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Abstract: This paper proposes a novel method to recover the sparse struc-
ture of the conditional distribution, which plays a crucial role in subsequent
statistical analysis such as prediction, forecasting, conditional distribution
estimation and others. Unlike most existing methods that often require
explicit model assumption or suffer from computational burden, the pro-
posed method shows great advantage by making use of some desirable prop-
erties of reproducing kernel Hilbert space (RKHS). It can be efficiently
implemented by optimizing its dual form and is particularly attractive in
dealing with large-scale dataset. The asymptotic consistencies of the pro-
posed method are established under mild conditions. Its effectiveness is also
supported by a variety of simulated examples and a real-life supermarket
dataset from Northern China.
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1. Introduction

In modern statistical analysis, the study on the conditional distribution and
the relevant issues have attracted more and more attention [12, 13, 17, 6, 42]
with many applications, including in economics and finance [5, 46], in predic-
tion and forecasting for time series analysis [10] and the inference on conditional
distribution estimation [42]. Yet, as pointed out by [13], a conventional nonpara-
metric estimator of the conditional distribution will suffer poor accuracy, even
the number of covariates collected is relatively small. Hence, in high dimensional
data analysis, the sparse modelling is demanded in the sense that it is generally
believed that only a few covariates truly affect the conditional distribution. And
thus it is crucial to identify truly informative covariates acting on the conditional
distribution as the first step for subsequent statistical analysis.

This paper proposes a novel and efficient method to exactly identify all the
covariates acting on the conditional distribution. The proposed method is mo-
tivated by the key observations that joint quantile regressions can be used as
an efficient tool to exploit the conditional distribution and the gradient func-
tions provide an appropriate definition of the informative covariates without ex-
plicit model specification. More importantly, unlike most existing learning gradi-
ents methods, which estimate the gradients under the regularization framework
[28, 48, 14] and thus suffer computational burden, we notice that the deriva-
tive reproducing property in RKHS [52] provides an efficient alternative for fast
computation of the gradient functions. Specifically, the proposed method first
fits joint kernel-based quantile regressions, followed by the fast computation of
corresponding gradients by using the derivative reproducing property in RKHS
and a hard-thresholding procedure. The proposed method can be efficiently im-
plemented by dual optimizations and is particularly attractive in dealing with
large-scale cases. The asymptotic consistency of the proposed method is estab-
lished without requiring any explicit model specification under mild conditions
and the numerical experiments illustrate the superior performance of the pro-
posed method against some state-of-the-art competitors.
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The major contributions of the proposed method are four-fold: (i) It avoids
directly estimating the gradient functions but efficiently computes the estimated
gradient functions by using the derivative property in RKHS, which significantly
reduces the computational cost; (ii) It only requires standard quadratic opti-
mization with linear constraints, which can be efficiently solved by some existing
packages in many statistical softwares. Besides, it can be applied to deal with big
data with slight modification by using some distributed platform such as Apache
Spark with Map-reduce steps. (iii) It is as efficient as the screening procedure
but the strong marginal correlation condition is not required. Specifically, it can
be regarded as a nonparametric joint screening method in the sense that each
gradient function is computed given all the other covariates and computation
procedures can be done in a parallel fashion. (iv) With the help of functional
operators in learning theory, the asymptotic selection consistency is established
under mild condition, which ensures that all the covariates acting on the condi-
tional distribution can be exactly identified with probability tending to one.

1.1. Related works

In literature, sparse learning methods have been proposed to recovery the de-
pendence relationship between the covariates and the conditional distribution
under certain assumptions. One popularly used assumption assumes that the co-
variates act on the conditional distribution only through the conditional mean
function. Various strategies have been developed to propose sparse learning
methods under the linear modelling, including sparse-induced regularization
[40, 7, 53, 31, 32], sure independence screening [8, 45], and knockoff filter [2].
Extended methods have also been developed under the nonparametric additive
model [23, 16, 9], or in the reproducing kernel Hilbert space (RKHS) [28, 48].
Yet these methods require explicit model assumptions that are difficult to check
in practice, or expensive computational cost that undermines its scalability. It
is also interesting to point out that the aforementioned methods only focus on
modelling the mean of the conditional distribution.

Beyond conditional mean regression, many methods have also been developed
to detect a more general dependence between the covariates and the conditional
distribution [47, 25, 15, 14] through individual or composite quantile regression
[20]. Specifically, [15] proposes a nonparametric screening method to retain all
the covariates acting on the conditional quantile function at some given quantile
level. It can be extended to retain all the covariates acting on the conditional
distribution by estimating the marginal quantile utility at multiple quantile
levels. Yet, the screening-based method aims to retain a large number of covari-
ates to guarantee the sure screening property, which is often much larger than
the number of truly informative covariates in sparse learning. [14] proposes a
learning-gradient-based method to identify all the covariates acting on the con-
ditional distribution, and establishes the asymptotic selection consistency. It
learns the gradient of conditional quantile functions at multiple quantile levels
in a RKHS, and employs a functional group lasso penalty in the formulated
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regularization framework. It is also interesting to notice that [28] proposes a
novel learning gradients method, which adds an empirical functional penalty on
the gradients to a standard kernel ridge regression in a RKHS, and it can be
further extended to recover the sparse structure of the conditional distribution.

1.2. Paper organization

The rest of this paper is organized as follows. Section 2 provides the background
and some key motivations and Section 3 introduces the proposed method. The
computational algorithm and detail of tuning procedure are provided in Section
4. The asymptotic consistencies of the proposed method are established under
mild conditions in Section 5. Section 6 reports the numerical experiments on
the simulated and real examples. A brief summary is provided in Section 7, and
all the technical proofs are given in Appendix.

2. Motivation and background

2.1. Motivation

Given a random pair Z = (x, y) drawn from some unknown distribution ρx,y
with covariates x = (x1, ..., xp)

T ∈ X , where X ⊂ Rp is assumed to be a compact
set, and response y ∈ R. It is of great interest to estimate the conditional
distribution function

Fy(x) = P (Y ≤ y|x),
which has been widely studied in literature [12, 13, 17, 6, 42]. Yet, many exist-
ing methods are developed for the low-dimensional case, and yield suboptimal
performance when the number of covariates becomes relatively large [12]. In
the high-dimensional case, it is generally believed that only a small number of
covariates have effects on Fy(x), while the others are noise. Thus, it is crucial to
first identify all the truly informative covariates acting on Fy(x) for subsequent
statistical analysis. To this end, we regard a covariate xl as noise if

Fy(x) = Fy(x−l), (2.1)

where x−l denotes all the covariates except xl. This criterion implies that a
noise covariate xl does not have any functional relationship with the conditional
distribution function Fy(x).

