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Abstract: Exact inference for hidden Markov models requires the evalu-
ation of all distributions of interest — filtering, prediction, smoothing and
likelihood — with a finite computational effort. This article provides suffi-
cient conditions for exact inference for a class of hidden Markov models
on general state spaces given a set of discretely collected indirect observa-
tions linked non linearly to the signal, and a set of practical algorithms for
inference. The conditions we obtain are concerned with the existence of a
certain type of dual process, which is an auxiliary process embedded in the
time reversal of the signal, that in turn allows to represent the distribu-
tions and functions of interest as finite mixtures of elementary densities or
products thereof. We describe explicitly how to update recursively the pa-
rameters involved, yielding qualitatively similar results to those obtained
with Baum—-Welch filters on finite state spaces. We then provide practi-
cal algorithms for implementing the recursions, as well as approximations
thereof via an informed pruning of the mixtures, and we show superior per-
formance to particle filters both in accuracy and computational efficiency.
The code for optimal filtering, smoothing and parameter inference is made
available in the Julia package DualOptimalFiltering.
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1. Introduction

Inference for Hidden Markov Models (HMMs), is a fundamental statistical prob-
lem concerned with learning the parameters and the trajectory of an unobserved
Markov process, called signal, given noisy or indirect observations, typically col-
lected at discrete times. Sometimes also referred to as state-space models, HMMs
have found widespread application in a variety of frameworks that include ge-
nomics (Brown et al., 1993; Yau et al., 2011; Guha et al., 2008; Titsias et al.,
2016), proteomics (Bae et al., 2005), time series analysis (Sarkar and Dunson,
2019), temporal clustering (Crane, 2017), signal processing (Fox et al., 2011),
econometrics (Hamilton, 1990; Chib, 1996), brain imaging, target tracking and
animal movement (Quick et al., 2017; Langrock et al., 2015), to mention a few
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examples. General treatments of HMMs can be found for example in Chopin
and Papaspiliopoulos (2020); Cappé et al. (2005); Sarkka (2013).

Let {X;,t > 0} be a Markov process on X C R¥ | with initial distribution
vo and transition density th(x’ | ), parametrised by a finite-dimensional vector
¥. The process {X¢, ¢t > 0}, referred to as the hidden signal, is assumed to be
unobserved and to evolve in continuous time. Observations Y; € Y C RP are
collected at discrete times 0 < tg < t; < ... and taken to be conditionally
independent of everything else given the current value of the signal, to which
they relate through the emission density f¥(-), parametrised by both 1 and z,
whereby Y; | (X; = z) & £2().

In this framework, the quantities of statistical interest are typically given by
the density of the signal given past observations pw(mt“k | Yty - -+ Y1, ), 1-€., the
predictive distribution; or given observations up to present time p¥ (z:, |yso, - - -,
Yz, ), called filtering distribution; or given past, present and future observations
p¥ (x4, | Ytos- - - > Y2, ), called smoothing distribution. In addition, the likelihood
of the observations p¥(yi,,. - -, ;) is another primary object of interest, as it
allows performing inference on the model parameters 1. Here the likelihood is
obtained by integrating out the hidden trajectory of the signal from the joint
density p¥ (Zty, - - - » 4,5 Yt - - - » Y2, )- In the following, we will drop the superscript
1 for notational simplicity, and return to the problem of drawing inference on
1 in Section 5.3.

Performing exact inference for HMMs entails being able to compute the above
distributions with a finite computational effort. Two important classes of models
have long been known to allow such computation. The first requires the signal
state space X’ to be a finite set, whereby the quantities of interest are obtained
through the Baum—Welch filter (see Cappé et al., 2005) and elaborations thereof.
The second is given by linear Gaussian systems (e.g. Ornstein—Uhlenbeck sig-
nals and linearly linked Gaussian emissions), in which case all quantities of
interest are obtained by updating parameters of Gaussian distributions through
the celebrated Kalman—Bucy filter and elaborations thereof. The common fea-
ture of the two above cases is the existence of a finite-dimensional process which
completely characterises the distributions of interest, so that these can be ob-
tained by appropriately updating this process, called finite-dimensional filter.
The computational complexity of the filter is given by the number of operations
needed for performing such updates, which for finite-dimensional filters grows
linearly in the number of observations. Outside the above mentioned classes,
finite-dimensional filters are typically rare and difficult to obtain. See Ferrante
(1992); Ferrante and Runggaldier (1990); Ferrante and Vidoni (1998); Guenther
(1981); Runggaldier and Spizzichino (2001).

A major breakthrough in the study of HMMs was achieved in Chaleyat-
Maurel and Genon-Catalot (2006), who introduced the notion of computable in-
ference for HMMs. See also Genon-Catalot (2003); Genon-Catalot and Kessler
(2004); Chaleyat-Maurel and Genon-Catalot (2009); Comte et al. (2011). This
is based on a general assumption made on the signal transition semigroup, and
applies to models for which the distributions of interest can be characterised
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by a finite-dimensional process whose size, however, can increase as the number
of observations increases. In such cases, the recursive updates can be shown
to have polynomial computational complexity in the number of observations.
Chaleyat-Maurel and Genon-Catalot (2009); Comte et al. (2011), for example,
found explicit solutions for specific one-dimensional HMMs along these lines.
In this framework, Papaspiliopoulos and Ruggiero (2014) identified a structural
property of the transition density of the signal that implies the conditions in
Chaleyat-Maurel and Genon-Catalot (2006) and thus leads to computable filter-
ing. Specifically, they showed that if the signal has a dual process, i.e. a certain
auxiliary process embedded in its time reversal, given by a pure-death process
on a multidimensional grid subordinated to an ODE, then all filtering distri-
butions are finite mixtures of parametric densities which are conjugate to the
emission density of the observations. These conditions are formulated for generic
K-dimensional HMMs, and the implied computations do not rely on specific
properties of the model at hand (Chaleyat-Maurel and Genon-Catalot (2009) for
example exploit the specific eigenstructure of the transition semigroup). Later,
Papaspiliopoulos et al. (2016) showed computable filtering is possible for two
signals taking values on the space of atomic measures, namely Fleming—Viot and
Dawson—Watanabe measure-valued diffusions, and more recently Ascolani et al.
(2020) applied their results to Bayesian predictive inference in a nonparametric
framework.

The present article obtains theory and practical algorithms for the whole
inferential agenda for HMMs. While Papaspiliopoulos and Ruggiero (2014); Pa-
paspiliopoulos et al. (2016) focused only on the theoretical aspects of filtering,
here we develop and implement results also on smoothing and inference on the
model parameters. Under a set of sufficient conditions essentially analogous to
those in Papaspiliopoulos and Ruggiero (2014), we show that all distributions
of interest for the signal can be expressed as finite mixtures of elementary den-
sities, and the likelihood of the observations takes the form of a finite product
of mixtures. We provide explicit recursive formulae that describe the parameter
updates, and also show how to obtain samples from the joint smoothing dis-
tribution of the signal. Moreover, although the number of components in the
finite mixtures can grow rapidly, the number of components carrying most of the
probability mass is seemingly stationary (see Figure 1). It thus seems natural to
approximate the mixtures by, e.g., pruning all components with negligible mass,
resulting in a roughly constant number of components. In Section 4 we discuss
several pruning strategies and detail practical algorithms for computable infer-
ence with this class of HMMs. In particular we propose an automatic mixture
pruning scheme that results in linear computational costs, at the expense of
some approximation error.

By devising appropriate metrics for evaluating the quality of the mixture ap-
proximations, we compare the performance of our schemes against suitable par-
ticle filters and find superior performance. Figure 2 provides a glimpse into these
results, showing that for the two classes of models used in Figure 1, computing
the likelihood with one of the proposed approximation strategies outperforms
particle filters both in accuracy and in computational efficiency.
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Fic 1. Number of components (in log scale) in the filtering densities as a function of time
for two models illustrated in detail later (a Coz—Ingersoll-Ross process and a 3-component
Wright-Fisher process), needed to account for 95% (red), 99% (green) and 100% (blue) of
the mass.
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F1a 2. Root mean squared error for computing the likelihood, as a function of computing time,
for one approzimation strategy proposed later (red dots, for various levels of approzimation)
compared with using a particle filter (blue dots, for various number of particles), for the models
in Figure 1. The computing time is relative to the time needed to compute the likelihood exactly
(feasible for these model using the results presented later).

The code for performing optimal filtering, smoothing and parameter infer-
ence using the result presented here is made available as the Julia package
DualOptimalFiltering'. We also implemented a novel particle filtering algo-
rithm using the recent exact sampling method of Jenkins and Spano (2017),
with the algorithm for exact sampling made available as the Julia package
ExactWrightFisher?.

The rest of the paper is organised as follows. Section 2 presents our theoretical
results in terms of sufficient conditions for computable inference, details the

I Available at https://github.com/konkam/DualOptimalFiltering.jl
2 Available at https://github.com/konkam/ExactWrightFisher.jl
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associated general recursive formulae for updating the distributions of interest,
and illustrates how this is concretely done in the case of a Cox-Ingersoll-Ross
(CIR) and a 3-component Wright—Fisher (WF) signal, by describing explicitly
the parameter updates for these models. Section 3 shows how to sample from
the joint smoothing distribution in order to generate trajectories of the signal
conditional on the data, and illustrates the strategy for the two above models.
While for the first this comes out quite naturally from the computation, for
the WF it requires a non trivial argument, which leverages on recent results by
Jenkins and Spano (2017). Section 4 discusses the algorithmic implementation
and proposes some acceleration strategies via informed pruning of the mixtures,
whereas Section 5 presents numerical experiments concerning signal recovery,
parameter estimation via maximum likelihood and full Bayesian inference via
Monte Carlo Markov Chain (MCMC) algorithms. We compare the performance
of our strategies against particle filtering. Concluding remarks are provided in
a brief discussion. The most relevant proofs are included in Appendix A, while
a few additional results are deferred to Appendix B.

2. Exact recursive inference for a class of HMMs
2.1. Setting and inferential goals

Let the hidden signal X be a continuous-time homogeneous Markov process
on X C R¥ with initial distribution 1y and transition density P;. We consider
the classical HMM setting where given X, observations Y; are independent and
the conditional distribution of Y; given X; = z, called emission density, only
depends on x and not ¢t. We further assume the emission densities have a common
dominating measure on ) for all z; € X.

