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1. Introduction

Network data arises in a number of areas, including social, biological and trans-
port networks. Modelling of this type of data has become an increasingly im-
portant field in recent times, partly due to the greater availability of the data,
and also due to the fact that we increasingly want to model complex systems
with many interacting components. A central topic within this field is the design
of random graph models. Various models have been proposed, building on the
early work of Erdős [13]. A key goal with these models is to capture important
properties of real-world graphs. In particular, a lot of effort has gone into the
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investigation of meso-scale structures [39]. These are intermediate scale struc-
tures such as communities of nodes within the overall network. There has been a
large amount of work devoted to models that can capture community structure,
such as the popular stochastic block-model [20, 40, 35].

Here, we focus on a different type of meso-scale structure, known as a core-
periphery structure, which we will define formally in Section 2.1. The intuitive
idea is of a network that consists of two classes of nodes — core nodes that
are densely connected to each other, and periphery nodes that are more loosely
connected to core nodes, and sparsely connected between themselves.

The network of flight connections between airports is a typical example of a
core-periphery network. The core nodes correspond to central hubs that flights
are routed through, according to the so-called Spoke-hub distribution [21], while
other airports are more sparsely connected between each other. Other examples
include the World Wide Web [9] and social [42], biological [29], transport [21],
citation [4], trade [32] or financial [15] networks. The importance of being able
to identify core-periphery structure can be seen by considering the properties of
these networks. In cases such as transport networks, this identification allows for
the detection of hubs which may be the most important locations for additional
development. In protein-protein interaction networks, identifying a core helps
to determine which proteins are the most important for the development of the
organism. In internet networks, core nodes could be the most important places
to defend from cyber-attacks. In this work, we are particularly interested in
models for sparse graphs1. The advantage of our core-periphery model is that
the statistical network modelling framework that we work in allows us to capture
the sparsity that many of these networks have [2, 36].

A number of algorithmic approaches have been proposed for the detection of
core-periphery structure [12, 10, 11], see [39] for a review. [43] recently developed
a class of sparse graphs with locally dense subgraphs. The construction is based
on Poisson random measures as in our case, but the objective and properties of
both models are rather different. The graphs of [43] have a growing number of
dense subgraphs, where each subgraph has a bounded number of nodes, and no
subgraph is identified as a periphery. In contrast, our model has a single dense
core, whose size is unbounded, and a sparse periphery.

An alternative, popular, model-based approach is to consider a two-group
stochastic blockmodel [44] where

Pr(zij = 1 | Π, ci, cj) = Πci,cj

where ci = 1 if node i is in the core and ci = 2 otherwise,

Π =

(
Π11 Π12

Π12 Π22

)
with Π11, Π12 and Π22 respectively the core-core, core-periphery and periphery-
periphery probabilities of connection, where typically Π12,Π22 are far smaller

1A graph is said to be sparse if the number of edges scales subquadratically with the
number of nodes. Otherwise, it is said to be dense.
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than Π11. However, such models are known to generate dense graphs. To obtain
sparse graph sequences in the stochastic blockmodel setting, one can have the
matrix Π to depend on n, e.g. Πn = Π1

n for some initial matrix Π1 [44]. However
in this case, the graph family is not projective any more for different network
sizes. The approach considered in this paper allows to have both a sparse and
projective graph family.

The contributions of our work are as follows. Firstly, we provide a precise
definition of what it means for a graph to have a core-periphery structure,
based on the sparsity properties of the subgraphs of core and periphery nodes.
Secondly, building on earlier work from [41], we present a class of sparse network
models with such properties, and provide methods to simulate from this class,
and to perform posterior inference. Finally, we demonstrate that our approach
can detect meaningful core-periphery structure in two real-world airport and
trade networks, while providing a good fit to global structural properties of the
networks.

The statistical network modelling framework our work is set in, introduced
by [6], is based on representing the network as an exchangeable random mea-
sure. Sparse graph models with (overlapping) block structure have already been
proposed within this framework [19, 41]. However, these models cannot be ap-
plied directly to model networks with a core-periphery structure, as they make
the assumption that a single parameter tunes the overall sparsity properties of
the graph, with the same structural sparsity properties across different blocks.
This is an undesirable property for core-periphery networks, where the sub-
graph of core nodes is expected to have different, denser structural properties
than the rest of the network. Our work builds on the framework of (multivari-
ate) completely random measures (CRMs) [23, 24] that have been widely used
in the Bayesian nonparametric literature [38, 27, 17] to construct graphs with
heterogeneous sparsity properties.

The rest of the paper is organised as follows. In Section 2 we define what a
core-periphery structure means in our framework, and give the general construc-
tion of this type of network as well as the particular model that we employ. We
show how our framework can accommodate both core-periphery and commu-
nity structure. In Section 3 we present some important theoretical results about
the new model, such as the sparsity properties that define the core-periphery
structure. In Section 4 we give the details of the Markov Chain Monte Carlo
(MCMC) sampler used to perform posterior inference, and test our model on a
variety of simulated and real data sets. We also compare it against a range of
contemporary alternatives, and show that it provides an improvement in certain
settings.

Notations. We follow the asymptotic notations of [22]. Let (Xα)α≥0 and
(Yα)α≥0 be two stochastic processes defined on the same probability space with
Xα, Yα → ∞ almost surely (a.s.) as α → ∞. We have Xα = O(Yα) a.s. ⇐⇒
lim supα→∞

Xα

Yα
< ∞ a.s.; Xα = o(Yα) a.s. ⇐⇒ lim supα→∞

Xα

Yα
= 0 a.s.;

Xα = Θ(Yα) a.s. ⇐⇒ Xα = O(Yα) and Yα = O(Xα) a.s.
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2. Statistical network models with core-periphery structure

2.1. Definitions

In this section, we formally define what it means for graphs to be sparse and to
have a core-periphery structure.

Let G = (Gα)α≥0 be a family of growing undirected random graphs with
no isolated vertices, where α ≥ 0 is interpreted as a size parameter. Gα =
(Vα, Eα) where Vα and Eα are the set of vertices and edges respectively. Denote

respectively Nα = |Vα| and N
(e)
α = |Eα| for the number of nodes and edges in

Gα, and assume Nα, N
(e)
α → ∞ almost surely as α → ∞.

We first give the definition of sparsity for the family G = (Gα)α≥0.

Definition 2.1 (Dense and Sparse graphs). We say that a graph family G is
dense if the number of edges scales quadratically with the number of nodes

N (e)
α = Θ(N2

α) (2.1)

almost surely as α → ∞. Conversely, it is sparse if the number of edges scales
subquadratically with the number of nodes

N (e)
α = o(N2

α) (2.2)

almost surely as α → ∞.

Let (Vα,c)α≥0 be a growing family of core nodes, where Vα,c ⊆ Vα for all α.

Let Nα,c = |Vα,c| be the number of core nodes, and N
(e)
α,c−c the number of edges

between nodes in the core. Assume both Nα,c, N
(e)
α,c−c → ∞ almost surely as

α → ∞.

Definition 2.2 (Core-periphery structure). We say that a graph family G =
(Gα)α≥0 is sparse with core-periphery structure if the graph is sparse with a
dense core subgraph, that is

N
(e)
α,c−c = Θ(N2

α,c) N (e)
α = o(N2

α). (2.3)

A consequence of (2.3) is that Nα,c = o(Nα), since N
(e)
α,c−c ≤ N

(e)
α . In other

words, the core corresponds to a small dense subgraph of a sparse graph, with
sparse connections to the other part of the graph, which is called the periphery.

2.2. A model for networks with core-periphery structure

Having defined what we mean by core-periphery structure, we now give a con-
struction of a core-periphery network. Building on the model of [41], we also
allow the network to exhibit community structure. Following [6], we represent
a graph by the point process on the plane

Z =
∑
i,j

zijδ(θi,θj) (2.4)
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where zij = zji = 1 if i and j are connected, and 0 otherwise. Here, each node
i is located at some point θi ∈ R+ = [0,∞). A finite graph Gα of size α > 0
is obtained by considering the restriction of Z to [0, α]2, see [6]. As in [41], we
consider that the probability of a connection between nodes i and j is given by
the link function

Pr(zij = 1|(wl1, wl2, . . . , wlK)l=1,2,...) =

{
1− e−2

∑K
k=1 wikwjk i �= j

1− e−
∑K

k=1 w2
ik i = j

(2.5)

Here, wi1 ≥ 0 is the core parameter and the parameters wik > 0, for k =
2, . . . ,K, are interpreted as the degree of affiliation of node i to community
k. In the particular case K = 2, we have core-periphery but no community
structure.

The model parameters (wi1, wi2, , . . . , wiK , θi)i=1,2,... are the points of a Pois-
son point process on R

K+1
+ with mean measure ρ(dw1, dw2, . . . , dwK)dθ where ρ

is a σ-finite measure on R
K
+ , concentrated on R

K
+ \{(0, 0, . . . , 0)}, which satisfies∫

R
K
+
min(1,

∑K
k=1 wk)ρ(dw1, dw2, . . . , dwK) < ∞. As shown in [41], the resulting

graph is sparse if ∫
[0,∞)K

ρ(dw1, dw2, . . . , dwK) = ∞, (2.6)

and dense otherwise. [41] considered a specific class of models for ρ, based on
compound completely random measures (CRMs) [17], where ρ is concentrated
on (0,∞)K ; that is, for all nodes i and communities k we have wik > 0. As a
consequence, the sparsity pattern is homogeneous across the graph. We consider
a different and more flexible construction here where wi1 ≥ 0 and wik > 0, k =
2, . . . ,K. As will be shown in Theorem 3.1, the core-periphery property can be
enforced by making the following assumptions on the mean measure ρ:∫

(0,∞)×{0}K−1

ρ(dw1, dw2, . . . , dwK) = 0, (2.7)∫
{0}×(0,∞)K−1

ρ(dw1, dw2, . . . , dwK) > 0, (2.8)

0 <

∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK) < ∞. (2.9)

We identify the set C = {i | wi1 > 0} as the core nodes, and the remaining ones
P = {i | wi1 = 0} as the periphery nodes. Assumption (2.7) ensures that we do
not have a subset of core nodes disconnected from the rest of the graph. Along
with Equation (2.8), it also ensures that each node has at least one strictly
positive community affiliation parameter. In practice, we use a construction
where all of the community affiliation parameters are strictly positive.

The strict positivity assumptions in Equations (2.8) and (2.9) ensure that the
size of the core or periphery is not empty with probability 1. The boundedness
assumption in Equation (2.9) ensures that the subgraph of core nodes is dense,
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as will be shown in Theorem 3.1. Note that the overall graph may be sparse or
dense, depending whether the integral in Equation (2.8) is finite or not.

We now propose a way to construct such a function ρ. We start with a base
Lévy measure ρ0 on (0,∞). Let (wi0, θi)i≥1 be the points of a Poisson point
process with mean measure ρ0(dw0)dθ and set

wik = βikwi0, k = 1, 2, . . . ,K

βi1 | wi0 ∼ Ber(1− e−wi0), (βi2, . . . , βiK)
iid∼ F

(2.10)

where F is a probability distribution on R
K−1
+ and the scores βi1 ∈ {0, 1} and

(βi2, . . . , βiK) ∈ R
K−1
+ > 0, i ≥ 1 are mutually independent. In other words,

with probability 1 − e−wi0 , wi1 = wi0 > 0 and i is a core node, while with
probability e−wi0 , wi1 = 0 and i belongs to the periphery. ρ is then given by:

ρ(dw1, dw2, . . . , dwK) =∫ ∞

0

⎡⎣((1− e−w0)δw0(dw1) + e−w0δ0(dw1)
) F (dw2

w0
, . . . , dwK

w0

)
wK−1

0

⎤⎦ ρ0(dw0)

(2.11)

In this paper, we set ρ0 to be the mean measure of the jump part of a
generalized gamma process (GGP)

ρ0(dw0) =
1

Γ(1− σ)
w−1−σ

0 exp(−w0τ)dw0 (2.12)

where (σ, τ) satisfy σ ∈ (0, 1), τ ≥ 0 or σ ∈ (−∞, 0], τ > 0. The GGP has been
used extensively due to its flexibility, the interpretability of its parameters and
its conjugacy properties [26, 7].