As pointed out by [21], Fy(x) and the conditional quantile function Q∗
τ (x)

are equivalent characterizations of the conditional distribution of y given x.
Precisely, Fy(x) can be uniquely quantified by Q∗

τ (x) as Q∗
τ (x) = infy∈R{y :

F (y|x) ≥ τ}, and vice versa. In the rest of this paper, we require Q∗
τ ∈ HK for

any τ ∈ (0, 1), where HK is a reproducing kernel Hilbert space (RKHS) induced
by some pre-specified two-times differentiable kernel K(·, ·). Consequently, the
criterion in (2.1) is equivalent to Q∗

τ (x) = Q∗
τ (x−l) for any τ ∈ (0, 1), and thus

we only need to check whether the covariate xl has any functional relationship
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with Q∗
τ (x) for any τ ∈ (0, 1). Particularly, it suffices to check whether the

corresponding gradient functions

g∗l,τ (x) = ∂Q∗
τ (x)/∂xl = 0

almost surely for any x ∈ X and τ ∈ (0, 1). Then, the importance of each
covariate can be measured via its L2-norm that

‖g∗l,τ‖2L2(X ,ρx)
=

∫
X
(g∗l,τ (x))

2dρx(x), for any τ ∈ (0, 1),

where ρx denotes the marginal distribution of x. Then, the true active set A∗,
which contains all the covariates acting on the conditional distribution, can be
defined as

A∗ =
{
l : ‖g∗l,τ‖2L2(X ,ρx)

> 0, for any τ ∈ (0, 1)
}
.

More importantly, we notice that the derivative reproducing property [52] in
RKHS that

g∗l,τ (x) = ∂Q∗
τ (x)/∂xl = 〈Q∗

τ , ∂lKx〉K , (2.2)

where Kx(·) := K(x, ·), ensures that once a consistent estimator of Q∗
τ is ob-

tained, its gradient function g∗l,τ can be efficiently obtained by simply matrix
multiplication.

These key facts motivate us to recover the sparse structure of the conditional
distribution by employing a two-step learning algorithm that we first obtain
some consistent estimator of Q∗

τ , and then apply the derivative reproducing
property in (2.2) to compute the empirical norm of the estimated gradient func-
tion g∗τ and check whether it is substantially different from 0.

2.2. Reproducing kernel

We briefly introduce some basic knowledge of RKHS and interested readers
may refer to [30] for more details about RKHS. Precisely, let K(·, ·) : X ×
X → R be a bounded, symmetric and positive semidefinite function in that
supx,x′∈X K(x,x′) < ∞. Then, the RKHS HK associated with the kernel K(·, ·)
is the completion of the linear span of functions {Kx(·) := K(x, ·) : x∈X} with
the inner product given by 〈Kx,Ku〉K = K(x,u) for any x,u ∈ X . Note that
the RKHS HK is uniquely determined by the kernel K(·, ·). By Mercer’s the-
orem [26], under some regularity conditions, the kernel function has an eigen-
expansion that K(x,u) =

∑∞
k=1 μkφk(x)φk(u), where μ1 ≥ μ2 ≥ ... ≥ 0 are

a non-negative sequence of eigenvalues and {φk}∞k=1 are the associated eigen-
functions, taken to be orthonormal in L2(X , ρx) =

{
Q :

∫
X Q2(x)dρx(x) < ∞

}
.

Moreover, for any Q ∈ HK , we have Q(x) =
∑∞

k=1 akφk(x), where ak =

〈Q,φk〉L2(X ,ρx) =

∫
X
Q(x)φk(x)dρx(x) are the Fourier coefficients, ‖Q‖K =∑

j≥1
〈Q,φj〉22

μj
. Note that the above results require that HK ⊂ L2(X , ρx) and it
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is directly satisfied if supx∈X K(x,x) is assumed to be finite. It is interesting
to notice that the finiteness requirement is equivalent to the boundness of the
kernel.

More importantly, the reproducing property of RKHS is critical in both the-
oretical analysis and computation, which states that 〈Q,Kx〉K = Q(x) for any
Q ∈ HK . It is worth pointing out that the RKHS induced by some universal
kernel, such as the Gaussian kernel, is a fairly large functional space in the
sense that any continuous function can be arbitrarily well approximated by an
intermediate function in its induced RKHS under the infinity norm [36].

3. Methodology

3.1. Sparsity learning

Given the random sample Zn = {(xi, yi)}ni=1, which are copies of Z = (x, y),
we first solve the following optimization task that

argmin
Qτ1 ,...,Qτm∈HK

1

nm

m∑
k=1

n∑
i=1

Lτk(yi −Qτk(xi)) +
λ

m

m∑
k=1

‖Qτk‖2K , (3.1)

where the first term is the sample version of 1
m

∑m
k=1 E(Qτk) =

1
m

∑m
k=1 ELτk(y−

Qτk(x)) with Lτ (u) = u(τ −I{u≤0}) denoting the check loss function, τ1, . . . , τm
denote m quantile levels, and λ denotes the parameter controlling the model
complexity. In practice, τ1, . . . , τm can be chosen equidistantly from the inter-
val (0, 1) to exploit the skeleton of the conditional distribution. Moreover, the
number of quantile levels m and the covariate dimension p are both allowed to
diverge with n. For simplicity, we suppress their dependence on n and still use
m and p, and denote the cardinality of A∗ as |A∗| = p0 � p. Note that the op-
timization task (3.1) resembles the joint quantile regression (JQR) [29] without
imposing the (shape) non-crossing constraints to facilitate the computation.

By the representer theorem [43], the solution of (3.1) must have a finite form
that

Q̂τk(x) =
n∑

i=1

α̂k
iK(xi,x) = α̂T

τkKn(x), for k = 1, ...,m, (3.2)

where α̂τk = (α̂k
1 , ..., α̂

k
n)

T ∈ Rn denotes the representer coefficients andKn(·) =
(K(x1, ·), ..., K(xn, ·))T denotes the kernel vector with transposition (·)T . It is
worth pointing out that the representer theorem [43] converts the original opti-
mization problem (3.1) over an infinite functional space HK into an optimiza-
tion problem over a finite n-dimensional vector space of ατk . Thus, solving the
optimization task (3.1) is equivalent to solving

α̂τ1 , ..., α̂τm = argmin
ατ1 ,...,ατm

∈Rn

1

nm

m∑
k=1

n∑
i=1

Lτk(yi −αT
τkKn(xi)) +

λ

m

m∑
k=1

αT
τkKατk ,

(3.3)
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where K = {K(xi,xj)}ni,j=1 ∈ Rn×n denotes the kernel matrix.
Once α̂τ1 , ..., α̂τm are obtained, the estimated gradient function ĝl,τk , l =

1, ..., p, can be directly computed as

ĝl,τk(x) =
∂Q̂τk(x)

∂xl
= α̂T

τk
∂lKn(x), (3.4)

where ∂lKn(x) = (∂K(x1,x)
∂xl

, · · · , ∂K(xn,x)
∂xl

)T is given once the kernel K(·, ·) is

pre-specified. It is interesting to point out that we only need to solve (3.3)
for α̂τk , k = 1, ...,m one time, and the estimated gradient functions can be
directly computed by using the derivative reproducing property in (3.4) without
incurring any additional computational cost.

In practice, since the marginal distribution ρx is usually unknown, we adopt
the empirical norm as a reasonable substitute for the L2-norm. Thus, the esti-
mated informative set is defined as

Âvn =

{
l :

1

m

m∑
k=1

‖ĝl,τk‖2n > vn

}
,

where ‖ĝl,τk‖2n = 1
n

∑n
i=1(ĝl,τk(xi))

2 denotes the empirical norm and vn repre-
sents some pre-specified thresholding value.

