∈ Y, the function h(·; y) : t �→ h(t; y) is nonincreasing.

For all x, x′ ∈ XS, we denote x ∧ x′ := (xs ∧ x′
s)s∈S and x ∨ x′ := (xs ∨ x′

s)s∈S

and we define⎧⎪⎪⎨⎪⎪⎩
α(x, x′) = inf

s∈S

{
j(xs ∨ x′

s)

j(xs ∧ x′
s)

}
and φ(x, x′) = x ∧ x′ under (H’-1);

α(x, x′) = inf
s∈S

{
j(xs ∧ x′

s)

j(xs ∨ x′
s)

}
and φ(x, x′) = x ∨ x′ under (H’-2).

Then α and φ defined above satisfy (A-8)(i) and (3.14).

3.3. Convergence of the MLE

Once the ergodicity of the model is established, one can derive the asymptotic
behavior of the MLE, provided some regularity and moment condition holds
for going through Step 2 to Step 5, as described in Section 3.1. These steps
are carried out using [15, Theorem 1] and [16, Theorem 3], written for general
ODMs(1,1). The adaptation to higher order ODMs(p, q) will follow easily from
the embedding of Section 4.1. We consider the following assumptions, the last of
which uses VX as introduced in Definition 3 under Assumptions (A-1) and (A-2).

(B-1) For all y ∈ Y, the function (θ, x) �→ gθ(x; y) is continuous on Θ× X.
(B-2) For all y ∈ Y, the function (θ, z) �→ ψθ〈y〉(z) is continuous on Θ× Z.
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(B-3) There exist x
(i)
1 ∈ X, u

(i)
1 ∈ U, a closed set X1 ⊆ X, C ≥ 0, h : R+ → R+

and a measurable function φ̄ : Y → R≥0 such that the following assertions

hold with z(i) = (x
(i)
1 , . . . , x

(i)
1 , u

(i)
1 , . . . , u

(i)
1 ) ∈ Z.

(i) For all θ ∈ Θ and (z, y) ∈ Z× Y, ψθ〈y〉(z) ∈ X1.

(ii) sup
(θ,x,y)∈Θ×X1×Y

gθ(x; y) < ∞.

(iii) For all y ∈ Y and θ ∈ Θ, δX
(
x
(i)
1 , ψθ〈y〉(z(i))

)
∨δU(Υ(y), u

(i)
1 ) ≤ φ̄(y).

(iv) For all θ ∈ Θ and (x, x′, y) ∈ X1 × X1 × Y,∣∣∣∣ln gθ(x; y)

gθ(x′; y)

∣∣∣∣ ≤ h(δX(x, x
′)) e

C
(
δX(x

(i)
1 ,x)∨δX(x

(i)
1 ,x′)

)
φ̄(y), (3.16)

(v) h(u) = O(u) as u → 0.

(vi) If C = 0, then, for all θ ∈ Θ, Gθ ln+ φ̄ � VX. Otherwise, for all θ ∈ Θ,
Gθφ̄ � VX.

Remark 7. If we consider a VLODM as in Definition 1, Condition (B-2) is
obvious and (B-3) (iii) reduces to impose that φ̄(y) ≥ A + B |Υ(y)| for some

non-negative constants A and B only depending on x
(i)
1 , on (the compact set)

Θ and on the choice of the norm | · | on U = R
q′ .

Remark 8. In the case where the observations are discrete, one usually take
ν to be the counting measure on the at most countable space Y. In this case,
gθ(x; y) ∈ [0, 1] for all θ, x and y and Condition (B-3)(ii) trivially holds whatever
X1 is.

We have the following result, whose proof is postponed to Section 4.3.

Theorem 10. Consider an ODM(p, q) for some p, q ≥ 1 satisfying (A-4). As-

sume that (A-1), (A-2), (B-1), (B-2) and (B-3) hold. Then the MLE θ̂z(i),n

defined by (2.9) is equivalence-class consistent, that is, the convergence (2.11)
holds for any θ� ∈ Θ.

4. Postponed proofs

4.1. Embedding into an observation-driven model of order (1, 1)

A simplifying and unifying step is to embed the general order case into the order
(1, 1) by augmenting the state space. Consider an ODM as in Definition 1. For
all u ∈ U and y ∈ Y, we denote by Ψ̃θ

u and Ψ̃θ
y the two Z → Z mappings defined

by

Ψ̃θ
u : z = z1:(p+q−1) �→

⎧⎨⎩
(
z2:p, ψ̃

θ〈u〉(z), z(p+2):(p+q−1), u
)

if q > 1(
z2:p, ψ̃

θ〈u〉(z)
)

if q = 1 ,
(4.1)
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Ψθ
y = Ψ̃θ

Υ(y) . (4.2)

We further denote the successive composition of Ψθ
y0
, Ψθ

y1
, ..., and Ψθ

yk
by

Ψθ〈y0:k〉 = Ψθ
yk

◦Ψθ
yk−1

◦ · · · ◦Ψθ
y0

. (4.3)

Note in particular that ψθ〈y0:k〉 defined by (2.8) with the recursion (2.7) can be
written as

ψθ〈y0:k〉 = Πp ◦Ψθ〈y0:k〉 , (4.4)

Conversely, we have, for all k ≥ 0 and y0:k ∈ Yk+1,

Ψθ〈y0:k〉(z) =
((

ψθ〈y0:j〉(z)
)
k−p<j≤k

, u(k−q+2):k

)
, (4.5)

where we set uj = Πp+q+j (z) for −q < j ≤ −1 and uj = Υ(yj) for 0 ≤ j ≤ k
and use the convention ψθ〈y0:j〉(z) = Πp−j (z) for −p < j ≤ 0. By letting
Zk = (X(k−p+1):k, U(k−q+1):(k−1)) (see (2.4)), Model (2.1) can be rewritten as,
for all k ∈ Z≥0,

Yk | Fk ∼ Gθ(Πp (Zk) ; ·),
Zk+1 = Ψθ

Yk
(Zk).

(4.6)

By this representation, the ODM(p, q) is thus embedded in an ODM(1, 1).
This in principle allows us to apply the same results obtained for the class
of ODMs(1, 1) in [15] to the broader class of ODMs(p, q). Not all but some con-
ditions written above for an ODM(p, q) indeed easily translate to the embedded
ODM(1, 1). Take for instance (A-4). By (3.5), (3.6) and (4.5), we have, for all
n ∈ Z>0, using the convention Lipθm = 1 for m ≤ 0,

sup
y∈Yn,z,z′∈Z2

δZ
(
Ψθ〈y〉(z),Ψθ〈y〉(z′)

)
δZ(v)

≤ 1{n<q} ∨
(

max
0≤j<p

Lipθn−j

)
. (4.7)

Hence the same assumption (A-4) will hold for the embedded ODM(1, 1). As an
ODM(1, 1), the bivariate process {(Zk, Yk) : k ∈ Z≥0} is a Markov chain on the
space (Z×Y,Z ⊗Y) with transition kernel Kθ satisfying, for all (z, y) ∈ Z×Y,
A ∈ Z and B ∈ Y ,

Kθ((z, y);A×B) =

∫
1A×B(Ψ

θ
y(z), y

′) Gθ(Πp (z) ; dy
′). (4.8)

Remark 9. Note that (A-1) is equivalent to saying that the transition kernel
Kθ of the complete chain admits a unique invariant probability measure πθ on
Z × Y. Moreover the resulting πθ

X and πθ
Y can be obtained by projecting πθ on

any of its X component and any of its Y component, respectively.

Note also that, by itself, the process {Zk : k ∈ Z≥0} is a Markov chain on
(Z,Z) with transition kernel Rθ defined by setting, for all z ∈ Z and A ∈ Z,

Rθ(z;A) =

∫
1A(Ψ

θ
y(z))G

θ(Πp (z) ; dy). (4.9)
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4.2. Proof of Theorem 8

The scheme of proof of this theorem is somewhat similar to that of [15, Theo-
rem 2] which is dedicated to the ergodicity of ODM(1,1) processes. The main
difference is that we need to rely on assumptions involving iterates of kernels
such as (E-2), (A-4) and (A-8)(iv) below, to be compared with their counter-
parts (A-4), (A-7) and (A-8)(iv) in [15, Theorem 2]). Using the embedding
of Section 4.1, we will use the following conditions directly applying to the ker-
nel R of this embedding.