Note crucially that, although the formulation (2.10) resembles the formula-
tion of the class of compound CRMs introduced by [17], in our construction,
the scores βi1 are not identically distributed, and depend on the base parameter
wi0. This key difference enables the model to have different sparsity properties,
as shown in Section 3.

Of particular interest, for computational reasons, is the case where F is set
to be the product of independent gamma distributions

F (dβ2, . . . , dβK) =

K∏
k=2

βak−1
k e−bkβk

bak

k

Γ(ak)
dβk, (2.13)

where ak > 0 and bk > 0 are hyperparameters for k = 1, . . . ,K.
We simulate a network from the above model with parameters K = 2, α =

200, σ = 0.2, τ = 1, b = 0.5, a = 0.2. This corresponds to the case where we
have core-periphery but not community structure. In either case, we refer to
our model as the Sparse Core Periphery (SparseCP) model. For comparison, we
also simulate a network from the Sparse Network with Overlapping Communities
(SNetOC) model of [41] with K = 2 communities and parameters α = 100, σ =
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Fig 1. Comparing a core-periphery graph with no community structure simulated from the
SparseCP model to a graph with two communities from the SNetOC model of [41]. Plots
of (a) the graph with two communities, with nodes from each community in green and red
respectively, and (b) the core-periphery graph with core nodes in green and periphery nodes
in red. In each case the size of the nodes is proportional to their mean sociability. Adjacency
matrices for (c) the graph with two communities and (d) the core-periphery graph. In each
case the nodes are ordered by community or core membership, with the red lines partitioning
the two groups. Degree distributions of (e) the subgraphs of nodes within communities 1 and
2 for the two community graph, and (f) the subgraphs of core and periphery nodes for the
core-periphery graph.

0.2, τ = 2.5, b = (0.2, 0.05), a = (0.4, 0.1). The parameters are chosen so that
the graphs have similar sizes and overall degree distributions.

Figures 1(a) and 1(b) show the networks sampled from both models. Fig-
ures 1(c) and 1(d) show the associated adjacency matrices, where nodes are
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Fig 2. Overall degree distribution of the SNetOC and SparseCP graphs.

ordered according to the community where they have the largest affiliation for
the SNetOC model, and by core (wi1 > 0) or periphery (wi1 = 0) affiliation for
the SparseCP model. In Figures 1(e) and 1(f) we represent the empirical degree
distributions of nodes within each community for SNetOC, and for the core
and periphery subgraphs for the SparseCP model. In these plots, and all subse-
quent degree distribution plots, the degrees have been binned together in evenly
spaced logarithmic bins, see e.g. [34]. Although the overall degree distributions
for both models are very close (see Figure 2), the degree distributions of the sub-
graphs are very different: the degree distributions within each subgraph have a
similar power-law behaviour for SNetOC, whereas for the SparseCP model, it
exhibits a Poisson-like behaviour for the core, and a power-law behaviour for
the periphery.

2.2.1. Parameter interpretability

In summary, the different parameters in the model control the structure of the
network as follows:

• wi1 — We interpret wi1 as a coreness parameter, with wi1 > 0 indicating
that node i is in the core.

• wi2, . . . ,wiK —WhenK = 2, we can interpret wi2 as an overall sociability
parameter. Otherwise wi2, . . . , wiK indicate the affiliation to each of the
respective communities, and we can interpret them as sociabilities within
each of these communities.

• σ — As we will see from Theorem 3.2, σ controls the overall sparsity of the
network, with a higher value leading to sparser networks. It also controls
the size of the core, with a larger value of σ leading to a smaller relative
core size.

• τ — As we can see from the theoretical results, τ does not affect the
asymptotic rates for the densities of the different regions. Its main effect is
to induce an exponential tilting of large degrees in the degree distribution,
as we see in Figure 18 in Appendix B.
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• a2, . . . ,aK,b2, . . . ,bK — The hyperparameters of the community socia-
bility parameters control the distribution F defined in Equation 2.13,
which is the product of Γ(ak, bk) distributions. Furthermore increasing
the ak decreases the relative size of the core by changing the sizes of the
wik relative to wi1, while increasing the bk increases the relative size.

• α — This is a size-parameter, tuning the number of nodes and edges in
the network.

In the following section we show theoretically and through simulations that
these models recover the core-periphery structure defined in Definition 2.2.

3. Core-periphery and sparsity properties

In this section we study the asymptotic behaviour of the number of nodes Nα,
the number of nodes in the core Nα,c and in the periphery Nα,p, together with

the number of edges N
(e)
α , the number of edges between core nodes N

(e)
α,c−c,

between periphery nodes N
(e)
α,p−p and between core and periphery nodes N

(e)
α,c−p,

which are the key quantities to understand the core periphery structure. They
are defined as

Nα =
∑
i

1θi≤α1(
∑

j zij1θj≤α)≥1,

N (e)
α =

∑
i≤j

zij1θi≤α1θj≤α

Nα,c =
∑
i

1θi≤α1wi1>01(
∑

j zij1θj≤α)≥1,

N
(e)
α,c−c =

∑
i≤j

zij1wi1>01wj1>01θi≤α1θj≤α

and similarly for the other quantities. In Theorem 3.1 we study the SparseCP
model as defined by Equations (2.4) and (2.5), where the Lévy measure ρ satisfies
Assumptions (2.7), (2.8) and (2.9).

Theorem 3.1. Consider the graph family defined by Equations (2.4) and (2.5),
where the Lévy measure ρ satisfies Assumptions (2.7), (2.8) and (2.9). Then the
graph has a dense core subgraph

N
(e)
α,c−c = Θ(N2

α,c) almost surely as α → ∞. (3.1)

If ∫
{0}×(0,∞)K−1

ρ(dw1, dw2, . . . , dwK) = ∞

then the graph is sparse overall and (2.2) holds. Otherwise, it is dense, and (2.1)
holds.

We now characterize more precisely the sparsity properties for the particular
model described by Equations (2.11), (2.12) together with (2.13), in Section 2.2.
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Theorem 3.2. Consider the graph family defined by Equations (2.4) and (2.5),
where the Lévy measure ρ takes the form of Equation (2.11), with a generalized
gamma process base measure ρ0, and F a product of independent gamma distri-
butions. Assume further that σ ∈ (0, 1) and τ > 0, so that∫ ∞

0

ρ0(dw0) = ∞,

∫ ∞

0

w0ρ0(dw0) < ∞. (3.2)

Then, almost surely as α tends to infinity,

N (e)
α = O

(
N

2
1+σ
α

)
, N

(e)
α,c−c = Θ

(
N2

α,c

)
N

(e)
α,p−p = O

(
N

2
1+σ
α,p

)
, N

(e)
α,c−p = O

((√
Nα,cNα,p

) 2
1+σ/2

)
.

(3.3)

A natural consequence of the definition of core-periphery structure that we
use is that the relative size of the core tends to zero, since the overall graph
must be sparse. In Corollary 3.2.1 we confirm this, noting that σ ∈ (0, 1).

Corollary 3.2.1. In the same setting as Theorem 3.2, we have that

Nα,c = O

(
N

1
1+σ
α

)
(3.4)

and furthermore

Nα,c

Nα
= O

(
α−σ

)
almost surely as α → ∞ (3.5)

We know from Equation (3.3) that when σ ∈ (0, 1), N
(e)
α = O

(
Nβ

α

)
in each

region, where σ is the parameter of the base Lévy measure. We then have that

β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

1+σ overall

2 in the core region
2

1+σ in the periphery region
2

1+σ/2 in the core-periphery region

When σ < 0, β = 2 in each region.

In Figure 3, we see a graphical representation of these results. From Figure
3(a) we see that the number of edges grows quadratically with the number of
nodes when σ < 0 (and thus the graph is dense) and otherwise grows with
power-law exponent 2

1+σ . We see similar behaviour for the periphery and core-
periphery regions, but in Figure 3(b) we see that the core region is dense for any
value of σ. In Appendix B we present some more empirical results on the effects
of varying the model parameters on the degree distribution, sparsity properties
and core proportion.
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Fig 3. Relationship between nodes and edges for varying σ for (a) the overall graph, (b) the
core, (c) the core-periphery region and (d) the periphery. In each case we use K = 2, τ =
1, a = 0.2, b = 1

K
and vary α to generate different sized graphs. We also plot a quadratic

relationship between nodes and edges, for comparison.

4. Experiments

In this section, we present a series of experiments where we perform posterior
inference using our model. We first introduce the MCMC algorithm we use to
perform this inference. We then detail experiments performed on simulated and
real data sets. Our goal here is twofold. Firstly, we show the ability of our model
to capture both the core-periphery structure and sparsity properties of networks.
Secondly, we emphasise the benefits of our approach over that of [41]. Finally,
when considering our model as purely a core-periphery detection method, we
show that it compares favourably against some other standard methods.

4.1. Posterior inference

In order to test our model, we design an MCMC algorithm to perform posterior
inference, based on those of [6] and [41]. We assume that we have observed
a set of connections (zij)1≤i,j,≤Nα where Nα is the number of nodes with at
least one connection. We want to infer the parameters (wi1, . . . , wiK)i=1,...,Nα .
We also want to estimate the sums of the parameters for the nodes with no
connection (w∗1, . . . , w∗K), the hyperparameters φ of the mean intensity ρ and
the parameter α which is also assumed to be unknown. Thus the aim is to
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sample from the posterior

p((w1k, . . . , wNαk, w∗k)k=1,...,K , φ, α | (zij)1≤i,j,≤Nα) (4.1)

In order to do this, we define an algorithm which uses Metropolis-Hastings
(MH) and Hamiltonian Monte Carlo (HMC) updates with a Gibbs sampler
to perform posterior inference. The details of the algorithm are provided in
Appendix C.

4.2. Simulated data

We start by considering simulated data. This is firstly in order to study the
convergence of our MCMC algorithm. Secondly, it allows us to compare our
model to that of [41] in a setting where have complete information about the
ground truth.

In order to study the convergence of our algorithm, we generate synthetic
data from the SparseCP model described in Section 2, with the construction
given in 2.2. We generate a graph with K = 2, i.e. with core-periphery structure
but no community structure. We use parameters α = 200, σ = 0.2, τ = 1,
b = 1

K , a = 0.2. In our case, the sampled graph has 778 nodes and 5984 edges.
We fit our model to the simulated network, placing vague Γ(0.01, 0.01) priors

on the unknown parameters α, 1−σ, τ , ak and bk. We initialize the parameters
with an initialization run (as described in Section C.4 of Appendix C) of 10 000
steps. We then run 3 parallel MCMC chains of 500 000, discarding the first
375 000 samples as burn in. Finally, we thin the remaining 125 000 to give a
sample size of 500. Trace plots and convergence diagnostics are given in Section
D.1.1 of Appendix D.