Note that the proposed method is computationally efficient in the sense that
it only requires to solve the convex optimization task (3.3) for Q̂τk(x), and
its gradients can be analytically computed as in (3.4). Once the gradients are
obtained, sparse learning can be done by comparing its empirical norm with
some given thresholding values. It is clear that the selection performance of the
proposed method relies on the choice of the thresholding value vn, which can
be appropriately determined through a stability-based selection criterion [38].
More details of the employed criterion are provided in Section 4.2.

3.2. Parallel and distributed computing

In this section, we illustrate that the proposed method is particularly attractive
and useful in dealing with the large-scale cases, where the dimension p or the
sample size n is extremely large. When the dimension p is extremely large that
p > n, the proposed method only needs to estimate the n-dimensional repre-
senter coefficients ατk , k = 1, ...,m, and the estimated gradient function can be
computed in a parallel fashion. Specifically, the proposed method only needs
to estimate ατk , k = 1, ...,m by solving the optimization task (3.3), where the
computational complexity is only related with n and m. Once the estimated
coefficients α̂τk , k = 1, ...,m are obtained, the empirical norm of the estimated
gradient functions can be directly computed as

‖ĝl,τk‖2n =
1

n

n∑
i=1

(
α̂T

τk
∂lKn(xi)

)2

,
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for each l = 1, ..., p simultaneously. Finally, given a pre-specified vn, the empiri-
cal norm of the estimated gradient functions, 1

m

∑m
k=1 ‖ĝl,τk‖2n, can be truncated

by a hard-thresholding step, and thus the estimated informative set Âvn is ob-
tained.

When the sample size n is extremely large, the proposed method can be ap-
plied to deal with the large n case by using the idea of the divide-and-conquer
method [51] with slight modification. Specifically, the divide-and-conquer method
usually assumes that the sample can be partitioned into several disjoint subsets
and each subset is stored in a local machine. Therefore, a local estimator can
be obtained in each local machine, and then these local estimators are commu-
nicated to a central processor and a global estimator is synthesized by taking
an average. Figure 1 illustrates the idea of the divide-and-conquer method. It is
worth pointing out that the proposed method only requires to communicate the
p-dimensional vectors of the empirical norms to the central processor, which is
quite computationally efficient with the assistance of some distributed platform,
such as Apache Spark with Map-reduce steps. The readers may refer to [19] for
detailed introduction of Apache Spark.

Fig 1. Illustration of the divide-and-conquer method.

Without loss of generality, we assume that the sample Zn = {(xi, yi)}ni=1 can
be exactly divided into the J disjoint subsets Zn

1 , . . . ,Zn
J at random that J | n,

and each subset Zn
j contains n/J observations stored in the distributed local

machines. For the local machine j, the joint kernel-based quantile regressions
(3.3) are fitted with the subset Zn

j to estimate the local representer coefficients

(α̂(j)
τ1 , ..., α̂

(j)
τm) by solving

min
α(j)

τ1
,...,α(j)

τm

1

m|Zn
j |

m∑
k=1

∑
xi∈Zn

j

Lτk(yi − (α(j)
τk

)TKn(xi)) +
λ

m

m∑
k=1

(α(j)
τk

)TKα(j)
τk

,

where |Zn
j | denotes the cardinality of the subset Zn

j . Then, the empirical norm
of the estimated gradient functions based on Zn

j can be computed as

‖ĝ(j)l ‖2n =
1

m|Zn
j |

m∑
k=1

∑
xi∈Zn

j

(
(α̂(j)

τk
)T∂lKn(xi)

)2

,
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for each l = 1, ..., p. Note that the above procedure can be done simultaneously
for each distributed local machine. Once the estimated gradients in each local

machine are obtained, we only need to communicate
(
‖ĝ(j)1 ‖2n, ..., ‖ĝ

(j)
p ‖2n

)T

∈
Rp to the central processor, and then the empirical norm with respect to the
whole sample Zn can be computed as

‖ĝl‖2n =
1

J

J∑
j=1

‖ĝ(j)l ‖2n,

for each l = 1, ..., p. Finally, given a pre-specified thresholding value vn, the
estimated informative set is Âvn =

{
l : ‖ĝl‖2n > vn

}
.

As illustrated above, we employ the standard divide-and-conquer scheme to
facilitate the estimation of the quantile functions in (3.1) and their gradient
functions when the sample size is very large. It is interesting to notice that the
numerical efficiency and performance can be further improved by employing
the distributed scheme in [18], where the nondifferentiable objective function
is replaced by a smoothing approximation, leading to an analytic solution, and
then the corresponding statistics can be computed locally and finally aggre-
gated together to complete the calculation of the derived estimator. Note that
the emphasis of this paper is on developing an efficient method to learn the
sparsity structure of the conditional distribution, and thus we leave the detailed
investigation on more sophisticated schemes for the distributed computation as
the future work.

4. Computational issues

The computational detail for updatingατk , k = 1, ...,m, in (3.3) and the stability-
based tuning procedure for the optimal choice of the thresholding value vn are
provided in this section.

4.1. The dual optimization

To solve (3.3), it is equivalent to solving its dual problem at each quantile
level. Precisely, the dual optimization task can be computed straightforwardly
by using Lagrange multipliers, and thus solving (3.3) is equivalent to solving a
quadratic optimization with linear constraints that for each k = 1, ...,m,

min
ατk

∈Rn

1

2
αT

τk Kατk −αT
τk

y, (4.1)

s.t. C(τk − 1) ≤ αi ≤ Cτk, ∀ 1 ≤ i ≤ n, and 1T
nατk = 0,

where C denotes some tuning parameter with C = 1
nλ and 1n = (1, ..., 1)T ∈ Rn.

Moreover, the optimization task (4.1) can be rewritten as

min
ατk

∈Rn

1

2
αT

τk Kατk −αT
τk

y, s.t. A
Tατk ≥1 Bk, (4.2)
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where A = (1n, In,−In) ∈ Rn×(2n+1), In = diag(1, ..., 1) ∈ Rn×n , ≥1 means
that the first constraint is equality and the others are inequalities, and Bk =
(0, C(τk − 1)1T

n ,−Cτk1
T
n )

T ∈ R2n+1. Note that the optimization task (4.2) can
be efficiently solved by some commonly used package in many statistical soft-
wares, such as the “quadprog” package in R or “qpsolvers” package in Python.

Note that the optimization task (4.2) can be done in a parallel fashion at each
quantile level, and thus the estimation procedure is computationally efficient
and scalable. This computational efficiency is largely due to the fact that the
(shape) non-crossing constraints [29, 1] are not enforced in (3.1). With the non-
crossing constraints enforced, one may except the numerical performance can be
further improved, at the cost the increased computational burden. In the rest of
this paper, we illustrate the proposed method by fitting JQR as introduced in
Section 3.1 without enforcing the (shape) non-crossing constraints, and it yields
satisfactory numerical performance in all the numerical examples in Section 6.

4.2. Tuning procedure

To determine the thresholding parameter vn, we employ the stability-based
criterion [38] to search the optimal value of vn. Its key idea is to measure the
stability of the proposed method by randomly splitting the training sample into
two parts, and comparing the disagreement between the two estimated active
sets.