(E-1) The space (Z, δZ) is a locally compact and complete separable metric space.
(E-2) There exists a positive integer m such that the Markov kernel Rm is weak

Feller. Moreover, there exist (λ, β) ∈ (0, 1)×R≥0 and a measurable function
V : Z → R≥0 such that RmV ≤ λV +β and {V ≤ M} is a compact set for
any M > 0.

(E-3) The Markov kernel R admits a reachable point, that is, there exists z∞ ∈ Z
such that, for any z ∈ Z and any neighborhood N of z∞, Rm(z,N ) > 0 for
at least one positive integer m.

(E-4) There exists a Markov kernel R̄ on (Z2×{0, 1},Z⊗2⊗P({0, 1})), a Markov
kernel R̂ on (Z2,Z⊗2), measurable functions ᾱ : Z2 → [0, 1] and W : Z2 →
[1,∞) symmetric, and real numbers (D, ζ1, ζ2, ρ) ∈ (R+)

3× (0, 1) such that
for all v = (z, z′, u) ∈ X2 × {0, 1} and n ≥ 1,

1− ᾱ ≤ δZ ×W on Z2 , (4.10)

∀z ∈ Z, ∃γ > 0, sup {W (z, z′) : δZ(z, z
′) < γ} < ∞ , (4.11){

R̄(v; · × Z× {0, 1}) = R(z, ·) and

R̄(v;Z× · × {0, 1}) = R(z′, ·) ,
(4.12)

R̄(v; · × {1}) = ᾱ(z, z′) R̂((z, z′), ·) , (4.13)

R̂n((z, z′); δZ) ≤ DρnδZ(z, z
′) , (4.14)

R̂n((z, z′); δZ ×W ) ≤ Dρnδζ1Z (z, z′) W ζ2(z, z′) . (4.15)

Based on these conditions, we can rely on the two following results. The existence
of an invariant probability measure for R is given by the following result.

Lemma 11. Under (E-1) and (E-2), R admits an invariant distribution π;
moreover, πV < ∞.

Proof. By [45, Theorem 2], Assumption (E-2) implies that the transition kernel
Rm admits an invariant probability distribution denoted hereafter by πm. Let
π̃ be defined by, for all A ∈ Z,

π̃(A) =
1

m

m∑
k=1

πmRk(A).

Obviously, we have π̃R = π̃, which shows that R admits an invariant probability
distribution π̃. Now let M > 0. Then by Jensen’s inequality, we have for all



General-order observation-driven models 3373

n ∈ Z≥0,

π̃(V ∧M) = π̃Rnm(V ∧M) ≤ π̃((RnmV ) ∧M)

≤ λnπ̃(V ∧M) +
β

1− λ
∧M.

Letting n → ∞, we then obtain π̃(V ∧M) ≤ β
1−λ ∧M . Finally, by the monotone

convergence theorem, letting M → ∞, we get π̃V < ∞.

Proposition 12. Assume (E-1) (E-3) and (E-4). Then the Markov kernel R
admits at most one unique invariant probability measure.

Proof. This is extracted from the uniqueness part of the proof of [13, Theorem 6],
see their Section 3. Note that our Condition (E-3) corresponds to their Condition
(A2) and our Condition (E-4) to their condition (A3) (their α,Q, Q̄ andQ� being
our ᾱ, R, R̄ and R̂).

Hence it is now clear that the conclusion of Theorem 8 holds if we can apply
both Lemma 11 and Proposition 12. This is done according to the following
successive steps.

Step 1 Under (A-3), the metric (3.6) makes (Z, δZ) locally compact, complete
and separable, hence (E-1) holds true.

Step 2 Prove (E-2): this is done in Lemma 13 using (A-3), (A-5), (A-6) and the
fact that, for all y ∈ Y, ψ〈y〉 is continuous on Z, as a consequence of
Lip1 < ∞ in (A-4).

Step 3 Prove (E-3): this is done in Lemma 14, using (A-3), (A-4) and (A-7).
Step 4 Define ᾱ and prove (4.10) and (4.11) in (E-4) with W as in (3.13): this

directly follows from Conditions (A-8)(ii) and (A-8)(iii).
Step 5 Provide an explicit construction for R̄ and R̂ satisfying (4.12) and (4.13)

in (E-4): this is done in Lemma 15 using (A-8)(i);
Step 6 Finally, we need to establish the additional properties of this R̂ required

in (E-4), namely, (4.14) and (4.15). This will be done in the final part
of this section using the additional Lemma 16.

Let us start with Step 2.

Lemma 13. If for all y ∈ Y, ψ〈y〉 is continuous on Z, then (A-5) and (A-6)
imply (E-2).

Proof. We first show that R is weak Feller, hence so is Rm, for any m ≥ 1. Let
f : Z → R be continuous and bounded. For all z = (x(−p+1):0, u(−q+1):(−1)) ∈ Z,
Rf(z) is given by

Ez [f(Z1)] = Ez

[
f(x(−p+2):0, X1, u(−q+2):(−1),Υ(Y0))

]
=

∫
f(x(−p+2):0, ψ〈y〉(z), u(−q+2):(−1),Υ(y)) G(x0; dy) .

Let us define f̃ : Z× Y → R by setting, for y ∈ Y and z as above,

f̃(z, y) = f(x(−p+2):0, ψ〈y〉(z), u(−q+2):(−1),Υ(y)) .
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Further, we define F̃ : Z× X → R by setting, for all z ∈ Z and x ∈ X,

F̃ (z, x) =

∫
f̃(z, y) G(x; dy) .

Hence, with these definitions, we have, for all z ∈ Z, Rf(z) = F̃ (z,Πp (z)), and

it is now sufficient to show that F̃ is continuous. We write, for all z, z′ ∈ Z and
x, x′ ∈ X, F̃ (z′, x′)− F̃ (z, x) = A(z, z′, x′) +B(z, x, x′) with

A(z, z′, x′) =

∫ (
f̃(z′, y)− f̃(z, y)

)
G(x′; dy)

B(z, x, x′) =

∫
f̃(z, y) (G(x′; dy)−G(x; dy)) .

Since z �→ f̃(z, y) is continuous for all y, we have A(z, z′, x′) → 0 as (z′, x′) →
(z, x) by (3.7) and dominated convergence. We have B(z, x, x′) → 0 as x′ → x,
as a consequence of (A-5)(a) or of (A-5)(b). Hence F̃ is continuous and we have
proved that Rm is weak Feller for all m ∈ Z>0.

We now show that we can find m ∈ Z>0, λ ∈ (0, 1) and β > 0 such that
RmV ≤ λV + β with V : Z → R≥0 defined by (3.9). We have, for all n ≥ q,

RnV (z) = Ez

[
max
0≤k<p

VX(Xn−k)
∨

max
1≤k<q

VU(Un−k)

|GVY|VX

]
≤

∑
0≤k<p

Ez [VX(Xn−k)] + |GVY|−1
VX

∑
1≤k<q

Ez [VY(Yn−k)]

≤ 2
∑

0≤k<p∨q

Ez [VX(Xn−k)] ,

where we used that VU(Un−k) = VU(Υ(Yn−k)) = VY(Yn−k) and Ez [VY(Yn−k)] =
Ez [GVY(Xn−k)] ≤ |GVY|VX

Ez [VX(Xn−k)], which is valid for n − k ≥ 0. Now,
by (3.8), for any λ ∈ (0, 1), we can find m ∈ Z≥0 and M > 0 such that
Ez [VX(Xm−k)] ≤ λ(V (z)+M)/(2(p∨q)) for 0 ≤ k < p∨q. Hence RmV ≤ λV +β
for β = Mλ.

We now proceed with Step 3.

Lemma 14. (A-3), (A-4) and (A-7) imply (E-3).

Proof. We separate the proof in two cases: first we assume (A-7)(a) and secondly,
we assume (A-7)(b).
Case 1: Assume (A-7)(a). In this case, we pick y0 ∈ Y as in (A-7)(a) Set yk = y0
and uk = Υ(y0) for all k ∈ Z≥0. By Lemma 18, we have that ψθ〈y0:n〉(z) =

ψ̃θ〈u0:n〉(z) converges to the same x∞ in X, for all z ∈ Z. Now set z∞ =
(x∞, . . . , x∞,Υ(y0), . . . ,Υ(y0)) ∈ Z. Then, for any z ∈ Z, by (4.5) and (3.6), for
any δ > 0, there exists m ∈ Z>0 such that δZ(z∞,Ψθ〈y0:m〉(z)) < δ and thus

Rm+1 (z; {z′ ∈ Z : δZ(z∞, z′) < δ}) ≥ Pz(Zm+1 = Ψθ〈y0:m〉(z))
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≥ Pz(Yk = y0, ∀k ∈ {0, . . . ,m})

=

m∏
k=0

Gθ
(
ψθ〈y0:k〉(z); {y0}

)
.