Denote by zg.r := (x0,...,2zr) the unknown signal values at the discrete
times 0 = to < ... <ty and by yo.7 := (Yo, . .., yr) the observations collected at
the same time points. For notational simplicity, and without loss of generality,
we assume that only one data point is observed at each time and that the
observation times are equally spaced by an interval A = t; — t;_;. We therefore
denote by Pa the transition density of the signal on such intervals, write x; :=
x¢, and y; := y¢,, and (with some abuse) refer to ¢; as time i.

Inference in this setting is concerned with evaluating various conditional dis-
tributions of the signal given the observations. These are typically classified into:
predictive densities

Vij0:i—1(%4) := p(x [ Yo:i-1) = / p(zi1|Yoii—1)Palwi|zi—1)de; (1)
X

which evaluate the law of the signal given past data; filtering densities

Xt

Vijo:i (i) := p(xilyo:i) OC/ (0.4, Yo:i)dwo:i—1, (2)
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given past and present data, where p(xo.;, yo.;) is the joint density of signal and
observations; and smoothing densities

Vijo.r () == p(@i | yo.T) X / p(zo.7, Yo:r)dxo:i—1dwi 1.7 (3)
XT

which aim at improving previous estimates of the signal once the whole dataset
is available. A further quantity of primary interest is the likelihood of the ob-
servations

p(yo:T) = / p(xo.7, Yo7 )do.T, (4)
XT+1

obtained by marginalising out the trajectory of the signal from the joint density
in the integral.

Computable inference, as introduced in Chaleyat-Maurel and Genon-Catalot
(2006) (cf. Introduction), requires to characterise the above distributions, for the
model at hand, as finite mixtures of densities, possibly with a different number
of components at different collection times. The following section identifies a set
of sufficient conditions that guarantee such characterizations are available.

2.2. Sufficient conditions for computable inference

We identify a set of sufficient conditions under which (1), (2) and (3) can be
written as finite mixtures of densities belonging to a given parametric family,
and (4) as a finite product of mixtures. Assumptions 1 to 3 below are the same
as in Papaspiliopoulos and Ruggiero (2014), who studied computable filtering,
while Assumption 4 is needed for computable smoothing.

Assumption 1 (Reversibility). The signal X; is reversible with respect to ,
i.e., the detailed balance condition w(x)Pa(x'|x) = n(z")Pa(z|z") holds.

Note that here 7 need not be a normalised density, hence formally we are
not assuming stationarity of the signal. E.g., one-dimensional diffusions can
have a sigma-finite reversible measure which is not the stationary measure. In
particular, our results carry over to these signals, where the reversible measure
can act as an improper prior, as long as the distributions in Assumption 3 below
can be normalised, i.e., as long as the first conditioning on a data point yields
a proper distribution.

Define now, for K > 1, the space of positive integer vectors and associated
norm

K
M:=7K ={m=(mi,...,mg) :m; € Zy}, |m| :Zizlmi,

where 0 denotes the vector of zeros and e; = (d;5);>1 is the canonical unit vector
in the ¢th direction. We write m < n if and only if m; < n; for all j, and m —n
for the vector with jth element m; — n;. We will also need the grid of integer
vectors lying below points in M C M, denoted by

BM)={n:n<m,me M} (5)

and with a little abuse of notation we also let B(m) := B({m}) = {n:n < m}.
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The second assumption provides key requirements on the existence of a cer-
tain dual process for the signal (a definition is given below). To this end, let, for
6 CR!, [ € Z,, the function r : © — © be such that the differential equation

d@t/dt = T((-)t)a 60 = 907 (6)

has a unique solution, denoted ©:(fy), for all fy. Let ¢ : Z. — R, be an
increasing function, p : © — R, be a continuous function, and let (M, ©;) be
a two-component process on M x 6, where O, evolves autonomously according
to (6), and when (M;,©,) = (m, ), the process jumps to (m — e;,0) at rate
p(8)g(lm|)m;. Le., M, is a non-homogeneous pure-death process on M, and ©,
a deterministic process that modulates the jump rates of M;. The transition
probabilities of M;, denoted

Pmn(t;0) =P(My=n|My=m,0p=6), n<m, (7)
and zero otherwise, are fully described in Lemma B.1.

Assumption 2 (Duality). There exists a family of functions h : X X M x @ —
Ry with sup, h(z,m,d) < oo for all (m,0), such that

E[h(X:,m, 0)| X = 2] = E[h(z, My, ©;) | (My, ©p) = (m, 6)]. (8)

When (8) holds, (M, ©;) is said to be dual to X; with respect to functions
h, called duality functions. See Jansen and Kurt (2014). The conditional expec-
tations in (8) are taken with respect to the law of X; on the left hand side, and
with respect to that of (M, ©;) on the right hand side. When K =0 or [ = 0,
the dual process is just ©; or M; respectively, and we adopt the convention that
p(0) = 1 whenever [ = 0.

The third assumption essentially amounts to what in Bayesian statistics is
known as conjugacy.

Assumption 3 (Conjugacy). For 7 as in Assumption 1 and h as in Assump-
tion 2, the emission density fz, () is conjugate to densities in the parametric
Sfamily
F ={g(z,m,0) = h(z,m,0)n(z), m € M,0 € 6}, (9)

i.e., there exist an increasing function t : Y x M — M and a function T :
Y x O — O such that if X ~ g(x,m,0) and Y | (X =z) ~ f.(y), then X | (Y =
y) ~ g(ac, t(y’ m)v T(ya 0))

Here g(x,m,0) = h(z,m, f)r(x) is identified with the prior distribution on
a hidden state X;, and g(x,t(y,m),T(y,0)) is the posterior distribution of X
given y ~ fo, ().

The fourth assumption is needed for obtaining the smoothing densities in
computable form.

Assumption 4 (h-stability). For h as in Assumption 2, there exist functions
d: M?> - M and e: 6> — O such that for allz € X, m,m’ € M, 0,0/ € O

h(z,m,0)h(z,m’,0") = Cmm 0,0h(z,d(m,m’),e0,0")), (10)

where Cm m’ 0,00 1S constant in .
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At close inspection, Assumption 4 may appear to follow from the conju-
gacy in Assumption 3. In fact, when two observations Y,Y” independently give
posteriors g(x, m,0) and g(x,m’, "), then g(z,d(m,m’),e(f,6’)) is simply the
posterior obtained by using data (Y,Y”) jointly, and Cm,m’,¢,¢- simply provides
a reparameterization. However, it appears not immediate that this argument is
valid for any value of 8, so we state it as an assumption.

2.3. Recursive formulae

In this section we derive our theoretical results, and present general recursive
formulae for updating the computable representations of (1)—(2)—(3)—(4).

2.3.1. Filtering and prediction

Denote by
im0 (4) = /X f2()g(z, m, 0)dz (11)

the marginal density of Y ~ f;(-) when X ~ g(z,m,#), for g in (9). For ©x
as in (6), ¢(-,-),T(-,-) as in Assumption 3 and ¢ = 0,...,7T, define also the
quantities

Dijo:i =T (Wi, Vijo:i-1); Vij0:i—1 = OA(Vi—1)0:-1), Yojo:—1 = o
Mi|0:i izt(yinﬂo:iq)’ Mi\O:ifl = B(Mi71|0:i71)> MO\Ozfl = {O}
(12)

Here, 9;)0.;—1 denotes the state of the deterministic component of the dual pro-
cess at time i, after the propagation from time ¢ — 1 and before updating with
the datum collected at time ¢, and J;)0.; the state after such update. Similarly,
M;j0:i—1 denotes the set, at time i before the update, of what are called here
active indices, i.e., the points in M identifying mixture components with strictly
positive weight, and M;o,; those active after the update. Note that the quanti-
ties in (12) are deterministic and can be computed on the basis of the dataset
Yo.1, by means of the update functions ¢,7T in Assumption 3, of the solution of
(6) and of (5).

The following Theorem provides the recursive formulae for prediction and
filtering in (1) and (2).

Theorem 1. Let Assumption 1 to 3 hold, and let

Z wii V(@ m, Vi _1j05-1)

meM,;_qj0:i—1

be the density of x;—1 conditional on yo.;—1. Then (1) and (2) are the finite
mixtures of densities

Vijo:i—1(2) = Z wi™ gz, m, 0y0,1), (13)

meM;0.i—1
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Vi\O:i(x): Z wﬁfl)g(x,m,ﬁi\o:i) (14)
mGM,;‘O:,;

where, for pnm(A;¥i0.) and pime as in (7) and (11), the mizture weights
(@)

w.(fl_l)/,wm are given by
wi = Z Wi pnm(A;Yi1j0:i-1), M€ Mg,y
neEM;_qj0:i—1: n>m (15)
wl) ocun,ﬁ,.,w:i,l(yi)wﬁf_l) , m=t(y;,n),n € Mjo,;_1,
and 0 elsewhere.
This result is due to Papaspiliopoulos and Ruggiero (2014) and included here
in the present notation for ease of reference. Note that a predictive distribution

for the signal at time 7"+t for arbitrary ¢ > 0 can be easily obtained from (13)
by letting A = ¢ in the transition probabilities pn m(A;¥;0.;) (cf. Appendix B).

2.3.2. Likelihood

From (4), we can write the likelihood as

T T

p(yor) = /XT+1 v(wo) [ [ fou (i) [ ] Pac (@i |2i-1)dor

1=0 i=1

by integrating the signal trajectory out of p(yo.r | zo.7) and using the conditional
independence of y; given x;. Alternatively, writing

p(yo;T) Zp(yo)Hp(yi|yo:i—1) =/Xfxo(?/o)V(xo)H/szi(yi)p(ﬂﬂyo:i—ﬂ,

highlights the dependence on the predictive densities (1).

The following theorem shows that in the present setting, the above expres-
sions are finite products of finite mixtures of distributions in (9), marginalised
over the hidden state as in (11).

Theorem 2. Under the assumptions of Theorem 1, setting vy = m, we have

T
p(yO:T) = Ho,60 (yO) H Z wg_l) Hn,d 0.1 (yl) (16>

t=1n€M;p.s—1

With fin 9 as in (11), Y4j0:i—1, Mijo:i—1 as in (12) and wr(f_l)/ as in (15).

i]0:i—1

The proof of Theorem 2 is provided in Appendix A.

