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Abstract: We prove a non-asymptotic concentration inequality for the
spectral norm of sparse inhomogeneous random tensors with Bernoulli en-
tries. For an order-k inhomogeneous random tensor T with sparsity pmax ≥
c logn

n
, we show that ‖T − ET‖ = O(

√
npmax logk−2(n)) with high prob-

ability. The optimality of this bound up to polylog factors is provided by
an information theoretic lower bound. By tensor unfolding, we extend the
range of sparsity to pmax ≥ c logn

nm with 1 ≤ m ≤ k − 1 and obtain concen-
tration inequalities for different sparsity regimes. We also provide a simple
way to regularize T such that O(

√
nmpmax) concentration still holds down

to sparsity pmax ≥ c
nm with k/2 ≤ m ≤ k − 1. We present our concen-

tration and regularization results with two applications: (i) a randomized
construction of hypergraphs of bounded degrees with good expander mixing
properties, (ii) concentration of sparsified tensors under uniform sampling.
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1. Introduction

Tensors have been popular data formats in machine learning and network anal-
ysis. The statistical models on tensors and the related algorithms have been
widely studied in the last ten years, including tensor decomposition [1, 29],
tensor completion [34, 48], tensor sketching [49], tensor PCA [53, 17, 7], and
community detection on hypergraphs [36, 30, 50, 20]. This raises the urgent
demand for random tensor theory, especially the concentration inequalities in
a non-asymptotic point of view. There are several concentration results of sub-
Gaussian random tensors [55] and Gaussian tensors [3, 53, 49]. Recently concen-
tration inequalities for rank-1 tensor were also studied in [59] with application
to the capacity of polynomial threshold functions [5]. In many of the applica-
tions in data science, the sparsity of the random tensor is an important aspect.
However, there are only a few results for the concentration of order-3 sparse ran-
dom tensors [34, 41], and not much is known for general order-k sparse random
tensors.

Inspired by discrepancy properties in random hypergraph theory, we prove
concentration inequalities on sparse random tensors in the measurement of the
tensor spectral norm. Previous results for tensors include the concentration of
sub-Gaussian tensors and expectation bound on the spectral norm for general
random tensors [55, 49]. The sparsity parameter does not appear in those bounds
and directly applying those results would not get the desired concentration for
sparse random tensors.

To simplify our presentation, we focus on real-valued order-k n × · · · × n
tensors, while the results can be extended to tensors with other dimensions.

We denote the set of these tensors by R
nk

. We first define the Frobenius inner
product and spectral norm for tensors.

Definition 1.1 (Frobenius inner product and spectral norm). For order-k n×
· · · × n tensors T and A, the Frobenius inner product is defined by the sum of
entrywise products:

〈T,A〉 :=
∑

i1,...,ik∈[n]

ti1,...,ikai1,...,ik ,
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and the Frobenius norm is defined by ‖T‖F :=
√

〈T, T 〉. Let x1⊗· · ·⊗xk ∈ R
nk

be the outer product of vectors x1, . . . , xk ∈ R
n, i.e.,

(x1 ⊗ · · · ⊗ xk)i1,...,ik = x1,i1 · · ·xk,ik

for i1, . . . , ik ∈ [n]. Then the spectral norm of T is defined by

‖T‖ : = sup
‖x1‖2=···=‖xk‖2=1

|〈T, x1 ⊗ · · · ⊗ xk〉|

= sup
‖x1‖2=···=‖xk‖2=1

∣∣∣∣∣∣
∑

i1,...,ik∈[n]

ti1,...,ikx1,i1 · · ·xk,ik

∣∣∣∣∣∣ .
For the ease of notation, we denote the Frobenius inner product between a

tensor T and a tensor x1 ⊗ · · · ⊗ xk by

T (x1, . . . , xk) := 〈T, x1 ⊗ · · · ⊗ xk〉,

which can be seen as a multi-linear form on x1, . . . , xk. It is worth noting that
‖T‖ ≤ ‖T‖F since the following inequality holds:

‖T‖ = sup
‖x1‖2=···=‖xk‖2=1

|T (x1, . . . , xk)| ≤ sup
A:‖A‖F≤1

|〈T,A〉| = ‖T‖F . (1.1)

In general, it is NP-hard to compute the spectral norm of tensors for k ≥ 3
[33]. However, it would be possible to show the concentration of sparse random
tensors in the measurement of the spectral norm with high probability.

There have been many fruitful results on the concentration of random ma-
trices, including the sparse ones. We briefly discuss different proof techniques
and their difficulty and limitation for generalization to random tensors. For sub-
Gaussian matrices, an ε-net argument will quickly give a desired spectral norm
bound [58]. For Gaussian matrices, one could relate the spectral norm to the
maximal of a certain Gaussian process [57]. Another powerful way to derive
a good spectral norm bound for random matrices is called the high moment
method. Considering a centered n× n Hermitian random matrix A, for any in-
teger k, its spectral norm satisfies E[‖A‖2k] ≤ E[tr(A2k)]. By taking k growing
with n, if one can have a good estimate of E[tr(A2k)], it implies a good concen-
tration bound on ‖A‖. It’s well-known that computing the trace of a random
matrix is equivalent to counting a certain class of cycles in a graph. This type
of argument, together with some more refined modifications and variants (e.g.
estimating high moments for the corresponding non-backtracking operator), is
particularly useful for bounding the spectral norm of sparse random matrices,
see [60, 6, 9, 39, 12].

A different approach is called the Kahn-Szemerédi argument, which was first
applied to obtain the spectral gap of random regular graphs [26], and was ex-
tensively applied to other random graph models [15, 46, 23, 21, 54, 63]. In
particular, this argument was used in [25, 42] to estimate the largest eigenvalue
of sparse Erdős-Rényi graphs. Although using this method one cannot obtain
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the exact constant of the spectral norm, it does capture the right order on n
and the sparsity parameter p.

A natural question is how those methods can be applied to study the spectral
norm of random tensors. For sub-Gaussian random tensors of order k, the ε-net
argument would give us a spectral norm bound O(

√
n) [55]. However, the depen-

dence on the order k might not be optimal, and it cannot capture the sparsity
in the sparse random tensor case. For Gaussian random tensors, surprisingly,
none of the above approaches could obtain a sharp spectral norm bound with
the correct constant. Instead, the exact asymptotic spectral norm was given
in [3] using techniques from spin glasses. This is also the starting point for a
line of further research: tensor PCA and spiked tensor models under Gaussian
noise, see for example [53, 44, 17, 7]. The tools from spin glasses rely heavily
on the assumption of Gaussian distribution and cannot be easily adapted to
non-Gaussian cases.

One might try to develop a high moment method for random tensors. Unfor-
tunately, there is no natural generalization of the trace or eigenvalues for tensors
that match our cycle counting interpretation in the random matrix case. Instead,
by projecting the random tensor into a matrix form (including the adjacency
matrix, self-avoiding matrix, and the non-backtracking matrix of a hypergraph),
one could still apply the moment method to obtain some information of the orig-
inal tensor or hypergraph, see [45, 50, 24, 2]. This approach is particularly useful
for the study of community detection problems on random hypergraphs. How-
ever, after reducing the adjacency tensor into an adjacency matrix, there is a
strict information loss and one could not get the exact spectral norm informa-
tion of the original tensor. Due to the barrier of extending other methods to
sparse random tensors, we generalize the Kahn-Szemerédi argument to obtain
a good spectral norm bound when p ≥ c logn

n .

2. Main results

2.1. Concentration

Let P = (pi1,...,ik) ∈ [0, 1]n
k

be an order-k tensor and T be a random tensor
with independent entries such that

ti1,...,ik ∼ Bernoulli(pi1,...,ik), where in particular, P = ET. (2.1)

To control the sparsity of random tensor, we introduce the parameter for max-
imal probability

p := pmax := max
i1,...,ik∈[n]

pi1,...,ik .

Note that when k = 2, np is the maximal expected degree parameter in [25, 42,

40]. For two order-k tensors A,B ∈ R
nk

, define the Hadamard product A ◦B as

(A ◦B)i1,...,ik := Ai1,...,ikBi1,...,ik .

Now we are ready to state our first main result, which is a generalization of the
case when k = 2 in [25, 42] to all k ≥ 2.
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Theorem 2.1. Let k ≥ 2 be fixed. Let A be a deterministic tensor of order k,
and T be a random tensor of order k with Bernoulli entries. Assume p ≥ c logn

n
for some constant c > 0. Then for any r > 0, there is a constant C > 0
depending only on r, c, k such that with probability at least 1− n−r,

‖A ◦ T − E[A ◦ T ]‖ ≤ C
√
np logk−2(n) max

i1,...,ik
|Ai1,...,ik |. (2.2)

Remark 2.1. From the proof of Theorem 2.1 in Section 4, the constant C
in (2.2) depends exponentially on k and linearly on r.

In fact, we can provide a lower bound on the spectral norm as follows, which
shows (2.2) is tight up to a polylog factor.

Theorem 2.2. Let k ≥ 2 be fixed and T be a random tensor of order k with
Bernoulli entries and ETi1,...,ik = p for i1, . . . , ik ∈ [n]. Assume p = o(1) and
np → ∞ as n → ∞. Then with high probability,

‖T − ET‖ ≥ √
np.