Specifically, given a value vn, we randomly split the training sample Zn into
two parts Zn

1 and Zn
2 and apply the proposed method to Zn

1 and Zn
2 , to obtain

two estimated active sets Â1,vn and Â2,vn , respectively. Then, the disagreement

between Â1,vn and Â2,vn is measured by Cohen’s kappa coefficient

κ(Â1,vn , Â2,vn) =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) = n11+n22

p and Pr(e) = (n11+n12)(n11+n21)
p2 + (n12+n22)(n21+n22)

p2

with n11 = |Â1,vn ∩ Â2,vn |, n12 = |Â1,vn ∩ ÂC
2,vn |, n21 = |ÂC

1,vn ∩ Â2,vn |, n22 =

|ÂC
1,vn ∩ ÂC

2,vn | and | · | denotes the set cardinality. The procedure is repeated B
times and the estimated sparse learning stability is measured as

ŝ(Ψvn) =
1

B

B∑
b=1

κ(Âb
1,vn , Â

b
2,vn).

Finally, the parameter is set as v̂n = max
{
vn ∈ R≥0 :

ŝ(Ψvn )
maxvn ŝ(Ψvn ) ≥ q

}
, where

q ∈ (0, 1) is some given percentage and R≥0 denotes the set of non-negative real
numbers.

5. Asymptotic results

In this section, we establish the asymptotic results for the proposed method
and for simplicity, we define Q∗

τ = argminQτ∈Bτ
‖Qτ‖2K with Bτ = {Qτ : Qτ =
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argminhτ∈HK
EZn(hτ )} to ensure the uniqueness of the minimizerQ∗

τ and denote

Q̃τ = argminQτ∈HK
E(Qτ ) + λ‖Qτ‖2K . The following technical conditions are

needed to establish the estimation consistency.
Condition 1. There exist some positive constants κ1 and κ2 such that for any
l = 1, ..., p, supx∈X ‖Kx‖K ≤ κ1 and supx∈X ‖∂lKx‖K ≤ κ2.
Condition 2. There exist some positive constants c1 and θ1 such that there
holds maxk=1,...,m ‖Q̃τk −Q∗

τk
‖K = c1λ

θ1 .
Condition 1 imposes a boundedness condition on the kernel function as well as

its gradient functions, which is commonly used in statistical learning literature
[28, 50, 14] and satisfied by many popular kernels, including the Gaussian kernel,
Sobolev kernel and the scaled linear kernel with the compact support condition
on X . Note that the compact support condition is usually assumed in machine
learning literature [28, 14, 24] and also is regularly imposed for universality and
the Mercer’s theorem. Recently, many efforts have been made to extend them
to the non-compact setting and interested readers may refer to [35, 37, 33].

Condition 2 controls the approximation error in the sense that limλ→0 ‖Q̃τk −
Q∗

τk
‖K = 0. Note that similar condition quantifying the approximation error is

commonly used in statistical learning literature [28, 49].
Now we turn to establish the asymptotic estimation consistency of the pro-

posed method.

Theorem 1. Suppose Conditions 1–2 are satisfied. For any δ > 4(logn)−2E(y2),
with probability at least 1− δ

2 , there holds

1

m

m∑
k=1

‖Q̂τk − Q̃τk‖K ≤ c3

(
log

8

δ

) 1
4

(logn)
1/2 (1 + κ1λ

− 1
2 )

1
2

λ
1
2n

1
4

,

where c3 = 2
√
2max{1, κ1}.

Theorem 1 provides the strong convergence result of the difference between
Q̂τk and Q̃τk , which plays a crucial role in establishing the estimation consistency
of the estimated gradient functions. Note that in machine learning literature
[34, 28, 22], it is usually assumed that |y| < M , where M denotes some positive
constant, for mathematical simplicity. When this bounded response condition

is imposed, the upper bound in Theorem 1 reduces to c3M
(
log 8

δ

) 1
4 (1+κ1λ

− 1
2 )

1
2

λ
1
2 n

1
4

for any δ ∈ (0, 1).

Theorem 2. Suppose that all the conditions in Theorem 1 are satisfied. Let
λ = n− 1

4 , for some positive constant c4, with probability at least 1− δ, we have

max
l=1,...,p

1

m

m∑
k=1

∣∣∣‖ĝl,τk‖2n − ‖g∗l,τk‖
2

L2(X ,ρx)

∣∣∣ ≤ c4

(
log

4p

δ

) 1
2

(logn)
1/2

n−Θ,

where c4 = max
{
2c3κ

1/2
1 , c2, 2

√
2κ2

2

}
max

{
κ2
2, κ

2
2 max

k
‖Q∗

τk
‖K ,max

k
‖Q∗

τk
‖2K

}
and Θ = min{ 1

16 ,
θ1
4 }.
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Theorem 2 establishes the convergence rate of the difference between the
estimated gradient functions and the true gradient functions and this desired
result is crucial to establish the asymptotic selection consistency of the proposed
method. Note that the convergence result allows p diverging but as pointed out
by [11] that the dependency is generally difficult to quantify explicitly. Further
conditions are assumed to establish the selection consistency for the proposed
method.
Condition 3. For some positive constants c5 and ζ1, the true gradient functions
satisfy that for any τ, τ ′ ∈ (0, 1) and l = 1, ..., p,

sup
x∈X

|g∗l,τ (x)− g∗l,τ ′(x)| ≤ c5|τ − τ ′|ζ1 .

Condition 4. For any l ∈ A∗, there exists some quantile level τ l0 ∈ (0, 1) such

that ‖g∗
l,τ l

0
‖2L2(X ,ρx)

≥ c6
(
log 4p

δ

)ξ
(logn)

1/2
n−Θ for some c6 > 0 and ξ > 1/2,

and mink=1,...,m |τk − τ l0|
m→∞−−−−→ 0.

Condition 3 is a Lipschitz continuity condition, which quantifies the smooth-
ness of the true gradient functions. Similar conditions are imposed in [4] for
parametric case and [14] for nonparametric case. The first part of Condition
4 requires the true gradient function contains sufficient information about the
truly informative covariates at some quantile level, which is commonly used in
nonparametric modelling and is much tighter than many existing nonparametric
methods [16, 48]. The second part of Condition 4 imposes the condition on the
choice of quantile levels and is naturally satisfied for the equidistant quantile
levels, as well as some other more sophisticated designed quantile levels. Now
we establish the asymptotic consistency of the proposed method.

Theorem 3. Suppose that all the conditions in Theorem 2 as well as Conditions

3 and 4 are satisfied. Let vn = c6
2

(
log 4p

δ

)ξ
(log n)

1/2
n−Θ, then we have

P (Â = A∗)
n,m→∞−−−−−→ 1. (5.1)

Theorem 3 shows that with the diverging of sample size n and the number
of quantile levels m, the selected informative set can exactly recover the true
active set with probability tending to 1. This result is particularly interesting
given the fact that it is established without any explicit model assumption and
exactly identifies all the truly informative covariates which act on the conditional
distribution in any pattern.

6. Numerical experiments

In this section, we study the numerical performance of the proposed method,
denoted as MF, and compare it against some state-of-the-art methods, including
the distance correlation learning (DC, [39]) and the quantile-adaptive screening
(QaSIS, [15]). Note that the original DC and QaSIS methods are designed to
keep the first [n/ logn] covariates to achieve the sure screening property, and
thus we further truncate them by using some thresholding value to conduct
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sparse learning and report the truncated results. It is worth pointing out that the
methods considered in [14] are computationally demanding and can only work
when the dimension is relatively small. Thus, we omit the numerical comparison
of the proposed method with all the methods considered in [14].