By (A-7) (a) and (3.10), we have Gθ(x; {y0}) > 0 for all x ∈ X, and we conclude
that z∞ is a reachable point.
Case 2: Assume (A-7)(b). Since (U, δU) is assumed to be separable in (A-3),
there exists u0 ∈ U such that

for all δ > 0, ν ({y ∈ Y : δU(u0,Υ(y)) < δ}) > 0 . (4.16)

For any u ∈ U and any integers k ≤ l, in the following, we denote by [u]k:l
the constant sequence uk:l in Ul−k+1 defined by uj = u for all k ≤ j ≤ l.

By Lemma 18, we have that ψ̃θ〈[u0]0:n〉(z) converges to the same x∞ in X, for
all z ∈ Z. And by (4.1), setting z∞ = (x∞, . . . , x∞, u0, . . . , u0) ∈ Z, we have
that, for all z ∈ Z,

lim
m→∞

Ψ̃θ〈[u0]0:m〉(z) = lim
m→∞

Ψ̃u0 ◦ · · · ◦ Ψ̃u0︸ ︷︷ ︸
m times

(z) = z∞ in Z. (4.17)

Now pick z ∈ Z and δ > 0. By (4.17), we can choose an integer m such that

δZ(z∞, Ψ̃θ〈[u0]0:m〉(z)) < δ/2 .

Moreover, using (A-7) (b) and (4.1), we have that, for any m ∈ Z≥0,

u0:m �→ Ψ̃θ〈u0:m〉(z) is continuous on Um+1. Hence there exists δ′ > 0 such
that, for all y0:m ∈ Ym+1, δU(u0,Υ(yk)) < δ′ for all 0 ≤ k ≤ m implies
δZ(Ψ̃

θ〈[u0]0:m〉(z), Ψ̃θ〈Υ⊗(m+1)(y0:m)〉(z)) < δ/2, which with the previous dis-
play gives that

∀0 ≤ k ≤ m, δU(u0,Υ(yk)) < δ′ =⇒ δZ(z∞, Ψ̃θ〈Υ⊗(m+1)(y0:m)〉(z)) < δ .

Thus we have

Rm+1 (z; {z : δZ(z∞, z) < δ}) ≥ Pz(δU(u0,Υ(Yk)) < δ′, 0 ≤ k ≤ m) .

Applying (4.6) and then (4.16) with (3.10), we have, for all � ≥ 1,

Pz(δU(u0,Υ(Y�)) < δ′|F�) = Gθ(Πp (Z�) ; {y : δU(u0,Υ(y)) < δ′}) > 0 .

It follows that for all � = m,m−1, . . . , 1, conditioning on F�, Pz(δU(u0,Υ(Yk)) <
δ′, 0 ≤ k ≤ �) = 0 implies Pz(δU(u0,Υ(Yk)) < δ′, 0 ≤ k ≤ �− 1) = 0. Since
Pz(δU(u0,Υ(Y0)) < δ′) = Gθ(Πp (z) ; {y : δU(u0,Υ(y)) < δ′}) > 0, we conclude
that Rm+1 (z; {z : δZ(z∞, z) < δ}) > 0 and z∞ is a reachable point.

We now proceed with Step 4. Let us define ᾱ = α◦Π⊗2
p . By (3.6) and (3.13),

we have W ≥ WX ◦Π⊗2
p and δZ ≥ δX ◦Π⊗2

p . Hence (4.10) follows from (A-8)(iii).
Condition (4.11) directly follows from (A-8)(ii) and the definition of W in (3.13).

We now proceed with Step 5.
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Lemma 15. Let α : X2 → [0, 1] be a measurable function and G be a Markov
kernel on X2×Y satisfying (A-8)(i) and define the Markov kernel R̂ on (Z2,Z⊗2)
by

R̂f(v) =

∫
Y

f ◦Ψ⊗2
y (v) G

(
Π⊗2

p (v); dy
)
. (4.18)

Then one can define a Markov kernel R̄ on (Z2×{0, 1},Z⊗2⊗P({0, 1})) which
satisfies (4.12) and (4.13).

Proof. We first define a probability kernel H̄ from Z2 to Y⊗2 ⊗ P({0, 1}) Let
(z, z′) ∈ Z2 and set x = Πp (z) and x′ = Πp (z

′). We define H̄((z, z′); ·) as
the distribution of (Y, Y ′, ε) drawn as follows. We first draw a random variable
Ȳ taking values in Y with distribution G(x, x′; ·). Then we define (Y, Y ′, ε) by
separating the two cases, α(x, x′) = 1 and α(x, x′) < 1.

- Suppose first that α(x, x′) = 1. Then by (A-8)(i), we have G(x; ·) =
G(x′; ·) = G(x, x′; ·). In this case, we set (Y, Y ′, ε) = (Ȳ , Ȳ , 1).

- Suppose now that α(x, x′) < 1. Then, using (3.12), the func-
tions (1 − α(x, x′))−1

[
g(x; ·)− α(x, x′)g(x, x′; ·)

]
and (1 −

α(x, x′))−1
[
g(x′; ·)− α(x, x′)g(x, x′; ·)

]
are probability density func-

tions with respect to ν and we draw Λ and Λ′ according to these two
density functions, respectively. We then draw ε in {0, 1} with mean
α(x, x′) and, assuming Ȳ , Λ, Λ′ and ε to be independent, we set

(Y, Y ′) =

{
(Ȳ , Ȳ ) if ε = 1,

(Λ,Λ′) if ε = 0.

One can easily check that the kernel H̄ satisfies the following marginal condi-
tions, for all (z, z′) ∈ Z2 and B ∈ Y ,{

H̄((z, z′);B × Y × {0, 1}) = G(Πp (z) ;B) ,

H̄((z, z′);Y ×B × {0, 1}) = G(Πp (z
′) ;B),

(4.19)

Define the Markov kernel R̄ on (Z2 × {0, 1},Z⊗2 ⊗P({0, 1})) by setting for all
(z, z′, u) ∈ Z2 × {0, 1} and A ∈ Z⊗2 ⊗ P({0, 1}),

R̄((z, z′, u);A) =

∫
1A (Ψy(z),Ψy′(z′), u1) H̄((z, z′); dy dy′ du1).

Then (4.19) and (4.9) immediately gives (4.12). To conclude the proof we
check (4.13). We have, for all v = (z, z′, u) ∈ Z2 × {0, 1} and A ∈ Z⊗2,

R̄(v;A× {1}) = E
[
1A

(
Ψy(Ȳ ),Ψy′(Ȳ )

)
1{ε=1}

]
,

where Ȳ and ε are independent and distributed according to G(Π⊗2
p (z, z′); ·)

and a Bernoulli distribution with mean ᾱ(z, z′). This, and the definition of R̂
in (4.18) lead to (4.13).
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In order to achieve Step 6, we rely on the following result which is an adap-
tion of [13, Lemma 9].

Lemma 16. Assume that there exists (�,D1, �) ∈ (0, 1)×R≥0 × Z>0 such that
for all (z, z′) ∈ Z2,

R̂ ((z, z′); {δZ ≤ D1δZ(z, z
′)}) = 1, (4.20)

R̂� ((z, z′); {δZ ≤ �δZ(z, z
′)}) = 1, (4.21)

and that W : Z2 → R≥0 satisfies

lim
ζ→∞

lim sup
n→∞

1

n
ln sup

v∈Z2

R̂nW (v)

W ζ(v)
≤ 0 , (4.22)

Then, (4.14) and (4.15) hold.

Proof. Note that (4.20) implies, for any non-negative measurable function f on

Z2, R̂(δZ × f) ≤ D1

(
δZ × R̂f

)
and (4.21) implies R̂�(δZ × f) ≤ � (δZ × R̂�f).

Hence for all n ≥ 1, writing n = k� + r, where r ∈ {0, . . . , �− 1} and k ∈ Z≥0,
we get, setting ρ′ = �1/�,

R̂n(δZ × f) ≤ Dr
1 �

k
(
δZ × R̂nf

)
≤

(
1 ∨D�−1

1

)
�−1 ρ′ n

(
δZ × R̂nf

)
.