2.8.8. Smoothing

Let 0 <¢ < T —1. Bayes’ Theorem and conditional independence allow to write
(3) as
p(zi|yo.r) o< p(Yitr1 | 2i)p(2i | Yo:i) (17)
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where the right hand side involves the filtering distribution p(x; | yo.;), available
from Theorem 1, and the cost-to-go function p(y;+1.7|x;), sometimes called
information filter, which is the likelihood of future observations given the signal.

Denote by %if@, ﬁi, ﬁ; the quantities defined in (12) computed backwards.
Equivalently, these are computed as in (12) with data in reverse order, i.e. using
yr.0 in place of yg.7, namely

- — — - —
Yijivr:r =Oa(Wig1jivr:r),  Yijer = T (Wi, Vijigr1)s Y77 = T(yr,0o)
ﬁﬂi—&-l:T :B(ﬁiﬂ\iﬂf), Mi\i:T = t(yiaﬁmﬂ::r), MT\T = {t(yr,0)}.

(18)
The following proposition identifies an explicit expression for the cost-to-go
function.

Proposition 3. Let Assumptions 1-2 above hold. For all 0 < i < T — 1, we
have

, —
pirrr|z) = Y W h(zi,m, P 1)
memi\iJA:T
with
i i by
W) = Z U£1+2)Mnj5i+m+”(yz'+1)QDt(yq;H,n),m(A% Div1ji+r7) (19)

neﬁ[i+1\i+2:T3
t(yi+1,n)>m

and?iJrla(gi\i-i-l:Taﬁi+1|i+1:T7Mi|i+l:T as in (18).

The proof of Proposition 3 is provided in Appendix A.

An intuition on the above result can be obtained by considering that for
i =T —1, plyr|xr—1) simply averages over the possible values of the signal
at time T, and computes the likelihood of Y7 given such values. This would in
general yield an infinite expansion based on the transition kernel of the signal.
Here the duality relation in Assumption 2 allows to express this quantity as
a finite linear combination of duality functions, which are in turn ratios of
likelihoods over marginal likelihoods.

The following Theorem shows that under the stated assumptions, the smooth-
ing density (17) as well takes the form of a finite mixture of densities in (9).

Theorem 4. Let Assumption 1 to 4 above hold and let vo = w. Then, for
0<:<T -1,

i —
p(@i|yor) = Z wﬁn{ng(azi, d(m,n), e(J;ji11.7, Vi)
meﬁi|i+l:T7 neM; 0.4

with ' , 4
o TEIWC, o

9
man7191‘|i+1:T719i\0:i

wl as in (15), TE s in (19) and C_, as in (10).

—
7“:"9i\i+1:Ta19i|0:7‘,
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The proof of Theorem 4 is provided in Appendix A.

Here the intuition is instead that the distribution of the signal at time 7 is
evaluated by appropriately “interpolating” its distribution at adjacent times
i—1,i4 1, given data yo.;—1 and y;41.7 respectively. This interpolation is per-
formed in principle using again the transition kernel of the signal, but it is
again the duality of Assumption 2 that allows to reduce the resulting expres-
sion from a doubly infinite series to a double finite sum. Here both M;o.; and

ﬁilﬂ-l:Tv which are sets of active indices at time i, have finite cardinality, hence
the smoothing densities can be computed recursively with a finite number of
operations.

2.4. Illustration

We illustrate the above results for two HMMs of interest that fall in our setting:
a one dimensional signal driven by a Cox—Ingersoll-Ross (CIR) diffusion (which
is also a continuous-state branching process), with Poisson distributed observa-
tions; and a signal driven by a Wright-Fisher (WF) diffusion on the (K — 1)-
dimensional simplex with categorical observations. Note that our results include
also finite state space models and linear Gaussian systems (cf. Papaspiliopoulos
and Ruggiero, 2014), whose details for filtering and smoothing are well known
and omitted here.

2.4.1. Cox—Ingersoll-Ross signals

The CIR process is the solution of the stochastic differential equation
dX; = (002 — 2yX;)dt 4 20/ X;dB;, 5,v,0 >0, (20)

whose stationary distribution is the gamma density Ga(d§/2,v/0?) with shape
§/2 and rate v/o?. A conjugate emission density f,(y) is the Poisson distribution
Po(Az) with mean Az. Choosing as prior 7(x) = g(x,0,60y) = Ga(x;3/2,v/0?),
with 8y = v/0?, and letting f,(y) as above, the update of g(z,0,6,) given one
observation y yields g(z,m,0) = g(z,t(y,0),T(y,00)) = Ga(§/2 +y,v/0? + \).
Thus in this case

h(x,m,0) = % (%) o 0O/ m g™ exp {-(0—~/c*)z} (21)

together with ¢(y,m) = m+y, T(y,0) = 0+ A. It can be easily verified that the
marginals are Negative-Binomial densities, e.g. for y as above

) 0
tm.o(y) = NB <ya 3 +m, m) .

Furthermore, (20) has a dual given by a non-homogeneous death process on Z.
with transition probabilities

UA-BY — R (o e _ (y/0?)fe®
Dm.m—i(A;0) = Bin(m — i;m, O (0)), Oa(0) = BB /o —

(22)
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where 6 in (22) is the last available value of the gamma rate parameter.

In this model, all filtering and predictive densities are finite mixtures of
gamma densities. Specifically, let w,, be the weights of the predictive density
at time ¢, given by the expression

i—1
Vijo:i—1 () = Z wnGa(x;6/2 + n,%0.-1), Ni_1 = Zyj- (23)
OSnSNi—l ]_0

Here 1J;)0;—1 is obtained as in (12) by recursively computing Joo = T'(yo, v/o?),
Y110 = Oa(Po0), V1101 = T(y1,Y1)0), and so on. The marginal density of a
single observation y; is obtained by integrating the emission density Po(Az;)
with respect to (23), yielding

J Uij0:i—1
Fivyjo.in (Y1) = / Po(yi; Awi)vijo.i—1 (i) = Z w,NB( y;: 5 +n, — ;
X 2 Vijo:i
0<n<N;_1

(24)
with N;_; and w, as in (23). The density of all observations (16) is thus a
product of mixtures as in (24), with weights computed recursively as described
in Theorem 2. Upon observing y;, the filtering density at time ¢ reads

Vijo:i (@i) = Z wii) Ga(w; /2 +m, 9i0:)
yi<m<Ni_1+y;

(25)

. 1) %410:i—
w,(,’l) xw,NB (yi; —+n |0:i—1

2 5 7-91'|0;1' )7 m:n+yi7 OSnSNi—h

with w,, given in (23), and the predictive density for x;11 given yq.; is

Vig)0:i(Tit1) = Z w$) Ga(wi1156/2 + 1, Vitj0), Ni = N;—1+yi

0<n<N;,
w® = Z wél)pz,n(A;ﬁim:i),
n<t<N;

(26)
with pg ., and ©a(0) as in (22) and wél) as in (25).
Additionally, Assumption 4 is satisfied with d(mq,ma) = my+ma,e(b1,02) =
01 + 03 —/0? and

6/2 F(g+m1+m2) (91)6/2+m1(92)5/2+m2
D(3 +mu)D(5 +my) (01 + 0y —/02)0 /2t

le,m2,91,02 = F<5/2) <%>
It is easy to show that, with 6y = v/02, then 01,04, e(61,02) > ~v/0?. Hence, the
marginal smoothing density of x; given yo.7 can be obtained by combining the
filtering density v;)o.;(w;) and the cost-to-go function p(y;1.7|z;). The latter is

T
p(yi+1:T | xz) = Z %%+1)h($i7 m, 19,)’ Mi+1 = Z Yi, (27)

0<m<M; 41 j=it1
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with h as in (21) and ¢’ :¥i|i+1:T as in (18). The weights in (27) are obtained
from those of p(yir2:7|zit1), denoted Wl ™2 as

) ) 5 9" .
%5#1) = Z %5;+2)NB (yH_l; 3 +n, m) Bin(m;n + yit1,9")

n:n+yiy1>m

%
with 9" = ¥;41};42.7. The smoothing density is therefore the finite mixture of
Gamma densities

, 1)
. - E E (4) L2 ! _ 2
p(x; |yor) = wyy , Ga <xz, > +m+nd +9—v/o )

Yi <n<N; 0Sm <M1

with ‘ ‘ .
wqub)n o« W DwDC, 909

where 5T is as in (27) and w as in (25).

2.4.2. Wright-Fisher signals

The K-component WF model is a diffusion process taking values in the simplex
of nonnegative vectors x = (xl, ..., Tx ) whose coordinates sum up to one (later
simply called the simplex). It is characterised by its infinitesimal operator
K K K
1 0 1 0?
A== o — o) =— + - (0 — i) 77—, |a|= oy,
22( 7 | | ])axi 2 Z 1( 9 ])8$18$J | | ; J

i=1 i,j=1

where a;; > 0 for all j, whose domain is the class of twice differentiable functions
on the simplex. This diffusion is stationary and reversible with respect to the
Dirichlet distribution with parameter @ whose densit% on the simplex with
respect to the Lebesgue measure is proportional to ] =1 x?j . See Ethier and
Kurtz (1986).