In all the simulated scenarios, we apply the Gaussian kernel, K(u,v) =

exp
(
−‖u−v ‖2

2

2σ2
n

)
, for MF and σn is set as the median of all the pairwise distances

among the training sample. As the choice of the thresholding value highly af-
fects the performance of all the compared methods, we apply the stability-based
selection criterion introduced in Section 4.2 to determine it. The maximization
of the stability criterion is conducted via a grid search, where the grid is set as
{10−3+0.1s : s = 0, ..., 60}.

6.1. Simulated examples

The numerical performance of MF and its competitors is evaluated under two
simulated examples, which are also considered in [14]. In the both simulated
examples, the quantile levels are set as τ = (0.1, 0.25, 0.75, 0.9) for MF and
τ = 0.75 for QaSIS.
Example 1: (Nonlinear model) We first generate xi = (xi1, ..., xip)

T with xij =
Wij+ηUi

1+η , where Wij and Ui are independently drawn from U(−0.5, 0.5). The

data are generated as f∗(xi) = 6f1(xi1) + 4f2(xi2)f3(xi3) + 6f4(xi4) + 5f5(xi5)
with f1(u) = u, f2(u) = (2u + 1), f3(u) = (2u − 1), f4(u) = 0.1 sin(2πu) +
0.2 cos(2πu) + 0.3(2 sin(πu))2 + 0.4(cos(2πu))3 + 0.5(2 sin(πu))3 and f5(u) =

sin(πu)
(2−sin(πu)) , and εi’s are independently drawn from N(0, 1).

Example 2: (Heterogeneous model) The generating scheme is the same as in
Example 1 except that Wij and Ui are independently drawn from U(0, 1) and
the response yi is generated as yi = 4xi1xi2 + 3|xi3|εi.

Clearly, only the mean of the conditional distribution relies on the covariates
in Example 1, whereas in Example 2, the covariates act on the conditional distri-
bution through the mean function and the error term. For the both examples, we
consider the scenarios that (n, p) = (200, 100), (400, 100), (400, 1000), (400, 4000)
and the correlation structure among each covariates is considered by setting
η = 0, 0.3, and 0.8 for each scenario. Specifically, when η = 0, the covariates are
completely independent, whereas when η = 0.3 and 0.8, correlation structure
among the covariates are added. Each scenario is replicated 200 times and the
averaged performance measures are summarized in Tables 1–2, where Size is
the averaged number of selected informative covariates, TP is the number of
truly informative covariates selected, FP is the number of truly non-informative
covariates selected, and C, U, O are the times of correct-fitting, under-fitting,
and over-fitting, respectively.

As shown in Tables 1 and 2, MF outperforms the both competitors in most
scenarios. In Example 1, MF is able to identify all the five truly informative
covariates in most replications. However, DC and QaSIS tend to miss some
truly informative covariates. In Example 2, MF shows a much larger advantage
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Table 1

The averaged performance measures of MF and its competitors in Example 1.

(n, p, η) Method Size TP FP C U O

(200, 100,0) MF 5.07 4.97 0.10 174 7 19
QaSIS 2.80 2.79 0.01 18 182 0
DC 2.36 2.35 0.01 95 104 1

(400,100,0) MF 5.22 5.00 0.22 159 0 41
QaSIS 4.25 4.25 0.00 101 99 0
DC 4.84 4.84 0.00 173 27 0

(400,1000,0) MF 5.01 4.99 0.02 196 1 3
QaSIS 3.70 3.70 0.00 52 148 0
DC 4.71 4.71 0.00 153 47 0

(400, 4000,0) MF 5.04 5.00 0.04 192 0 8
QaSIS 3.47 3.47 0.00 37 163 0
DC 4.50 4.50 0.00 125 75 0

(200, 100,0.3) MF 5.39 4.99 0.40 136 1 63
QaSIS 2.43 2.41 0.02 0 200 0
DC 3.49 3.48 0.01 40 159 1

(400,100,0.3) MF 5.16 5.00 0.16 172 0 28
QaSIS 3.42 3.41 0.01 6 194 0
DC 4.40 4.40 0.00 122 78 0

(400,1000,0.3) MF 5.00 4.99 0.01 196 2 2
QaSIS 2.93 2.93 0.00 2 198 0
DC 3.85 3.85 0.00 68 132 0

(400, 4000,0.3) MF 5.11 5.00 0.11 179 0 21
QaSIS 2.72 2.72 0.00 0 200 0
DC 3.46 3.46 0.00 44 156 0

(200, 100,0.8) MF 6.34 4.99 1.35 52 3 145
QaSIS 2.44 2.25 0.19 0 200 0
DC 2.92 2.90 0.02 0 200 0

(400, 100,0.8) MF 4.93 4.59 0.34 118 80 2
QaSIS 3.37 3.34 0.03 0 200 0
DC 3.39 3.39 0.00 0 200 0

(400,1000,0.8) MF 5.03 4.99 0.04 190 2 8
QaSIS 2.55 2.55 0.00 0 200 0
DC 3.03 3.03 0.00 0 200 0

(400, 4000,0.8) MF 5.07 4.98 0.09 179 5 16
QaSIS 2.19 2.18 0.01 0 200 0
DC 2.78 2.78 0.00 0 200 0

against the both competitors. The two competitors tend to miss x3 which af-
fects the response through the variance, while MF is still able to identify x3

in most replications and tends to overfit by including some noise covariates,
which is much less severe than missing the important ones. In the both simu-
lated scenarios with η = 0.3 and 0.8, the added correlation structure increases
the difficulty of identifying the informative covariates, and here MF also out-
performs its competitors in most scenarios.

We also report the computational cost of MF under different scenarios in Ta-
ble 3 to illustrate the remarkable computational efficiency of MF, which supports
our claim that MF is particularly useful to deal with large-scale data. Note that
all the simulations are done by a computing machine with CPU Intel Xeon 5117.
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Table 2

The averaged performance measures of MF and its competitors in Example 2.

(n, p, η) Method Size TP FP C U O

(200, 100,0) MF 3.08 2.90 0.18 148 20 32
QaSIS 1.55 1.26 0.29 8 188 4
DC 2.06 2.04 0.02 59 140 1

(400,100,0) MF 2.99 2.99 0.00 199 1 0
QaSIS 1.97 1.96 0.01 32 167 1
DC 2.71 2.71 0.00 152 48 0

(400,1000,0) MF 3.32 3.00 0.32 149 0 51
QaSIS 1.56 1.51 0.01 9 191 0
DC 2.36 2.35 0.01 95 104 1

(400, 4000,0) MF 3.93 2.99 0.94 80 1 119
QaSIS 1.39 1.39 0.00 6 194 0
DC 2.08 2.08 0.00 65 135 0

(200, 100,0.3) MF 3.52 2.79 0.73 81 40 79
QaSIS 1.72 1.08 0.64 6 183 11
DC 1.70 1.65 0.05 22 175 3

(400,100,0.3) MF 2.99 2.99 0.00 197 3 0
QaSIS 2.01 1.84 0.17 36 153 11
DC 2.46 2.46 0.00 114 86 0

(400,1000,0.3) MF 3.61 2.93 0.69 100 15 85
QaSIS 1.15 1.05 0.10 3 197 0
DC 1.91 1.90 0.01 42 157 1

(400, 4000,0.3) MF 5.01 2.90 2.11 39 21 140
QaSIS 1.09 0.70 0.39 1 198 1
DC 1.61 1.59 0.02 27 172 1

(200, 100,0.8) MF 7.11 2.62 4.49 11 72 117
QaSIS 5.67 0.96 4.71 0 178 22
DC 3.39 1.05 2.34 3 182 15

(400, 100,0.8) MF 4.13 2.82 1.31 93 36 71
QaSIS 3.69 1.40 2.29 10 171 19
DC 2.22 1.72 0.50 19 168 13

(400,1000,0.8) MF 4.86 2.63 2.23 31 66 103
QaSIS 14.55 0.78 13.77 0 174 26
DC 8.17 1.15 7.02 0 184 16

(400, 4000,0.8) MF 18.31 2.59 15.72 4 71 125
QaSIS 13.68 0.43 13.25 0 193 7
DC 13.41 1.01 12.40 2 172 26

Table 3

The computational cost of MF under different settings.