Taking f ≡ 1, we get (4.14) for any ρ ∈ [ρ′, 1). To obtain (4.15), we take f = W
and observe that (4.22) implies that, for any δ > 1, there exists ζ > 0 such
that sup(R̂nW/W ζ) = O(δn). Choosing δ small enough to make ρ′δ < 1, we
get (4.15) with ρ = ρ′δ, ζ1 = 1 and ζ2 = ζ.

We finally conclude Step 6. By Lemma 16, it remains to check
Conditions (4.20) and (4.21), and (4.22). For all � ≥ 1, we have
R̂�

(
v;

{
Ψ〈y1:�〉⊗2(v) : y1:� ∈ Y�

})
= 1. Using (4.7), we thus get

R̂�

(
v; δZ ≤ δZ(v)

(
1{�<q} ∨ max

(�−p)+<m≤�
Lipm

))
= 1 ,

and (4.20) and (4.21) both follow from (A-4).
We now check (4.22). By (4.18) (3.11) and (3.13), for all n ≥ q and v ∈ Z2,

R̂nW (v) can be written as

R̂nW (v) = Êv

[
max
0≤k<p

WX(Xn−k, X
′
n−k)

∨
max
1≤k<q

WY(Yn−k) ∨WY(Y
′
n−k)

|GWY|WX

]

≤
∑

0≤k<p∨q

Êv

[
WX(Xn−k, X

′
n−k) +

WY(Yn−k) +WY(Y
′
n−k)

|GWY|WX

]
≤ 3

∑
0≤k<p∨q

Êv

[
WX(Xn−k, X

′
n−k)

]
,
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where we used, for n − k ≥ 0, Êv [WY(Yn−k)] = Êv

[
WY(Y

′
n−k)

]
=

Êv

[
GWY(Xn−k, X

′
n−k)

]
. We directly get that (iv) implies (4.22). As for the

two conditions in (v), the first one implies that, for any ρ ∈ (0, 1), there exist
m > 0 and β > 0 such that R̂mW ≤ ρW + β , and the second one that there
exist τ ≥ 1 and C > 0 such that R̂rW ≤ CW τ for all r = 0, . . . ,m − 1. Com-
bining the two previous bounds, we obtain, for all n = mk + r with k ∈ Z≥0

and 0 ≤ r < m,

R̂nW ≤ ρkR̂rW + β/(1− ρ) ≤ ρk CW τ + β/(1− ρ) ≤ Cm W τ ,

where Cm is a positive constant, not depending on n. Hence we obtain (4.22)
and the proof is concluded.

4.3. Proof of Theorem 10

We apply [15, Theorem 1] to the embedded ODM(1,1) with hidden variable
space Z derived in Section 4.1. Note that our Conditions (A-1) and (A-2) yield
their Condition (A-1) and (A-2) on the embedded model with

V̄ (x) = max {VX(xk) : 1 ≤ k ≤ p} , x = x1:p ∈ Xp .

Let us briefly check that (B-2), (B-3) and (B-4) in [15] hold. Conditions (B-2)
and (B-3) correspond to our (B-1) and (B-2), noting, for the latter one, that ψθ

y

here corresponds to the Ψθ
y defined in (4.2), inherited from the embedding. As

for (B-4) in [15], we have that (B-4)(i) and (B-4)(ii) corresponds to our (B-3)(i)
and (B-3)(ii), but with X1 in (B-4) replaced by Z1 = Xp−1×X1×Yq−1 with the
latter X1 as in (B-3). Also our condition (A-4), by Lemma 17 and (4.7) imply
(B-4)(iii) for some � ∈ (0, 1) by setting ψ̄(z) = C δZ(z

(i), z) for some C > 0.
This ψ̄ is locally bounded, hence (B-4)(iv) holds. Condition (B-4)(v) follows (up
to a multiplicative constant) from (B-3)(iii) by observing that, z(i) has constant
first p entries and constant q − 1 last entries,

ψ̄(Ψθ
y(z

(i))) = C
(
δX(x

(i)
1 , ψθ〈y〉(z(i))) ∨ δU(u

(i)
1 ,Υ(y))

)
.

The remaining conditions (vi), (vii) and (viii) of (B-2) follow directly
from (3.16), (v) and (vi) in (B-3). All the conditions of [15, Theorem 1] are
checked and this result gives that, for all θ, θ� ∈ Θ, P̃θ� -a.s., pθ(y|Y−∞:0) de-
fined as in (3.1) is well defined for all y ∈ Y, that, if θ = θ�, it is the density of Y1

given Y−∞:0 with respect to ν, and also that the MLE θ̂z(i),n satisfies (3.3) with
Θ� defined by (3.2). Finally, by [16, Theorem 3], we also obtain that Θ� = [θ�]
and the proof is concluded.

4.4. Proof of Theorem 4

We prove (i), (ii) and (iii) successively.



General-order observation-driven models 3379

Proof of (i). We apply Theorem 8 with VX(x) = eτ |x| for some arbi-
trary τ > 0. Note that Remark 2(1) gives (I-1), which, by Remark 6(2),
gives (A-4). Remark 6(5) gives (A-5), and (A-7)(a) is trivial in this example.
Hence, it only remains to show that (A-6), and (A-8) hold.

We start with (A-6), with VX(x) = eτ |x|. We can further set VU(u) = eτ |u|,
hence VY(y) = eτ | ln(1+y)| and, by Lemma 19, we then have GVY(x) ≤ 2e(1+x+)τ

so that |GVY|VX
≤ 2eτ . With these definitions, (3.9) leads to

V (z) ≥ (2eτ )
−1

eτ |z|∞ , z ∈ Z , (4.23)

where |z|∞ denotes the max norm of z ∈ R
p+q−1. Now, to bound Ez[VX(Xn)] as

n grows, we see VX(Xn) as e
τ |λ(Zn)| with the specific λ = Πp and, for any linear

form λ on Z, we look for a recursion relation applying to

Ez

[
eτ |λ(Z1)|

]
= E

[
eτ |λ̃z(ln(1+V ))|

]
,

where V ∼ P(eΠp(z)) and, for all z = (x(−p+1):0, y(−q+1):(−1)), λ̃z : R → R is
defined by

λ̃z(y0) = λ(x(−p+2):0, ψ〈y0〉(z), y(−q+1):(−1), y0) . (4.24)

Observing that λ̃z is an affine function, of the form λ̃z(y) = ϑ0 + ϑy, we can
apply Lemma 19 with ζ = x0 (and the trivial bound |ϑ0| ∨ |ϑ0 + ϑζ+| ≤ |ϑ0| ∨
|ϑ0 + ϑζ|) and obtain that

Ez

[
eτ |λ(Z1)|

]
≤ c eτ(|λ◦Ψ̂〈0〉(z)|∨|λ◦Ψ̂〈1〉(z)|) ≤ c

[
eτ|λ◦Ψ̂〈0〉(z)| + eτ|λ◦Ψ̂〈1〉(z)|

]
,

where we set c = 2eτω+b1 and, for w = 0, 1 and all z ∈ Z, Ψ̂〈w〉(z) is defined by

Ψ̂〈w〉(z) = (x(−p+2):0, x1, y(−q+2):−1, y0) with

x−p+k = Πk (z) for 1 ≤ k ≤ p ,

y−q+k = Πp+k (z) for 1 ≤ k < q ,

u0 = wx0 and u1−k = Υ(y1−k) for 1 < k < q ,

x1 =

p∑
k=1

ak x1−k +

q∑
k=1

bk uk .

Defining for all w = w0:n−1 ∈ {0, 1}n, Ψ̂〈w〉 = Ψ̂〈wn−1〉 ◦ . . . Ψ̂〈w0〉, we get

Ez[VX(Xn)] ≤ cn
∑

w∈{0,1}n

eτ|Πp◦Ψ̂〈w〉(z)| . (4.25)

Now observe that, for all w = w0:n+q−1 ∈ {0, 1}n+q, we can define Πp ◦
Ψ̂〈w0:(n+q−1)〉(z) as xn+q obtained by adding to the previous recursive equa-
tions, for 1 ≤ k < n+ q,

uk = wkxk and xk+1 =

p∑
j=1

aj xk+1−j +

q∑
j=1

bj uk+1−j .
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Note that, in this recursion, we can replace uk+1−j by wk+1−jxk+1−j for k +
1 − j ≥ 0, hence xq:(n+q) satisfies the recursion (2.13) and it follows that Πp ◦
Ψ̂〈w0:(n+q−1)〉(z) can be expressed as

ψ̂〈wq:(n+q−1)〉
((

Πp−(�−q)+

(
Ψ̂〈w0:(q−�)+〉(z)

))
1≤�≤p∨q

)
.