A distribution conjugate to the Dirichlet, seen as prior density for a simplex-
valued variable, is the Multinomial distribution, denoted here MN(y; |y|, %),
where x; is the probability of drawing category j in a sample of size |y| and
y = (y1,...,yx) are the multiplicities being drawn. Upon observing y, the
Dirichlet density is updated by replacing o with a +y, i.e., a;; with a;; 4 y; for
j=1,..., K. Moreover, the WF signal is known to be dual to a death process
Dy on Z% that jumps from m to m — e; at rate m;(|a| + |m| — 1)/2, with
respect to functions

This dual process has no deterministic component, and its transition probabil-
ities pmn(A) are obtained by specialising Lemma B.1 in Appendix B to the
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case p = 1. It can be easily verified that the marginal distribution of y is a
Dirichlet-Multinomial density, e.g., given the parameter o + m,

Y|> H (o +m5) )
y /) (lee+m)y)

tm(y) =DM(y;a + m) := <

where a(,y = a(a+1)---(a+n —1) is the Pochhammer symbol. In this model,
all filtering and predictive densities are finite mixtures of Dirichlet densities.
Specifically, let the density of the signal at time ¢, before conditioning on y;, be

i—1
Vijoi—1(xi) = Z wnDir(x;;a+mn), Ny = Zy]v
=0

0<n<N;_1

The marginal density of y; is obtained by integrating the Multinomial emission
density with respect to (23), yielding

by 9) = [ MNalvil 000106 = Y wnDM(yia+ )
x 0<n<N;_,

with N,;_; and w, as above, and the density of all observations (16) is thus a
product of such mixtures, with weights computed recursively. Upon observing
v, the filtering density at time ¢ reads

Vijo:i (%) = Z waDir(xi; a+m)
yi<m<N;_1+yi (28)
w?) xw,DM(y;a+n), m=n+y;, 0<n<N, g,

and the predictive density for x;;1 given yoq.; is

Vit1)0:(Xig1) = Z w$) Dir(x;41; + 1), N; =Ni—1 +yi,

0<n<N;
wr(lz) = Z fwl(l)pl,n(A
n<I<N;

with wl(i) as in (28). Additionally, Assumption 4 for h(x,m) is satisfied with

d(mj, my) = m; + my and
K
o _ I'(la+ m )T (Jor + my)) H Loy +mji +m;s)
O T (la)T(Ja 4 my + my)) % +m31)r(04j +mya)’

j=1

and the cost-to-go function p(y;i1.7]%;) is

T
p(Yitr7 %) = Z WD h(x;, m), Mt = Z Vi,

0<m<M, j=it1 (29)
WE = Y WITIDM (v @ + n)paty,m(A).

n:n+y;>m
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Therefore the smoothing density is the finite mixture of Dirichlet densities

p(xi|yor) = Z Z w{l) \Dir(x;; & + m +n),

yi<n<N;_; 0<m<M;

with
wd) o WGV Cn

where T is as in (29) and w$) as in (28).

3. Simulation from the joint smoothing distribution

The results presented in Section 2 can be elaborated to provide methods to sim-
ulate trajectories of the signal conditional on the entire dataset. These can be
interpreted as samples from the posterior distribution of the signal, evaluated at
the skeleton of observation times. These draws in turn can be used to estimate
the model parameters through an MCMC strategy. In particular, the availability
of a method for sampling conditional trajectories opens the way to performing
full inference on the model parameters, using a Metropolis-within-Gibbs algo-
rithm, with a Gibbs step for the trajectory and a Metropolis—Hastings step for
the parameters. We implement such strategy in Section 5.3.

In this framework, two decompositions are in principle available for the joint
conditional density of the signal. The backward decomposition reads

T-1 T-1
p(zo:r|yo:r) = p(2r|yo.r) H p(xilzivs, yo.r) = p(zr|yo.r) H p(zilTis1, yoii)
i=0 i=0

where the backward kernel, in virtue of Bayes’ Theorem, can be written

Tiv1lzi))p(zi|yos Pa(ziga|zi)vijo.(x:)
p(xi|1’i+1,y0:i) _ p( +1‘ )p( |y0 ) _ + |0 (30)
P(Tiv1lyo:) Vi+1\0:i($i+1)

and v;);; and v 1o, are the filtering and prediction densities as in (13)-(14).
The typical approach to smoothing using this decomposition is generally known
as the Forward Filtering Backward Sampling (FFBS) algorithm (cf. Chopin and
Papaspiliopoulos, 2020; Cappé et al., 2005), which consists in first implementing
a forward pass by filtering the whole signal, and then generating a draw of the
conditional trajectory by means of a backward pass which starts from a sample
from the last filtering distribution and uses (30) repeatedly.

An alternative approach uses the forward decomposition

T T
p(zo:r|yo:r) = p(xolyoT) Hp(ffi|$if1» yo:1) = p(olyo:1) Hp(xi|xi717 Yirr),
=1 i=0

where the forward kernel, again by Bayes’ Theorem, can be written

~p(wilri—)p(yar|r)  Pa(xilzio1)p(yile:)p(yig1r|e:)
pxilio1, yir) = = .
p(yir|Tio1) p(Yir|Tio1)

(31)
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The cost-to-go functions appearing on the right hand side are available through
Proposition 3. Here the approach to obtaining a sample from the joint smoothing
distribution is to compute the cost-to-go functions backward and to perform
forward sampling.

In both cases, the finite mixture representations obtained in Section 2.3 (fil-
tering density for the backward decomposition, cost-to-go functions for the for-
ward decomposition) need to be combined with the transition density of the
signal, so further analysis on how to simulate in pratice from p(z;|z;t1, yo.;) or
p(x;|i—1,y:r) depends on the specific model. We show how this can be done
for the CIR and WF model.

3.1. Cox—Ingersoll-Ross signals

Under the specifications of Section 2.4.1, the unconditional transition density of
the signal can be written as the infinite mixture of gamma densities

o, — '7/02

PA(wiy1lz:) = ZPO(k§ Oxzi)Ga(wi4150/2 + kae%A@IA)v AT oA 0

k>0

which implies, using (30), that

> eso Ga(zir1;6/2 + k, 720 )Po(k; ONTi)V4)0:4(4)
p(xi\$i+1,y0:i) = = .
Vz‘+1\o:z'(50i+1)

When v;)0.;(;) is as in (25), the terms in z; yield

Po(k; ©rxi)vij0.(wi) = Z U},S,?/Izmﬂ%‘o:i(k)Ga(l'i; 8/2+m~+k, 90 + Oh)

yi<m<N;

where we have used Bayes’ Theorem to exploit the conjugacy of the Gamma-—
Poisson model (cf. Section 2.4.1) and where

0 Vi0:i
m.9,0. (k) = NB|( k; = y——————
2 17791\0.:( ) ( 2 +m /191"0;2' +@/A>
is the marginal distribution of k when k|z; ~ Po(k; O\ x;) and x; ~ Ga(x;;6/2+
m, ¥;)0.;). It follows that

p($i|$i+1,y0:i):Zwk(mi-&-layo:i) Z 7@7(2),;@(}3(331‘;5/2+m+kﬂ9i\o:i+@/A)
k>0 yi<m<N;
(32)
where

Ga(ziy156/2 + k, €120 )

~ (1) (4)
, w
Vi+1\o:i($¢+1)

m,k — Wm umﬂ9i\o;i(k)7

Wk (Tig1,Youi) =

and V4110, (7i41) is as in (26).
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Equation (32) is again an infinite mixture of gamma densities, implying that
a simple algorithm for simulating from p(x;|x;11,¥o.;) is to sample the double
index (k,m) from the discrete mixture with probability masses equal to the
weights in (32), and then sample z; from a gamma distribution whose param-
eters are determined by the drawn (k,m). A schematic version of this strategy
is as follows:

o draw U ~ U(0,1)
e set x, M to be the minimum values j, p that yield

U< Z Wk (Ti415 Yo:i) Z w?ﬁi),k+wj(xi+l7y0;i) Z wr(rZL)J

k<j—1 yi<m<N; y; <m<p

o draw X; ~ Ga(z;;6/2+k+ M, 0+ X+ O)).

3.2. Wright—Fisher signals

A similar strategy could in principle be applied to the WF model as well, under
the specifications of Section 2.4.2. The unconditional transition density of the
WF diffusion can be written (cf., e.g., Ethier and Griffiths, 1993)

Pa(xi|xi—1) = Z Gm Z MN (1}, x;—1) Dir (x;]1 + x;-1) . (33)
m=0  1eNK: 4. +lx=m

However, the weights ¢,,, determined in Griffiths (1980); Tavaré (1984), have
an infinite expansion, resulting in an intractable doubly infinite series for the
transition density. Recently, Jenkins and Spano (2017) devised a strategy for
sampling exactly from (33), by means of an algorithm that deals with alternated
weights that decrease only after a certain index. Leveraging on their results, we
are able to obtain an algorithm for sampling from the conditional kernel. First
we provide the following representation.

Theorem 5. Let xg.7 be as in Section 2.4.2, and let yo.7 come from a multi-
nomial emission density. Then (31) can be written as the mizture of Dirichlet
densities

PXilXion,yir) =D dm Y, @y Y dnDir(x[l4+xi1+yi+k).
m=0

1ENK . KeM; i
Ltotlg=m i|it1:T

(34)

Explicit expressions for the weights §p,, w]" and w1k in (34), together with

a proof of the statement, are provided in Appendix A. The two inner sums in
the above representation are finite mixtures from which sampling is straight-
forward. The final step is to sample from the infinite mixture with weights ¢,,.
The strategy proposed in Jenkins and Spano (2017) can be adapted to this aim,
upon observing that we can bracket the discrete density of m by two conver-
gent series and use the strategy for dealing with alternated series from Devroye
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(1986). A detailed explanation and an explicit sampling algorithm are provided
in Appendix A. Note that this approach also underlies the foundational work in
Beskos et al. (2006) for simulation of diffusion processes.

4. Implementation and acceleration
4.1. Computational challenges

The expressions we have obtained in Section 2.3 are similar in spirit to the
well-known Baum—Welch algorithms (cf. Introduction), with the difference that
in our case the finite state space is a subset of Zf of whose dimension varies
instead of being fixed. In practice, each component in the involved mixture
distributions is associated to a node of the grid in Zf given by the current
set of active indices. As already noted by Chaleyat-Maurel and Genon-Catalot
(2006), each update operation with new data increases the nominal number
of components in the filtering mixture distribution by shifting the mixture to
a higher set of nodes, where the upward shift represents the accumulation of
further information, associating null weights to all nodes below the shifted set
of active indices. All these nodes then become active indices with the prediction
operation, thus increasing the effective number of mixture components (those
with non null weight). A similar intuition applies to the evaluation of the cost-
to-go functions, which are combined with the filtering distributions to form the
marginal smoothing distributions.