Our model accurately recovers the mean sociability parameters (in this case,
the mean w̄i = 1

2 (wi1 + wi2) of the core and overall sociability parameters)
of both high and low degree nodes, providing reasonable credible intervals in
each case as shown in Figures 4(a) and 4(b). In Figure 4(c) we see some high
degree periphery nodes in particular being mis-classified into the core. However,
we expect that these high degree periphery nodes will be some of the hardest
to correctly classify. By generating 5000 graphs from the posterior predictive
distribution, we also see that the model fits the empirical power-law degree
distribution of the generated graph well, as shown in 4(d). Here, and in other
plots of the posterior predictive degree distribution, the lower bound of the 95%
credible interval is equal to 0 for some degree bins, however the plot is on the
log scale, and so we cannot properly represent the interval in this case. Instead,
only the upper bound of the interval is shown, with all the space below this line
also within the credible interval.

Moreover, we see that we are able to very accurately recover the classifica-
tion into core and periphery. In our generated graph, 137 out of 144 nodes are
classified correctly into the core, with 631 out of 634 are classified correctly into
the periphery. Importantly, the core is not simply comprised of the nodes with
the highest degrees. This comes from the form of the probability of connection

between two nodes; 1 − e−
∑K

k=1 wikwjk . Thus a node i in the periphery, and so
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Fig 4. Fitting the SparseCP model to data simulated from a graph generated with K =
2, α = 200, σ = 0.2, τ = 1, b = 1

K
, a = 0.2. Mean sociability ( 1

2
(wi1 + wi2)) credible intervals

for (a) the 50 nodes with the highest degrees, (b) the 50 nodes with the lowest degree. (c)
Core sociability (wi1) for the 100 nodes with highest degrees. In each case the true values
are coloured green if they are covered by the credible interval, and red if not. (d) Posterior
predictive degree distribution. When the lower posterior predictive interval bound is 0, we plot
only the upper interval bound.

with wi1 = 0, can have a high probability of connection with another node j if
they both have large overall sociabilities wi2, wj2. Thus, nodes not in the core
can still have a high degree. Conversely, nodes in the core but with low overall
sociabilities may have low degrees. In Figure 4(c) we see the credible intervals
for the core sociability parameters, and we see that there are several high de-
gree nodes in the periphery which are identified correctly. This means that our
algorithm is not simply classifying the highest degree nodes into the core.

In Appendix D, we also test our model on a graph with core-periphery and
community structure. In this case, K is taken to be 4 in order to generate a
graph with a core-periphery structure and 3 overlapping communities. We show
that we are able to recover both the core-periphery and community structure
in this case.

Comparison with the SNetOC model of [41]. Our model is an extension
of that of [41], to allow the modelling of core-periphery structure as well as com-
munity structure. The question arises as to whether their SNetOC model could
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Fig 5. Posterior predictive degree distributions for a graph simulated from the SparseCP
model with parameters K = 2, α = 200, σ = 0.2, τ = 1, b = 1, a = 0.2. The top row gives the
posterior predictive degree distributions using (a) the SparseCP model and (b) the SNetOC
model. The bottom row gives the posterior predictive degree distributions for the subgraph
formed by the nodes which are in the true core. This is calculated using the nodes estimated
to have (a) wi1 > 0 for the SparseCP model, (b) wi1 > 0.014 for the SNetOC model. When
the lower posterior predictive interval bound is 0, we plot only the upper interval bound.

perform the same role as ours, with the core thought of as another community.
Indeed, when examining real world networks we will study an example in which
[41] identify a Hub community which is similar to the core identified by our
model.

Here, we show some of the problems that can occur when trying to use the
SNetOC model for core-periphery detection, and the advantages that our model
can provide. We start by generating a graph from the SparseCP model with the
parameters K = 2, α = 200, σ = 0.2, τ = 1, b = 1, a = 0.2. This choice of
parameters leads to a larger relative core size than in our previous example.
We then fit both the SparseCP model and the SNetOC model to this, and
compare the results. We do this in two ways, firstly the fit of the posterior
predictive degree distribution to the empirical degree distribution, and secondly
the classification accuracy of the estimated core.

In Figure 5(a) we see the posterior predictive degree distribution for the
SparseCP model, with the corresponding plot for the SNetOC model given in
5(b). To compare these distributions, we can measure the distance between the
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Fig 6. Reweighted Kolmogorov Smirnov distance for assessing the degree distribution for the
network generated from the SparseCP model with parameters K = 2, α = 200, σ = 0.2, τ =
1, b = 1, a = 0.2.

posterior predictive degree distributions and the empirical degree distribution.
It is well known that the Kolmogorov Smirnov (KS) statistic has poor sensitivity
to deviations from the empirical distribution that occur in the tails [30]. So, we
give here the reweighted KS statistic suggested by [8], which weights the tails
more strongly:

D = max
x≥xmin

|S(x)− P (x)|√
P (x)(1− P (x))

(4.2)

where S(x) is the CDF of observed degrees, P (x) is the CDF of degrees of graphs
sampled from the posterior predictive distribution and xmin is the minimum
value among the observed and sampled degrees.

We see from the left hand side of Figure 6 that our model gives a better fit in
terms of the weighted KS distance. Moreover, the SparseCP model (correctly)
estimates σ to be positive, whilst the SNetOC model estimates σ to be negative.
This shows one important benefit of our model, namely that it can model sparse
networks with a large core well (the true core proportion in this case is around
0.3). Conversely, we see here an example of where the SNetOC model fails
to differentiate between a dense network and a sparse network with a dense
subgraph. It is important to note that in some situations, the SNetOC model
correctly models the empirical degree distribution. One such example is the
graph that we use to test the convergence of our MCMC sampler, in which the
core is significantly smaller.

We can also compare the two models in terms of the core they identify. In the
SparseCP model the binary variable βi1 = 1wi1>0 indicates if the node i is in
the core or not. We can then report the posterior distribution of this variable,
or the point estimate β̂i1 = argmaxk=0,1 Pr(βi1 = k | data).

For the SNetOC model it is more difficult to perform this classification. A
naive way to proceed is to assign each node to the community with the highest
weight, and then identify the core as the subgraph of nodes with the highest
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density. However, in the SNetOC model nodes can belong to multiple commu-
nities, and a node can belong to the core, and still have a higher weight for
another community. This method of classification gives poor results.

To provide a fairer comparison, we can also perform classification with the
SNetOC model by assigning node i to the core if wic > T , where c denotes the
index of the hub community, and T > 0 is some threshold. The problem here
is that there is no objective way to choose T , without resorting to some cross-
validation. In this simulated example, we can choose the threshold so that the
number of nodes that are placed into the hub community by this classification
method is equal to the number that are in the true core. This corresponds to a
threshold of T = 0.014 in this case. If we do this, the classification accuracies
of the SparseCP and SNetOC methods are very similar, and very close to 1.
However, this method is not applicable for real data where we do not know the
size of the true core in advance.

Even in this “best-case” scenario for the SNetOC model where we classify
based on thresholding the wic optimally in some sense, we can still see the ad-
vantage of the SparseCP model by looking at the fit of the posterior predictive
to the empirical degree distribution of the subgraph formed by the nodes in the
(true) core. In Figures 5(c) and 5(d) we see that the SparseCP model is perform-
ing significantly better than the SNetOC model in this regard. This is confirmed
by the weighted KS distances that we see in the right hand side of Figure 6.

When comparing the SparseCP and SNetOC model on real data sets, we
will see many of the same features that we have noted here. In particular, the
problems that the SNetOC model has with modelling a sparse graph with a
relatively large dense core, and the problems with choosing a thresholding level
to perform classification.

4.3. Real world networks

We now consider the setting of real data. There are many classical examples
of networks with core-periphery structure. Our model is designed to detect this
structure in sparse networks with a power-law degree distribution. We apply
our method on two real world networks, one that has a power-law distribution
and one that does not. The proposed method performs well in the power-law
setting but also produces reasonable and interpretable results in the non-power-
law case. The power-law network we consider is the USairport network of
airports with at least one connection to a US airport in 20102. This network
was previously considered by [41], and we compare the two methods to see the
benefits of using a core-periphery model in this case. The other network we
consider is the Trade network of historical international trade3 for which the
core-periphery structure has been previously studied [12, 14]. In Table 1, we
give the size of these networks, the value of K, the estimated relative size of the
core and the estimated value of σ.

2http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=292
3https://web.stanford.edu/~jacksonm/Data.html

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=292
https://web.stanford.edu/~jacksonm/Data.html


1830 C. Naik et al.

For the USairport data set we set K = 4. This follows from the work of [41],
who found that there were four interpretable communities in the network. Three
of these corresponded to geographical regions, with the final one corresponding
to Hub airports. We therefore take the same choice of K to see if our model can
identify the same interpretable structure, and to compare the two methods. For
the Trade network we take K = 2, as in this case we do not concern ourselves
with community structure, but simply look to see if it is possible to identify
core-periphery structure even when the network does note have a power-law
degree distribution. In each case, we assume vague Γ(0.01, 0.01) priors on the
unknown parameters α, 1− σ, τ , ak and bk.

Table 1

Real World Networks and Summary Statistics.

Name Nb Nodes Nb Edges K Est Core Prop σ̂
USairport 1574 17215 4 0.13 0.22

Trade 158 1897 2 0.39 -0.77

4.3.1. US Airport network

The first real world network we consider is the USairport network of airports
with at least one connection to a US airport in 2010. Airport networks such as
this have been seen to have a core-periphery structure [21, 12]. Furthermore,
one of the communities identified by [41] are the Hub airports, highly connected
airports with no preferred location. [39] suggest that this network could more ac-
curately be modelled by a core-periphery model. When comparing the results of
our model to that of [41], we find that this is indeed the case. In order to compare
both models, we take K = 4 when fitting the SparseCP model to the network,
to retain the three other communities identified using the SNetOC model.

We run 3 parallel MCMC chains with an initialization run of 10 000 iterations
followed by 10 000 000 iterations. We then discard the first 5 000 000 samples
as burn in and thin the remaining 5 000 000 to give a sample size of 500. Trace
plots and convergence diagnostics are reported in Section D.2.1 of Appendix D.
Note that despite the large number of iterations, it seems that the sampler has
not fully converged yet. Nonetheless, we observed that increasing the number of
iterations does not the change significantly the values of the core-periphery pa-
rameters of interest and the overall interpretation of the network. In Figure 7(a)
is given the adjacency matrix formed by ordering the nodes firstly by core and
periphery, and then by their highest community sociability. From this, we can
see the core-periphery and community structure identified by our model. The
three communities have the same geographical interpretation as in [41], cor-
responding to East, West and Alaska. In Figure 8, we report the weights of a
selection of nodes in the core and in the periphery. Periphery airports with large
degree are generally large regional airports, with many connections within the
East or West communities. The final community corresponds to Alaskan air-
ports, and we can see from Figure 7(a) that airports in this community generally
do not have many connections to the core.
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Fig 7. Adjacency matrices for the (a) US Airport network and (b) World Trade network. In
each case the nodes are ordered into core and periphery, as estimated using the SparseCP
model. For the US Airport network, the nodes are further ordered by highest community
weight.