From (1.1), when p ≥ c logn
nk−1 , a concentration bound by Bernstein inequality

on ‖T − ET‖F implies ‖T − ET‖ = O(
√

nkp) with high probability. Applying
tensor unfolding, we can improve this bound and obtain concentration inequal-
ities for different sparsity ranges as follows.

Theorem 2.3. Let k ≥ 2 be fixed and T be a random tensor defined in (2.1).
Assume p ≥ c logn

nm for some constant c > 0 and an integer m such that k/2 ≤
m ≤ k − 1. Then for any r > 0, there is a constant C > 0 depending only on
r, c, k such that with probability at least 1− n−r,

‖T − ET‖ ≤ C
√
nmp. (2.3)

Assume p ≥ c logn
nm with 1 ≤ m < k/2. Then there is a constant C > 0 depending

on r, c, k such that with probability at least 1− n−r,

‖T − ET‖ ≤
{
C
√
nmp log

k−1
m −1(n) if k/m �∈ Z,

C
√
nmp log

k
m−2(n) if k/m ∈ Z.

(2.4)

Remark 2.2. In (2.2), the factor
√
np corresponds to the Euclidean norm of

a fiber (a vector obtained by fixing all but one indices in a tensor) of T . The
same applies in Theorem 2.3 after tensor unfolding. The factor

√
nmp in (2.3)

corresponds to the Euclidean norm of a row in the unfolded nk−m × nm matrix
form of T . Similarly, the same factor in (2.4) corresponds to the Euclidean norm
of an nm-dimensional fiber in an unfolded tensor form of T .

Remark 2.3. When p = c logn
nm with 1 ≤ m ≤ k − 1, the inequalities in

Theorem 2.3 are tight up to polylog factors. Note that (2.3) and (2.4) imply

‖T − ET‖ ≤ C
√
c logk−1/2(n). On the other hand, when c logn

nk−1 ≤ p ≤ 1
2 , with

high probability the random tensor T has at least one non-zero entry. By the
inequality ‖T − ET‖ ≥ maxi1,...,ik |Ti1,...,ik − pi1,...,ik |, we have ‖T − ET‖ ≥ 1/2
with high probability.
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2.2. Minimax lower bound

Consider the problem of constructing an estimator of ET under the spectral
norm based on T . We show that the high probability bound in Theorem 2.1 is
optimal up to the logarithm term in the minimax sense.

Theorem 2.4. Suppose we observe a Bernoulli random tensor T with indepen-

dent entries and ET = θ for θ ∈ [0, p]n
k

, where p ∈ (0, 1] and n ≥ 16. Then
there exists constants c1, c2 > 0 only depending on k such that

inf
θ̂

sup
θ∈[0,p]nk

P

(
‖θ̂ − θ‖ ≥ (c1

√
np) ∧ (c2n

k/2p)
)
≥ 1

3
,

where the infimum is taken over all functions θ̂ : Rnk → R
nk

, T �→ θ̂(T ). In
particular, if p ≥ c log n

n , then there exists constant c3 > 0 only depending on k
and c such that

inf
θ̂

sup
θ∈[0,p]nk

P

(
‖θ̂ − θ‖ ≥ c3

√
np

)
≥ 1

3
.

This theorem implies that in Theorem 2.1,
√
np logk−2(n) cannot be replaced

by other terms with order o(
√
np) at least when all the entries of A are one.

Hence, the upper bound is tight when k = 2 and tight up to a logarithm factor

when k > 2. More generally, even if we consider all functions θ̂ : Rnk → R
nk

,
T �→ θ̂(T ), ‖θ̂(T ) − ET‖ has no high probability bound tighter than O(

√
np).

Therefore it is stronger than Theorem 2.2.

2.3. Regularization

Regularization of random graphs was first studied in [25]. It was proved in [25]
that by removing high-degree vertices from a random graph, one can recover
the concentration under the spectral norm because the O(

√
np) concentration

breaks down when np = O(1), due to the appearance of high-degree vertices,
see [38, 40, 8]. A data-driven threshold for finding high degree vertices for the
stochastic block model can be found in [62]. A different regularization analysis
was given in [40] by decomposing the adjacency matrix into several parts and
modify a small submatrix. This method was later generalized to other random
matrices in [52, 51]. In this section we consider the regularization for Bernoulli
random tensors.

Let di1,...,ik−1
:=

∑
ik∈[n] ti1,i2,...,ik be the degree of the tuple (i1, . . . , ik−1).

When p = c logn
n , the maximal degree of all possible (i1, . . . , ik−1) tuples is

O(np), and the bounded degree property of the random hypergraph holds (see

Lemma 4.3). When p = o
(

logn
n

)
, the maximal degree of all possible (k − 1)-

tuples is no longer O(np), and our proof techniques of Theorem 2.1 will fail
in this regime without the bounded degree property. In fact, when p = c

n and
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ET = pJ , define a matrix A ∈ R
n×n such that ai1,i2 = ti1,i2,1,...,1−p. According

to [25], we have ‖T − ET‖ ≥ ‖A− EA‖ = ω(
√
np). We can see that ‖T − ET‖

can not be bounded by O(
√
np) with high probability in this regime, and the

high (k − 1)-order degrees destroy the concentration. In general, define

di1,...,ik−m
:=

∑
ik−m+1,...,ik∈[n]

ti1,i2,...,ik (2.5)

to be the degree of the tuple (i1, . . . , ik−m), when p = o
(

logn
nm

)
with 1 ≤ m <

k/2, the degrees of all (k−m)-tuples fail to concentrate and our proof for (2.4)
will not work in this regime. We conjecture that removing the (k − m)-tuples
could be a possible way to recover the concentration of the spectral norm, but
the proof of this conjecture is beyond the scope of this paper. One obstacle is
that too many tuples are removed, which creates a large error in ‖ET − ET̂‖,
where T̂ is the tensor after removing tuples of high degrees. Another obstacle
is the probability estimate. similar to [25, 40], we need to take a union bound

to estimate failure probability over 2n
k−m

many possible sets of removed tuples.
With the union bound argument, we fail to bound the spectral norm with high
probability.

When p ≥ c logn
nm for k/2 ≤ m ≤ k− 1, we can still analyze the regularization

procedure by using tensor unfolding. In the proof of Theorem 2.3, we have
obtained ‖T − ET‖ = O(

√
nmp) with high probability. The main proof idea

is that the spectral norm of (T − ET ) can be bounded by the spectral norm
of an nm × nm matrix representation of (T − ET ), which we denote it M for

now. When p = o
(

logn
nm

)
, this tensor unfolding argument would fail because the

random matrix M does not have spectral norm O(
√
nmp). If we regularize this

matrix M by removing high degree vertices, it will still provide an upper bound
on the spectral norm for T−ET . This is a sufficient way to obtain a spectral norm
bound when p ≥ c

nm . In terms of the tensor structure, before regularization, the
(k −m)-order degrees fail to concentrate. But after regularization, each degree

d̂i1,...,ik−m
in the regularized tensor T̂ is bounded by 2

√
nmp, which guarantees

that the unfolded tensor is concentrated under the spectral norm.
We adapt the techniques from [25, 40], together with the tensor unfolding op-

eration, and apply it to an inhomogeneous random directed hypergraph, whose
adjacency tensor has independent entries. This allows us to generalize the con-
centration inequalities in [25, 40] for regularized inhomogeneous random directed
graphs with the same probability estimate. Based on different ranges of spar-
sity, our regularization procedures are slightly different, which depend on the
boundedness property for different orders of degrees.

We now introduce some definitions for hypergraphs before stating the regu-
larization procedure.

Definition 2.1 (Hypergraph). A hypergraph H consists of a set V of vertices
and a set E of hyperedges such that each hyperedge is a nonempty set of V . H
is k-uniform if every hyperedge e ∈ E contains exactly k vertices. The degree of
a vertex i is the number of all hyperedges incident to i.
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Let us index the vertices by V = {1, . . . , n}. A k-uniform hypergraph can be
represented by order-k tensor with dimension n× · · · × n.

Definition 2.2 (Adjacency tensor). Given a k-uniform hypergraph H, an order-
k tensor T is the adjacency tensor of H = (V,E) if

ti1,...,ik =

{
1, if {i1, . . . , ik} ∈ E,

0, otherwise.

For any adjacency tensor T , tiσ(1),...,iσ(k)
= ti1,...,ik for any permutation σ. We

may abuse notation and write te in place of ti1,...,ik , where e = {i1, . . . , ik}. A
k-uniform directed hypergraph H = (V,E) consists of a set V of vertices and a
set E of directed hyperedges such that each directed hyperedge is an element in
V × · · · × V = V k. Define T to be the adjacency tensor of H such that

ti1,...,ik =

{
1, if (i1, . . . , ik) ∈ E,

0, otherwise.

For different orders of sparsity in terms of m, our regularization procedure is
based on the boundedness of (k −m)-th order degrees in the random directed
hypergraph. Assume p ≥ c

nm with k/2 ≤ m ≤ k − 1. For any order-k tensor A
indexed by [n], let S ⊂ [n]k−m be a subset of indices. We define the regularized
tensor AS as

aSi1,...,ik =

{
0 if (i1, . . . , ik−m) ∈ S,

ai1,...,ik otherwise.

