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Abstract:

Goodness-of-fit tests based on the empirical Wasserstein distance are
proposed for simple and composite null hypotheses involving general mul-
tivariate distributions. For group families, the procedure is to be imple-
mented after preliminary reduction of the data via invariance. This prop-
erty allows for calculation of exact critical values and p-values at finite
sample sizes. Applications include testing for location—scale families and
testing for families arising from affine transformations, such as elliptical
distributions with given standard radial density and unspecified location
vector and scatter matrix. A novel test for multivariate normality with
unspecified mean vector and covariance matrix arises as a special case.
For more general parametric families, we propose a parametric bootstrap
procedure to calculate critical values. The lack of asymptotic distribution
theory for the empirical Wasserstein distance means that the validity of
the parametric bootstrap under the null hypothesis remains a conjecture.
Nevertheless, we show that the test is consistent against fixed alternatives.
To this end, we prove a uniform law of large numbers for the empirical
distribution in Wasserstein distance, where the uniformity is over any class
of underlying distributions satisfying a uniform integrability condition but
no additional moment assumptions. The calculation of test statistics boils
down to solving the well-studied semi-discrete optimal transport problem.
Extensive numerical experiments demonstrate the practical feasibility and
the excellent performance of the proposed tests for the Wasserstein dis-
tance of order p = 1 and p = 2 and for dimensions at least up to d = 5. The
simulations also lend support to the conjecture of the asymptotic validity
of the parametric bootstrap.
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1. Introduction

Wasserstein distances are metrics on spaces of probability measures with certain
finite moments. They measure the distance between two such distributions by
the minimal cost of moving probability mass in order to transform one distri-
bution into the other. Wasserstein distances have a long history and continue
to attract interest from diverse fields in statistics, machine learning, and com-
puter science, in particular image analysis; see for instance the monographs and
reviews by Santambrogio (2015), Peyré and Cuturi (2019), and Panaretos and
Zemel (2019).

A natural application of any meaningful distance between distributions is
to the goodness-of-fit (GoF) problem—namely, the problem of testing the null
hypothesis that a sample comes from a population with fully specified distri-
bution Py or with unspecified distribution within some postulated parametric
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model M. GoF problems certainly are among the most fundamental and clas-
sical ones in statistical inference. Typically, GoF tests are based on some dis-
tance between the empirical distribution P,, and the null distribution Py or an
estimated distribution in the null model M. The most popular ones are the
Cramér—von Mises (Cramér, 1928; von Mises, 1928) and Kolmogorov—Smirnov
(Kolmogorov, 1933; Smirnov, 1939) tests, involving distances between the cu-
mulative distribution function of Py and the empirical one. Originally defined
for univariate distributions only, they have been extended to the multivariate
case, for instance in Khmaladze (2016), who proposes a test that has nearly all
properties one could wish for, including asymptotic distribution-freeness, but
whose implementation is computationally heavy and quickly gets intractable.

Many other distances have been considered in this context, though. Among
them, distances between densities (after kernel smoothing) have attracted much
interest, starting with Bickel and Rosenblatt (1973) in the univariate case. Bak-
shaev and Rudzkis (2015) recently proposed a multivariate extension; the choice
of a bandwidth matrix, however, dramatically affects the outcome of the result-
ing testing procedure. Fan (1997) considers a distance between characteristic
functions, which accommodates arbitrary dimensions; the idea is appealing but
the estimation of the integrals involved in the distance seems tricky. McAssey
(2013) proposes a heuristic test that relies on a comparison of the empirical Ma-
halanobis distance with a simulated one under the null. Still in a multivariate
setting, Ebner, Henze and Yukich (2018) define a distance based on sums of
powers of weighted volumes of kth nearest neighbour spheres.

The use of the Wasserstein distance for GoF testing has been considered
mostly for univariate distributions (Munk and Czado, 1998; del Barrio et al.,
1999; del Barrio et al., 2000; del Barrio, Giné and Utzet, 2005). For the multivari-
ate case, available methods are restricted to discrete distributions (Sommerfeld
and Munk, 2018) and Gaussian ones (Rippl, Munk and Sturm, 2016). Indeed,
serious difficulties, both computational and theoretical, hinder the development
of Wasserstein GoF tests for general multivariate continuous distributions, par-
ticularly in the case of composite null hypotheses. Such hypotheses are generally
more realistic than simple ones. Of particular practical importance is the case
of location—scale and location—scatter families: tests of multivariate Gaussianity,
tests of elliptical symmetry with given standard radial density, etc., belong to
that type. Although the asymptotic null distribution of empirical processes with
estimated parameters is well known (van der Vaart, 1998, Theorem 19.23), the
actual exploitation of that theory in GoF testing remains problematic because
of the difficulty of computing critical values.