If we investigate the classification into core and periphery in more detail, we
see several interesting features. Firstly, when looking at the airports placed in
the core, we can compare these to the list of hub airports for various airline
companies4. We see that 38 out of 47 of these airline hub airports are placed
in the core, with some interesting exceptions. Three of the airline hub airports
not placed in the core are only hubs for the parcel delivery services Fedex and
UPS, whilst one is only a hub for a small charter airline. The most interesting
exceptions are Chicago Midway and Dallas Love Field airports, both of which
are focus cities for major airline company Southwest Airlines but are not placed
in the core. A possible explanation for this is that Southwest Airlines does not
operate using a traditional spoke-hub model, instead utilising a point-to-point
system. In this system, transport routes are directly between locations, rather
than via central hubs. This means that we do not see the presence of core air-
ports with large numbers of connections to airports in many different locations.
Connections in this network can be better explained by geographical proximity,
and the focus cities are not necessarily core nodes in the sense of our model.

Secondly, we see that the SparseCP model does not simply classify by degree,
the airports that we see in Figure 8(b) have degrees higher than many core
nodes. As described in the simulated data study, this comes from the form of
the probability of connection between two nodes, which can be high even if
neither is in core.

If we look at the core nodes with low degrees, we can see a clear pattern
here. Most of these airports are major international hubs such as in London
Heathrow, Frankfurt International, Zurich and Tokyo Narita. Another airport
that appears here is Honolulu International. In each case, it is not surprising
that these airports are placed in the core, as most of the connections are long-
distance flights to the major US hub airports.

Investigating the overestimation of high degree nodes more carefully, we see
that for our model and that of [41], the posterior distribution on b4, the parame-

4https://en.wikipedia.org/wiki/List_of_hub_airports

https://en.wikipedia.org/wiki/List_of_hub_airports
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Fig 8. Values of the weights for (a) a selection of core nodes and (b) the periphery nodes with
the highest degrees. The coloured bars indicate the respective weights for the core and each
community. The numbers give the degrees of the nodes.

ter entering the gamma distribution F corresponding to the Alaskan community
(the 3rd community identified by our model) concentrates on values very close
to 0 (see Figure 33 in Appendix D). This increases the posterior variance of the
sociabilities wi4, and leads to some graphs with very high degree nodes being
generated when simulating from the posterior predictive distribution. A possible
reason for this is that the Alaskan airports exhibit a different type of behaviour,
not well explained by our model. Alaskan airports are densely connected to each
other but not to the other communities, or the core nodes. Conversely, the East
and West communities contain large numbers of core nodes, and also have more
connections between communities.

In order to investigate this possible source of model misspecification further,
we repeat our analysis of this network, taking out all of the Alaskan airports,
and any airport which only has connections to Alaskan airports. In Appendix
E we present the results. We see that the overestimation problem is no longer
present, but overall the fit to the degree distribution is no better than for the
full model. Furthermore, if we examine the nodes that are placed into the core
and periphery, there is not very much difference.

Comparison with the SNetOC model of [41]. We now compare the fit of
our model and the SNetOC model to the USairport network. In Figures 9(a)
and 9(b), we report the 95% posterior predictive intervals for the degree dis-
tribution for both models. The SparseCP provides a slightly better fit to the
degree distribution, in particular for large degree nodes.

In Figure 10(a) we report some statistics to measure the distances between
the posterior predictive degree distributions from each model and the empirical
degree distribution. Firstly, we see that our model is performing significantly
better in terms of the reweighted KS distance defined in Equation (4.2). To
identify in which tail the deviation between the two models occurs, we also
report the Rényi statistics

L2 = sup
x≥xmin

P (x)

S(x)
, U2 = sup

x≤xmax

1− P (x)

1− S(x)
(4.3)



Sparse networks with core-periphery structure 1833

Fig 9. Posterior predictive degree distributions for the US Airport network, using (a) the
SparseCP model and (b) the SNetOC model. When the lower posterior predictive interval
bound is 0, we plot only the upper interval bound.

Fig 10. Reweighted Kolmogorov Smirnov distance and Rényi statistics for assessing the degree
distribution for the (a) US Airport network and (b) World Trade Network.

where S(x) is the cdf of observed degrees, P (x) is the posterior predictive cdf
of the degrees and xmin and xmax are respectively the minimum and maximum
observed degrees. Such statistics have been used as an alternative to the stan-
dard KS statistics, to measure departure in the tail [30]. L2 is more sensitive
to a departure for the low degrees, and U2 for the high degrees. Both models
perform similarly well for low degrees, but the fit of the SparseCP model is
better for the large degree nodes.

We now compare the classification accuracy of the two models. We use as
ground truth for the core nodes the 47 US airports designated as hubs by airlines.

For the SparseCP model, for x ∈ [0, 1] let β̂i1(x) = 1 if Pr(wi1 > 0 | data) ≥ x

and 0 otherwise. For the SNetOC model, let β̂i1(x) = 1 if Pr(wi1 > T | data) ≥ x
and 0 otherwise, for some threshold T > 0. For comparison with SNetOC, we
also compute the same estimate under our model for various thresholds T (called
SparseCP variable threshold). For each method and for a range of thresholds
T , we plot the true positive rate vs the false positive rate for x ∈ [0, 1], and
calculate the Area Under the Curve (AUC), as a measure on the classification
accuracy. We also compare against the naive classification method for the SNe-
tOC model mentioned in the previous section, where a node is assigned to the
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Fig 11. Classification accuracy of the airline hubs in the US Airport network for the SparseCP
and SNetOC models with varying threshold.

hub community if its hub community weight is the highest amongst all of its
community weights. We call this method SNetOC Naive.

Figure 11 compares the classification accuracy from the SparseCP model (in
green) to that obtained from the SNetOC model with different thresholds (in
red). We see that with the right choice of threshold, the SNetOC model can
slightly outperform ours, but for other thresholds it performs far worse. We
also plot (in blue) the AUC obtained from our model if we do not threshold
ŵi1 at 0, but instead at higher values. This can be thought of as performing
classification using a different loss function, which could be useful in a setting
where we are more concerned with misclassifying periphery nodes as core than
the reverse. For any value of T , the proposed model provides a higher accuracy
than the SNetOC model. Moreover, in practice, we do not have an objective
way to choose a particular threshold (without resorting to cross-validation).
The naive SNetOC classification does not require a choice of threshold, however
we see here that it provides a far lower classification accuracy. This suggests
that our model provides a better way to identify core-periphery structure.

Furthermore, if we plot the degree distribution of the subgraph formed by
the US airport hubs, we see that it is very far from power-law. In Figure 12 we
see that the SparseCP model is capturing this degree distribution better than
the SNetOC model.

4.3.2. World trade network

The next network we consider is the dyadic trade network between countries5.
The original data details the flow of trade between pairs of countries from 1870 to
2009. In our case, we consider the single simple, undirected network found by ag-
gregating the data over all the years. However, as shown by [12], when the trade
data set is considered as an unweighted network, with a link between countries
if there was any flow of trade between them, then the core-periphery structure

5https://web.stanford.edu/~jacksonm/Data.html

https://web.stanford.edu/~jacksonm/Data.html
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Fig 12. Posterior predictive degree distributions for the nodes of the US Airport network in
the “true” core subgraph, as defined by the airline hubs. When the lower posterior predictive
interval bound is 0, we plot only the upper interval bound.

is quite weak. There is a strong core-periphery structure if the weighted (by vol-
ume of trade) network is considered. As our method currently cannot deal with
weighted networks, we instead use a cutoff method, forming a binary network
by only considering trade links over a certain volume. The cutoff was chosen to
give a network with a heterogeneous degree distribution which was close to a
power-law. With a very low cutoff, the network is quite dense, with most coun-
tries connected to each other. With a high cutoff, only a small number of large
countries have any connections. However, we find that the degree distribution
is not power-law, with σ estimated to be negative. We found that this was the
case even with different values of the cutoff.

In order to perform posterior inference, we run 3 MCMC chains with an ini-
tialization run of 10 000 steps and full chain lengths of 200 000. Trace plots and
convergence diagnostics are reported in Section D.2.2 of Appendix D, suggesting
the convergence of the MCMC sampler.

As we see in Table 1, σ is estimated to be negative in this case. This means
that this network does not fit into our definition of a sparse graph as defined
in Definition 2.2. Nevertheless, in Figure 13 we plot the posterior predictive
distribution and we see that we can estimate the degree distribution fairly well,
albeit with a large posterior predictive interval. Furthermore, we will see that we
can obtain an interpretable classification of countries into core and periphery.
Therefore, our model is still producing useful results despite the network not
technically fitting into our framework.

As with the US Airport network, we calculate the reweighted KS distances
in Figure 10(b). We again compare against the model of [41], with two com-
munities. Here we see that both models perform similarly well. However, the
advantage of our model is that it gives a discrete classification between core and
periphery. we see this structure clearly from the adjacency matrix in Figure 7(b).

In Figure 14 we see the world map, coloured by the value of mean sociability
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Fig 13. Posterior predictive degree distribution for the World Trade Network, using the Spar-
seCP model. When the lower posterior predictive interval bound is 0, we plot only the upper
interval bound.

parameter in Figure 14(a), and by the value of the core sociability parameter
in Figure 14(b). We see that the core consists largely of the large, developed
countries that we expect, as well as some smaller European countries. This fits
with other results that have been obtained in the literature [12]. Comparing
the two plots, some of the more interesting results are countries that have a
relatively high core sociability compared to their mean sociability. These include
countries such as Russia, and indicate countries that trade predominantly with
other countries in the core. Conversely, we see other countries such as the US
and China which have relatively lower core sociabilities. These are countries
which trade more internationally, with countries in the core and periphery.

4.4. Comparisons

Finally, we want to compare our method against other standard methods of core-
periphery detection. In order to do this we generate simulated core-periphery
networks, and run each algorithm on them. We can then calculate the Area
Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve
[18] in order to determine the accuracy of the classification of each algorithm.
In this case, we simply compare the binary core-periphery classification of each
method, but we can still use the AUC as a measure of the accuracy of this
binary classification. The methods that we compare against are: the algorithm
of [4], the MINRES algorithm of [5] and [28], the Stochastic Block-Model (SBM)
of [44], the three different methods of [10], the aggregate core score method of
[39] and the method of [11]. In each case, we implement the methods using the
software found in the cpalgorithm Python package6. While the method of [39]
gives continuous coreness parameters, we convert these to binary classifications
in the same way that they do in their simulation study.

As we have previously noted, our focus here is on model-based approaches.
The only other model-based approach amongst these is that of [44]. Our ap-

6https://core-periphery-detection-in-networks.readthedocs.io/en/latest/

https://core-periphery-detection-in-networks.readthedocs.io/en/latest/
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Fig 14. Core Periphery Structure of the World Trade network, as estimated by the SparseCP
model. (a) gives the mean sociabilities 1

2
(wi1 + wi2) for each country, (b) gives the core

sociabilities wi1.

proach already provides several advantages over the rest of the models con-
sidered, such as the ability to model the degree distribution of the networks
being studied. However, here we focus on the classification accuracy and how it
compares to some classic and more contemporary alternatives. Specifically, we
are interested in comparing the accuracy in the setting for which our model is
designed: the modelling of sparse graphs with a core-periphery structure and
power-law degree distribution.

4.4.1. Comparison on in-model simulated data

The first comparison we do is using the SparseCP model to generate power-law,
core-periphery networks. Of course, we expect our model to perform very well
here, and indeed we see this as we compare the AUC for each model. We vary
the strength of the core-periphery structure by varying b in our model, which
varies the relative sociabilities of the nodes in the core and periphery. We run 20
simulations for each value of b, and adjusting the value of α to keep the number
of nodes roughly equal in each case. We then measure the average classification
accuracy in each case. In Figure 15 we present the results for varying val of b.
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Fig 15. AUC of different classification methods for the graph generated from the SparseCP
model with parameters K = 2, α = 200, σ = 0.2, τ = 1, a = 0.2, and differing values of b.