When we observe a random tensor T , we regularize T as follows. Suppose the
degree of a (k −m)-tuple (i1, . . . , ik−m) is greater than 2nmp, then we remove
all directed hyperedges containing this tuple. In other words, we zero out the
corresponding hyperedges in the adjacency tensor. We call the resulting tensor
T̂ . Let S̃ ⊂ [n]k−m be the set of (k−m)-tuples with degree greater than 2nmp.
Then with our notation,

T̂ = T S̃ . (2.6)

Since from our Theorem 2.3, when p ≥ c log n
nm for some c > 0, the regular-

ization is not needed, below we assume p < log n
nm for simplicity. The following

lemma shows that with high probability, not many (k−m)-tuples are removed.

Lemma 2.1. Let c
nm ≤ p < logn

nm for a sufficiently large c > 1 and an integer

m with k/2 ≤ m ≤ k − 1. Then the number of regularized (k −m)-tuples |S̃| is
at most 1

n2m−kp
with probability at least 1− exp

(
− nk−m

6 logn

)
.

After regularization, the following holds.
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Theorem 2.5. Let c
nm ≤ p < logn

nm for a sufficiently large c > 1 and an integer

m with k/2 ≤ m ≤ k − 1. Let T̂ be the random order-k tensor T after regular-
ization. Then for any r > 0, there exists a constant C2 depending on k, r such
that

P

(
‖T̂ − ET‖ ≤ C2

√
nmp

)
≥ 1− n−r. (2.7)

3. Applications

To demonstrate the usefulness of our concentration and regularization results,
we highlight two applications.

3.1. Sparse hypergraph expanders

The expander mixing lemma for a d-regular graph (the degree of each vertex
is d) states the following: Let G be a d-regular graph on n vertices with the
second largest eigenvalue in absolute value of its adjacency matrix satisfying
λ := max{λ2, |λn|} < d. For any two subsets V1, V2 ⊆ V (G), let

e(V1, V2) = |{(v1, v2) ∈ V1 × V2 : {v1, v2} ∈ E(G)}|

be the number of edges between V1 and V2. Then∣∣∣∣e(V1, V2)−
d|V1||V2|

n

∣∣∣∣ ≤ λ

√
|V1||V2|

(
1− |V1|

n

)(
1− |V2|

n

)
. (3.1)

(3.1) shows that d-regular graphs with small λ have a good mixing property,
where the number of edges between any two vertex subsets is approximated by
the number of edges we would expect if they were drawn at random. Such graphs
are called expanders, and the quality of such an approximation is controlled by
λ, which is also the mixing rate of simple random walks on G [18].

Hypergraph expanders have recently received significant attention in com-
binatorics and theoretical computer science [47, 22]. Many different definitions
have been proposed for hypergraph expanders, each with their own strengths
and weaknesses. In this section, we only consider hypergraph models that have
a generalized version of expander mixing lemma (3.1).

There are several hypergraph expander mixing lemmas in the literature based
on the spectral norm of tensors [27, 43, 19]. However, for deterministic tensors,
the spectral norm is NP-hard to compute [33], hence those estimates might not
be applicable in practice. In [11, 31], the authors obtained a weaker expander
version mixing lemma for a sparse deterministic hypergraph model where the
mixing property depends on the second eigenvalue of a regular graph. Friedman
and Widgerson [27] obtained the following spectral norm bound for a random
hypergraph model: Consider a k-uniform hypergraph model on n vertices where
nkp hyperedges are chosen independently at random. Let J be the order-k ten-
sor with all entries taking value 1. If p ≥ Ck logn/n, then with high probability



2492 Z. Zhou and Y. Zhu

‖T − pJ‖ ≤ (C logn)k/2
√
np. Combining with their expander mixing lemma in

[27], it provides a random hypergraph model with a good control of the mix-
ing property. This is a random hypergraph model with expected degrees nk−1p,
which is not bounded. To the best of our knowledge, our Theorem 3.1 below
is the first construction of a sparse random hypergraph model with bounded
degrees that satisfies a k-subset expander mixing lemma with high probability.
The idea of applying expander mixing lemma and spectral gap results of sparse
expanders to analyze matrix completion and tensor completion has been devel-
oped in [32, 10, 14, 28, 31]. We believe our result could also be useful for tensor
completion or other related problems.

LetH be a k-uniform Erdős-Rényi hypergraph (recall Definition 2.1) on n ver-
tices with sparsity p = c

nk−1 , where each hyperedge is generated independently
with probability p. Its adjacency tensor is then a symmetric tensor, denoted
by T . We construct a regularized hypergraph H ′ as follows:

1. Construct T̃ such that

t̃i1,...,ik =

{
ti1,...,ik if 1 ≤ i1 < i2 < · · · < ik ≤ n,

0 otherwise.
(3.2)

2. Compute d̃i :=
∑

i1,...,ik−1∈[n] t̃i,i1,...,ik−1
for all i ∈ [n]. If d̃i > 2nk−1p,

zero out all entries t̃i,i1,...,ik−1
, i1, . . . , ik−1 ∈ [n]. We then obtain a new

tensor T̂ .
3. Define T ′ such that (t′)i1,i2,...,ik =

∑
σ∈Sk

t̂iσ(1),...,iσ(k)
, where Sk is the

symmetric group of order k. We then obtain a regularized hypergraph H ′

with adjacency tensor T ′.

Note that this regularization procedure is applicable to inhomogeneous ran-
dom hypergraphs by taking p = maxi1,...,ik∈[n] pi1,...,ik . By our construction, H ′

is a k-uniform hypergraph with degrees at most 2k!nk−1p = 2k!c. Let J ∈ R
nk

be an order k tensor with all entries taking value 1. From Theorem 2.5, for some
constant C > 0, with high probability its adjacency tensor T ′ satisfies

‖T ′ − pJ‖ ≤ C
√
nk−1p. (3.3)

In the next theorem we use (3.3) to show that H ′ satisfies an expander mixing
lemma with high probability.

Definition 3.1. If V1, . . . , Vk are subsets of V (H) for a k-uniform hypergraph
H, define

eH(V1, . . . Vk) := |{(v1, . . . , vk) ∈ V1 × · · · × Vk : {v1, . . . , vk} ∈ E(H)}| (3.4)

to be the number of hyperedges between V1, . . . , Vk.

Theorem 3.1. Let H be a k-uniform Erdős-Rényi hypergraph on n vertices
with sparsity p = c

nk−1 for some sufficiently large constant c > 1. Let H ′ be the
hypergraph H after regularization, then there exists a constant C > 0 depending
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on k such that with high probability for any non-empty subsets V1, . . . , Vk ⊂ [n],
we have the following expander mixing inequality:

|eH′(V1, . . . , Vk)− p|V1| · · · |Vk|| ≤ C
√
c ·

√
|V1| · · · |Vk|. (3.5)

3.2. Tensor sparsification

In the tensor completion problem, one aims to estimate a low-rank tensor based
on a random sample of observed entries. A commonly used definition of the
rank for tensors is called canonical polyadic (CP) rank. We refer to [37] for
more details. In order to solve a tensor completion problems, there are two main
steps. First, one needs to sample some entries from a low-rank tensor T . Then,
based on the observed entries, one solves an optimization problem and justifies
that the solutions to this problem will be exactly or nearly the original tensor T .
A fundamental question is: how many observations are required to guarantee
that the solution of the optimization problem provides a good recovery of the
original tensor T?

After a random sampling from the original tensor T , we obtain a random
tensor T̃ . If we require the sample size to be small, T̃ then will be random
and sparse. In the next step, the optimization procedure is then based on T̃ .
In the matrix or tensor completion algorithm, especially for the non-convex
optimization algorithm, we need some stability guarantee on the initial data,
see for example [35, 34, 16]. Therefore, it is important to have concentration
guarantee such that T̃ is close to T under the spectral norm.

Another related problem is called tensor sparsification. Given a tensor T ,
through some sampling algorithm, one wants to construct a sparsified version
T̃ of T such that ‖T − T̃‖ is relatively small with high probability. In [49], a
non-uniform sampling algorithm was proposed and the probability of sampling
each entry is chosen based on the magnitude of the entry in T . However, without
knowing the exact value of the original tensor T , a reasonable way to output a
sparsified tensor T̃ is through uniform sampling.

We obtain a concentration inequality of the spectral norm for tensors under
uniform sampling, which is useful to both of the problems above. It improves
the sparsity assumption in the analysis of the initialization step for the tensor
completion algorithm proposed in [34]. Let T be a deterministic tensor. We
obtain a new tensor T̃ by uniformly sampling entries in T with probability p.
Namely,

t̃i1,...,ik =

{
ti1,...,ik with probability p,

0 with probability 1− p.

By our definition, ET̃ = pT . The following is an estimate about the concentra-
tion of T̃ under the spectral norm when p ≥ c logn

nm , 1 ≤ m ≤ k− 1. It is a quick
corollary from Theorem 2.1 and Theorem 2.3.
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Corollary 3.1. Let p ≥ c logn
nm for some constant c > 0 and some integer

1 ≤ m ≤ k − 1. Denote tmax := maxi1,...,ik∈[n] |ti1,...,ik |. For any r > 0, there
exists a constant C > 0 depending on r, k, c such that with probability 1− n−r,

‖T̃ − pT‖ ≤

⎧⎪⎨
⎪⎩
Ctmax

√
nmp if k/2 ≤ m ≤ k − 1,

Ctmax
√
nmp log

k−1
m −1(n) if 1 ≤ m < k/2, k/m �∈ Z,

Ctmax
√
nmp log

k
m−2(n) if 1 ≤ m < k/2, k/m ∈ Z.