More formally, for the two models illustrated in Section 2.4, the number of
mixture components in the filtering distributions evolves as |M,,| = Hszo(l +
2?21 Yi k), where y;  is the k-th coordinate of y; observed at time ¢ and K
is the dimension of the signal space, whence the polynomial complexity men-
tioned in the Introduction. On the implementation side, an important aspect
to note is that the prediction step is more expensive than the update step, as
at each iteration it involves computing the probability that the dual process
reaches any point m in B(M;)o,;) from any point in M;o,; which is not lower
than m (cf. (5), (12) and Theorem 1). When new data arrive at a constant
frequency, it is possible to limit the cost of the prediction operation by storing
the transition terms pm n(A), which can be used multiple times during the suc-
cessive iterations. Nonetheless, the rapid growth in their number renders this
strategy daunting in terms of memory storage. A close inspection reveals that
the pmn(A) are themselves a product of a smaller number of terms (cf. Lemma
B.1 in Appendix B). This number grows only quadratically with the sum of all
observations and can be saved, thus improving the computational efficiency.

A major point that allows to substantially improve the computation is how-
ever given by the fact that each transition of the death process will assign a
non negligible probability weight only to a small number of nodes, the intuition
being that as the time interval becomes large, the probability mass progressively
concentrates on the grid origin (0,...,0) € ZX. Cf. Figure 4 in Ascolani et al.
(2020). As a result, the number of mixture components in the filtering distribu-
tions with non negligible weight may be roughly stationary or increase at a much
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lower rate, depending on the ratio of the time lag between observations and the
number of observations per collection time. Cf. Figure 1 here and Section 4 in
Papaspiliopoulos and Ruggiero (2014). A similar behaviour is expected from
the cost-to-go functions, which are a linear combination of functions with many
negligible coefficients relative to the largest. This suggest that a great com-
putational improvement can be obtained by informedly pruning the mixtures
components with negligible weight, a strategy which we develop in Section 4.2.

Another hurdle in the computation, of a more technical flavour, is due to
the alternating signs appearing in the death process transition probabilities
(cf. Lemma B.1 in Appendix B), susceptible to both over and underflow. Here
we solve this challenge to numerical stability using the Nemo.jl library for
arbitrary precision computation (Fieker et al., 2017).

4.2. Pruning

Based on the intuitions and experimental observations illustrated in the previous
section, we consider three pruning strategies:

1. Fized number: retain only a fixed number of components after ranking
them by weight. This aims at controlling the computational budget at
each iteration.

2. Fized mass: retain the minimum number of components needed to reach
a fixed fraction of the total mass. This aims at controlling the total ap-
proximation error incurred by the pruning, and in fact is closely linked to
the total variation distance between the exact and the pruned mixture.

3. Fixed threshold: retain only the components whose weight is above a
fixed threshold. This approach has the advantage of not requiring to rank
the mixture components before pruning. However, it not obvious how to
choose a threshold for the cost-to-go functions, whose coefficients do not
sum up to one.

The pruning operation should be performed at each time step, followed by a
renormalisation of the remaining weights (in the case of the filtering distribu-
tions),. Although the overall approximation error is the result of several previous
approximations, the error accumulation is counterbalanced by the incorporation
of fresh information on the data generating distribution at each collection time.
In fact, the pruning should be performed after the update with the incoming
data, which concentrates the mass of the mixture closer to the true data gen-
erating mechanism, thus likely on a fewer number of components. This has the
further advantage of reducing the computational cost of the prediction step,
which is more expensive than the update. Hence pruning after the update en-
tails the maximal computational gain as it retains the required mass through
the minimal number of components and reduces the number of transitions to
be computed. Note that since the likelihood is obtained by means of the fil-
tering weights (cf. Section 2.3.2), the above strategy essentially applies to the
computation of the likelihood as well.
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Algorithm 1: Filtering

Pruning setting: ON (approximate filtering) / OFF (exact filtering)

Input: Yy.p, to.n and v = h(z,0,00) € F for some 0y € O

Result: 9;0.5, M;jo:; and Wo., with W; = {wi,,m € M;j0:4}

Initialise

Set Ygj0 = T'(Yo,00) with T" as in (12)

Set Moo = {t(Y0,0)} = {m*} and Wy = {1} with ¢ as in Assumption 3

Compute ¥1o from Jg|g as in (12)

Set M* = B(Mgg) and W* = {pm* n(A,Ygj0),n € M*} with B as in (5) and pm,n
as in (B40)

for i from 1 to n do
Update

Set 9510:6 = T(Ya, ¥3)0:5—1)
Winkm, ;0. 4 (¥i) o .
Set W; = {m, m € M*} with g, ¢ defined as in (11)
Set M;|0.; = {t(Yi, m), m € M*} and update the labels in W;
Copy ;)0:4» Mjj0:; and W; to be reported as the output

if pruning ON then
Prune My)o.; and remove the corresponding weights in W;
Normalise the weights in W;

Predict
Compute 9;41)0:; from 940,

Set M* = B(Myg.;) and W* = Z WhPmn (A, 940,),n € M*
meM; g5, m2n

end

We lay out two practical algorithms for implementing the recursions of Sec-
tion 2.3, both with the option of pruning. If kept off, the algorithms thus pro-
vide an exact evaluation of the respective distributions. The pseudo code for
computing the filtering densities is provided in Algorithm 1, while that for the
smoothing densities in Algorithm 2. Algorithm B4 in Appendix B illustrates
how to modify Algorithm 1 to compute the likelihood.

5. Numerical experiments
5.1. Retrieving the signal

We illustrate inference on the signal trajectory for the models illustrated in
Section 2.4. We reparametrise the CIR model by considering

dXt = a(b—Xt)dt—&—s\/Xt dBt (35)

in place of (20), where b is the mean, a the speed of adjustment towards the
mean and s controls the volatility, corresponding to a = 2v,b = §o?/(2v) and
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Algorithm 2: Smoothing

Pruning setting: ON (approximate smoothing) / OFF (exact smoothing)
Input: Yo.n, to:n and v = h(z,0,60p) € F for some 6y €06
Result: ﬁi\():nv M'L|O:n and WO:n\O:n with Wi|0:n = {wf'rnm € M'L\On}
Initialise
Obtain Y595, M;j0:; and Wo.,, with W; = {wi,,me M;|0;;} from the filtering
algo(rithm, with pruning if relevant.
Set ¥ ) = T(Yn,00) with T' as in (12)
Set an = {t(Yn,0)} = {m*} and {/I—/n = {1} with ¢ as in Assumption 3

< .
Compute ¥ ,,_1|, from ¥, as in (12)

—

Set M* = B(ﬁn‘n) and W* = {Pm* n(A, Y pn)n € ﬁ*} with B as in (5) and
Pm,n as in (B40)

for i fromn —1 to 1 do
Update

Set <5i|z‘:n =T(Yi,Vijit1:m)

Set W; = {w;‘num7<5 m € ﬁ*} with fim ¢ defined as in (11)

it (Ya)’
Set M'L|'Ln = {t(Yiym)v m € M*}

if pruning ON then
| Prune M;|;.,, and remove the corresponding values in {/I—/Z

Predict
— —
Compute ¥ ;15 from 9 45y

Set M* = B(Mz\zn) and W* = Z wf'npm,n(Av gi\i:n)vn € M*

mGMui:mmZn

end
for i from 1 ton —1 do

%
Set 9410:n = (Y 4jix1:m> Vi0:4)
Set Mj|g., = {d(m,n);m € Mj|;;1.,,n € M0} considering only the unique

values.
Sot ; (+1), ()
Wi|0:n = {wf & Z Em Wn Cman7<§7‘,|i+1:nﬂ97‘,|0:i7l € Mi|0:n}
meﬁi\ul:na“EMuom
d(m,n)=1
end

s = 20. We simulate the trajectory of a CIR process starting from X, = 3 with
a=25,b=9.6 and s = 8, corresponding to a Gamma(1.5,0.15625) stationary
distribution. We draw 10 observations at each of 200 collection times separated
by 0.011 seconds.

For the WF, we implement® the exact simulation scheme of Jenkins and
Spano (2017) to simulate a signal with K = 3 components, initialising the
process at random from a Dirichlet(0.3,0.3,0.3) distribution, and draw 15 ob-

30ur code is available at https://github.com/konkam/ExactWrightFisher.jl
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Fic 3. Hidden signal (blue solid), data points (bullets) and 95% pointwise credible intervals
(red dashed) derived from the filtering distribution for the CIR (top) and WF' (bottom) simu-
lated datasets. A heat map also represents the filtering densities, darker red indicating higher
density. For the WF, each panel plots the marginal for one coordinate, and the single bullet
is the proportion of the observations from the corresponding type.

servations at each of 10 observation times separated by 0.1 seconds.

Figure 3 shows the exact filtering for both models, obtained following the pa-
rameter updates detailed in Section 2.4 by means of Algorithm 1 (with pruning
off). The non observed trajectories of the signals are correctly recovered by the
filter.

Figure 4 shows a few trajectories sampled from the joint smoothing density
of the CIR model, i.e., the conditional distribution of the signal given the data.
This is performed by following the strategy outlined in Section 3 and exploits
the correlation with neighbouring time points, thus improving the estimates
obtained by means of the marginal smoothing distributions only (Section 2.3.3).

5.2. Performance

We assess the performance of the pruning strategies proposed in Section 4.2 ap-
plied to the two above models both from a visual and a quantitative perspective.
Figure 5 illustrates the effect of approximating the conditional likelihood, based
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Fi1G 4. True trajectory (blue) and a few trajectories sampled from the joint smoothing distri-
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Fic 5. Comparison between exact and approximate likelihood obtained via pruning, for param-
eters a,b, s in (35). The dots represent the conditional likelihood for one parameter, computed
on a grid and fixing the other parameters at their true value. The vertical lines represent the
mazimum likelthood estimate obtained by maximising these conditional likelihoods (paired
colours). The darkest colour represents the exact likelihood, the intermediate colour represent
an approzimate likelihood obtained by pruning all but the 10 largest components at each time,
and the lightest colour represents the likelihood obtained by pruning all but the single largest

component at each time. The simulated data is the same as used in Section 5.1.

on the same simulated scenario as the previous section. We test the most drastic
approximation which retains a single component. This degrades the smoothness
of the likelihood and perturbs the concavity of the curves, which in turn renders
the optimisation problem challenging. A less extreme approximation, which re-
tains the 10 largest components in the filtering distribution, provide seemingly
concave curves whose optima are very close to the exact maximum likelihood

estimates.
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F1G 6. Accuracy of the likelihood estimate (absolute error) against computing time (relative to
computing the ezact likelihood), for the CIR (left) and the WF (right). Blue: fixed threshold
approzimations with thresholds 0.01, 0.005, 0.001, 0.0005, 0.0001 for CIR and 0.01, 0.005,
0.001, 0.0001 for WF. Green: fixed number approzimations with 5, 10, 25, 50, 100, 200, 400
components for CIR and 50, 100, 200, 400 for WF. Red: fixed fraction approximation with
probability masses 0.95, 0.99, 0.999 for CIR and 0.8, 0.9, 0.95, 0.99, 0.999 for WF. Violet:
particle filter approzimations with 1000, 5000, 7500, 10 000, 15 000, 50 000 particles for CIR
and 100, 500, 1000, 5000, 7500, 10 000, 15 000, 50 000 for WEF.