Fig 16. Posterior predictive degree distribution using the SparseCP model for the graph gener-
ated from the SparseCP model with parameters K = 2, α = 200, σ = 0.2, τ = 1, b = 5, a = 0.2.

As b increases, the average relative size of the core increases from 0.12 to 0.57,
whilst the average number of nodes stays roughly constant. We can see that
classifying core and periphery generally becomes easier to do as b is increased.
However, we see that our method achieves the highest accuracy in each case.

The case b = 5 is an extreme case, with the core comprising almost 60% of
the network, and in this case some of the other methods perform badly, with
some methods placing all the nodes in the core in some of the simulations.
Recalling our definition of core-periphery networks, we see from Figure 16 that
the degree distribution is very far from a power-law, due to the large number of
core nodes. Nevertheless, it is encouraging to see that in this case we are still
able to accurately recover the degree distribution.

There are a few reasons why we might expect to see this difference in clas-
sification performance. The only other model-based approach, based on the
SBM [44], cannot account for power-law degree distributions and tends to clas-
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sify nodes according to their degree. Other non-model-based approaches have
similar issues.

In an attempt to allow a fairer comparison, we also test our method against
the alternatives mentioned above on another simulated network, again with a
power-law degree distribution, but in this case not generated using our model.

4.4.2. Comparison on out-of-model simulated data

The second comparison we do is using the simulated core-periphery networks of
[21]. Our algorithm is based on theirs, but differs slightly to allow us to tune how
well the core and periphery can be separated by degree. We construct networks
as follows:

1. Generate degrees m1 < m2 < . . . < mN from a power-law distribution.
These are the desired degrees and can be thought of as stubs, as in the
configuration model [33].

2. Place node i in the core with probability qi, where qi is given by

qi =
1

1 + exp (−2κ(mi −mmin))

where κ and mmin are parameters that we use to tune the model. Call the
set of core nodes CH and the set of periphery nodes PH.

3. Go through each of the nodes i ∈ CH in increasing order of degree (node
i has degree mi) and for each node i attach its stubs to those of nodes j
with mj ≥ mi as long as the degree of j is less than mj .

4. Attach the remaining stubs randomly and make them into edges if they
do not form loops or multiple edges.

The form of qi is a standard approximation to a Heaviside step function. When
κ is large, the function approximates a step function with a jump at mmin. In
this case, the core is comprised of only the nodes with degrees mi ≥ mmin.
However, for smaller κ we have low degree nodes entering the core and high
degree nodes entering the periphery. In Figure 17 we compare our method to
the alternatives for varying κ As in our previous simulation study, we calculate
the area under the ROC curve, averaged over 20 realisations of networks for
each value of κ.

We see that when κ is large, and the core and periphery are essentially divided
by degree, our method performs very well, but so do those of [44] and [39]. As we
decrease κ, the other methods fail to perform as well, while ours retains a high
accuracy. Therefore, we see that our method also outperforms the alternatives
when applied to simulated networks that are not generated using our model.
Specifically, we do better especially when the core and periphery nodes are
not split simply by degree. We have seen in the USairport example that the
form of the probability of connection between nodes is what allows nodes in
the periphery to have high degree, and vice-versa. This explains why our model
performs well here.
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Fig 17. Average classification accuracy (as measured by the AUC) for a range of standard
methods for core-periphery detection, along with classification accuracy using the SparseCP
model. The accuracies are calculated for different values of the parameter κ, which controls
the extent to which core and periphery can be divided by degree.

We must also note here that some of the methods we compare against here are
very fast, taking only seconds to produce a classification into core and periphery.
However, our sampler generally takes ∼ 5 minutes to run on a standard desktop
computer. Furthermore, as discussed earlier in our case the aim is not just to
perform classification, but to estimate the parameters of a generative model.

5. Conclusions

In this work, we provide a precise definition of a sparse network with a core-
periphery structure, based on the sparsity properties of the subgraphs of core
and periphery nodes. Building on earlier work from [6, 41], we then present a
class of sparse graphs with such properties. We obtain theoretical results on the
sparsity properties of our model. Specifically, we see that the SparseCP model
generates a core region which is dense, and a periphery region which is sparse.
Theoretical results on the relative size of the core are also obtained.

We provide methods to simulate from this class of graphs, and to perform
posterior inference with this class of models. We demonstrate that our approach
can detect interpretable core-periphery structure in two real-world airport and
trade networks, while providing a good fit to global structural properties of the
networks. When restricting ourselves to simply looking at core-periphery classi-
fication accuracy, we see that it compares favourably against various alternatives
when tested in the power-law setting.

A property of the SparseCP model is that the relative size of the core tends to
zero as the size of the graph increases. In some applications, we may instead want
to have a network which is overall dense, but with a sparse periphery region,
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where the relative size of the core is bounded above zero. Furthermore, whilst
our model can currently accommodate the existence of multiple communities as
well as a core-periphery structure, it currently cannot be used to model networks
with multiple core-periphery pairs. Work has been done in the literature on the
detection of multiple such pairs [25] and it could be valuable to extend our
model to this setting.
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A.1. Asymptotic notation

We first describe some further asymptotic notation used in the proof. As before
we follow the notation of [22], where if X = (Xα)α≥0 and Y = (Yα)α≥0 are two
stochastic processes defined on the same probability space with Xα, Yα → ∞
a.s. as α → ∞, we have

Xα = O(Yα) a.s. ⇐⇒ lim sup
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Xα = o(Yα) a.s. ⇐⇒ lim sup
α→∞

Xα

Yα
= 0 a.s.

Xα = Ω(Yα) a.s. ⇐⇒ Yα = O(Xα) a.s.

Xα = ω(Yα) a.s. ⇐⇒ Yα = o(Xα) a.s.

Xα = Θ(Yα) a.s. ⇐⇒ Xα 
 Yα a.s. ⇐⇒ Xα = O(Yα) and Yα = O(Xα) a.s.

A.2. Proof of theorems 3.1, 3.2 and corollary 3.2.1

Let

ρc(dw1, dw2, . . . , dwK) = ρ(dw1, dw2, . . . , dwK)1w1>0

ρp(dw1, dw2, . . . , dwK) = ρ(dw1, dw2, . . . , dwK)1w1=0

A straightforward adaptation of Theorem 1 in [6] and Proposition 1 in [31]
yields

N (e)
α ∼ α2

2

∫ (
1−e−2

∑K
k=1 wkw

′
k

)
ρ(dw1, dw2, . . . , dwK)ρ(dw′

1, dw
′
2, . . . , dw

′
K)

N
(e)
α,c−c ∼

α2

2

∫ (
1−e−2

∑K
k=1 wkw

′
k

)
ρc(dw1, dw2, . . . , dwK)ρc(dw

′
1, dw

′
2, . . . , dw

′
K)

N
(e)
α,p−p ∼ α2

2

∫ (
1−e−2

∑K
k=1 wkw

′
k

)
ρp(dw1, dw2, . . . , dwK)ρp(dw

′
1, dw

′
2, . . . , dw

′
K)

N
(e)
α,c−p ∼ α2

∫ (
1−e−2

∑K
k=1 wkw

′
k

)
ρc(dw1, dw2, . . . , dwK)ρp(dw

′
1, dw

′
2, . . . , dw

′
K)

almost surely as α tends to infinity. It follows that

N (e)
α 
 N

(e)
α,c−c 
 N

(e)
α,p−p 
 N

(e)
α,c−p 
 α2 almost surely as α → ∞.

If we define Qα,c =
∑

i 1wi1>01θi≤α then Qα,c is a homogeneous Poisson
process on R+ with intensity

∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK) < ∞ (by assumption

(2.9)). By the the law of large numbers, Qα,c ∼ α
∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK).

As √
N

(e)
α,c−c ≤ Nα,c ≤ Qα,c

it follows that, almost surely as α → ∞,

Nα,c 
 α.

Similarly, if
∫
{0}×(0,∞)K

ρ(dw1, dw2, . . . , dwK) < ∞, then Nα,p 
 α and there-

fore Nα 
 α. Otherwise, define

Ñα,p =
∑
i

1wi1=01θi≤α1
∑

j 1wi1=0zij1θj≤α>0

as the number of periphery nodes with at least one connection to a periphery
node. Note that

Nα,p ≥ Ñα,p.
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Two nodes i and j in the periphery connect with probability{
1− e−2

∑K
k=2 wikwjk i �= j

1− e−
∑K

k=2 w2
ik i = j

(A.1)

where (wi2, . . . , wiK)i≥1,wi1=0 are the points of a Poisson point process with
mean ρp(dw2, . . . , dwK) =

∫
w1∈[0,∞)

ρp(dw1, dw2, . . . , dwK). This is therefore

the same model as that of [41]. We therefore have, using Proposition 4 in [41]

Ñα,p = ω(α) if

∫
ρp(dw2, . . . , dwK) = ∞ (A.2)

and therefore Nα,p = ω(α) and Nα = ω(α). Noting that
∫
ρp(dw2, . . . , dwK) =∫

{0}×(0,∞)K−1 ρ(dw1, dw2, . . . , dwK) finishes the proof of Theorem (3.1).

We now consider the particular case of the Lévy measure (2.11). We have

ρp(dw2, . . . , dwK) =

∫ ∞

0

e−w0w
−(K−1)
0 F

(
dw2

w0
, . . . ,

dwK

w0

)
ρ0(dw0). (A.3)

where F is a product of independent gamma distributions, and ρ0 is the jump
part of a GGP with parameters σ and τ . We recognise this as the particular
compound CRM model of [41], except that we now have a base measure

ρ0,p(dw0) = e−w0ρ0(dw0)

Then
∫
ρ0(dw0) = ∞ =⇒

∫
ρ0,p(dw0) = ∞ for our particular choice of ρ0.

Hence, the results of Proposition 5 of [41] tell us that

Ñα,p = Ω(α1+σ)

Since Nα ≥ Nα,p ≥ Ñα,p we also have that

Nα,p = Ω(α1+σ), Nα = Ω(α1+σ)

Returning to the core nodes, we know that Nα,c 
 α if∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK) < ∞.

But
∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK) =
∫
ρc(dw2, . . . , dwK), where

ρc(dw2, . . . , dwK) =

∫
w1∈[0,∞)

ρc(dw1, dw2, . . . , dwK).

For the particular case of the Lévy measure (2.11), we have

ρc(dw2, . . . , dwK) =

∫ ∞

0

(
1− e−w0

)
w

−(K−1)
0 F

(
dw2

w0
, . . . ,

dwK

w0

)
ρ0(dw0).

(A.4)
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As before, this is the same as the particular compound CRM model of [41],
except that we now have a base measure

ρ0,c(dw0) =
(
1− e−w0

)
ρ0(dw0)

In this case
∫
ρ0,c(dw0) is the Laplace exponent ψ(1) of the base Lévy mea-

sure ρ0, which is finite. Hence, the results of Proposition 5 of [41] tell us that∫
(0,∞)K

ρ(dw1, dw2, . . . , dwK) < ∞ as desired, and thus Nα,c 
 α. This com-

pletes the proof of Theorem 3.2.
In the particular case K = 2, we can give a more direct proof of the asymp-

totics for the periphery nodes and overall graph. We present this here for ease
of understanding. In this case we have

ρc(dw1, dw2) = ρ(dw1, dw2)1w1>0

ρp(dw1, dw2) = ρ(dw1, dw2)1w1=0.