Hence Condition (2.14) implies that, for all z ∈ Z,

lim
n→∞

sup
{∣∣∣Πp ◦ Ψ̂〈w〉(z)

∣∣∣ : w ∈ {0, 1}n
}
= 0 .

By linearity of z �→ Ψ̂〈w〉(z), it follows that

lim
n→∞

sup
{
|z|−1

∞

∣∣∣Πp ◦ Ψ̂〈w〉(z)
∣∣∣ : w ∈ {0, 1}n, z ∈ Z \ {0}

}
= 0 . (4.26)

Hence using (4.25), we finally obtain for a positive sequence {ρn : n ∈ Z≥0},

Ez[VX(Xn)] ≤ (2c)n eτ ρn |z|∞ , with lim
n→∞

ρn = 0 ,

which, with (4.23), leads to, for all z ∈ Z and M > 0,

Ez [VX(Xn)]

M + V (z)
≤ (2c)n min

(
M−1 eτ ρn |z|∞ , (2eτ )

−1
eτ (ρn−1) |z|∞

)
.

Let C > 0 be arbitrarily chosen. Using the first term and the second term in
this min for |z|∞ ≤ C and |z|∞ > C respectively, we get that, for any n such
that ρn < 1,

lim sup
M→∞

sup
z∈Z

Ez [VX(Xn)]

M + V (z)
≤ (2c)n (2eτ )

−1
eτ (ρn−1)C → 0 as C → ∞ .

Using that {ρn : n ∈ Z≥0} converges to 0, this holds for n large enough and we
get (3.8), and (A-6) holds.

We now turn to the proof of (A-8). We can apply Lemma 9 with C = R = X
and S = {1}, μ being the Dirac mass at point 1. For all (x, y) ∈ X × Y, let

j(x) = e−ex and h(x;u) = ex(eu−1)

(eu−1)! , which h satisfies (H’-1). Hence Lemma 9

gives that (A-8)(i) and (3.14) hold with

α(x, x′) =
e−ex∨x′

e−ex∧x′ = e
−

∣∣∣ex−ex
′ ∣∣∣

and φ(x, x′) = x ∧ x′ , x, x′ ∈ X .

Now for all x, x′ ∈ X, we have

1− α(x, x′) = 1− e
−

∣∣∣ex−ex
′ ∣∣∣ ≤ ∣∣∣ex − ex

′
∣∣∣ ≤ e|x|∨|x′| |x− x′| .

We thus obtain (A-8)(iii) by setting WX(x, x
′) = e|x|∨|x′|, and (A-8)(ii) also

follows by setting WU(y) = e|y|. Since WU is VU with τ = 1, we already saw
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that GWY(x) ≤ 2e1+x+ , hence |WY ◦ φ|WX
≤ 2e, and (3.13) leads to, for all z,

z′ in Z,
W (z, z′) ≥ (2e)−1 e|z|∞∨|z′|∞ . (4.27)

It now remains to prove either (A-8)(iv) or (A-8)(v), which both involve

Êz [WX(Xn, X
′
n)]. We proceed as previously when we bounded Ez

[
eτ |λ(Z1)|

]
.

Let τ ≥ 1. For any linear function λ : Z2 → Z2, we have, for all v = (z, z′) ∈ Z2,

Êv

[
eτ |λ(Z1)|∨|λ(Z′

1)|
]
≤ Êv

[
eτ |λ(Z1)|

]
+ Êz

[
eτ |λ(Z

′
1)|

]
= E

[
eτ|λ̃z(ln(1+V ))|

]
+ E

[
eτ|λ̃z′ (ln(1+V ))|

]
,

where V ∼ P(eφ◦Π
⊗2
p (v)) and λ̃z is defined by (4.24). By definition of φ above,

we have φ◦Π⊗2
p (v) ≤ Πp (z) ,Πp (z

′). Hence Lemma 19 with ζ = φ◦Π⊗2
p (v) and

ζ ′ = Πp (z) and Πp (z
′) successively, we obtain, similarly as before for bounding

Ez

[
eτ |λ(Z1)|

]
, that for all v = (z, z′) ∈ Z2,

Êv

[
eτ(|λ(Z1)|∨|λ(Z′

1)|)
]
≤ c

∑
z′′=z,z′

∑
w=0,1

eτ|λ◦Ψ̂〈w〉(z′′)|

≤ 2c
∑

w=0,1

eτ(|λ◦Ψ̂〈w〉(z)|∨|λ◦Ψ̂〈w〉(z′)|) . (4.28)

Taking λ = Πp, and observing that Πp ◦ Ψ̂〈w〉 is a linear form for w = 0, 1, we

get, setting c0 = maxw=0,1 sup|z|∞≤1 |Πp ◦ Ψ̂〈w〉(z)|, for all v = (z, z′) ∈ Z2,

Êv [W
τ
X (X1, X

′
1)] ≤ 4c eτ c0 |v|∞ with |v|∞ := |z|∞ ∨ |z′|∞ . (4.29)

Thus, with (4.27), the second condition of (A-8)(v) holds with τ ′ = τ(c0 ∨ 1).
To conclude, it is now sufficient to show that the first condition of (A-8)(v) also
holds. Iterating (4.28) and taking τ = 1 and λ = Πp, we thus get, for all n ∈ Z≥0

and v = (z, z′) ∈ Z2,

Êv [WX(Xn, X
′
n)] = Êv

[
e|λ(Zn)|∨|λ(Z′

n)|
]

≤ (4c)n max
{
e|Πp◦Ψ̂〈w〉(z)|∨|Πp◦Ψ̂〈w〉(z′)| : w ∈ {0, 1}n

}
.

Applying (4.26) and (4.27), we get that, for all v ∈ Z2,

Êv [WX(Xn, X
′
n)]

M +W (v)
≤ (4c)n min

{
eρn |v|∞

M
, (2e) e(ρn−1) |v|∞

}
,

where {ρn : n ∈ Z≥0} is a positive sequence converging to 0. We now proceed
as for proving (A-6) previously: the first term in the min tends to 0 as M → ∞
uniformly over |v|∞ ≤ C for any C > 0, while, if ρn < 1, the second one tends
to zero as |v|∞ → ∞. Hence, for n large enough, we have

lim
M→∞

sup
v∈Z2

Êv [WX(Xn, X
′
n)]

M +W (v)
= 0 ,

and (A-8)(v) follows, which concludes the proof.
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Proof of (ii). We apply Theorem 10. We have already shown that (A-4), (A-1)
and (A-2) hold in the proof of Assertion (i), with VX(x) = eτ |x| for any τ > 0.
Assumptions (B-1) and (B-2) obviously hold for the log-linear Poisson GARCH
model (see Remark 7 for the second one). It now only remains to show that,
using VX as above, (B-3) is also satisfied. We set X1 = X which trivially sat-
isfies (B-3)(i). Condition (B-3)(ii) is also immediate (see Remark 8). Next, we
look for an adequate φ̄, h and C ≥ 0 so that (iii) (iv) (v) and (vi) hold in (B-3).
We have, for all θ ∈ Θ and (x, x′, y) ∈ R

2 × Z≥0,∣∣ln gθ (x; y)− ln gθ (x′; y)
∣∣ ≤ |x− x′| ex∨x′

y

≤ |x− x′| e
∣∣∣x−x

(i)
1

∣∣∣∨∣∣∣x′−x
(i)
1

∣∣∣
y ex

(i)
1 .

We thus set h(u) = ex
(i)
1 u, C = 1 and φ̄(y) = A + B y for some adequate non-

negative A and B so that (iii) (using Remark 7 and Υ(y) = ln(1 + y) ≤ y), (iv)
and (v) follow. Then we have Gθφ̄(x) ≤ A+B ex � VX, provided that we chose
τ ≥ 1. This gives (vi) and thus (B-3) holds true, which concludes the proof.