Next we evaluate more systematically the performance of the pruning strate-
gies for filtering, smoothing and likelihood computation, by comparing them
against a bootstrap particle filter with adaptive resampling (for the filtering
distribution and the likelihood), and a FFBS particle smoother with adaptive re-
sampling (for the smoothing distribution). The bootstrap particle filter requires
sampling from the transition density of the processes, which is straightforward
for the CIR process and feasible for the WF through the strategy in Jenkins and
Spand (2017). The FFBS particle smoother (or the two-filter particle smoother)
requires the evaluation of the transition density of the process. This is tractable
for the CIR model, using the representation of the transition density via Bessel
functions (see (36) below) but not for the WF model, where no straightforward
representation appears to be available. Thus, we do not implement the particle
smoother for the WF model.

We first investigate the performance of the pruning approximations for com-
puting the likelihood. As computing the filtering and the likelihood is very
similar, the performance of the approximations is almost the same. To quantify
the loss of precision due to the approximation, we compute the absolute error on
the likelihood resulting from the pruning, and a root mean squared error for the
bootstrap particle filter based on 50 replicates. To quantify the gain in efficiency
with the approximation, we measure the time needed to compute the approxi-
mate likelihood of the whole dataset relative to the time needed to compute the
exact likelihood. For the particle filter, we measure the time needed to obtain
a single estimate. Figure 6 shows the absolute error on the likelihood plotted
against the time needed to compute the approximate likelihood, and provides
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Fic 7. Log of the maximum Lo distance between the exact smoothing distributions and the
approximated smoothing distributions for the CIR model. Green: fixed number approximation
with 5, 10, 25, 50, 100, 200 components. Red: fixed fraction approximation with 0.8, 0.9, 0.95,
0.99, 0.999 percent of the total mass retained. Blue: particle filter approzimation with 50, 100,
500, 1000, 2500 particles.

clear evidence that the pruning strategies entail a gain in terms of computing
time by three orders of magnitude for the WF case and by four to five orders
of magnitude for the CIR case. At the same time, the pruning strategies offer
a drastically better precision than the bootstrap particle filters. For the CIR,
the particle filter runtime necessary to obtain a precision similar to the pruning
strategies seems to be three orders of magnitude larger, while it seems even
larger for the WF.

To quantify the loss of precision incurred in estimating a filtering or a smooth-
ing distribution, the simplest approach which extends to a multivariate setting
is to compute the Lo distance between the exact and the approximate distribu-
tions obtained via pruning. The Lo distance between two mixtures of gamma
or Dirichlet distributions has an explicit analytical expression under certain
conditions (see Appendix B.2), which are satisfied in our setting. As there is
one smoothing distribution per observation time, for our simulation scenario we
consider the maximum over time of the above distances. In order to compare
the pruning and the particle approximations, we exploit the fact that a sample
from the particle filter or smoother comes from a mixture of gamma or Dirichlet
distributions. We estimate the filtering and smoothing distributions associated
with the particle algorithms by means of gamma and Dirichlet kernel density
estimates (Chen, 2000; Boone et al., 2014). The particle filtering or smoothing
distribution is then estimated by a mixture of kernel components with equal
weights, and it is possible to compute the Lo distance with the exact distri-
bution as with the pruning approximations. Figure 7 shows that the pruning
approximations to the smoothing distributions are even more efficient than for
the likelihood and the filtering. This is because the particle smoothing comput-
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Fic 8. For a comparable computational budget, evolution of the L2 error on the filtering dis-
tributions (top) and of the log-likelihood estimate accuracy (bottom) as a function of time
(number of observations) for the CIR (left) and the WF (right). Green: fixed number ap-
prozimation with 180 components for CIR and 200 for WF. Violet: on run of a particle filter
approximation with 50 particles. There are 2000 observations for the CIR model, 1000 for
the WF model with the fixed number approzimation and 100 for the particle approzimation
(which yields a comparable computational budget).

ing time seems dominated by the evaluation of the Bessel function in the CIR
transition density, while our exact dual smoothing algorithm avoids evaluating
the transition density altogether.

After studying a scenario with fixed data and varying computational effort,
we fix the computational effort and vary the amount of data. Figure 8 shows the
evolution of the Lo error on the filtering distribution and of the absolute error
on the loglikelihood as the number of observations increases. The particle filter
approximation exhibits the behaviour, usually observed for a fixed number of
particles, that the Lo error on the filtering distribution appears bounded while
the absolute error on the likelihood increases with the number of observations
(cf. Chopin and Papaspiliopoulos (2020); Cérou et al. (2011)). The error of the
pruning approximation is much lower for the same computational budget, and
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it seems to grow at a similar rate. Overall, the figure suggests the advantage of
the pruning strategy can persist for longer time horizons.

In summary, all pruning strategies are shown to provide very fast and accurate
alternatives to the exact strategies, outperforming particle filtering by orders of
magnitude.

5.3. Inference on model parameters

A fast approximation of the likelihood using the strategy outlined in Section 4.2
unlocks the door to performing inference on the model parameters (denoted v
in the Introduction). Additionally, using results from Section 3, one can also ad-
dress joint inference on signal trajectory and model parameters. In this section,
we illustrate both inference problems on simulated datasets. We use the two
models considered in previous sections with the specifications of Section 5.1.

For the CIR model, we set parameters a = 5.0, b = 2.4 and s = 4.0 with
2 observations at each of 200 times separated by 0.011 time units. We use
weakly informative exponential priors with rate parameter equal to 0.01 for each
parameter. For the WF model, we choose a = (1.1,2.5,2.1), with 15 categorical
variables observed every 0.1 time units over 100 collection times. We use a
weakly informative prior given by a half-normal distribution of location 5 and
scale 4 for each parameter.

5.8.1. Marginal inference on the parameters

We build an algorithm which uses the filter to estimate the joint posterior on
the parameters, via Metropolis—Hastings. Specifically, we implement a standard
symmetric random walk Metropolis—Hastings algorithm with Gaussian jumps
to sample from the posterior distribution on the parameters using pruning ap-
proximations to the likelihood. A good jump size was estimated on a pilot run,
based on an estimation of the variance-covariance of the posterior near the mode
and scaling the sizes to achieve a good acceptance rate, in the range [0.2,0.4].
We ran three chains until convergence, which was estimated from the potential
scale reduction factor (implementation from MCMCDiagnostics.jl). Figure 9
presents the autocorrelation plots for both models. The approximation of the
likelihood is obtained by pruning all but the 10 largest components of the filter-
ing distributions at each time step. Figure 10 shows that we correctly recover
the original parameters.

5.3.2. Joint inference on signal and parameters

Using results from Section 3, we are also able to perform joint inference on the
trajectory and the model parameters. We illustrate this in the case of the CIR
model, using a Gibbs sampler with a Metropolis—Hastings step. With respect to
the previous algorithm for inference on the parameters, this can be viewed as a
data augmentation, where states and parameters are sampled jointly.
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An outline of the strategy is as follows:

e Gibbs step: update the signal by sampling a new trajectory from the joint
smoothing density, conditionally on both parameters and data;

e Metropolis—Hastings step: update the parameters by computing the like-
lihood of the data and the trajectory given the parameters.
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Fic 11. Left: prior (black) and posterior distributions (red) for the CIR model parameters,
along with the true values (blue verticals). Right: a few samples from the posterior distribution
(red) for the trajectory and true trajectory (blue) with observed data (black dots).

Note that for the Metropolis—Hastings step, we can exploit the following well-
known representation for evaluating the transition density of the CIR process,
written

PA(Xig1]Xi) =ce™™™" (%)q/z I(2v/uv), (36)

where ¢ = [(1 — e 2)0?| 71y, ¢ = §/2 — 1, u = cX;e 22, v = cX;41, and
I,(2v/uv) is a modified Bessel function of the first kind of order ¢. The absence
of such an expression for the transition density of the WF process prevents from
applying the same strategy directly.

The Metropolis—Hastings step is relatively cheap since it simply requires eval-
uating the likelihood of the parameters conditional on the data and a sampled
trajectory, which can be done exactly. The Gibbs step, which consists in simulat-
ing a full trajectory conditional on the sampled parameters, can be computation-
ally intensive as it involves summing the weights in the filtering mixtures several
times, but can be accelerated using a pruning strategy for the filtering distri-
butions. We used the same priors as for the inference on the model parameters,
and ran the Gibbs algorithm for 10000 iterations. We tuned the proposal distri-
butions for the Metropolis—Hastings step using the posterior from the marginal
sampler for convenience, but this could also be done using a pilot run. Figure 11
shows that both the parameter values and the hidden trajectory of the CIR were
correctly recovered. Figure 9 shows that for this simulated dataset, the chain
used for joint inference had stronger autocorrelation than those for marginal
inference. The autocorrelation plots for the other parameters are provided in
Appendix B (Figure B12).
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6. Discussion

Papaspiliopoulos and Ruggiero (2014) unveiled that the existence of a certain
type of dual process for the hidden signal leads to exact expressions of the fil-
tering distributions, expressed in computable form as mixtures whose number
of components varies with the number of observations but is always finite, thus
entailing a polynomial computational complexity. Here we have shown that, un-
der essentially the same set of conditions, one can also obtain in computable
form expressions for the likelihood and for the marginal smoothing distribu-
tions, which can thus be evaluated exactly. These expressions allow to design
algorithms for addressing inference on the signal trajectory and on the model
parameters, detailed in the paper, thus covering the whole agenda of inference
for a hidden Markov model.