Remark 3.1. Theorem 2.1 in [34] provides an estimate of ‖T̃ − pT‖ for a
symmetric tensor T with symmetric sampling, assuming k = 3 and p ≥ logn

n3/2 .

When k = 3, our result allows the sparsity down to p ≥ c logn
n2 and covers non-

symmetric tensors with uniform sampling.

4. Proof of Theorem 2.1

The proof is a generalization of [25, 42] and is suitable for sparse random ten-
sors. This type of method is known as the Kahn-Szemerédi argument originally
introduced in [26]. Without loss of generality, we may assume

max
i1,...,ik

|Ai1,...,ik | = 1 (4.1)

in our proof for simplicity.

4.1. Discretization

Fix δ ∈ (0, 1), define the n-dimensional ball of radius t as

St := {v ∈ R
n : ‖v‖2 ≤ t}.

We introduce a set of lattice points in S1 as follows:

T =

{
x = (x1, . . . xn) ∈ S1 :

√
nxi

δ
∈ Z, ∀i ∈ [n]

}
. (4.2)

By the Lipschitz property of spectral norms, we have the following upper
bound, which reduces the problem of bounding the spectral norm of T to an
optimization problem over T .

Lemma 4.1. For any tensor T ∈ R
nk

and any fixed δ ∈ (0, 1), we have

‖T‖ ≤ (1− δ)−k sup
y1,...,yk∈T

|T (y1, . . . , yk)|.

Proof. The proof follows from Lemma 2.1 in the supplement of [42]. For com-
pleteness, we provide the proof here. For any v ∈ S1−δ, consider the cube in R

n

of edge length δ/
√
n that contains v, with all its vertices in

(
δ√
n
Z

)n

. The diame-

ter of the cube is δ, so the entire cube is contained in S1. Hence all vertices of this
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cube are in T and S1−δ ⊂ convhull(T ). Therefore for each ui ∈ S1, 1 ≤ i ≤ k, we
can find some sequence {xij}Ni

j=1 ⊂ T such that (1−δ)ui is a linear combination
of those {xij}, namely,

(1− δ)ui =

Ni∑
j=1

a
(i)
j xij ,

for some a
(i)
j ∈ [0, 1] satisfying

∑Ni

j=1 a
(i)
j = 1. Then

|T (u1, . . . , uk)| = (1− δ)−k|T ((1− δ)u1, . . . , (1− δ)uk)|

≤ (1− δ)−k
N1∑

j1=1

· · ·
Nk∑

jk=1

a
(1)
j1

· · · a(k)jk
|T (x1j1

, . . . , xkjk
)|

≤ (1− δ)−k sup
y1,...,yk∈T

|T (y1, . . . , yk)|,

where the last inequality is due to

N1∑
j1=1

· · ·
Nk∑

jk=1

a
(1)
j1

· · · a(k)jk
=

k∏
i=1

⎛
⎝ Ni∑

ji=1

a
(i)
ji

⎞
⎠ = 1.

This completes the proof.

Now for any fixed k-tuples (y1, . . . , yk) ∈ T ×· · ·×T , we decompose its index
set. Define the set of light tuples as

L = L(y1, . . . , yk) :=
{
(i1, . . . , ik) ∈ [n]k : |y1,i1 · · · yk,ik | ≤

√
np

n

}
, (4.3)

and heavy tuples as

L = L(y1, . . . , yk) :=
{
(i1, . . . , ik) ∈ [n]k : |y1,i1 · · · yk,ik | >

√
np

n

}
. (4.4)

In the remaining part of our proof, we control the contributions of light and
heavy tuples to the spectral norm respectively.

4.2. Light tuples

Let W := A ◦ T − E[A ◦ T ] be the centered random tensor and we denote the
entries of W by wi1,...,ik for i1, . . . , ik ∈ [n]. We have the following concentration
bound for the contribution of light tuples.

Lemma 4.2. For any constant c > 0,

P

⎛
⎝ sup

y1,...,yk∈T

∣∣∣∣∣∣
∑

(i1,...,ik)∈L
y1,i1 · · · yk,ikwi1,...,ik

∣∣∣∣∣∣ ≥ c
√
np

⎞
⎠
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≤ 2 exp

[
−n

(
c2

2(1 + c/3)
− k log

(7
δ

))]
,

where δ ∈ (0, 1) on the right hand side is determined by the definition of T
in (4.2).

Proof. Denote

ui1,...,ik := y1,i1 · · · yk,ik1{|y1,i1 · · · yk,ik | ≤
√
np/n}. (4.5)

Then the contribution from light tuples can be written as∑
i1,...,ik∈[n]

wi1,...,ikui1,...,ik .

Since from (4.1), each term in the sum has mean zero and is bounded by
√
np/n,

we are ready to apply Bernstein’s inequality to get for any constant c > 0,

P

⎛
⎝
∣∣∣∣∣∣

∑
i1,...,ik∈[n]

wi1,...,ikui1,...,ik

∣∣∣∣∣∣ ≥ c
√
np

⎞
⎠ (4.6)

≤2 exp

(
− c2np/2∑

i1,...,ik∈[n] pi1,...,ik(1− pi1,...,ik)u
2
i1,...,ik

+ 1
3

√
np

n c
√
np

)

≤2 exp

(
− c2np/2

p
∑

i1,...,ik∈[n] u
2
i1,...,ik

+ cp
3

)
. (4.7)

From (4.5) we have

∑
i1,...,ik∈[n]

u2
i1,...,ik

≤
∑

i1,...,ik∈[n]

y21,i1 · · · y
2
k,ik

=

k∏
j=1

‖yj‖22 = 1.

Then (4.7) is bounded by 2 exp
(

−c2n
2+ 2c

3

)
. By the volume argument (see for ex-

ample [58]) we have |T | ≤ exp(n log(7/δ)), hence the k-th product of T satisfies

|T × · · · ×T | ≤ exp(kn log(7/δ)).

Then taking a union bound over all possible y1, . . . , yk ∈ T , we have

sup
y1,...,yk∈T

∣∣∣∣∣∣
∑

(i1,...,ik)∈L
y1,i1 · · · yk,ikwi1,...,ik

∣∣∣∣∣∣ ≤ c
√
np

with probability at least 1−2 exp
[
− c2n

2(1+c/3) + kn log(7/δ)
]
. This completes the

proof.
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By Lemma 4.2, for any r > 0, we can take the constant c in Lemma 4.2 large
enough depending on k and r (for example, taking c = 6r+6k log(7/δ) suffices)
such that with probability at least 1− n−r,

sup
y1,...,yk∈T

∣∣∣∣∣∣
∑

i1,...,ik∈L
y1,i1 · · · yk,ikwi1,...,ik

∣∣∣∣∣∣ ≤ c
√
np.

Therefore to prove Theorem 2.3, it remains to control the contribution from
heavy tuples.

4.3. Heavy tuples

Next, we show the contribution from heavy tuples is bounded by c
√
np logk−2(n)

for some constant c > 0 depending on k with high enough probability. Namely,

sup
y1,...,yk∈T

∣∣∣∣∣∣
∑

(i1,...,ik)∈L

y1,i1 · · · yk,ik · wi1,...,ik

∣∣∣∣∣∣ ≤ c
√
np logk−2(n).

Note that from our definition of heavy tuples in (4.4), we have∣∣∣∣∣∣
∑

(i1,...,ik)∈L

y1,i1 · · · yk,ik · (ai1,...,itpi1,...,ik)

∣∣∣∣∣∣
≤

∑
(i1,...,ik)∈L

y21,i1 · · · y2k,ik
|y1,i1 · · · yk,ik |

· pi1,...,ik ≤
∑

(i1,...,ik)∈L

n
√
np

y21,i1 · · · y
2
k,ik

· p

≤√
np

∑
(i1,...,ik)∈L

y21,i1 · · · y
2
k,ik

≤ √
np. (4.8)

Then it suffices to show that with high enough probability for all y1, . . . , yk ∈ T ,∣∣∣∣∣∣
∑

(i1,...,ik)∈L

y1,i1 · · · yk,ik · (ai1,...,ikti1,...,ik)

∣∣∣∣∣∣ ≤ Ck
√
np logk−2(n) (4.9)

for a constant Ck depending on k. We will focus on the heavy tuples (i1, . . . , ik)

such that y1,i1 , . . . , yk,ik > 0. We denote this set by L+
. The remaining cases

will be similar and there are 2k different cases in total. Note that∣∣∣∣∣∣
∑

(i1,...,ik)∈L+

y1,i1 · · · yk,ik · (ai1,...,ik ti1,...,ik)

∣∣∣∣∣∣
≤

∑
(i1,...,ik)∈L+

y1,i1 · · · yk,ik · ti1,...,ik . (4.10)
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For the rest of the proof we will bound the right hand side of (4.10). We now
define the following index sets for a fixed tuple (y1, . . . , yk) ∈ T × · · · × T :

Ds
j =

{
i :

2s−1δ√
n

≤ yj,i ≤
2sδ√
n

}
for s = 1, . . . ,

⌈
log2(

√
n/δ)

⌉
and 1 ≤ j ≤ k.

(4.11)

By our definition of T in (4.2), for any (y1, . . . , yk) ∈ (T × · · · × T ) and

(i1, . . . , ik) ∈ L+
, we have yj,ij ≥ δ/

√
n for all 1 ≤ j ≤ k. Therefore each

ij is in Ds
j for some s. Recall the definition of degree for a (k−1)-tuple in (2.5).