Using a slight abuse of notation, let ρp(w2) and ρ0(w0) denote the intensity
functions of the measures ρp(dw2) and ρ0(dw0). Let f denote the pdf of a gamma
random variable with parameters a and b. We have

ρp(w2) =

∫ ∞

0

e−w0w−1
0 f(w2/w0)ρ0(w0)dw0. (A.5)

As e−w0ρ0(w0) ∼ w−1−σ
0 Γ(1 − σ)−1 as w0 tends to 0 when σ ∈ (0, 1) we have,

using [1, Corollary 6] (see also [3, Theorem 4.1.6 page 201]),

ρp(w2) ∼ w−1−σ
2 Γ(1− σ)−1

E[βσ
2 ]

where β2 has cdf F . Finally, using [3, Proposition 1.5.8. p. 26], we obtain∫ ∞

x

ρp(w2)dw2 ∼ x−σσ−1Γ(1− σ)−1
E[βσ

2 ]

and it follows from [6, Theorem 4] that

Ñα,p = Ω(α1+σ)

Since Nα ≥ Nα,p ≥ Ñα,p we also have that

Nα,p = Ω(α1+σ), Nα = Ω(α1+σ)

which gives the desired results for the periphery nodes and the overall graph.
The corresponding results for the core nodes, which tell us that Nα,c 
 α, can
be found by taking K = 2 in the general proof. This then completes the proof
of Theorem 3.2 in the particular case K = 2.

The results of Corollary 3.2.1, both follow directly from Nα,c 
 α and the
fact that Nα = Ω

(
α1+σ

)
for the overall graph.
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Appendix B: More simulation results

We show here empirical results on the effects that changing various parameters
of the model have on the degree distributions, sparsity properties and core pro-
portion. We restrict ourselves to the K = 2 case here, for ease of visualisation.

B.1. Degree distributions

We first look at the degree distributions for the overall graph, and for the core
and periphery nodes separately. The first thing we notice is that, as we expect,
the core and periphery nodes have very different degree distributions. In Figure
18 we see the results for varying σ and τ . Here we see that increasing σ leads
to lower degree nodes in the overall graph, as well as both core and periphery
regions. We expect this, since we know that a larger value of σ means that the
graph is more sparse. The distribution begins to look closer to a pure power-
law for large σ. We see further that increasing τ has little effect on the degree
distribution in the core (for τ = 5 the core size is very small, leading to less
interpretable results). We also see fewer nodes with a high degree, and again
behaviour more closely resembling a power-law.

Figure 19 shows the results for varying a and b. When increasing a we see
that the shape of the degree distribution for the core does not change, although
the number of nodes in the core increases. Overall and in the periphery we see
little difference in the degree distribution apart from nodes with high degree.
For larger values of a there are more of these. The degree distributions for b
are similar, except that increasing b decreases the number of nodes with a high
degree.

B.2. Sparsity

We have seen how the sparsity properties in the different regions are controlled
by σ. From Figures 20 and 21 we see that, as expected, changing the parameters
a and b does not affect this, since the gradients of the lines in each case are the
same. However, we do see that for fixed sized graphs, increasing a increases the
density in the overall graph, and in the different regions. Conversely, increasing
b decreases the density in the core-periphery and periphery regions. The den-
sity in the core region is also decreased, but this effect appears to be far less
significant.

B.3. Core proportion

We are finally interested in how the proportion of nodes in the core is affected
by changing a and b. From Figure 22 we see that, as expected, the asymptotic
rates are not affected by changing these hyperparameters. However, for fixed
size graphs, increasing a decreases the relative size of the core region, whilst the
opposite is true for b.
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Fig 18. Degree distributions of (left) all, (middle) core and (right) periphery nodes for graphs
generated from the SparseCP model with varying values of (top row) σ and (bottom row) τ .

Fig 19. Degree distributions of (left) all, (middle) core and (right) periphery nodes for graphs
generated from the SparseCP model with varying values of (top row) a and (bottom row) b.

Appendix C: MCMC algorithm details

We give here the details of our MCMC algorithm, as detailed in Algorithm 1,
in particular how it differs from the Algorithm of [41].
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Fig 20. Relationship between nodes and edges for the (a) overall graph, (b) core, (c) core-
periphery region and (d) periphery of the graph generated from the SparseCP model with
varying a.

Fig 21. Relationship between nodes and edges for the (a) overall graph, (b) core, (c) core-
periphery region and (d) periphery of the graph generated from the SparseCP model with
varying b.
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Fig 22. Relative core size for graphs generated from the SparseCP model with (a) varying a
and (b) varying b.

As in [41], we assume that we have observed a set of connections (zij)1≤i,j,≤Nα

where Nα is the number of nodes with at least one connection. We want to infer
the parameters (wi1, . . . , wiK)i=1,...,Nα . We also want to estimate the sums of
the parameters for the nodes with no connection (w∗1, . . . , w∗K), the hyperpa-
rameters φ of the mean intensity ρ and the parameter α which is also assumed
to be unknown. Thus the aim is to sample from the posterior

p((w1k, . . . , wNαk, w∗k)k=1,...,K , φ, α | (zij)1≤i,j,≤Nα) (C.1)

As in [41], we introduce the latent count variables ñijk using the data augmen-
tation scheme given in Section C.3. Then we can define an algorithm which uses
Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) updates with
a Gibbs sampler to perform posterior inference. At each iteration of the Gibbs
sampler we update using Algorithm 1.

Algorithm 1 MCMC sampler for posterior inference.
At each iteration:

1: Update (wi0, βi1, . . . , βiK)i=1,...,Nα given the rest at the same time using HMC.
2: Update the hyperparameters (φ, α) and the total masses (w∗1, . . . , w∗K) given the rest

using MH.
3: Update the latent variables ñijk given the rest using (C.9).

C.1. Step 1

In the first step of Algorithm 1, we use the conditional distribution given the
latent variable counts as defined in [41]:

p((w10, . . . , wNα0), (β1k, . . . , βNαk, w∗k)k=1,...,K | (nijk)1≤i,j,≤Nα,k=1,...,K , φ, α)

∝
[
Nα∏
i=1

wmi
i0

][
Nα∏
i=1

K∏
k=1

βmik

ik

]
e−
∑K

k=1(w∗k+
∑Nα

i=1 wi0βik)
2
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×
[
Nα∏
i=1

f(βi2, . . . , βiK ;φ)

][
Nα∏
i=1

(1− e−wi0)βi1e−wi0(1−βi1)

]

×
[
Nα∏
i=1

ρ0(wi0;φ)

]
αNαg∗α(w∗1, . . . , w∗K ;φ) (C.2)

where mi =
∑K

k=1 mik, mik =
∑Nα

j=1 ñijk and f is the density function corre-
sponding to the distribution F (in this case the product of gamma densities).
The key difference in our case compared to [41], as we see in Section 2.2, is
that the βi1 are not identically distributed, and depend on wi0. This gives us
the separate term involving the βi1 in (C.2). However, we see that we can still
follow the same algorithm, with some modifications.

In general, if ρ can be evaluated pointwise, a MH update can be used for
this step, however this will scale poorly with the number of nodes. In the com-
pound CRM case, if f and ρ0 are differentiable then a HMC update can be
used. For the SNetOC model where f is the product of independent gamma
distributions and ρ0 is the mean measure of a generalized gamma process this
differentiability condition does hold. Thus, a HMC sampler is used to update
(wi0, βi1, . . . , βiK)i=1,...,Nα all at once, with the potential energy function U de-
fined as

U(w0, β) = log (p((log(wi0))i=1,...,Nα , (log(βik))i=1,...,Nα;k=1,...,K | rest)) (C.3)

U(w0, β) can be calculated from (C.2) using a simple change of variables. Fur-
thermore its derivatives have simple analytic forms, and so the HMC step can
be computed exactly.

In our case this strategy will not work, because β1 is a binary variable, and so
both the log transformation and the HMC update of the (βi1)i=1,...,Nα cannot
be used. We propose an alternative solution, using a Gibbs step to update β1

separately from the others as follows

1. Update (wi0, βi2, . . . , βiK)i=1,...,Nα from
p((wi0, βi2, . . . , βiK)i=1,...,Nα | (βi1)i=1,...,Nα , rest)

2. Update (βi1)i=1,...,Nα from
p((βi1)i=1,...,Nα | (wi0, βi2, . . . , βiK)i=1,...,Nα , rest)

This method also allows us to deal with the fact that the βi1 are not identically
distributed, and depend on the wi0. The two conditional distributions can be
found from (C.2) as follows. Ignoring the terms not involving (w0, β2, . . . , βK),
the first conditional is proportional to[

Nα∏
i=1

wmi
i0

][
Nα∏
i=1

K∏
k=2

βmik

ik

]
e−
∑K

k=1(w∗k+
∑Nα

i=1 wi0βik)
2

[
Nα∏
i=1

ρ0(wi0;φ)

]

×
[
Nα∏
i=1

K∏
k=2

βak−1
ik e−bkβik

bak

k

Γ(ak)

][
Nα∏
i=1

(1− e−wi0)βi1e−wi0(1−βi1)

] (C.4)
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We can simulate from this using HMC as before, except that now β1 is considered
to be constant, and we have to incorporate an extra term involving the wi0

coming from the distribution of βi0 | wi0. The details of the exact HMC sampler
are therefore very similar to the SNetOC model, and we omit them here.

The second conditional distribution is proportional to[
Nα∏
i=1

βmi1
i1

]
e−(w∗1+

∑Nα
i=1 wi0βi1)

2

[
Nα∏
i=1

(1− e−wi0)βi1e−wi0(1−βi1)

]
(C.5)

In order to simulate from this distribution we first approximate the conditional
by linearizing the exponent as follows

exp

⎧⎨⎩−
(
w∗1 +

Nα∑
i=1

wi0βi1

)2
⎫⎬⎭

≈ exp

{
−
(
w∗1 +

Nα∑
i=1

wi0β
∗
i1

)(
w∗ +

Nα∑
i=1

wi0βi1

)}

where β∗
i1 is the sampled value of βi1 from Step 1 of the previous iteration of

the overall Gibbs sampler in Algorithm 1. We thus treat β∗
i1 as a constant here.

Using this approximation, and defining

c1 =

(
w∗1 +

Nα∑
i=1

wi0β
∗
i1

)

we have that the conditional distribution of (βi1)i=1,...,Nα given the rest is pro-
portional to

exp

{
−c1

Nα∑
i=1

wi0βi1

}[
Nα∏
i=1

βmi1
i1 (1− e−wi0)βi1e−wi0(1−βi1)

]

=

Nα∏
i=1

βmi1
i1

[
e−c1wi0(1− e−wi0)

]βi1
e−wi0(1−βi1)

=

Nα∏
i=1

fi(βi1)

We see that we can simulate each of the βi1 individually. The distribution fi(βi1)
depends on mi1, and there are two cases.

1. If mi1 > 0 then, recalling that βi1 is a binary variable, Pr(βi1 = 0) =
fi(0) = 0 and so Pr(βi1 = 1) = 1. This means that if the sum of the latent
counts

∑
j ñij1 from the previous iteration is not equal to 0 then βi1 will be

updated to 1. We also know from (C.9) that if βi1 = 0 then ñij1 = 0 ∀j.
However, this does not lead to a problem of losing irreducibility of the
Markov chain, since the reverse is not true.
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2. If mi1 = 0 then we have that

fi(βi1) ∝
[
e−c1wi0(1− e−wi0)

]βi1
e−wi0(1−βi1)

which we recognize as a Bernoulli distribution with parameter

p1 =
1− e−wi0

1− e−wi0 + e−(1−c1)wi0

Thus we can update the βi1 given the rest by sampling

βi1 ∼ Ber(p1)

Of course, we are conditioning on mi1 when performing this step, so we will
always know what case we are in. Thus, the above can be used to sample β1

from the relevant conditional distribution.