Proof of (iii). We apply [17, Theorem 17] in which:

- Condition (A-1) corresponds to our Assumption (A-1) shown in Point (i)
above;

- Condition (L-3) corresponds to checking that∫
ln+(ln(1 + y)) πθ

Y(dy) < ∞ . (4.30)

We already checked that GθVY � VX with VY(y) = (1 + y)τ , implying∫
(1 + y)τπθ

Y(dy) < ∞. Hence (4.30) holds.
- Condition (SL-1) is the same as our Condition (I-1), which were already
proved for showing Point (i) above;

- Conditions (SL-2) and (SL-3) are immediately checked for the log-linear
Poisson GARCH model;

- Condition (SL-4) is directly assumed in (iii);

Thus [17, Theorem 17] gives that [θ�] reduced to {θ�} and Assertion (iii) follows
from (ii).

4.5. Proof of Theorem 5

We prove (i), (ii) and (iii) successively. We take ν is the counting measure on
Z≥0 so that we have

gθ(x; y) =
Γ(r + y)

y ! Γ(r)

(
1

1 + x

)r (
x

1 + x

)y

. (4.31)

Proof of (i). As for the Log-linear Poisson GARCH(p, q), we apply Theorem 8
this time with VX(x) = x. Note that, since ak, bk ≥ 0 for all k, Condition (2.20)
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implies
∑p

k=1 ak < 1, which implies (I-1) and thus (A-4) by Remark 6(2). Also as
for the log-linear Poisson Garch(p, q) case, Remark 6(5) gives (A-5), and (A-7)(a)
is trivially satisfied. Hence, again, we only have to show that (A-6), and (A-8)
hold. Here Υ is the identity mapping.

We start with (A-6), with VX(x) = x. We can further set VY(y) = y since, we
then have GVY(x) = rVX(x) so that |GVY|VX

= r. With these definitions, (3.9)
leads to

V (z) ≥ (1 + r)
−1 |z|∞, z ∈ Z . (4.32)

On the other hand, we have that, for all z = (x(−p+1):0, u(−q+1):(−1) ∈ Z =

R
p+q−1
≥0 and all n = 1, 2, . . . ,

Ez[VX(Xn)] = Ez[Xn] = ω +

p∑
k=1

akEz[Xn−k] +

q∑
k=1

bkEz[Yn−k] ,

where, in the right-hand side of this equation, if n− k ≤ 0, Ez[Xn−k] should be
replaced by xn−k and if n− k ≤ −1, Ez[Yn−k] should be replaced by un−k. By
definition of G, Ez[Yn−k] = rEz[Xn−k]. Hence, denoting xn = Ez[Xn] we get
that the sequence {xk : k ∈ Z≥0} satisfies the recursion

xn = ω +

p∨q∑
k=1

ckxn−k , n > p ∨ q ,

where here ck = ak + r bk ≥ 0 for k = 1, . . . , p ∧ q, ck = ak if q < k ≤ p and
ck = rbk if p < k ≤ q. Moreover we can clearly find a constant C only depending
on θ such that

∣∣x1:(p∨q)

∣∣
∞ ≤ C(1+ |z|∞). Then applying Lemma 20 and (4.32),

we get that there exists C ′ > 0 and ρ ∈ (0, 1) such that, for all n ≥ 1,

Ez[Xn+1] ≤ C ′ ρn (1 + V (z)) .

Condition (A-6) follows.
We conclude with the proof of (A-8). Let us apply Lemma 9 with C =

(0,∞) = X and S = {1}, μ being the Dirac mass at point 1, j(x) = (1 + x)−r

and h(x; y) = Γ(r+y)
y ! Γ(r)

(
x

1+x

)y

, which satisfies (H’-1). This leads to α and φ sat-

isfying (A-8)(i) and (3.14) by setting, for all x, x′ ∈ R≥0

α(x, x′) =

(
1 + x ∧ x′

1 + x ∨ x′

)r

and φ(x, x′) = x ∧ x′.

Next, for all (x, x′) ∈ Z2, we have

1− α(x, x′) = 1−
(
1 + x ∧ x′

1 + x ∨ x′

)r

≤ (1 ∨ r) |x− x′|

We thus obtain (A-8)(iii) by setting WX(x, x
′) = (1∨r). All the other conditions

of (A-8) are trivially satisfied in this case, taking WU ≡ 1.
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Proof of (ii). We apply Theorem 10. We have already shown that (A-4), (A-1)
and (A-2) hold in the proof of Assertion (i), with VX(x) = x. Assumption (B-1)
follows from (4.31), and (B-2) from Remark 7. It now only remains to show that,
using VX as above, (B-3) is also satisfied.

Since Θ is compact, we can find ω > 0 and r ∈ Z≥0 such that ω ≥ ω and r ≤ r
for all θ = (ω, a1:p, b1:q, r) ∈ Θ. We set X1 = [ω,∞) which then satisfies (B-3)(i).
Condition (B-3)(ii) follows from Remark 8.

Next, we look for an adequate φ̄, h and C ≥ 0 so that (iii) (iv) (v) and (vi)
hold in (B-3). For all θ ∈ Θ, (x, x′) ∈ X1 and y ∈ Z≥0, we have∣∣ln gθ(x; y)− ln gθ(x′; y)

∣∣ = |(r + y)[ln(1 + x′)− ln(1 + x)] + y[lnx− lnx′]|
≤

[
(r + y)(1 + ω)−1 + y ω−1

]
|x− x′|

≤
[
r + 2y ω−1

]
|x− x′| .

We set C = 0, h(s) = s and φ̄(y) = A+ B y for some adequate non-negative A
and B so that (iii) (using Remark 7 and Υ(y) = y), (iv) and (v) follow. Then
we have Gθ ln+ φ̄(x) ≤ A + B r x � VX. This gives (vi) and thus (B-3) holds
true, which concludes the proof.

Proof of (iii). The proof of this point is similar to the proof of Theorem 4(iii)
in Section 4.4, except that Condition (4.30) is replaced by∫

ln+(|y|) πθ
Y(dy) < ∞ . (4.33)

We already checked that GθVY � VX with VY(y) = y, implying
∫
y πθ

Y(dy) < ∞.
Hence (4.33) holds and the proof is concluded.

4.6. Proof of Theorem 7

The following remark about Assumption (L-4) will be useful.

Remark 10. If the Markov kernel L admits a kernel density � with respect to
some measure νL on Borel sets of Rr as in (L-1), then

dTV(L(ξ, ·), L(ξ′, ·)) =
1

2

∫
|�(ξ; ξ′′)− �(ξ′; ξ′′)| νL(dξ′′)

= 1−
∫

(�(ξ; ξ′′) ∧ �(ξ′; ξ′′)) νL(dξ
′′) .

It follows that Assumption (L-4) is equivalent to assuming that there exist a
measurable function αL : R2r → [0, 1] and a Markov kernel L on (Rr)2 ×B(Rr)
dominated by νL with kernel density � (ξ, ξ′; ξ′′) such that

(a) for all (ξ, ξ′, ξ′′) ∈ R3r,

�(ξ; ξ′′) ∧ �(ξ′; ξ′′) ≥ αL(ξ, ξ
′)� (ξ, ξ′; ξ′′) .
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(b) there exists a constant M ≥ 1 such that for all (ξ, ξ′) ∈ R
2r,

1− αL(ξ, ξ
′) ≤ M‖ξ − ξ′‖.

Obviously these two conditions imply (L-4). To see the converse implica-
tion, take αL(ξ, ξ

′) =
∫
Rr (�(ξ; ξ

′′) ∧ �(ξ′; ξ′′)) νL(dξ
′′) and � (ξ, ξ′; ξ′′) =

(�(ξ; ξ′′) ∧ �(ξ′; ξ′′)) /αL(ξ, ξ
′).

Proof of (i). As explained in Example 3, the PARX model can be cast into
a VLODM(p, q) and, to prove ergodicity, we can thus apply Theorem 8.
Hence we now need to check Conditions (A-3), (A-4), (A-5), (A-6), (A-7)
and (A-8). (A-3) always hold for a VLODM. (A-4) follows from (2.22) by Asser-
tion (i) in Lemma 21.

Let us check (A-5), by first verifying (3.7). Using the definition of the kernel G
(we drop θ from the notation Gθ since it does not depend on θ) in Example 3 b),
and using (L-1), G admits a kernel density g wrt ν := νZ≥0

⊗ νL, with νZ≥0

denoting the counting measure on Z≥0, given by

g(x̄; ȳ) = e−xx
y

y!
�(ξ; ξ′) , (x̄, ȳ) = ((x, ξ), (y, ξ′)) ∈ X̄× Ȳ. (4.34)

We set, for (x̄, x̄′) = ((x, ξ), (x′, ξ′)) ∈ X̄2

δX(x̄, x̄
′) = |x− x′|+ ‖ξ − ξ′‖. (4.35)

According to assumption (L-1)(ii), there exists δ > 0 such that∫
Rr sup‖ξ′−ξ‖≤δ h(ξ

′; ξ′′)νL(dξ
′′) < ∞. Thus, using the expression of g given

in (4.34),

∞∑
y=0

∫
Rr

sup {g((x′, ξ′); (y, ξ′′)) , δX((x
′, ξ′), (x, ξ)) ≤ δ} νL(dξ′′)

≤
∞∑
y=0

e−x+δ (x+ δ)y

y!