Also the following definitions are needed:

1.
e(I1, . . . , Ik) := |{(i1, . . . , ik) : ti1,...,ik = 1, i1 ∈ I1, . . . , ik ∈ Ik}| .

2.
μ(I1, . . . , Ik) = Ee(I1, . . . , Ik), μ(I1, . . . , Ik) = p|I1| · · · |Ik|.

3. For 1 ≤ s1, . . . , sk ≤ log2(
√
n/δ),

λs1,...,sk =
e(Ds1

1 , . . . , Dsk
k )

μs1,...,sk

, μs1,...,sk
= μ(Ds1

1 , . . . , Dsk
k ).

4. αj,s = |Ds
j | · 22s/n, 1 ≤ j ≤ k, 1 ≤ s ≤ log2(

√
n/δ).

5. σs1,...,sk = λs1,...,skn
k/2−1√np · 2−(s1+···+sk), 1 ≤ s1, . . . , sk ≤ log2(

√
n/δ).

The following two lemmas are about the properties of the sparse directed
random hypergraphs (recall Definition 2.2), which are important for the rest of
our proof.

Lemma 4.3 (Bounded degree). Assume p ≥ c logn/n for some constant c > 0.
Then for any r > 0, there exists a constant c1 > 1 depending on c, r, k such that
with probability at least 1− n−r, for all i1, . . . , ik−1 ∈ [n], di1,...,ik−1

≤ c1np.

Proof. For a fixed (k − 1)-tuple (i1, . . . , ik−1), by Bernstein’s inequality,

P(di1,...,ik−1
≥ c1np) = P

⎛
⎝ ∑

ik∈[n]

ti1,...,ik ≥ c1np

⎞
⎠

≤ P

⎛
⎝ ∑

ik∈[n]

(ti1,...,ik − pi1,...,ik) ≥ (c1 − 1)np

⎞
⎠

≤ exp

[
−

1
2 (c1 − 1)2n2p2

np+ 1
3 (c1 − 1)np

]
≤ n− 3(c1−1)2c

4+2c1 , (4.12)

where in the last inequality we use the assumption p ≥ c logn/n. Then taking
a union bound over i1, . . . , ik−1 ∈ [n] implies

P

(
sup

i1,...,ik−1∈[n]

di1,...,ik−1
≥ c1np

)
≤ n− 3(c1−1)2c

4+2c1
+k−1.
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Therefore for any r, c > 0 we can take c1 sufficiently large (depending linearly
on k, r) to make Lemma (4.3) hold.

Lemma 4.4 (Bounded discrepancy). Assume p ≥ c logn/n for some constant
c > 0. For any r > 0, there exist constants c2, c3 > 1 depending on c, r, k such
that with probability at least 1 − 2n−r, for any nonempty sets I1, . . . , Ik ⊂ [n]
with 1 ≤ |I1| ≤ · · · ≤ |Ik|, at least one of the following events hold:

1. e(I1,...,Ik)
μ(I1,...,Ik)

≤ ec2,

2. e(I1, . . . , Ik) log
(

e(I1,...,Ik)
μ(I1,...,Ik)

)
≤ c3|Ik| log

(
n

|Ik|

)
.

We will use the following Chernoff’s inequality (see [13]).

Lemma 4.5 (Chernoff bound). Let X1, . . . , Xn be independent Bernoulli ran-
dom variables. Let X =

∑n
i=1 Xn and μ = EX. Then for any δ > 0,

P(X > (1 + δ)μ) ≤ exp(−μ((1 + δ) ln(1 + δ)− δ)). (4.13)

In particular, we have a weaker version of (4.13): for any δ > 0,

P(X > (1 + δ)μ) ≤ exp

(
−δ2μ

2 + δ

)
. (4.14)

Proof of Lemma 4.4. In this proof, we assume the event in Lemma 4.3 that all
degrees of vertices are bounded by c1np holds. If |Ik| ≥ n/e, then the bounded
degree property implies e(I1, . . . , Ik) ≤ |I1| · · · |Ik−1|c1np. Hence

e(I1, . . . , Ik)

μ(I1, . . . , Ik)
=

e(I1, . . . , Ik)

p|I1| · · · |Ik|
≤ |I1| · · · |Ik−1|c1np

p|I1| · · · |Ik−1|n/e
≤ c1e.

This completes the proof for Case (1). Now we consider the case when |Ik| < n/e.
Let s(I1, . . . , Ik) be the set of all possible distinct hyperedges between I1, . . . , Ik.
We have for any τ > 1 and any fixed I1, . . . , Ik,

P(e(I1, . . . , Ik) ≥ τ μ̄(I1, . . . , Ik))

=P

⎛
⎝ ∑

(i1,...,ik)∈s(I1,...,Ik)

ti1,...,ik ≥ τ μ̄(I1, . . . , Ik)

⎞
⎠

≤P

⎛
⎝ ∑

(i1,...,ik)∈s(I1,...,Ik)

(ti1,...,ik − pi1,...,ik) ≥ (τ − 1)μ̄(I1, . . . , Ik)

⎞
⎠ .

By Chernoff’s inequality (4.13), the last line above is bounded by

exp ((τ − 1)μ(I1, . . . , Ik)− τμ(I1, . . . , Ik) log τ)

≤ exp

(
−1

2
μ̄(I1, . . . , Ik)τ log τ

)
,
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where the last inequality holds when τ ≥ 8. This implies for τ ≥ 8,

P(e(I1, . . . , Ik) ≥ τ μ̄(I1, . . . , Ik)) ≤ exp

(
−1

2
μ̄(I1, . . . , Ik)τ log τ

)
. (4.15)

For a given number c3 > 0, define γ(I1, . . . , Ik) to be the unique value of γ such
that

γ log γ =
c3|Ik|

μ̄(I1, . . . , Ik)
log

(
n

|Ik|

)
. (4.16)

Let κ(I1, . . . , Ik) = max{8, γ(I1, . . . , Ik)}. Then by (4.15) and (4.16),

P(e(I1, . . . , Ik) ≥ γ(I1, . . . , Ik)μ̄(I1, . . . , Ik))

≤ exp

(
−1

2
μ̄(I1, . . . , Ik)κ(I1, . . . , Ik) log κ(I1, . . . , Ik)

)

≤ exp

[
−1

2
c3|Ik| log

(
n

|Ik|

)]
. (4.17)

Let Ω = {(I1, . . . , Ik) : |I1| ≤ · · · ≤ |Ik| ≤ n
e } and

S(h1, . . . , hk) := {(I1, . . . , Ik) : ∀i ∈ [k], |Ii| = hi}.

By a union bound and (4.17), we have

P

(
∃(I1, . . . , Ik) ∈ Ω : e(I1, . . . , Ik) ≥ γ(I1, . . . , Ik)μ̄(I1, . . . , Ik)

)
≤

∑
(I1,...,Ik)∈Ω

exp

[
−1

2
c3|Ik| log

(
n

|Ik|

)]

=
∑

1≤h1≤···≤hk≤n
e

∑
(I1,...,Ik)∈S(h1,...,hk)

exp
[
− 1

2
c3hk log

( n

hk

)]

=
∑

1≤h1≤···≤hk≤n
e

(
n

h1

)
. . .

(
n

hk

)
exp

[
− 1

2
c3hk log

( n

hk

)]
.

Since
(
n
k

)
≤ (nek )k for any integer 1 ≤ k ≤ n, we have the last line above is

bounded by

∑
1≤h1≤···≤hk≤n

e

(ne
h1

)h1

. . .
(ne
hk

)hk

exp
[
− 1

2
c3hk log

( n

hk

)]

≤
∑

1≤h1≤···≤hk≤n
e

exp
[
− 1

2
c3hk log

( n

hk

)
+ khk log

( n

hk

)
+ khk

]

≤
∑

1≤h1≤···≤hk≤n
e

exp
[
− 1

2
(c3 − 4k)hk log

( n

hk

)]
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≤
∑

1≤h1≤···≤hk≤n
e

exp

[
−1

2
(c3 − 4k) log n

]

=
∑

1≤h1≤···≤hk≤n
e

n− 1
2 (c3−4k) ≤ n− 1

2 (c3−6k).

As a result, e(I1, . . . , Ik) < κ(I1, . . . , Ik)μ̄(I1, . . . , Ik) for all (I1, . . . , Ik) ∈ Ω

with probability at least 1− n− 1
2 (c3−6k). For any r > 0, we can choose c3 large

enough depending linearly on k, r such that 1 − n− 1
2 (c3−6k) ≤ 1 − n−r. Sup-

pose κ(I1, . . . , Ik) = 8, then e(I1, . . . , Ik) < 8μ̄(I1, . . . , Ik) as desired. Otherwise
suppose κ(I1, . . . , Ik) = γ(I1, . . . , Ik) > 8, then

e(I1, . . . , Ik)

μ̄(I1, . . . , Ik)
< γ(I1, . . . , Ik).

Since x �→ x log x is an increasing function for x ≥ 1, we have

e(I1, . . . , Ik)

μ̄(I1, . . . , Ik)
log

e(I1, . . . , Ik)

μ̄(I1, . . . , Ik)
<γ(I1, . . . , Ik) log γ(I1, . . . , Ik)

=
c3|Ik|

μ̄(I1, . . . , Ik)
log

(
n

|Ik|

)
,

which gives the desired result for Case (2).