Concerning the identification of the dual process for a given class of HMMs,
in absence of further insight into the model finer properties (like countable
constructions of the forward signal available, e.g., in population genetics), one
can work directly with the process infinitesimal generator. After identifying
the correct family of distributions that satisfy Assumption 3, the output of the
computation of the generator on such functions may suggest minor modifications
that lead to the generator of the correct dual. This was done for example in
Papaspiliopoulos and Ruggiero (2014) for the CIR model.

We have also outlined acceleration strategies based on informed pruning of
the mixture representations of the distributions of interest, and showed that the
resulting approach vastly outperforms both in accuracy and computing time
a generic approximation scheme like particle filtering and smoothing, bring-
ing the computational burden close to linear in the number of observations.
We also observed empirically that the growth rate for the pruning approx-
imation error scales similarly to the particle filter approximations. Our al-
gorithms have been made publicly available via the dedicated Julia package
DualOptimalFiltering, which implements a general interface applicable to any
HMM satisfying the conditions outlined in this paper.
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Appendix A
Proof of Theorem 2
Using (13) we have

/ S Wi)Vijo:i—1 () / fe:(yi) w!(ﬁl)/g(x7m7"‘9i|01i—1)

mEMz\ol 1
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) /X For ()9 (@, m, D05 1)

meM; 0.1
— E (@) )
- W Mm719r5\0;ri71(y2)7
meM; 0.1

the last identity following from (11). Hence the marginal likelihood of y; is
ILLV'L\O:i—l(yi) = / fu, (yi)yi\O:i—l(xi) = Z wflll) Mm779i|0;i71(yi) (37)
x meM; 0.1
with wl) as in (15) and fim,9,,,,_, as in (11). Dividing and multiplying by
o0, (Yo) = fX fzo (o) (o) We can write

/ Pa (1] 20) fro (90)(d20) = 10,0, (0) / Pa (1] 20)y, (n(dao)).
X X

The right hand side equals 10,9, (40)v1)0:1(21), so the equation for the likelihood
becomes

T
plonr) = poan(on) [ TL e Pt - o (n)oioa )

Tterating with g, .., (¥i) = [y fe,(Yi)Vijo:i—1(2:) and by, (v5)0.—1) in place of
10,6, (Yo) and ¢y, (v) leads to writing

T

p(yO:T) = Ho,60 (yo) H M1 (yl)
=1

which, through (37), yields the result. O
Proof of Proposition 3

We prove Proposition 3 by induction. For ¢ =T — 1, we have

plyr | 27_1) = / p(yr | 27)Pa(er | zr—1)der
X

- / For ()2, 0, 80) Pa (a7 | 71 )
X
— 0,00 (ur) / h(er, tyr,0), T(yr, 00)) Pa (o7 | 271 )dar
X

—
= Ho,60 (yT)EIT_l [h(XTa n, ﬂT:T)]

where in the penultimate equality we used the fact that using Assumption 3
and (11) allow to write

fa(y)h(z,m,0) = i 0(y) h(z, t(y, m), T(y,0)), (38)
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%
and in the last equality we let n = ¢(y7,0) and J7.7 is as in (18). Lemma B.2
now implies

— AV
pyrler—) = Y osyr)Pam(d;Vra)h(@ro1,m, Ir_vr)
mGMT,LT,HGﬁT:T7
n>m

with ﬁT—1:T = B(ﬁT:T) = B({n}). Hence the statement holds for i =T — 1
with -

%g) = Mo, (yT)pn,m(A, ﬁT:T), n=—= t(yT’ 0),
since {i : i € ﬁTZT’i > m} = {n} in (19). Assume now it holds for
p(yi+2:T | l‘i+1), i.e.

, -
PWirer|zi) = Y. WEPh(@i, m, Vi)

mEMi+1\i+2:T

Then

P(Yirr1|T4) :/ P(Yir1 | Tir1)P(Wir2:r | Tig1) Pa(wiy1 | 2i)dwi
X

; —
= Z %5:1”)/ f$i+1(yi+1)h(1'i+17m7ﬂi+1|i+2:T)PA(xi+l | 2;)dw;q
x

meM; 1)iq2.7

_ (i+2) .
- Z Em Mmfgi-{-l\i-{-z:T (y7'+1)

meM, 1jiq2.T
%
X (@i, LY, M), T(Yig1, Vigrjivo:r)) Pa(ipr | 25)dwig
X

; —
= Z %E:FQ)Mm(— (Yit1)Ee, [A(Xit1, t(Yir1, m), 191‘+1\i+1;T)}

Wit1)it2:T
meM; 1 |ito.7

where the third ident(iiy follows from (38) and in the fourth we have used

< .
T(Yit1, Vig1jip2r) = Vig1)isrr- Since Myyqi1.0 = t(¥ir1, Migajizo.r), ap-
plying again Lemma B.2 yields

i —
Z %En—m)ﬂmﬁﬁw”m (Yi+1)Eq, [( X1, U(yit1, m), Vigajivr.r)]
meM;1)ip2.7

= Z ‘@Eﬁf?)u 5 (Yit+1)

mﬂ9i+1\z‘+2:T
meM;_q|i42.7

— —
Z pt(yi+1,m),n(A§ 191'+1|i+1:T)h(iUm n, 19¢\¢+1:T)

n<t(y;41,m)

(i+2) .
Z Z %n 'uny(aurl\wrz:T (yH_I)

meEM; ;1.7 NEM; i 12.7,n>m

— —
pt(yiJrl,n),m(A; 79i+1\i+1:T)h(xi7 m, 19i\2'+1:T)
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— — . .
where 191'|¢+1:T = 9A(19¢+1\i+1:T)~ Finally, since Mi|i+1:T = B(Mi+1\i+1:T)7 we

obtain -
Z ﬁ&+1)h(xi,m7 Vifit1)
meﬁi\i+l:T
with
i i bry
%Enﬂ) = Z ESH)NHEHMQT (yi+1)pt(yi+1,n),m(A; ?9i+1|¢+1:T)~ 0

ne(ﬁi+1\i+2:T7
t(yi+1,m)>m

Proof of Theorem /
From Propositions 1 and 3, the numerator on the right hand side of (17) reads

. o :
> SR m D) Y w (@, G ().

m€i\7[1‘|i+1:T nEM;jir

By Assumption 4 the previous equals

> Yo TR a5 s M@ A0 1), (i, i) ) ().
meﬁi\i+1:T neM;jir ’ . -
Since

<_
/ h(zi, d(m,n), e(V;)i11.7, Vijo.))m(z:) = 1
x

by Assumption 3 and the above sum is finite, the latter can be normalised, so
(17) is the distribution

; —
p(i | yor) = > wi) (@i, d(m,n), e(Digi g1, ijo:i),
mEﬁi\i+l:Txn€Mi\i:T
with
(i+1)_ (4

w(i) _ %m Wn Cm,rlﬂ97‘,|i+1;Tﬂ9i\o:i 0
m,n (i+1)_ (i)

Eieﬁi\H»l:ijeMﬂi:T %i Wi Ci,jfE“Hl:T,ﬂim:i

Proof of Theorem 5

The forward kernel (31) involves the cost-to-go functions, available from Propo-
sition 3, the Multinomial emission density, and the transition density (33) of
the WF process. Then we can write

p(xixi—1,yir) = p(yir|xi—1) ' p(xixi—1)p(yi[xi)p(¥is1:7|X:)
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p(¥ir|Xi—1) qu Z MN(1|m, x;—1)Dir(x; |1 + x;—1 + yi)
1eN¥;
lly: DB+ 001+ ) e
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H] I'(yi)B(1+x;-1) Z 8

kEMi|i+1;T
o
:p(yi:T|Xi71)71 Z qm Z Z MN(l|m,xl,1)
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P(lyi)BA+xi— 1+yz)<w(z+1
H'F(yzg)B(l+X1 1)

p(yir|xi-1)” qu > S MN(Im,x; 1)
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Denote now
Lol +[kl) i)

—Bl+xiq+yi+k
Wk I+xi—1+yi + )er(aj+kj)

= E W,k
keﬁi\i+1:T
~ -1
Wk =17 Wik

MN(1|m, Xi,1>
S s

T'm =
1ENK 1 4.+l =m B(l+x;-1)
NI _1, MN(1|m, x;—1)
D" = by e L)
l " B+ xi-1)

qm = p(}’i:T‘Xi—l) W’rmqm = T"mQqm-

We can then write p(x;|x;_1,y:7) as the mixture

oo
p@ilrio,yer) =Y dm Y, @ Y, duDir(xll+xi1 +yi + k),
1N, keM, ;1.
Li+..+Hlg=m CMititrr

(39)

where, by construction,

¥m € N,v1€ N¥ such that I + ... +1g =m: Y =1
keﬁi\i+1:T
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As the right hand side of (39) is a sum of integrable positive functions, inte-
grating both sides with respect to x; implies

I1; T'(yi)T ()
U(lyil) IT; Tey)

implying the forward kernel is an infinite mixture of finite mixtures of Dirichlet
distributions with respect to m, 1 and k. O

Z Q7n =1 <= Z "mQdm = yz T‘xz 1)

Sampling from WF the forward kernel

The two inner sums in (34) are finite mixtures, so the challenge to sample
from the WF forward kernel lies in how to sample from the infinite mixture
with weights Gn. To this end, let b{"? (m) = af e~ i(+0-Dt/2 where of =
(032D m)a—n  Thep the gm in (33) can be written

ml(i—m)!

o0

Then the G, in (34) can be written as 7,,¢, where, for any given m, 7, is
a strictly positive real number (cf. Proof of Theorem 5). Similarly, we define
b (m) = 7l (m).

Note now that all the properties allowing to sample from the distribution de-
fined by the weights ¢,, in Proposition 1 of Jenkins and Spano (2017) carry over
to the distribution defined by the weights ¢,,. In fact, the following proposition
holds:

Proposition 6. Let

0
C(te) —1nf{j>0 b(—&-TZL—‘rl( )<b(t+727,( )}
Then

1. C‘r(ﬁ’e) < 00, for all m.
2. l;l(-t’e)(m) 0 asi— oo foralli>m + C’y(,tb’e)

3. Nﬁ,‘i"’) =0 for all m > Dét’e), where for e € [0,1),
1 6+1 i+0)t
Do) . mf{ (t - ;) VO:(0+2i+1)e 25 < 1}.
Proof. Let b{"? (m) = a9 e="+0=1t/2 where af, = (9+217J()z(9:;)“ Y and let

cL9 _mf{1>0 bgifr)ﬂrl( )<b(t0)( )}

+m

Then Proposition 1 in Jenkins and Spano (2017) implies
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1. 07(2,9) < 0o, for all m
2. bl(-t’e)(m) J0asi—ooforalli>m+ Cf,f’e); and
3. C9 =0 for all m > Déw)7 where for € € [0,1),

1 0+1 oyt
D" :_inf{iz(g%)vO:(GJr%Jrl)e@ﬁ) <1}.