∫
Rr

sup
‖ξ′−ξ‖≤δ

{h(ξ′; ξ′′)}νL(dξ′′),

≤ e2δ
∫
Rr

sup
‖ξ′−ξ‖≤δ

{h(ξ′; ξ′′)}νL(dξ′′) < ∞,

which shows (3.7). Since L is weak-Feller by (L-2), (A-5)-(b) holds, and fi-
nally (A-5) is satisfied.

We now turn to checking (A-6). Define

VY(y, ξ) = VU ◦Υ(y, ξ) = VU(y, f1(ξ), . . . , fd(ξ), ξ) = y + VL(ξ),

VX(x, ξ) = x+ VL(ξ).

Then, using (L-3)-(iv) with n = 1 and h = VL,

GVY

VX
(x, ξ) =

x+ LVL(ξ)

x+ VL(ξ)
≤ x+ C�VL(ξ) + π(VL)

x+ VL(ξ)
≤ 1 ∨ (C�) + π(VL),
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so that GVY � VX. Moreover, {VX ≤ M} is compact for any M > 0, and so
is {VY ≤ M} since {VL ≤ M} is compact for any M > 0 by (L-3)-(ii). To
complete the proof of (A-6), it only remains to check (3.8). Recall that in this
model, Ūt = (Yt, f1(Ξt), . . . , fd(Ξt),Ξt). Noting that for all z ∈ Z = X̄p × Ūq−1,
Ez[Yt] = Ez[Xt] (see (2.21)), we have, using (L-3),

Ez[Xn] = Ez

[
ω +

p∑
i=1

aiXn−i +

q∑
i=1

biYn−i

]
+ Ln(fγ)(Ξ−1)

≤ ω +

p∑
i=1

aiEz[Xn−i] +

q∑
i=1

biEz[Xn−i]

+ C�n |fγ |VL
VL(Ξ−1) + πL(fγ) .

Defining ci as in Assertion (ii) of Lemma 21, we write this inequality as

Ez[Xn] ≤ ω +

p∨q∑
i=1

ciEz[Xn−i] + C�n |fγ |VL
VU(Πp+q(z)) + πL(fγ). (4.36)

Similarly, we have

Ez[VX(Xn,Ξn−1)] = Ez[Xn] + Ln(VL)(Ξ−1)

≤ Ez[Xn] + C�nVU(Πp+q(z)) + πL(VL). (4.37)

Combining (4.36) and (4.37) yields that, for any ε > 0, we can find M large
enough such that, with V defined by (3.9), and setting

un := sup
z∈Z

Ez[VX(Xn,Ξn−1)]

M + V (z)
, n ∈ Z≥0 ,

we have, for all n ∈ Z>0, un ∈ R≥0 and

un ≤
p∨q∑
i=1

ciun−i + C�n |GVY|VX
+

1

2
ε .

Thus, since � < 1, for n large enough,

un ≤
p∨q∑
i=1

ciun−i + ε .

It follows that, for any ε > 0,

lim sup
n→∞

lim
M→∞

sup
z∈Z

Ez[VX(Xn,Ξn−1)]

M + V (z)
≤ lim sup

n→∞
un ≤ ε

1−
∑p∨q

i=1 ci
,

where, in the second inequality, we used Lemma 20 with Assertion (ii)
of Lemma 21. We thus get (3.8).
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Let us now check (A-7). From (L-1) (i) and (4.34), we have (3.10). Since (A-7)-
(b) always holds for a VLODM, we obtain (A-7).

To complete the proof, it remains to check (A-8). In what follows, we set for
(x̄, x̄′) = ((x, ξ), (x′, ξ′)) ∈ X̄2 and ȳ = (y, ξ′′) ∈ Ȳ,

α(x̄, x̄′) = e−|x−x′|αL(ξ, ξ
′), g(x̄, x̄′; ȳ) = e−x∧x′ (x ∧ x′)y

y!
�(ξ, ξ′; ξ′′) , (4.38)

where αL is given by Remark 10 and take for WX : X̄2 → [1,∞) and WU : Ū →
R≥0 the constant functions equal to M , where M is the constant that appears
in Assumption (L-4) and Remark 10(b).

Using (4.34), we have, for all (x̄, x̄′) = ((x, ξ), (x′, ξ′)) ∈ X̄2 and ȳ = (y, ξ′′) ∈
Ȳ,

min{g(x̄; ȳ), g(x̄′; ȳ)} ≥ e−x∨x′ (x ∧ x′)y

y!
h(ξ; ξ′′) ∧ h(ξ′; ξ′′)

≥ e−|x−x′|e−x∧x′ (x ∧ x′)y

y!
αL(ξ, ξ

′)�(ξ, ξ′; ξ′′)

≥ α(x̄, x̄′)g(x̄, x̄′; ȳ),

where α and g are defined in (4.38). Then (A-8)-(i) holds. Moreover, since WX

and WU are constants, (A-8)-(ii) trivially holds. We now turn to (A-8)-(iii).
By (4.38), for all (x̄, x̄′) = ((x, ξ), (x′, ξ′)) ∈ X̄2,

1− α(x̄, x̄′) = 1− e−|x−x′|αL(ξ, ξ
′) ≤ 1 + e−|x−x′|(M‖ξ − ξ′‖ − 1)

≤ 1− e−|x−x′| + e−|x−x′|M‖ξ − ξ′‖ ≤ M(|x− x′|+ ‖ξ − ξ′‖),
(4.39)

where in the last inequality we have used 1 − e−|x−x′| ≤ |x − x′| ≤ M |x − x′|.
Plugging the definition of δX given in (4.35) into (4.39) shows (A-8)-(iii). Since
WX and WU are constants, we obtain that W defined in (A-8) is also constant
and therefore any of the two conditions (A-8)-(iv) or (A-8)-(v) trivially holds.

We have thus checked all the assumptions of Theorem 8 for the VLODM
of Example 3 and this concludes the proof of Assertion (i).

Proof of (ii). We apply Theorem 10. We have already shown that (A-4), (A-1)
and (A-2) hold in the proof of Assertion (i), with VX(x, ξ) = x + VL(ξ). Us-
ing (4.34) and the assumption (L-5)(i), we get (B-1) (here g does not depend on
θ). Assumption (B-2) always holds for a VLODM.

To conclude the proof of (ii), it thus remains to check (B-3). Since Θ is com-
pact, we can find ω > 0 such that ω ≥ ω for all θ = (ω, a1:p, b1:q, γ1:d) ∈ Θ. Then
we set X̄1 = [ω,∞)×Rr which is a closed subset of X̄ and for which (B-3)(i) holds
(with Y replaced by Ȳ and X1 by X̄1 since we deal with Example 3). (B-3)(ii)
holds as an immediate consequence of (4.34) and (L-5)(ii). In the VLODM case,
to meet (B-3)(iii), it suffices to have

φ̄(y, ξ) ≥ c0(1 + y + ‖ξ‖) , y ∈ Z≥0 , ξ ∈ R
r ,
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where c0 is a positive constant only depending on z(i). In the following, we
choose

φ̄(y, ξ) := (1 ∨ c0)
(
1 +

(
1 ∨ ω−1

)
y + φ̄L(ξ)

)
, y ∈ Z≥0 , ξ ∈ R

r , (4.40)

which, with (L-5)(iii), guaranties that the previous inequality holds, and
thus (B-3)(iii) is verified.

Let x̄, x̄′ ∈ X̄1 and ȳ ∈ Ȳ, that is x̄ = (x, ξ) and x̄′ = (x′, ξ′) with x, x′ ∈
[ω,∞) and ξ, ξ′ ∈ R

r,, and ȳ = (y, ξ′′) with y ∈ Z≥0 and ξ′′ ∈ R
r, we have,

by (4.34), ∣∣∣∣ln g(x̄; ȳ)

g(x̄′; ȳ)

∣∣∣∣ ≤ |x− x′|+ y
∣∣∣ln x

x′

∣∣∣+ ∣∣∣∣ln �(ξ; ξ′′)

�(ξ′; ξ′′)

∣∣∣∣
By (L-5)(iv) and using that | ln(x/x′)| ≤ ω−1|x− x′|, we obtain that∣∣∣∣ln g(x̄; ȳ)

g(x̄′; ȳ)

∣∣∣∣ ≤ |x− x′| (1 + ω−1y) + hL(‖ξ − ξ′‖) eCL (1+‖ξ‖∨‖ξ′) φ̄L(ξ
′′) .