With Lemma 4.3 and Lemma 4.4, we prove our estimates (4.9) for all heavy

tuples. Recall we are dealing with the tuples over L+
, we then have∑

(i1,...,ik)∈L+

y1,i1 · · · yk,ik · ti1,...,ik

≤
∑

(s1,...,sk):

2s1+···+sk≥√
np(2/δ)knk/2−1

e(Ds1
1 , . . . , Dsk

k )
2s1δ√

n
· · · 2

skδ√
n

≤δk
√
np

∑
(s1,...,sk):

2s1+···+sk≥√
npnk/2−1

α1,s1 · · ·αk,skσs1,...,sk . (4.18)

The last equality follows directly from definitions in (5). (4.18) implies that it
suffices to estimate the contribution of heavy tuples through its index sets. We
then bound the contribution of heavy tuples by splitting the indices (s1, . . . , sk)
into 6 different categories. Let

C :=
{
(s1, · · · , sk) : 2s1+···+sk ≥ √

npnk/2−1, |Ds1
1 | ≤ · · · ≤ |Dsk

k |
}

(4.19)

be the ordered index set for heavy tuples where we assume |Ds1
1 | ≤ · · · ≤ |Dsk

k |.
For the case where the sequence {|Dsi

i |, 1 ≤ i ≤ k} have different orders can be
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treated similarly, and there are k! many in total. We then define the following
6 categories in C:

C1 = {(s1, . . . , sk) ∈ C : σs1,...,sk ≤ 1} ,
C2 = {(s1, . . . , sk) ∈ C \ C1 : λs1,...,sk ≤ ec2} ,

C3 =
{
(s1, . . . , sk) ∈ C \ (C1 ∪ C2) : 2s1+s2+···+sk−1−sk ≥ nk/2−1√np

}
,

C4 = {(s1, . . . , sk) ∈ C \ (C1 ∪ C2 ∪ C3) : log λs1,...,sk >
1

2
sk log 2 +

1

4
log(α−1

k,sk
)},

C5 = {(s1, . . . , sk) ∈ C \ (C1 ∪ C2 ∪ C3 ∪ C4) : 2sk log 2 ≥ log(1/αk,sk)} ,
C6 = C \ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5).

For the rest of the proof, we will show for all 6 categories {Ct, 1 ≤ t ≤ 6},∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1{(s1, . . . , sk) ∈ Ct} ≤ Ck log
k−2(n) (4.20)

for some constant Ck depending only on k, c1, c2, c3 and δ, where the constants
c1, c2, c3 are the same ones as in Lemma 4.3 and Lemma 4.4. Here Ck depends
exponentially on k and linearly on r. We will repeatedly use the following esti-
mate which follows from (4):

�log2(
√
n/δ)�∑

si=1

αi,si ≤
∑
j∈[n]

|2yi,j/δ|2 ≤ (2/δ)2, ∀1 ≤ i ≤ k. (4.21)

From now on, for simplicity, whenever we are summing over si for some
1 ≤ i ≤ k, the range of si is understood as 1 ≤ si ≤ �log2(

√
n/δ)�.

Tuples in C1

In this case we get∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1{(s1, . . . , sk) ∈ C1}

≤
∑

(s1,...,sk)∈C
α1,s1 · · ·αk,sk ≤ (2/δ)2k,

where the last inequality comes from (4.21).

Tuples in C2

The constraint on C2 is the same as the condition in Case (1) of Lemma 4.4.
Recall Definition (5) and (4.19). We have

σs1,...,sk = λs1,...,skn
k/2−1√np · 2−(s1+···+sk) ≤ λs1,...,sk ≤ ec2.
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Therefore, ∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1 {(s1, . . . , sk) ∈ C2}

≤ec2
∑

s1,...,sk

α1,s1 · · ·αk,sk ≤ ec2(2/δ)
2k.

Tuples in C3

By Lemma 4.3, all (k − 1)-tuples have bounded degrees. Therefore we have

e(Ds1
1 , . . . , Dsk

k ) ≤ c1|Ds1
1 | · · · |Dsk−1

k−1 |np.

Hence by Definition (3),

λs1,...,sk =
e(Ds1

1 , . . . , Dsk
k )

p|Ds1
1 | · · · |Dsk

k | ≤ c1n

|Dsk
k | . (4.22)

Therefore we have∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1 {(s1, . . . , sk) ∈ C3}

=
∑

(s1,...,sk)∈C3

α1,s1α2,s2 · · ·αk,skλs1,...,skn
k/2−1√np · 2−(s1+···+sk)

≤
∑

(s1,...,sk)∈C3

α1,s1 · · ·αk−1,sk−1

|Dsk
k |22sk
n

c1n

|Dsk
k |n

k/2−1√np · 2−(s1+···+sk)

=c1n
k/2−1√np

∑
(s1,...,sk)∈C3

α1,s1 · · ·αk−1,sk−1
2sk−(s2+···+sk−1)

=c1
∑

s1,...,sk

α1,s1 · · ·αk−1,sk−1
nk/2−1√np · 2sk−(s2+···+sk−1)1 {(s1, . . . , sk) ∈ C3} ,

(4.23)

where the inequality in the third line is from (4.22). Since for all (s1, . . . , sk) ∈ C3
we have nk/2−1√np · 2sk−(s2+···+sk−1) ≤ 1, it implies that

∑
sk

nk/2−1√np · 2sk−(s1+···+sk−1)1 {(s1, . . . , sk) ∈ C3} ≤
∞∑
i=0

2−i ≤ 2.

In view of (4.21), we can bound (4.23) by

2c1
∑

s1,...,sk−1

α1,s1 · · ·αk−1,sk−1
≤ 2c1(2/δ)

2k−2.

This completes the proof for the case of C3. For the remaining categories C4, C5
and C6, we rely on the Case (2) in the bounded discrepancy lemma. Recall C2
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corresponds to Case (1) in Lemma 4.4. Therefore Case (2) must hold in C4, C5
and C6. Case (2) in Lemma 4.4 can be written as

λs1,...,sk |Ds1
1 | · · · |Dsk

k | · p log λs1,...,sk ≤ c3|Dsk
k | log

(
n

|Dsk
k |

)
.

By definitions in (5), the inequality above is equivalent to

α1,s1 · · ·αk−1,sk−1
σs1,...,sk log λs1,...,sk

≤c3
2s1+···+sk−1−sk

nk/2−1√np

(
2sk log 2 + logα−1

k,sk

)
. (4.24)

For the remaining of our proof, we will repeatedly use (4.24).

Tuples in C4

The inequality log λs1,...,sk > 1
4 (2sk log 2 + log(1/αk,sk)) in the assumption of

C4 and (4.24) imply that

α1,s1 · · ·αk−1,sk−1
σs1,...,sk ≤ 4c3n

1−k/2 · 2s1+···+sk−1−sk/
√
np.

Then we have∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1{(s1, . . . , sk) ∈ C4}

=
∑
sk

αk,sk

∑
s1,...,sk−1

α1,s1 · · ·αk−1,sk−1
σs1,...,sk1{(s1, . . . , sk) ∈ C4}

≤4c3
∑
sk

αk,sk

∑
s1,...,sk−1

2s1+···+sk−1−sk

nk/2−1√np
1{(s1, . . . , sk) ∈ C4}. (4.25)

Since (s1, . . . , sk) �∈ C3, we have 2s1+···+sk−1−sk

nk/2−1√np
≤ 1 for all (s1, . . . , sk) ∈ C4.

Therefore (4.25) is bounded by

4c3
∑
sk

αk,sk

∑
s1,...,sk−2

∑
sk−1

2s1+···+sk−1−sk

nk/2−1√np
1{(s1, . . . , sk) ∈ C4}

≤4c3
∑
sk

αk,sk

∑
s1,...,sk−2

2 ≤ 8c3
∑
sk

αk,sk(log2(
√
n/δ) + 1)k−2, (4.26)

where the last inequality is from the fact that si satisfies 1 ≤ si ≤ �log2(
√
n/δ)�

for i ∈ [k] (see (4.11)). Therefore (4.26) can be bounded by

8c3

(
1

2
log2 n− log2(δ) + 1

)k−2

(2/δ)2 ≤ C logk−2(n) (4.27)

for a constant C depending only on δ, k and c3.
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Tuples in C5

In this case we have 2sk log 2 ≥ log(α−1
k,sk

). Also because (s1, . . . , sk) /∈ C4, we
have

log λs1,...,sk ≤ 1

4
(2sk log 2 + log(1/αk,sk)) ≤ sk log 2, (4.28)

thus λs1,...,sk ≤ 2sk . On the other hand, because (s1, . . . , sk) �∈ C1,

1 < σs1,...,sk = λs1,...,skn
k/2−1√np · 2−(s1+···+sk) ≤ nk/2−1√np · 2−(s1+···+sk−1).

Therefore we have

2s1+···+sk−1 ≤ nk/2−1√np. (4.29)

In addition, since (s1, . . . , sk) �∈ C2, we have λs1,...,sk > ec2 > e, which implies
log λs1,...,sk ≥ 1. Recall (4.24), together with (4.28), we then have

α1,s1 · · ·αk−1,sk−1
σs1,...,sk ≤ α1,s1 · · ·αk−1,sk−1

σs1,...,sk log λs1,...,sk

≤ c3
2s1+···+sk−1−sk

nk/2−1√np

(
2sk log 2 + logα−1

k,sk

)

≤ 4c3 log 2 · sk
2s1+···+sk−1−sk

nk/2−1√np
.