C.2. Step 2

In this step we want to sample from p((w∗k)k=1,...,K , φ, α | rest), which we know
from (C.2) is proportional to

p(φ)p(α)e−
∑K

k=1(w∗k+
∑Nα

i=1 wik)
2

[
Nα∏
i=1

ρ(wi1, . . . , wiK ;φ)

]
× αNαg∗α(w∗1, . . . , w∗K ;φ)

This distribution is not of a standard form, and involves the pdf g∗α(w∗1, . . . , w∗K ;
φ) of the total masses. This pdf typically has no analytic expression, but its
Laplace transform is available. For the SNetOC model a MH step is therefore
used, with a proposal

q(w̃∗1:K , φ̃, α̃ | w∗1:K , φ, α) =q(w̃∗1:K | w∗1:K , φ̃, α̃)× q(φ̃ | φ)
× q(α̃ | w∗1:K , φ̃, α)

(C.6)

where

q(α̃ | w∗1:K , φ̃, α) = Γ(α̃; aα +Nα, bα + ψ(λ1, . . . , λK ; φ̃)) (C.7)

and q(w̃∗1:K | w∗1:K , φ̃, α̃) is an exponentially tilted version of g∗α. Here, λk =

w∗k + 2
∑Nα

i=1 wik, and ψ is the Laplace exponent. In the compound CRM case
ψ takes a simple form that only involved evaluating a one-dimensional integral.
The calculation of ψ in our case can be done similarly, the only difference being
that we need the moment generating function of a Bernoulli distribution for the
first component. The details are omitted here. Similarly, since the distribution
of β1 has no hyperparameter, the same q(φ̃ | φ) can be used in our case as the
compound CRM case of the SNetOC model, ignoring the k = 1 term.
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The other challenging part of the step is to simulate w∗1:K from the distribu-
tion q(w̃∗1:K | w∗1:K , φ̃, α̃). Again we can do this as in the compound CRM case
of [41], by setting (w∗1, . . . , w∗K) = Xε+Xε, withXε=

∑
i|wi0<ε wi0(βi1, . . . , βiK)

andXε =
∑

i|wi0>ε wi0(βi1, . . . , βiK). Then, a realization ofXε can be simulated
exactly from a Poisson process with mean measure

αe−w0

∑K
k=1(γk+λk)βkf(β1, . . . , βK)ρ0(w0)1w0>ε (C.8)

This is done using an adaptive thinning procedure as detailed in Appendix D
of [41]. We can use the same approach here, using the same adaptive bound by
noting that (1−e−w0) ≤ 1. Xε can be approximated as before using a truncated
Gaussian random vector. All that changes are the exact forms of the mean and
variance of the approximating random vector, and we omit the details here.

C.3. Step 3

This step can be done as in [41] by introducing the latent variables ñijk =
nijk + njik where

(ñij1, . . . , ñijK) |z, w ∼
{
δ(0) if zij = 0

tPoisson (2wi1wj1, . . . , 2wiKwjK) if zij = 1, i < j

(C.9)

(
ñii1

2
, . . . ,

ñiiK

2

)
|z, w ∼ tPoisson

(
w2

i1, . . . , w
2
iK

)
if zii = 1

By convention we set ñijk = ñjik for all i > j, and we have that mik =∑
j ñijk. The pmf of a tPoisson(λ1, . . . , λK) distribution is

tPoisson(x1, . . . , xK ;λ1, . . . , λK) =

∏K
k=1 Poisson(xk;λk)

1− exp(−
∑K

k=1 xkλk)
1{
∑K

k=1 xk>0}

which can be sampled from by sampling x =
∑K

k=1 xk from a univariate zero-

truncated Poisson distribution [37] with rate
∑K

k=1 λk, and then sampling

(x1, . . . , xK) | (λ1, . . . , λK), x ∼ Multinomial

(
x,

(
λ1∑
λk

, . . . ,
λK∑
λk

))
.

The only difference in our case is that λ1 may be 0, in which case we set x1 = 0.
In the update for β1, we see that if mi1 > 0 then βi1 is set identically to 1,

because there is no posterior mass at 0. In order to get better mixing, we can
instead update the ñijk via a Metropolis-Hastings step that proposes mi1 = 0
more often. We do this as follows

1. Choose a set I = {i1, . . . , iN}, i1 < . . . < iN , with N = |I| of indices for
which we will propose mi1 = 0 ∀i ∈ I.
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2. Calculate the set A of edges (i, j) such that ñij1 = 0 ∀(i, j) ∈ A ⇐⇒
mi1 = 0 ∀i ∈ I.

3. For (i, j) �∈ A, update (ñij1, . . . , ñijK) as normal, using the conditional
distribution given z, w.

4. For (i, j) ∈ A, propose an update for (ñij1, . . . , ñijK) from the mixture
distribution:

plat (1(ñij1 = 0)× tPoisson (2wi2wj2, . . . , 2wiKwjK))

+(1− plat) (tPoisson (2wi1wj1, . . . , 2wiKwjK))

for i �= j, and similarly for i = j. This means that with probability plat
we set ñij1 to 0 and simulate ñij2, . . . , ñijK from a truncated Poisson
distribution. With probability 1 − plat, ñij1, . . . , ñijK are simulated from
a truncated Poisson distribution as normal.

5. Accept the proposal using the standard Metropolis Hastings acceptance
rate given by

α = min

(
1,

P (ñ)

P (ñold)

Q(ñold)

Q(ñ)

)
where ñ = (ñ)1≤i,j≤Nα,k=1,...,K , P is the true distribution of the ñijk as
given in (C.9), Q is the proposal distribution detailed above and ñold is
the value of ñ from the previous iteration of the overall sampler.

In practice, we find that this method allows for faster mixing of the algorithm.

C.4. Parameter initialization

We start with the initialization method employed by [41], which performs a short
run with K = 1, using the parameter estimates obtained there as initial values
for the full run. When testing our model on simulated data sets with K = 2 (i.e.
with a core parameter w1 and overall sociability parameter w2) we find that
when the core-periphery structure is particularly weak our estimated values of
w1 are close to the true values of w2, and vice versa. Similarly, when taking
K > 2, we sometimes find that the estimated values of the core parameter are
instead close to the values of one of the community parameters.

We therefore introduce a new initialization procedure, in order to ensure
that our core parameter w1 is estimating the core-periphery structure. We first
perform a short initialization run using the SNetOC model. Having done this,
we use the community sociabilities from the SNetOC model in order to initialize
the weights wk, k = 2, . . . ,K in our model. Initializing in this way prevents the
problem of w1 approximating the sociabilities of one of the communities. As
shown in Section 4, the SNetOC model is not an ideal model for identifying
core-periphery structure for several reasons. However, we do see that one of the
identified community sociability parameters can sometimes approximate our
core parameter, and thus provide us with a way to initialize this parameter as
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well. In practice, we find that initializing the size of the core to be significantly
larger than we believe it to be leads to better mixing of the MCMC sampler.

C.5. Approximation of the log-posterior density

The posterior probability density function, up to a normalizing constant, takes
the form

p
(
(wi0, βi1, . . . , βiK)i=1,...,Nα

, φ, α | (zij)1≤i,j≤Nα

)
∝

⎡⎣Nα∏
i=1

Nα∏
j=1

(
1− e−

∑
k wi0βikwj0βjk

e−
∑

k wi0βikwj0βjk

)zij
⎤⎦ e−∑K

k=1(w∗k+
∑Nα

i=1 wi0βik)
2

×
[
Nα∏
i=1

K∏
k=2

βak−1
ik e−bkβik

bak

k

Γ(ak)

][
Nα∏
i=1

(1− e−wi0)βi1e−wi0(1−βi1)

]

×
[
Nα∏
i=1

ρ0(wi0;φ)

]
αNαp(φ, α)g∗α(w∗1, . . . , w∗K ;φ) (C.10)

where mik =
∑Nα

j=1 nijk + njik and g∗α(w∗1, . . . , w∗K ;φ) is the probability den-
sity function of the random vector (W1 ([0, α]) , . . . ,WK ([0, α])).

This is intractable due to the lack of an analytic expression for g∗α. We
can however approximate the log-posterior. Noting that w∗k = o(

∑Nα

i=1 wik) as
α → ∞, we have

(w∗k +

Nα∑
i=1

wik)
2 � (

Nα∑
i=1

wik)
2 + 2w∗k

Nα∑
i=1

wik.

Using this approximation, one can now integrate out w∗k and we then obtain
the approximation

p((w1k, . . . , wNαk)k=1,...,K , φ, α | (zij)1≤i,j≤Nα)

�∝

⎡⎣Nα∏
i=1

Nα∏
j=1

(
1− e−

∑
k wi0βikwj0βjk

e−
∑

k wi0βikwj0βjk

)zij
⎤⎦ e−∑K

k=1(
∑Nα

i=1 wi0βik)
2

×
[
Nα∏
i=1

K∏
k=2

βak−1
ik e−bkβik

bak

k

Γ(ak)

][
Nα∏
i=1

(1− e−wi0)βi1e−wi0(1−βi1)

]

×
[
Nα∏
i=1

ρ0(wi0;φ)

]
αNα exp

[
−αψ

(
2

Nα∑
i=1

wi1, . . . , 2

Nα∑
i=1

wiK ;φ

)]
p(φ, α)

(C.11)

where ψ(t1, . . . , tK) is the multivariate Laplace exponent, which can be evalu-
ated numerically. We will use the approximated log-posterior density in order to
evaluate the convergence of our MCMC sampler in the experiments we run. In
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particular, we can use it as a one-dimensional statistic from which to calculate
the Gelman-Rubin convergence diagnostic [16].

Appendix D: Additional experimental results

In this section, we provide a number of additional plots related to the experi-
ments in Section 4. They are organised as follows. In Section D.1.1 we present
the results from the MCMC sampler used to perform posterior inference for
the experiments in Section 4.2. The relevant plots comprise Figures 23-25. In
Section D.1.2 we detail an additional experiment performing posterior inference
on a simulated graph exhibiting both core-periphery and community structure.
The relevant plots comprise Figures 26-30. In Section D.1.3 we give the results
for additional experiments, in which posterior inference is performed on graphs
which do not exhibit core-periphery structure. The relevant plots comprise Fig-
ure 31.

In Section D.2 we present the results from the MCMC sampler used to per-
form posterior inference for the experiments in Section 4.3. In Section D.2.1 we
present the results from the US Airport experiment. The relevant plots com-
prise Figures 32-34. In Section D.2.2 we present the results from the World
Trade experiment. The relevant plots comprise Figures 35-36.

D.1. Simulated data

D.1.1. Core-periphery structure only

In Section 4.2, we present a selection of results from performing posterior infer-
ence on a simulated graph generated with K = 2, α = 200, σ = 0.2, τ = 1, b =
1
K , a = 0.2. Here, we present some additional results specifically regarding the
output of the MCMC sampler. In Figures 23 and 24 we see the parameter trace
plots and histograms.

The green lines and stars respectively correspond to the values of the model
parameters used to generate the graphs, and we see that the posterior converges
around the true values.