Note now that C’ff;e) = C,(,f’a), since

C =it {52 05547, 11 (m) < B4 (m)}

m Jt+m—+1 Jjt+m

. . ) _ ot
=inf {] >0: 7‘mb§-t+731+1(m) < Tmb§t+n)1(m)}

. . 0 ,0
—inf {j > 0: 050 (m) < b (m) | = G

Next, observe that

1. Cf(,f’e) < 00, for all m implies C’T(,i’e) < oo, for all m.

2. bgt’a)(m) 1 0asi— oo forall i > m+ CS? implies that ggt,e) (m) 10 as
i — oo for all i > m+C?  as Egt’e) (m) = Fmbl(.t’a)(m) with 7, a positive
constant.

3. C,(,i’e) =0 for all m > D(()t"g)7 where for € € [0,1) implies 6'7(72’9) =0 for all

m > D(()t’e), where for € € [0,1).

This completes the proof. O
The interpretation of Proposition 6 is that once the coefficients Bgt’e) (m) start
to decay, they keep decaying indefinitely so it becomes possible to bound them
and use the alternated series trick from Devroye (1986).
To this end, let i = (ig,41,...,%n) and define
2y 41 M 26,
i7(t,0 & 7 (£,0
> (Wb lim). S M) = YT Y (=175 (m).

m=0 j=0 m=0 j=0

S’f and §1+ form the two convergent series bracketing the target distribution,
which in turn allows to use the alternated series method. Algorithm 3 details
how to sample from the WF forward kernel (34).

Appendix B
B.1. Proofs of some lemmas

Lemma B.1. The transition probabilities (7) are

pmwm,i(t, 9) = ’y‘m‘,|i‘0|m|7|m|_|i|(t)MVH(i; m, |1D (B40)
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Algorithm 3: Simulating from the Wright-Fisher forward kernel

Input: x;_1, y;.7 and the cost-to-go weights ﬁ{ffl)

Result: A sample x; from the forward kernel
Initialise

Set m <— 0, kg <— 0,1 <— (io)

Simulate U ~ Uniform|0, 1]

while TRUE do
Set iy +— [C’T(,i’g)/ﬂ with 6'7(,5’6) as in Proposition 6.

while S, (m) < U < ;" (m) do
|  Seti<+i+(1,1,...,1)

end
if S (m) > U then
I return m
else if S;L (m) < U then
Set i «— (40,41, -.,%m,0)

Set m <+~ m+1
end
Simulate 1 ~ Categorical ({@]";1 € NE I .+l = m})
Simulate k ~ Categorical ({ﬁ)l,k; ke Mi|i+1:T})
Simulate x; ~ Dir(14+ x;_1 + y; + k)

end

_ lil-t
where Yim|, i = [In—o Ajm|-h

li 6_>‘|m\—k.f0t p(O5)ds

Om,m—i(t):(_l)m
fmn,joa i ;ﬂnoghg‘ilyh#(x‘m‘_k—A\m\_h)

and MVH(i;m, |i|) is the multivariate hypergeometric pmf evaluated at i, with
parameters m and |i|.

Proof. The proof can be found in Papaspiliopoulos and Ruggiero (2014), Propo-
sition 2.1. O

Lemma B.2. Let Assumption 1-2 above hold. Then
E® [h(X;, m, 0)] = Z Pm,n(t; 0)h(z,n, ©;)
n<m
with © being the unique solution to (6) with ©¢ = 6.

Proof. The statement follows from an application of (8) with ©g = 6 and by
noting that

E™ [h(z, My, ©0)] = Y pmn(t,0)h(z,0,0¢) = > pmn(t;0)h(z,n,0,)

nezks n<m

where pm n(t;0) are as in (7). O
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B.2. Exact L, distances
B.2.1. Lo distance between mixtures of gamma distributions

. ) I J
Lemma B.3. Consider two gamma miztures g =Y ;_; g; f7 and h = ijl hjfjh
where ¥i € N,k € {g,h}; fF := Ga(aF,BF). Let us further assume that Vi €
N;ao¥ > 0.5. Then:

Lot padval -
/R+ (9—hy* = Z gigjf(ag)l“(a ) (B9 + 59) af+aj-1)

J hat hal h h
;B Dag + aj — 1
> hihy b ( )

P(af)T(af) (88 + B D

ij—=1
I J g af gh aj ‘ h

23S g B; hj F(a;’+a{7—3)
i=1 j=1 Plef)l(ef) (87 + 5]]‘1)(%' ey

Proof. We denote Vi € N; f; := Ga(ay, 5;)

r+ L' )F( 2)"
1 a2 F(Otl —+ Qo — ].)

a 11(041) ( 2) (B + ,82)(041-5—&2—1) /]R+ Galag +as — 1,81+ 51)

Now provided that a; 4+ as > 1, which is implied by Vi € N; «; > 0.5:

/ Fofs = 5?15 (g +ag —1)
a1)l(az) (Br + fp)(@ataz=1)

We now consider two gamma mixtures g = Zle gifi and h = Z}]=1 hj f;

2

I J
> gifi = hil
i=1 j=1

(9—h)?

I 2 J 2 I J
= <Zgifi> + Zhjfj *QZgifiZhjfj
i=1 j=1 i=1 j=1
I J I
= Z 9i9; fif; + Z hih; fif; — QZZgihjfifj

i,j=1 i,j=1 i=1j=1

Zgng/ flfﬂrzhh/ -2 [

7,7=1 1,7=1 =1 j=1

[



Ezact inference for HMMs 2871

Let us now write ¢ = Yi_, g:if? = Ga(a?,59) and h = Y2 hifh =
Ga(of, B7")

IR Sy o Tl ol
gig
R+ ] 9 af) (89 + po)(T i =D

ha

i ‘ ‘@haﬂ] Lol +at —1)
T (af)T(al) (gt +6§L)(ag+ay—1)

ij=1
2% hﬁgaﬁ(* Ia? + 0}~ 1)
i=1 j=1 ( j) (5ig+ﬁ]h)(af+a'?il)

B.2.2. Ly distance between mixtures of Dirichlet distributions

Lemma B.4. Consider two Dirichlet miztures g = Zf 19if? and h= ijlhjf]h

k
where Vi € N,k € {g,h}; fF := Dir(a;) = B(ak) H] 1 ]” " where B(a;) =

K . .
% Let us denote Vi the K-dimensional simplex. Let us further as-
j=1%i,j

sume that Vi € N;a; > 0.5. Then:

I+al—1) Ptal—1)
‘LK E:%% T o + 3 sy M B(aT)

i,j=1 & i,5=1 J
+a -1)
-2 gl -~ r J 7
35 o e

Proof. We denote Vi € N; f; := Dir(ay) = B(a 3 15, 2% where B(ay) =

j=1";
Hf:l I(ai,;) T - -
TS o) and Vg the K-dimensional simplex.

1 K
ai,jtaz;—2

- fife = /VK ijIM
_ Blog+az— 1) i
= B B Jo, D a2 =

Now provided that Vj € {1,..., K}, a1 + g j > 1t

(a1 + oo — 1)
o "= TBay)Blaw)

We now consider two Dirichlet mixtures g = Zle gifi and h = ijl h; f;
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Following the product expansion in the previous subsection, we can also ob-
tain the exact expression:

!+ af +a -1
/VK Z*"“‘” B o Z"h I B(ah)

3,j=1 i,j=1

~2) 3 W .

i=1 j=1 z

B.3. Additional algorithm

Algorithm B4: Filtering and likelihood

Pruning setting: ON (approximate filtering) / OFF (exact filtering)

Input: Yp.p, to:n and v = h(z,0,6p) € F for some 6y € ©

Result: 9;0., Mjj0.5, Won with Wi = {wh,, m € M|o;;} and 9;j0:5-1, Mjj0:i—1, W1,
with W/ = {w};,7 m € M;|g;_1} and the likelihood p(yo.T)-

Initialise

Set 9gjo = T'(Yo,00) with T as in (12)

Set Mg|o = {t(Y0,0)} = {m*} and Wy = {1} with ¢ as in Assumption 3

Compute 91y from Jg|g as in (12)

Set Mg = B(Mg|o) and W] = {pm= n(A,Jg|9),n € My|g} with B as in (5) and

Pm,n as in (B40)

for i from 1 to n do
Update

Set 9510:6 = T(Ya, 95)0:5—1)
Wit 0, 10,;_ 1 (V)

Set W; :{

(11)
Set M;j0.; = {t(Yi, m), m € M;o;;_1} and update the labels in W;

. m € M;g.;_1} with g, ¢ defined as in
EnEMi‘O:i71 Wi g 9, (Vi) il0:4 } o

if pruning ON then
Prune Mj;o.; and remove the corresponding weights in W;
Normalise the weights in W;

Predict
Compute 9;410:; from 940,
Set My 1)0:; = B(M;)q.;) and
Wi, = Z winpm,n(Avﬁi\O:i)a n € M;y 04
mEMt\o;mmZn

end
Compute likelihood

| Compute the likelihood using ¥;)0:;—1, M;|p:—1 and W], as in Equation (16)
end
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B.4. Autocorrelation function plots for all parameters

s 0—0——0_aas 000

HHP =)= I= 8 — O

—-e— Joint CIR
—e— Marginal CIR

\ Marginal WF

Autocorrelation

0 50 100 150 200 250 0 50 100 150 200 250 O 50 100 150 200 250
Lag

F1c B12. Autocorrelation function of the MCMC' chains for (o, 8,0) (CIR) and for o (WF).
The darkest line corresponds to the joint CIR inference, the intermediate line corresponds to
the marginal CIR inference and the lightest line to the marginal WF inference.
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