(n, p) (200, 100) (400, 100) (400, 1000) (400, 4000)
Example 1 2.52s 20.73s 1.07mins 5.18mins
Example 2 3.03s 18.01s 1.10mins 4.88mins

6.2. Real-data analysis

In this section, MF and its competitors are applied to a supermarket dataset
[44], which is collected from a major supermarket located in northern China,
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Table 4

The number of selected covariates as well as the corresponding averaged prediction errors by
all the competitors in the supermarket dataset.

Method Size Pred. error (std.)
MF 22 0.378 (0.018)
DC 20 0.379 (0.019)
QaSIS 15 0.386 (0.021)

Table 5

Selected products by MF in the supermarket dataset (∗ means the product’s name is missing
in the original dataset).

Serial Number Name Serial Number Name
79060095 Totole 90042221 ∗
90050213 Korean side dishes 90048026 ∗
90110009 ∗ 90130031 Staple food
79030026 XianDao fructose 79020028 XianDao soy sauce
70050035 Coco Cola 76080380 Chewing gum
90052222 LiuPinXiang dessert 73050024 Refined white sugar
73050002 Rice 76010761 ∗
79050120 Sweet noodles 90040001 Eggs
78010066 Powdered milk 90059374 ∗
90100009 Trotters with sauce 79050615 Hand-pulled Noodle
73090019 Red date without stone

consisting of daily sale records of p = 6, 398 products on n = 464 days. This
data include almost all kinds of daily necessities and the response is the num-
ber of customers on each day, and the covariates are the daily sale volumes of
each product. The supermarket wants to know which product’s sale volumes
are highly related with the number of customers, and then some specific sale
strategies based on those products can be designed to attract more customers.

Both the response and covariates are pre-processed and thus have zero mean
and unit variance. We apply MF with τ = (0.1, 0.25, 0.5, 0.75, 0.9), QaSIS with
τ = 0.75 and DC to the supermarket data. Note that the truly informative
covariates are unknown in the real-data analysis, and thus we report the pre-
diction performance of each method by randomly splitting the dataset into two
parts, with 300 observations for training and the remaining for testing. We refit
kernel-based quantile regressions in (3.3) with the selected covariates for each
method on the training set, and measure the prediction performance on the
testing set. The splitting procedure is repeated 1000 times and the numerical
performance is summarized in Table 4.

From Table 4, MF selects 22 products, whereas DC selects 20 products and
QaSIS selects 15 products. The averaged prediction error of MF is smaller than
those of DC and QaSIS, implying that these two methods may miss some im-
portant products. We also report the products selected by MF in Table 5.

Clearly, MF selects the products that “Totole”, “Coco Cola”, “Eggs” , “Rice”,
“Sweet noodles”, “Trotters with sauce” and others. This result suggests that
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many customers are more willing to buy these necessities, and thus some special
sale strategies based on the selected products can attract more customers. It is
interesting to point out that the product “Korean side dishes” is also selected
by MF, which is not surprising since the supermarket is located in northern
China, and its food culture is more or less similar as South Korea.

7. Summary

This paper proposes an efficient kernel-based method to recovery the sparse
structure of the conditional distribution, which can be regarded as a crucial
step for the subsequent statistical analysis. The proposed method focuses on
identifying all the covariates acting on the conditional distribution by taking
advantages of the nice properties of RKHS. The implementation of the pro-
posed method is computationally efficient by using dual optimization, and is
particularly useful to deal with large-scale cases. The asymptotic consistency of
the proposed method is established without requiring any explicit model condi-
tions and the numerical experiments illustrate the superior performance of the
proposed method against some state-of-the-art competitors.

Appendix: Technical proofs

Given the condition |y| ≤ Mn, we consider the functional space

FMn =

{
Q = (Qτ1 , ..., Qτm) with Qτk ∈ HK :

1

m

m∑
k=1

‖Qτk‖2K ≤ λ−1Mn

}
.

Note that FMn is fairly large in the sense that the minimizer of (3.1), denoted as

Q̂ = (Q̂τ1 , ..., Q̂τm), is contained in FMn by the fact that 1
m

∑m
k=1(EZn(Q̂τk) +

λ‖Q̂τk‖2K) ≤ 1
m

∑m
k=1(EZn(0)+λ‖0‖2K) ≤ maxi=1,...,n |yi| ≤ Mn. We also denote

S(Zn,Mn) = sup
Q∈FMn

1

m

m∑
k=1

|E(Qτk)− EZn(Qτk)|.

Now we bound S(Zn,Mn) by applying McDiarmid’s inequality.

Lemma 1. (McDiarmid’s Inequality) Let z1, ..., zn be independent random vari-
ables taking values in a set Z, and assume that f : Zn → R satisfies

sup
z1,...,zn,z′

i∈Z
|f(z1, ..., zn)− f(z1, ..., z

′
i, ..., zn)| ≤ Ci,

for every i ∈ {1, 2, ..., n}. Then, for every t > 0,

P (|f(z1, ..., zn)− E (f(z1, ..., zn)) | ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 C
2
i

)
.
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Directly by Lemma 1, we can establish the following lemma.

Lemma 2. Suppose that Condition 1 is met. If |y| ≤ Mn, for any δ ∈ (0, 1),
with probability at least 1− δ, it holds

S(Zn,Mn) ≤
(
2 log

2

δ

)1/2
Mn + κ1λ

−1/2M
1/2
n

n1/2
+ E(S(Zn,Mn)).

Proof of Lemma 2: Denote Zn
i as a modified sample which is exactly the

same as Zn except that the i-th entry (xi, yi) is replaced by its copy (x
′

i, y
′

i).
By the triangle inequality, we have

S(Zn,Mn)− S(Zn
i ,Mn)

= sup
Q∈FMn

1

m

m∑
k=1

|E(Qτk)− EZn(Qτk)| − sup
Q∈FMn

1

m

m∑
k=1

∣∣E(Qτk)− EZn
i
(Qτk)

∣∣
≤ sup

Q∈FMn

1

m

m∑
k=1

∣∣EZn(Qτk)− EZn
i
(Qτk)

∣∣ ≤ sup
Q∈FMn

2

nm

m∑
k=1

n∑
i=1

|yi −Qτk(xi)| ,

where the inequalities are trivial. Note that by the condition that |y| ≤ Mn, the
Cauchy-Schwartz inequality in RKHS and Condition 1, we have

max
i=1,...,n

|yi −Qτk(xi)| ≤ Mn + ‖Qτk‖∞ ≤ Mn + κ1‖Qτk‖K . (7.1)

Therefore, there holds

S(Zn,Mn)− S(Zn
i ,Mn) ≤

2

n

⎛⎝Mn + κ1

(
1

m

m∑
k=1

‖Qτk‖2K

)1/2
⎞⎠

≤ 2

n

(
Mn + κ1λ

−1/2M1/2
n

)
,

where the first inequality follows from the relationship between root mean square
and arithmetic mean, the definition of FMn and (7.1).