In Figure 25 we give the trace and autocorrelation plots of an approximation
of the log-posterior (up to a normalizing constant). The details of the calcula-
tion of the approximate log-posterior are given in Section C.5. Here, the green
line gives the value of the approximate log-posterior using the true model pa-
rameters. The log-posterior trace plot suggests that the chains have converged
and the autocorrelation plot shows that the correlation of the samples decreases
quickly with increasing lag.

In order to test the convergence of the chains, we calculate the Gelman-
Rubin convergence diagnostic R̂ [16]. Due to the high number of parameters in
the SparseCP model, we calculate a univariate statistic using the sampled values
of the approximate log-posterior. Recalling that R̂ < 1.1 suggests convergence,
we find that in our case R̂ = 1.03. Thus we are satisfied that the chains have
indeed converged.
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Fig 23. MCMC trace plots for parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗. The graph
is generated from the SparseCP model with K = 2, α = 200, σ = 0.2, τ = 1, b = 1

K
, a = 0.2.

The green lines correspond to the values of the parameters used for generating the graph.

Fig 24. MCMC histograms for parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗. The graph
is generated from the SparseCP model with K = 2, α = 200, σ = 0.2, τ = 1, b = 1

K
, a = 0.2.

The green stars correspond to the values of the parameters used for generating the graph.

D.1.2. Core-periphery and community structure

Here, we test our model on a graph with core-periphery and community struc-
ture, to confirm that we can detect the presence of both. In this case, K is
taken to be 4 in order to generate a graph with a core-periphery structure and
3 overlapping communities. In Figure 26(a) we see the adjacency matrix for the
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Fig 25. Trace plot and autocorrelation of the log-posterior for a graph generated from the
SparseCP model with K = 2, α = 200, σ = 0.2, τ = 1, b = 1

K
, a = 0.2. The green line in (a)

corresponds to the value of the approximate log-posterior (up to a constant) under the model
parameters used to generate the graph.

Fig 26. Fitting the SparseCP model to simulated data with core-periphery and community
structure, generated with K = 4, α = 200, σ = 0.2, τ = 1, bk = b = 4

K
, ak = a = 0.2. (a)

Adjacency matrix, where the nodes are sorted into core and periphery (indicated by the red
lines) and then by largest community sociability (indicated by the black lines). (b) Posterior
predictive degree distribution. When the lower posterior predictive interval bound is 0, we plot
only the upper interval bound. Mean sociability ( 1

2
(wi1 + wi2)) credible intervals for (c) the

50 nodes with the highest degrees, (d) the 50 nodes with the lowest degree. In each case the
true values are coloured green if they are covered by the credible interval, and red if not.
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simulated network, sorted into core and periphery (indicated by the red lines)
and then by largest community sociability (indicated by the black lines). We
see a clear global core-periphery structure and community structure. As before,
we see from Figures 26(b) and 26(d) that we are able to recover the degree
distribution, as well as the mean sociabilities of the high and low degree nodes.

In Figures 27 and 28 we see the trace plots and histograms for the identifiable
parameters for this graph. The green lines and stars correspond to the true values
of the parameters, and as before we see that the posterior distribution converges
around the true values. In Figure 29 we plot the credible intervals for each of
the sociabilities w1, . . . , w4, and see that we are able to recover both the core
and community sociabilities.

As before, to test convergence we calculate the approximate log-posterior
probability density function (up to a normalizing constant). We see from Fig-
ure 30 that the chain has converged to the true value. This is confirmed by the
Gelman-Rubin diagnostic, which in this case comes out as R̂ = 1.03. However,
from the autocorrelation plot we see that the mixing is not as good as in the
case without community structure, with dependencies not vanishing as quickly
as we would like for increasing lag. This indicates that estimation in the setting
with core-periphery and community structure can be more difficult, as we might
expect.

D.1.3. No core-periphery structure

Here, we perform some additional experiments to test our model in two situa-
tions in which we do not expect it to work, in order to check that the behaviour
is still sensible. Recalling that in our model the overall generated graph is still
sparse, we first simulate data from the model of [6], with σ > 0. This model
generates a sparse graph without a core-periphery structure. In this case, the
size of the core estimated by our model tends to zero. Furthermore, we see from
Figure 31(a) that we still accurately recover the degree distribution in this case.

Secondly, we test our model on a graph generated from the model of [6],
but with σ < 0. In the construction of our model, the core and periphery are
distinguished by the fact that the core nodes form a dense subgraph in an
otherwise sparse graph. Thus, when the overall graph is dense, we do not have
this distinction and our model struggles to identify any latent core-periphery
structure. However, in this case this structure is not present. We see two different
types of behaviour, depending on the parameters of the model and the initial
conditions.

1. σ is (correctly) estimated to be negative, and the size of the core goes to
zero. This is the behaviour we see in Figure 31(b) and is the behaviour we
would expect.

2. σ is (incorrectly) estimated to be positive, and the whole graph is esti-
mated to be in the core. Although this may not seem intuitive, it still fits
with our definition of the core being a dense subgraph within a sparse
network.
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Fig 27. MCMC trace plots parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗. The graph is
generated from the SparseCP model with K = 4, α = 200, σ = 0.2, τ = 1, bk = b = 4

K
, ak =

a = 0.2. The green lines correspond to the values of the parameters used for generating the
graph.

Fig 28. MCMC histograms for parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗. The graph
is generated from the SparseCP model with K = 4, α = 200, σ = 0.2, τ = 1, bk = b = 4

K
, ak =

a = 0.2. The green stars correspond to the values of the parameters used for generating the
graph.
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Fig 29. Credible intervals for (a) the core sociability wi1, (b) the community sociability wi2,
(c) the community sociability wi3, (d) the community sociability wi4 of the 100 nodes with
the highest degrees, for the graph generated with K = 4, α = 200, σ = 0.2, τ = 1, bk = b =
4
K
, ak = a = 0.2. In each case the true values are coloured green if they are covered by the

credible interval, and red if not.

Fig 30. Trace plot and autocorrelation of the log-posterior for a graph generated from the
SparseCP model with K = 4, α = 200, σ = 0.2, τ = 1, bk = b = 4

K
, ak = a = 0.2. The green

line in (a) corresponds to the value of the approximate log-posterior (up to a constant) under
the model parameters used to generate the graph.
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Fig 31. Posterior predictive degree distributions fitting the SparseCP model to networks which
(a) have no core-periphery structure, and (b) are dense. When the lower posterior predictive
interval bound is 0, we plot only the upper interval bound.

Fig 32. Trace plot (left) and autocorrelation plot (right) of the approximated log-posterior
probability density (up to a constant) of the US Airport network.

D.2. Real data

D.2.1. US airport network

In Section 4.3.1, we present the results from performing posterior inference on
the US Airport network. Here, we present some additional results specifically
regarding the output of the MCMC sampler. In Figure 32 we give the trace
plot and autocorrelation of the approximate logposterior. The Gelman-Rubin
statistic comes out to be R̂ = 1.25 in this case, suggesting that the chain has
not converged despite the large number of iterations. We can also calculate
the Gelman-Rubin statistic for parameters α and σ. Here we obtain values of
R̂α = 1.10 and R̂σ = 1.13. Again, these are both above the threshold of 1.1
which we generally believe to indicate convergence. However, the lower values
here indicate that the problem of convergence may not be as bad as indicated
by the log-posterior.

These results indicate that the convergence of our sampler is slow. As in
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Fig 33. MCMC trace plots of parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗ for the US
Airport network.

Fig 34. Posterior predictive plots for the US Airport network using the SparseCP model. (a)
Standard deviation of degree; (b) global cluster coefficient (or triadic dependence); (c) average
local cluster coefficient. Empirical values are given in green in each case.

[41], even running a very long chain did not lead to an improvement. This long
chain took roughly 60 hours to run, translating to a time cost of around 0.02
seconds per iteration. However, it is at least encouraging to see that the different
chains are exploring parts of the parameter space with similar approximate log-
posterior density. In Figure 33 we report the trace plots for the identifiable
parameters of the US Airport network.

We can perform some posterior predictive checks, by comparing the posterior
predictive distribution of the degree standard deviation, global cluster coefficient
and average local cluster coefficient to the respective empirical values. In Figure
34 we see that the global cluster coefficient is being fit well, while the other
statistics are being slightly overestimated.
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Fig 35. Trace plot (left) and autocorrelation plot (right) of the approximated log-posterior
probability density (up to a constant) of the World Trade network.

Fig 36. MCMC trace plots of parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗ for the
World Trade network.

D.2.2. World trade network

In Section 4.3.2, we present the results from performing posterior inference on
the World Trade network. Here, we present some additional results specifically
regarding the output of the MCMC sampler. In Figure 35 we give the trace plot
and autocorrelation of the approximate logposterior. In this case, the Gelman-
Rubin statistic of R̂ = 1.009 suggests convergence of the Markov chain. As
before, we can also calculate the Gelman-Rubin statistic for parameters α and
σ. Here we obtain values of R̂α = 1.01 and R̂σ = 1.01, providing further evidence
of convergence.

In Figure 36 we see the trace plots for the identifiable parameters of the
World Trade network.
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Fig 37. MCMC trace plots of parameters (a) logα, (b) σ, (c) a, (d) b and (e) w̄∗ for the US
Airport network without Alaskan airports.

Appendix E: US airport network case study repeated without
Alaskan airports

In Section 4.3.1, we note a problem occurring due to the sociability parameter
for the Alaskan community. Here, we repeat our analysis having taken out all
the Alaskan airports, as well as any airport only connected to Alaskan airports.
The relevant plots comprise Figures 37-41.

In Figure 37 we see the trace plots for the identifiable parameters. From this
we see that we no longer have the same problem of an estimate of one of the bk
being very close to 0.

In Figure 38 we see the autocorrelation plot of the approximate log-posterior
density. This seems as though it is converging to a stable value. If we look at the
Gelman-Rubin convergence diagnostic, this comes out to be R̂ = 1.05 in this
case, indicating convergence. We also obtain values of R̂α = 1.06 and R̂σ = 1.03,
providing further evidence of convergence.

In Figure 39 we see the posterior predictive degree plot on the left, compared
to the corresponding plot for the model of [41] with three communities on the
right. We see that we are no longer overestimating the high degree nodes. We
also see that the SNetOC model has estimated σ < 0 in this case, whereas for
the SparseCP model we still estimate σ > 0.

If we look at the reweighted KS distances as before in Figure 40, we see that
our model is still providing a better fit to the data, but not necessarily any
better than the fit before excluding the Alaskan airports. In this case we report
the Rényi statistics L2 and U1, because we see that our model is overestimat-
ing the number of low degree nodes, and underestimating the number of high
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Fig 38. Trace plot (left) and autocorrelation plot (right) of the approximated log-posterior
probability density (up to a constant) of the US Airport network without Alaskan airports.

Fig 39. Posterior Predictive Degree Distribution for the US Airport network without Alaskan
airports, using (a) the SparseCP model and (b) the SNetOC model. When the lower posterior
predictive interval bound is 0, we plot only the upper interval bound.

Fig 40. Reweighted Kolmogorov Smirnov distance and Rényi statistics for assessing the degree
distribution for the US Airport network without Alaskan airports.

degree nodes.

Furthermore, we see that the core and communities identified here are largely
the same as before (without the “Alaska” community). In Figure 41 we plot the
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Fig 41. Adjacency matrix for the US Airport network without Alaskan airports, ordered into
core and periphery, and then by highest community weight, as estimated using the SparseCP
model.

adjacency matrix in this case, again ordered into core and periphery, and then
by highest community weight.
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