Therefore,∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1 {(s1, . . . sk) ∈ C5}

=
∑
sk

αk,sk

∑
s1,...,sk−1

α1,s1 · · ·αk−1,sk−1
σs1,...,sk1 {(s1, . . . sk) ∈ C5}

≤
∑
sk

αk,sk

∑
s1,...,sk−1

4c3 log 2 · sk
2s1+···+sk−1−sk

nk/2−1√np
1 {(s1, . . . sk) ∈ C5}

≤4c3
∑
sk

αk,sk · sk2−sk
∑

s1,...,sk−1

2s1+···+sk−1

nk/2−1√np
1 {(s1, . . . sk) ∈ C5} . (4.30)

From (4.29), we have 2s1+···+sk−1

nk/2−1√np
≤ 1 for any (s1, . . . , sk) ∈ C5. Note that sk ·

2−sk ≤ 1
2 , therefore there exists a constant C depending only on δ, k and c3 such

that (4.30) can be bounded by

2c3 ·
∑
sk

αk,sk

∑
s1,...,sk−1

2s1+···+sk−1

nk/2−1√np
1 {(s1, . . . sk) ∈ C5}

≤2c3(2/δ)
2(log2(

√
n/δ) + 1)k−2 ≤ C logk−2(n),

where the inequality above follows in the same way as in (4.26) and (4.27).
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Tuples in C6

In this case we have 2sk log 2 < log(α−1
k,sk

). Because (s1, . . . sk) �∈ (C4 ∪ C2), we
have

1 ≤ log λs1,...,sk ≤ 1

4
[2sk log 2 + log(1/αk,sk)] ≤

1

2
logα−1

k,sk
≤ logα−1

k,sk
,

which implies λs1,...,skαk,sk ≤ 1. Recall Definition (5). We obtain∑
(s1,...,sk)∈C

α1,s1 · · ·αk,skσs1,...,sk1 {(s1, . . . , sk) ∈ C6}

=
∑

(s1,...,sk−1,sk)∈C6

α1,s1 · · ·αk−1,sk−1
αk,skλs1,...,skn

k/2−1√np · 2−(s1+···+sk)

≤
∑

s1,...,sk−1

α1,s1 · · ·αk−1,sk−1

∑
sk

nk/2−1√np · 2−(s1+···+sk)1 {(s1, . . . , sk) ∈ C6} .

(4.31)

Recall from (4.19), 2s1+···+sk ≥ √
np · nk/2−1, we have

√
np · 2−(s1+···+sk) ≤ n1−k/2.

for all (s1, . . . , sk) ∈ C5. Hence∑
sk

nk/2−1√np · 2−(s1+···+sk)1 {(s1, . . . , sk) ∈ C6} ≤ 2.

Therefore (4.31) can be bounded by

2
∑

s1,...,sk−1

α1,s1 · · ·αk−1,sk−1
≤ 2(2/δ)2k−2.

Combining all the estimates from C1 to C6, we have (4.20) holds. This completes
the proof of Theorem 2.1.

5. Proof of Theorem 2.2

Let e1 = (1, 0, . . . , 0) be a unit vector in R
n and denote W = T − ET . Define a

matrix A ∈ R
n×n such that ai1,i2 = wi1,i2,1,...,1. By the definition of the spectral

norm,

‖T − ET‖ ≥ max
‖x‖2=‖y‖2=1

|〈W,x⊗ y ⊗ e1 ⊗ · · · ⊗ e1〉|

= max
‖x‖2=‖y‖2=1

∣∣∣∣∣∣
∑
i1,i2

wi1,i2,1,...,1 · xi1yi2

∣∣∣∣∣∣ = ‖A‖.

Note that A is an n × n sparse random matrix with independent centered
Bernoulli entries. Since the limiting singular value distribution of A√

np is known

(see for example Theorem 3.6 in [4]), the largest singular value of A is at least
(2 − o(1))

√
np with high probability. Therefore ‖T − ET‖ ≥ √

np with high
probability. This completes the proof.
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6. Proof of Theorem 2.3

When p = o(log n/n), a direct application of the Kahn-Szemerédi argument
would fail since the bounded degree and bounded discrepancy properties in the
proof of Theorem 2.1 do not hold with high probability. We will use the following
operation called tensor unfolding, in the proof of Theorem 2.3. For more details,
see [37, 61].

Definition 6.1 (Partition). For any n, the l-partition π of [k] is a collection
{Bπ

1 , . . . , B
π
l } of l disjoint non-empty subsets Bπ

i , 1 ≤ i ≤ l such that ∪l
i=1B

π
i =

[k].

Definition 6.2 (Tensor unfolding). Let T ∈ R
n×···×n be an order-k tensor and

π be an l-partition of [k]. The partition of π defines a map

φπ :[n]k →
[
n|Bπ

1 |
]
× · · · ×

[
n|Bπ

l |
]
, φπ(i1, . . . , ik) = (m1, . . . ,ml),

where

mj = 1 +
∏

r∈Bπ
j

(ir − 1)Jr, Jr =
∏

l∈Bπ
j ,

l<r

n.

The map φπ induces an unfolding action T → Unfoldπ(T ), where Unfoldπ(T )
is a tensor of order l such that Unfoldπ(T )m1,...,ml

= Ti1,...,ik .

We will use the following inequality between the spectral norms of the original
tensor T and the unfolded tensor Unfoldπ(T ).

Lemma 6.1 (Proposition 4.1 in [61]). For any order-k tensor T and any par-
tition π of [k], we have ‖T‖ ≤ ‖Unfoldπ(T )‖.

With Lemma 6.1, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. (1) Assume p ≥ c logn
nm with an integer m such that k/2 ≤

m ≤ k − 1. Consider a 2-partition of [k] denoted by π1 = {{1, 2, . . . ,m}, {m +
1, . . . , k}}. From Lemma 6.1, we have

‖T − ET‖ ≤ ‖Unfoldπ1(T − ET )‖. (6.1)

Here Unfoldπ1(T −ET ) is an nk−m ×nm random matrix whose entries are one-
to-one correspondent to entries in T − ET . Let A ∈ R

nm × R
nm

be a matrix
such that

Ai,j =

{
(Unfoldπ1(T ))i,j if i ∈ [nk−m], j ∈ [nm],

0 otherwise.

Then A is an adjacency matrix of a random directed graph on nm many vertices
with

p ≥ c logn

nm
=

c

m
· log(n

m)

nm
.
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Then we apply Theorem 2.1 with the matrix case. For any r > 0, there is a
constant C > 0 depending on r and c

m such that ‖A − EA‖ ≤ C
√
nmp with

probability at least 1−n−rm. Then from (6.1), with probability at least 1−n−r,

‖T − ET‖ ≤ ‖Unfoldπ1(T − ET )‖ ≤ ‖A− EA‖ ≤ C
√
nmp.

This completes the proof of (2.3).
(2) Assume p ≥ c logn

nm with an integer m such that 1 ≤ m < k/2. Denote
k = ml + s for some l ≥ 1, 0 ≤ s ≤ m− 1.

When s �= 0, let π2 be a (l + 1)-partition of [k] into l + 1 parts given by

π2 = {{1, . . . ,m}, {m+ 1, . . . , 2m}, . . . , {ml + 1, . . . ,ml + s}}.

Then Unfoldπ2(T − ET ) ∈ R
nm × · · · × R

nm × R
ns

is a tensor of order (l + 1).

Since p ≥ c
m

log(nm)
nm , we can apply Theorem 2.1 and Lemma 6.1. Then with

probability at least 1− n−r, we have

‖T − ET‖ ≤ ‖Unfoldπ2(T − ET )‖

≤ C
√
nmp logl−1(nm) ≤ C1

√
nmp log

k−1
m −1(n),

where C1 is a constant depending on k, r, c.
When s = 0, we can similarly define π2 as a l-partition of [k] into l blocks

such that Unfoldπ2(T − ET ) ∈ R
nm × · · · × R

nm

is a tensor of order l. With
probability at least 1− n−r, for a constant C2 depending on k, r, c, we have

‖T − ET‖ ≤ C2

√
nmp logk/m−2(n).

This completes the proof of Theorem 2.3.

7. Proof of Theorem 2.4

In this section, we will prove Theorem 2.4. We first compute the packing number
over the parameter space under the spectral norm, then apply Fano’s inequality.
We first introduce several useful lemmas for showing this result. We will use the
version in [56].

Lemma 7.1 (Varshamov-Gilbert bound). For n ≥ 8, there exists a subset
S ⊂ {0, 1}n such that |S| ≥ 2n/8 + 1 and for every distinct pair of ω, ω′ ∈ S,
the Hamming distance satisfies

H(ω, ω′) := ‖ω − ω′‖1 > n/8.

Lemma 7.2 (Fano’s inequality). Assume N ≥ 3 and suppose {θ1, . . . , θN} ⊂ Θ
such that

(i) for all 1 ≤ i < j ≤ N , d(θi, θj) ≥ 2α, where d is a metric on Θ;
(ii) let Pi be the distribution with respect to parameter θi, then for all i, j ∈ [N ],

Pi is absolutely continuous with respect to Pj ;
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(iii) for all i, j ∈ N , the Kullback-Leibler divergence DKL(Pi‖Pj) ≤ β log(N−1)
for some 0 < β < 1/8.