Finally, by Lemma 1, for any δ ∈ (0, 1), with probability at least 1 − δ, we
have

|S(Zn,Mn)− ES(Zn,Mn)| ≤
(
2 log

2

δ

)1/2
Mn + κ1λ

−1/2M
1/2
n

n1/2
.

Then the desired result follows immediately. �

Lemma 3. Suppose that Condition 1 is satisfied. If |y| ≤ Mn, it holds

E (S(Zn,Mn)) ≤
4(Mn + κ1λ

−1/2M
1/2
n )

n1/2
.
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Proof of Lemma 3: Let {σi}ni=1 be the Rademacher random variables taking
values in {−1, 1} with equal probabilities. By the properties of Rademacher
complexity [3], we have

E(S(Zn,Mn)) ≤ 2E sup
Q∈FMn

1

nm

m∑
k=1

∣∣∣∣∣
n∑

i=1

σiLτk(yi −Qτk(xi))

∣∣∣∣∣
≤ 4E sup

Q∈FMn

1

nm

m∑
k=1

∣∣∣∣∣
n∑

i=1

σi(yi −Qτk(xi))

∣∣∣∣∣
≤ 4

(
E sup

Q∈FMn

1

nm

m∑
k=1

∣∣∣∣∣
n∑

i=1

σiQτk(xi)

∣∣∣∣∣+ Mn

n1/2

)
,

where the first inequality follows from the Rademacher random variable is sym-
metric, the second inequality follows from that the check loss is Lipschitz con-
tinuous, and the last inequality follows from the property of Rademacher com-
plexity and the condition that |y| ≤ Mn. Note that by the reproducing property
that Qτk(x) = 〈Qτk ,Kx〉K , we have

E sup
Q∈FMn

1

nm

m∑
k=1

∣∣∣∣∣
n∑

i=1

σiQτk(xi)

∣∣∣∣∣
= E sup

Q∈FMn

1

nm

m∑
k=1

∣∣∣∣∣〈Qτk ,

n∑
i=1

σiKxi〉K

∣∣∣∣∣
≤ E sup

Q∈FMn

1

nm

m∑
k=1

‖Qτk‖K

⎛⎝ n∑
i,j=1

σiσjK(xi,xj)

⎞⎠1/2

≤ κ1M
1/2
n

nλ1/2

⎛⎝ n∑
i,j=1

Eσiσj

⎞⎠1/2

≤ κ1M
1/2
n

n1/2λ1/2
,

where the first inequality directly follows from the Cauchy-Schwartz inequal-
ity, the second inequality follows from the definition of FMn and Condition 1,
and the last inequality follows from the property of the Rademacher random
variables. Then the desired result follows immediately. �
Proof of Theorem 1: We first denote the event C1 as{

1

m

m∑
k=1

‖Q̂τk − Q̃τk‖K ≥ 4max{1, κ1}
(
log

8

δ

)1/4(
(1 + κ1λ

−1/2) logn

λn1/2

)1/2
}
.

Clearly, P (C1) can be decomposed as

P (C1) = P (C1 ∩ { |y| > logn}) + P (C1 ∩ { |y| ≤ logn})
≤ P (|y| > logn) + P (C1 | |y| ≤ logn) =: P1 + P2.
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To bound P1, by Markov’s inequality, it holds P (|y| > log n) ≤ (logn)−2E(y2),
where E(y2) is a bounded quantity. To bound P2, denote Eλ(Qτk) = E(Qτk) +
λ‖Qτ‖2K and Eλ

Zn(Qτk) = EZn(Qτk) + λ‖Qτk‖2K . Then, directly by Proposition
2 and Theorems 2.6 and 2.7 in [41], there holds

Ψ�
λ

(
‖Q̂τk − Q̃τk‖K

)
≤ 4 sup

Q∈FMn

∣∣tEλEλ(Qτk)− tEλEλ
Zn(Qτk)

∣∣
≤ 4 sup

Q∈FMn

|E(Qτk)− EZn(Qτk)| , (7.2)

where Ψ�
λ(t) = inf{λs2

2 + |t − s| : s ∈ [0,∞)} and tEλ is the translation map

defined as tEλnG(Qτk) = G(Qτk + Q̃τk) − Eλ(Q̃τk) for all G : HK → R. Since

Ψ�
λ is invertible and increasing, we can write its inverse explicitly as (Ψ�

λ)
−1

as

(Ψ�
λ)

−1
(t) =

{√
2t/λ, if t < 1/(2λ),

t+ 1/(2λ), otherwise.

When the upper bound of (7.2) is sufficiently small, we have

1

m

m∑
k=1

‖Q̂τk − Q̃τk‖K ≤ 2
√
2

λ1/2m

m∑
k=1

(
sup

Q∈FMn

|E(Qτk)− EZn(Qτk)|
)1/2

≤ 2
√
2

λ1/2
S(Zn,Mn)

1/2
,

where the first inequality follows from (7.2), the second inequality follows from
the definition of S(Zn,Mn). Moreover, by taking Mn = logn, for any δ ∈ (0, 1),
with probability at least 1− δ/4, there holds

1

m

m∑
k=1

‖Q̂τk − Q̃τk‖K ≤ c3

(
log

8

δ

)1/4

(logn)
1/2 (1 + κ1λ

−1/2)1/2

λ1/2n1/4
,

where c3 = 4max{1, κ1} and the inequality follows from Lemmas 2 and 3.
Therefore, we have P2 ≤ δ/4, and thus for any δ > 4(logn)−2E(y2), we have
P (C1) ≤ P1 + P2 ≤ δ/2. The desired results follow immediately. �
Proof of Theorem 2: Define the sample operators for gradients, D̂l : HK →
Rn and its adjoint operator D̂∗

l : Rn → HK as

(D̂lQτk)i = 〈Qτk , ∂lKxi
〉K and D̂∗

l c =
1

n

n∑
i=1

∂lKxi
ci,

respectively. Similarly, the integral operators for gradients,Dl : HK → L2(X , ρx)
and D∗

l : L2(X , ρx) → HK are defined as

DlQτk = 〈Qτk , ∂lKx〉K and D∗
l Qτk =

∫
X
∂lKxQτk(x)dρx(x).
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Note that Dl and D̂l are Hilbert-Schimdt operators by Propositions 12 and 13
in [28], and we have

D∗
l DlQτk =

∫
X
∂lKxgl,τk(x)dρx(x) and D̂∗

l D̂lQτk =
1

n

n∑
i=1

∂lKxigl,τk(xi).

Furthermore, we denote HS(K) as a Hilbert space with all Hilbert-Schmidt
operators on HK , endowed with the norm ‖ · ‖HS . Note that denote T : H → H
as a (linear) bounded operator and H as a complex (separable) Hilbert space
endowed with the operator norm ‖ · ‖op, we have ‖T‖op ≤ ‖T‖HS .