Thus (B-3)(iv) holds with φ̄ defined as in (4.40) and for some well chosen c1 > 0
only depending on z(i)

h(u) = c1 (u+ hL(u)) and C = CL (4.41)

Obviously (B-3)(v) is then satisfied. We now observe that, with G given
by Example 3 b) and φ̄ given by (4.40), for all x ∈ R≥0 and ξ ∈ R

r, we have

G[ln+ φ̄](x, ξ) ≤ ln (1 ∨ c0) +
(
1 ∨ ω−1

)
x+ L[ln+ φ̄L](ξ) ,

Gφ̄(x, ξ) ≤ (1 ∨ c0)
(
1 +

(
1 ∨ ω−1

)
x+ Lφ̄L(ξ)

)
,

where, in the first inequality, we used that ln+
(
1 +

(
1 ∨ ω−1

)
y + φ̄L(ξ)

)
≤(

1 ∨ ω−1
)
y + ln+(φ̄L(ξ)). By (L-3)(iv) we have LVL � VL and thus (L-5)(vi)

implies L[ln+ φ̄L] � LVL � VL if CL = 0 and Lφ̄L � LVL � VL otherwise.
The previous display with (L-5)(vi) yields (B-3)(vi) with C = CL. (Recall that
VX(x, ξ) = x+ VL(ξ)).

Proof of (iii). To obtain (iii) from Assertion (ii) we only need to have that
[θ�] reduced to the singleton {θ�} for all θ� ∈ Θ. To prove this, we use [17,
Section 5.5] (or [18, Thorem 18]), where it is proved under Assumption (L-6)
and other assumptions named (A’-1), (L-1) and (L-3) which, in our setting here,
respectively correspond to (A-1), (I-1) and to having, for all θ ∈ Θ,

E
θ

[
ln+

(
Y0 +

d∑
k=1

fk(Ξ0) + ‖Ξ0‖
)]

< ∞ . (4.42)

We have already shown in Assertion (i) that (A-1) and (I-1) hold, and also (A-2)
with VX(x, ξ) = x+ VL(ξ), which yield that, for all θ ∈ Θ, Eθ [X0 + VL(Ξ−1)] <
∞, and thus

E
θ [Y0 + VL(Ξ0)] < ∞ . (4.43)
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Using that, for all y ∈ Z≥0 and ξ ∈ R
r,

ln+

(
y +

d∑
k=1

fk(ξ) + ‖ξ‖
)

≤ ln

(
1 + ‖ξ‖+

d∑
k=1

fk(ξ) + y

)

≤
d∑

k=1

fk(ξ) + y + ln (1 + ‖ξ‖) ,

we get that (4.42) follows from (4.43), (L-3)(iii) and the fact that ln (1 + ‖ · ‖) �
ln+ φ̄L � VL as a consequence of (L-5)(iii) and (vi), respectively. This concludes
the proof of Assertion (iii) of Theorem 7.

5. Useful lemmas

The following result is used in the proof of Theorem 10. It is proven in [18,
Lemma 19].

Lemma 17. (A-4) implies that for all θ ∈ Θ, there exist C > 0 and ρ ∈ (0, 1)
such that Lipθn ≤ C ρn for all n ∈ Z>0.

A byproduct of Lemma 17 is the following result, which is used in the proof
of Lemma 14.

Lemma 18. Suppose that (A-3) and (A-4) hold. Let θ ∈ Θ and u0 ∈ U and
set uk = u0 for all k ∈ Z≥0. Then there exists x∞ ∈ X such that for all z ∈ Z,

ψ̃θ〈u0:n〉(z) converges to x∞ as n → ∞ in (X, δX).

Proof. Let z, z′ in Z. Denote, for all n ∈ Z>0, xn = ψ̃θ〈u0:n〉(z) and x̃n =
ψθ〈u0:n〉(z′). Then, for all n ∈ Z>0,

δX(xn, x̃n) ≤ Lipθn δZ (z, z
′) , (5.1)

δX(xn+1, xn) ≤ Lipθn δZ

(
z, Ψ̃θ

u0
(z)

)
, (5.2)

where Ψ̃ is defined in (4.1). By Lemma 17, the right-hand side of (5.2) is de-
creasing geometrically fast and xn converges to a point ψ∞(y0) which does not
depend on z by (5.1).

The following lemma is used in the proof of Theorem 4.

Lemma 19. Let ϑ ∈ R. Then, for all ϑ0 ∈ R and ζ ∈ R, if U ∼ P(eζ), then

E[(1 + U)ϑ] ≤ e(1+ζ+)ϑ+ (5.3)

E[e|ϑ0+ϑ ln(1+U)|] ≤ 2eϑ+ e|ϑ0|∨|ϑ0+ϑ ζ+| (5.4)

≤ 2eϑ+ e|ϑ0|∨|ϑ0+ϑ ζ′
+| for all ζ ′ ≥ ζ . (5.5)

Proof. We separate the proof of (5.3) in three different cases by specifying the
bound (5.3) in each case.
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Case 1 For all ϑ ≤ 0, we have E[(1 + U)ϑ] ≤ 1.
Case 2 For all ϑ > 0 and ζ < 0, we have E[(1 + U)ϑ] ≤ eϑ.
Case 3 For all ϑ > 0 and ζ ≥ 0, we have E[(1 + U)ϑ] ≤ eϑ eζϑ.

The bound in Case 1 is obvious. The bound in Case 2 follows from

E[(1 + U)ϑ] ≤ E
[
eϑU

]
= ee

ζ(ϑ−1) .

Finally, the bound in Case 3 follows from the following inequalities, valid for all
ϑ > 0 and ζ ≥ 0,

E
[
e−ζϑ(1 + U)ϑ

]
≤ E

[(
1 + e−ζU

)ϑ] ≤ E

[
eϑe

−ζU
]
= ee

ζ(ϑe−ζ−1) ≤ eϑ .

Hence we get (5.3).
Let us now prove (5.4). Observe that

E[e|ϑ0+ϑ ln(1+U)|] ≤ E[eϑ0+ϑ ln(1+U)] + E[e−ϑ0−ϑ ln(1+U)]

= eϑ0E[(1 + U)ϑ] + e−ϑ0E[(1 + U)−ϑ] .

Then using (5.3), we get

E[e|ϑ0+ϑ ln(1+U)|] ≤ 2eϑ+ exp [(ϑ0 + (ζ+ϑ)+) ∨ (−ϑ0 + (ζ+ϑ)−)]

We conclude (5.4) and (5.5) by observing that, for all a, b ∈ R, (a+ b+)∨ (−a+
b−) = a ∨ (a+ b) ∨ (−a) ∨ (−a− b) = |a| ∨ |a+ b|.

The two following lemmas are straightforward and their proofs are thus omit-
ted. They are used in the proofs of Theorem 5 and Theorem 7, respectively.

Lemma 20. Let r be a positive integer and (ω, c1:r) ∈ R
1+r. Let {xk : k ∈ Z≥0}

be a sequence satisfying

xn = ω +

r∑
k=1

ckxn−k , n ≥ r ,

Suppose that the polynomial P (z) = 1 −
∑r

k=1 ckz
k has no roots in {z ∈ C :

|z| ≤ 1}. Then there exist ρ < 1 and C > 0 such that, for all n ∈ Z≥0,

|xn − ω/P (1)| ≤ C ρn (1 + max(|x0|, . . . , |xr−1|)) .

Lemma 21. For any a1, . . . , ap, b1, . . . , bq ∈ R≥0, Condition (2.22) implies the
first and is equivalent to the second following assertions.

(i) The polynomial z �→ 1−
∑p

i=1 aiz
i has no roots in {z ∈ C : |z| ≤ 1}.

(ii) The polynomial z �→ 1−
∑p∨q

i=1 ciz
i has no roots in {z ∈ C : |z| ≤ 1} where

ci = ai1(i ≤ p) + bi1(i ≤ q) ∈ R≥0.
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