Then

inf
θ̂

sup
θ∈Θ

P(d(θ̂, θ) ≥ α) ≥
√
N − 1

1 +
√
N − 1

(
1− 2β −

√
2β

log(N − 1)

)
.

Since we will apply Fano’s inequality associated with Kullback-Leibler diver-
gence, it requires the following lemma about random tensor with independent
Bernoulli entries.

Lemma 7.3. For 0 ≤ a < b ≤ 1, we consider parameters θ, θ′ ∈ [a, b]n
k

for
0 ≤ a < b ≤ 1, and let P and P ′ be the corresponding distributions, then the
Kullback-Leibler divergence satisfies

DKL(P‖P ′) ≤ ‖θ − θ′‖2F
a(1− b)

.

Proof. We firstly consider entrywise KL-divergence. For p, q ∈ [a, b],

DKL(Ber(p)‖Ber(q)) = p log
p

q
+ (1− p) log

1− p

1− q

= p log
(
1 +

p− q

q

)
+ (1− p) log

(
1− p− q

1− q

)

≤ p
(p− q

q

)
+ (1− p)

(
− p− q

1− q

)
=

(p− q)2

q(1− q)
≤ (p− q)2

a(1− b)
.

By independence of each entry, we have DKL(P‖P ′) ≤ ‖θ−θ′‖2
F

a(1−b) .

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. By Lemma 7.1, there exists a subset {ω(1), . . . , ω(N)} of
{0, 1}n such that

min
1≤i<j≤N

H(ω(i), ω(j)) >
n

8
and N ≥ 2n/8 + 1 ≥ en/12 + 1.

We note that H(ω(i), ω(j)) = ‖ω(i) − ω(j)‖22. Let W be a fixed order-(k − 1)
tensor with entries either 0 or 1 and dimension n × · · · × n. The entries of W
is designed as follows. Let m = �p− 1

k−1 � ∧ n, so 1 ≤ mk−1 ≤ 1/p. We assign 1’s
to an m × · · · ×m subtensor of W and assign 0’s to the rest entries. Then the
rank of W is 1 and ‖W‖ = ‖W‖F = m(k−1)/2. Now we define for i ∈ [N ],

θ(i) :=
p

2
J +

p

30
ω(i) ⊗W,

where J ∈ R
nk

is an order-k tensor with all ones, and

(ω(i) ⊗W )i1,...,ik = ω
(i)
i1
wi2,...,ik .
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Then for all i, j ∈ [N ], θ(i) − θ(j) = p
30 (ω

(i) − ω(j))⊗W . By the choice of θ(i)’s,

min
1≤i<j≤N

‖θ(i) − θ(j)‖2 = min
1≤i<j≤n

‖ω(i) − ω(j)‖22‖W‖2p2
900

≥ nmk−1p2

7200
.

On the other hand, ‖ω(i) − ω(j)‖22 ≤ n, so

max
1≤i<j≤N

‖θ(i) − θ(j)‖2 = max
1≤i<j≤N

‖ω(i) − ω(j)‖22‖W‖2p2
900

≤ nmk−1p2

900
.

Let Pi be the distribution of a random tensor T associated with parameter θ(i)

for i ∈ [N ]. Since θ(i) ∈ [p2 ,
8p
15 ]

nk

, by Lemma 7.3, we have

max
1≤i<j≤N

DKL(Pi‖Pj) ≤ max
1≤i<j≤N

‖θ(i) − θ(j)‖2F(
p
2

)(
1− 8p

15

)
≤ nmk−1p2

900
(
p
2

)(
1− 8p

15

) ≤ nmk−1p

210
≤ n

210
,

where the last inequality is due to the choice m = �p− 1
k−1 � ∧ n ≤ p−

1
k−1 . To

apply Fano’s inequality, we let α = nmk−1p2

14400 and verify that for i, j ∈ [N ],

DKL(θ
(i), θ(j)) ≤ n

210
≤ β log en/12

for β = 1
9 . Then by Lemma 7.2, we have

inf
θ̂

sup
θ∈[0,p]nk

P

(
‖θ̂ − θ‖2 ≥ nmk−1p2

14400

)
≥ 2n/16

1 + 2n/16

(
1− 2

9
−

√
2/9

n/12

)
≥ 1

3

when n ≥ 16. By the choice of m, we have

nmk−1p2 = n(�p− 1
k−1 � ∧ n)k−1p2 ≥ (21−knp) ∧ (nkp2),

which gives the desired result.

8. Proof of Lemma 2.1

Similar to (4.12), by Bernstein’s inequality, we have for each (i1, . . . , ik−m) ∈
[n]k−m,

P(di1,...,ik−m
> 2nmp) ≤ exp

(
−3nmp

8

)
.

Then 1{di1,...,ik−m
> 2nmp} is a Bernoulli random variable with mean at most

μ := exp
(
−3nmp

8

)
. Since di1,...,ik−m

are independent for all (i1, . . . , ik−m) ∈
[n]k−m, by Chernoff’s inequality (4.14), for any λ ≥ 0,

P

(
|S̃| ≥ (1 + λ)nk−mμ

)
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=P

⎛
⎝ n∑

i1,...,ik−m∈[n]

1{di1,...,ik−m
> 2nmp} ≥ (1 + λ)nk−mμ

⎞
⎠

≤ exp

(
−λ2nk−mμ

2 + λ

)
. (8.1)

Since nmp ≥ c, we can choose a constant c = 9 and take

λ =
1

nmpμ
− 1 =

exp
(

3nmp
8

)
nmp

− 1 ≥ 1, (8.2)

so that 2 + λ ≤ 3λ, and from (8.2) we know

nk−m exp

(
−3nmp

8

)
≤ 1

2n2m−kp
. (8.3)

Then (8.1) implies

P

(
|S| ≥ 1

n2m−kp

)
≤ exp

(
−λnk−mμ

3

)

= exp

(
−1

3
nk−mμ

(
1

nmpμ
− 1

))

= exp

(
− 1

3n2m−kp
+

1

3
nk−m exp

(
−3nmp

8

))

≤ exp

(
− 1

6n2m−kp

)
≤ exp

(
− nk−m

6 logn

)
,

where the last line of inequalities follows from (8.3) and our assumption that
nmp < logn.

9. Proof of Theorem 2.5

Let T be the adjacency tensor of a k-uniform random directed hypergraph and
P = ET . Recall Definition 6.2. Let π = {{1, 2, . . . , k−m}, {k−m+1, . . . , k}} be a
2-partition of [k]. Then Unfoldπ(T−ET ) is an nk−m×nm random matrix whose
entries are one-to-one correspondent to entries in (T −ET ). Let A ∈ R

nm ×R
nm

be a matrix such that

Ai,j =

{
Unfoldπ(T )i,j if i ∈ [nk−m], j ∈ [nm],

0 otherwise.

Then A is an adjacency matrix of a random directed graph on nm vertices
with p ≥ c

nm . Regularizing A by removing vertices of degrees greater than
2nmp, from Theorem 2.1 in [40], we have with probability at least 1 − n−rm,
‖Â − EA‖ ≤ C

√
nmp. By the way we regularize an order-k random tensor T
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in (2.6), we have Unfoldπ(T̂ −P ) is a submatrix of (Â−EA) with other entries
being 0. Therefore by Lemma 6.1, with probability at least 1− n−r,

‖T̂ − P‖ ≤ ‖Unfoldπ(T̂ − P )‖ ≤ ‖Â− EA‖ ≤ C
√
nmp.

This completes the proof of (2.7) in Theorem 2.5.

10. Proof of Theorem 3.1

Let 1Vi be the indicator vector of Vi �= ∅, 1 ≤ i ≤ k such that the j-th entry of
1Vi is 1 if j ∈ Vi and 0 if j �∈ Vi. We then have

|eH′(V1, . . . , Vk)− p|V1| · · · |Vk||√
|V1| · · · |Vk|

=
|T ′(1V1 , . . . , 1Vk

)− p · J(1V1 , . . . , 1Vk
)|√

|V1| · · · |Vk|

=

∣∣∣∣∣T ′

(
1V1√
|V1|

, . . . ,
1Vk√
|Vk|

)
− p · J

(
1V1√
|V1|

, . . . ,
1Vk√
|Vk|

)∣∣∣∣∣
≤‖T ′ − pJ‖ ≤ C

√
nk−1p = C

√
c,

where the last line is from the definition of the spectral norm for tensors
and (3.3). Then (3.5) follows.

11. Conclusions

In this paper, we considered the concentration of sparse random tensors under
spectral norm in different sparsity regimes. When p ≥ c log n

n , the extra log factor
in Theorem 2.1 is due to the proof techniques, which only appears when bound-
ing the contribution from C4 and C5 in Section 4.3. The Kahn-Szemerédi argu-
ment was specially designed to control random quadratic forms in the matrix
case, but not for random multi-linear forms in the tensor case. An improvement
to remove the extra log factors (which we conjecture should not appear) will
require a new argument.

The regularization step we used is a sufficient way to recover the concen-
tration of spectral norms, and it relies on the tensor unfolding inequality in
Lemma 6.1. It remains to extend the analysis to other sparsity regimes. Proving
a lower bound on the spectral norm without regularization will involve a more
combinatorial argument similar to [38, 8]. We leave it as a future direction.

It would also be interesting to discuss the dependence on k for the constant
C in (2.2). Using the ε-net argument, we obtain a constant C depending expo-
nentially on k. It is possible that by using different arguments, the dependence
can be improved.
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