Then, with these functional operators, there holds

‖ĝl,τk‖2n − ‖g∗l,τk‖
2
L2(X ,ρx)

= 〈Q̂τk ,
1

n

n∑
i=1

ĝl,τk(xi)∂lKxi
〉K − 〈Q∗

τk
,

∫
X
g∗l,τk(xi)∂lKxdρx(x)〉K

=
〈
Q̂τk −Q∗

τk
, D̂∗

l D̂l(Q̂τk −Q∗
τk
)
〉
K
+
〈
D̂∗

l D̂lQ
∗
τk
, Q̂τk −Q∗

τk

〉
K
+〈

Q∗
τk
, D̂∗

l D̂l(Q̂τk −Q∗
τk
)
〉
K
+
〈
Q∗

τk
, (D̂∗

l D̂l −D∗
l Dl)Q

∗
τk

〉
K

≤ ‖D̂∗
l D̂l‖HS‖Q̂τk −Q∗

τk
‖2K + 2‖Q∗

τk
‖K‖D̂∗

l D̂l‖HS‖Q̂τk −Q∗
τk
‖K+

‖Q∗
τk
‖2K‖D̂∗

l D̂l −D∗
l Dl‖HS ,

where ‖Q∗
τk
‖2K is a bounded quantity and the inequality follows from the Cauchy-

Schwartz inequality. Note that ‖Q̂τk −Q∗
τk
‖K ≤ ‖Q̂τk − Q̃τk‖K +‖Q̃τk −Q∗

τk
‖K ,

and thus an upper bound for 1
m

∑m
k=1 ‖Q̂τk −Q∗

τk
‖K is provided by the combi-

nation of Condition 2 and Theorem 1. Now we turn to bound ‖D̂∗
l D̂l‖HS and

‖D̂∗
l D̂l −D∗

l Dl‖HS .
By Condition 1 and direct calculation as that in Theorem 7 of [27], there

holds ∥∥∥D̂∗
l D̂l

∥∥∥2
HS

= ‖∂lK‖4K ≤ κ4
2. (7.3)

On the other hand, by the concentration inequalities in Hilbert-Schmidt space
HS(K) on HK [28], for any εn ∈ (0, 1), we have

P
(∥∥∥D̂∗

l D̂l −D∗
l Dl

∥∥∥
HS

≥ εn

)
≤ 2 exp

(
−nε2n
8κ4

2

)
.

This implies that for any δ ∈ (0, 1), with probability at least 1− δ, there holds

∥∥∥D̂∗
l D̂l −D∗

l Dl

∥∥∥
HS

≤
(
8κ4

2

n
log

4p

δ

)1/2

, (7.4)

for any l = 1, ..., p.
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Hence, when 1
m

∑m
k=1 ‖Q̂τk −Q∗

τk
‖K is sufficiently small, by (7.3) and (7.4),

with probability at least 1− δ, there holds

max
l=1,...,p

1

m

m∑
k=1

∣∣∣‖ĝl,τk‖2n − ‖g∗l,τk‖
2
L2(X ,ρx)

∣∣∣
≤ a1

(
3

m

m∑
k=1

‖Q̂τk −Q∗
τk
‖K + max

l=1,...,p
‖D̂∗

l D̂l −D∗
l Dl‖HS

)

≤ 8a1

(
c3

(
log

8

δ

)1/4(
(1 + κ1λ

−1/2) logn

λn1/2

)1/2

+ c2λ
θ1
n +

(
8κ4

2

n
log

4p

δ

)1/2
)
,

where a1 = max{κ2
2, κ

2
2 maxk ‖Q∗

τk
‖K ,maxk ‖Q∗

τk
‖2K}. Then, by setting λ =

n−1/4, the desired result follows immediately. �
Proof of Theorem 3. Firstly, we show that Â ⊂ A∗ in probability. If not, sup-
pose that there exists some l′ ∈ Â but l′ /∈ A∗, which implies 1

m

∑m
k=1 ‖ĝl′ ,τk‖

2
n >

vn but for any τ ∈ (0, 1), ‖g∗
l′ ,τ

‖2L2(X ,ρx)
= 0. If the thresholding value is chosen

as vn = c6
2

(
log 4p

δ

)ξ
(log n)

1/2
n−Θ, then with probability at least 1 − δ, there

holds
1

m

m∑
k=1

∣∣∣‖ĝl′ ,τk‖2n − ‖g∗
l′ ,τk

‖2L2(X ,ρx)

∣∣∣ = 1

m

m∑
k=1

‖ĝl′ ,τk‖
2
n > vn,

which contradicts with Theorem 1, and thus Â ⊂ A∗ with probability at least
1− δ.

Next, we show that A∗ ⊂ Â in probability. If not, suppose there exists some
l′ ∈ A∗ but l′ /∈ Â, which implies that for some τ l

′

0 ∈ (0, 1), ‖g∗
l′,τ l′

0

‖2L2(X ,ρx)
>

c6
(
log 4p

δ

)ξ
(logn)

1/2
n−Θ but 1

m

∑m
k=1 ‖ĝl′ ,τk‖

2
n ≤ vn. By Conditions 3 and 4,

there must exist some τk0 with k0 ∈ {1, ...,m} such that

sup
x∈X

|g∗l′,τ l
0
(x)− g∗l′,τk0

(x)| ≤ c5|τ l
′

0 − τk0 |ζ1 → 0, as m → ∞.

Hence, we have

1

m

m∑
k=1

∣∣∣‖ĝl′ ,τk‖2n − ‖g∗
l′ ,τk

‖2L2(X ,ρx)

∣∣∣
≥ 1

m

m∑
k=1

‖g∗
l′ ,τk

− g∗
l′ ,τ l′

0

+ g∗
l′ ,τ l′

0

‖2L2(X ,ρx)
− vn

≥ ‖g∗
l′ ,τ l′

0

‖2L2(X ,ρx)
− vn +

1

m
‖g∗

l′ ,τk0

− g∗
l′ ,τ l′

0

‖2L2(X ,ρx)
+

2

m

∫
X
(g∗

l′ ,τk0

(x)− g∗
l′ ,τ l′

0

(x))g∗
l′ ,τ l′

0

(x)dρx(x).

If we choose vn = c6
2

(
log 4p

δ

)ξ
(logn)

1/2
n−Θ, there holds
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1

m

m∑
k=1

∣∣∣‖ĝl′ ,τk‖2n − ‖g∗
l′ ,τk

‖2L2(X ,ρx)

∣∣∣
>

c6
2

(
log

4p

δ

)ξ

(log n)1/2n−Θ +
2

m

∫
X
(g∗

l′ ,τk0

(x)− g∗
l′ ,τ l′

0

(x))g∗
l′ ,τ l′

0

(x)dρx(x),

which contradicts with Theorem 1, and thus we have A∗ ⊂ Â with probability
at least 1− δ. Combining these two results yield the desired theoretical results.
�

Acknowledgments

The authors thank the editor, the associate editor and the two anonymous ref-
erees for their constructive suggestions, which significantly improve this paper.

References

[1] P. Aubin-Frankowski and Z. Szabó. Hard shape-constrained kernel ma-
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