The aim of this paper is to explore the potential of the Wasserstein distance
for GoF tests of simple (consisting of one fully specified distribution) and com-
posite (consisting of a parametric family of distributions) null hypotheses involv-
ing continuous multivariate distributions. The tests we are proposing are based
on the Wasserstein distance between the empirical distribution of the data or
estimated residuals on the one hand and a model-based estimate thereof on the
other hand. We concentrate on the continuous case, i.e., the distributions under
the null hypothesis are absolutely continuous with respect to the d-dimensional
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Lebesgue measure. The test statistic involves the Wasserstein distance between
a discrete empirical distribution and a continuous distribution specified by the
null hypothesis. Calculating such a distance requires solving the semi-discrete
transportation problem, an active area of research in computer science.

In case of a simple null hypothesis, the null distribution of the test statistic
does not depend on unknown parameters. Exact critical values can be calculated
with arbitrary precision via a Monte Carlo procedure, by simulating from the
null distribution and computing empirical quantiles.

Exact critical values can also be computed for Wasserstein tests for the GoF
of a group family, that is, a model that arises by applying a transformation
group to some specified distribution (Lehmann and Casella, 1998, pp. 16-23).
If the parameter estimate is equivariant, the data can be reduced in such a
way that their distribution no longer depends on the unknown parameter. The
Wasserstein distance between this parameter-free distribution and the empirical
distribution of the reduced data then provides a test statistic whose null distribu-
tion does not depend on the unknown parameter either. Important special cases
include elliptical distributions with known radial distribution and unknown lo-
cation vector and scatter matrix. In particular, our approach yields a novel test
for multivariate normality with unknown mean vector and covariance matrix.

For general parametric models, the test statistic measures the Wasserstein
distance between the empirical distribution and the model-based one with esti-
mated parameter. A reduction via invariance is no longer possible and we rely
on the parametric bootstrap to calculate critical values. Still, some parame-
ters, such as location-scale parameters, can be factored out, again by relying
on transformation groups. The question whether the parametric bootstrap has
the correct size under the null hypothesis remains open. A proof of that prop-
erty would require asymptotic distribution theory for the empirical Wasserstein
distance—a hard and long-standing open problem, which we briefly review in
Section 1.2, the solution of which is beyond the scope of this paper. Monte Carlo
experiments, however, support our conjecture that the parametric bootstrap has
the correct size at least asymptotically.

In all cases, even in the general parametric case, we show that our Wasserstein
GoF tests are consistent against fixed alternatives, that is, the null hypothesis
under such alternatives is rejected with probability tending to one as the sample
size tends to infinity. For the general parametric case, the proof relies on the
uniform consistency in probability of the empirical distribution with respect to
the Wasserstein distance, uniformly over families of distributions that satisfy a
uniform integrability condition. To the best of our knowledge, this result is new.

We conduct an extensive simulation study to assess the finite-sample per-
formance of the Wasserstein tests of order p € {1,2} in comparison to other
GoF tests. The set-up involves both simple and composite null hypotheses as
well as a wide variety of alternatives. The experiments lend support to the con-
jecture that the parametric bootstrap is valid asymptotically. In comparison to
other GoF tests available in the literature, the Wasserstein test demonstrates
good power. This is especially true for the test of multivariate normality, where,
out of the many available tests in the literature, we select the ones of Royston



1332 M. Hallin et al.

(1983), Henze and Zirkler (1990) and Rizzo and Székely (2016) as benchmarks.

In a recent strand of literature, measure transportation serves to link a multi-
variate probability measure to a standard reference distribution, yielding novel
concepts of multivariate ranks, signs, and quantiles (Carlier et al., 2016; Cher-
nozhukov et al., 2017; Hallin et al., 2020). Here we do not make this step, as
the Wasserstein distances we are considering are between distributions defined
on the sample space.

The outline of the paper is as follows. In the remainder of this introduction, we
introduce the Wasserstein distance (Section 1.1), review the asymptotic theory
of empirical Wasserstein distance (Section 1.2), and provide some information
on the computational methods for the semi-discrete transportation problem
underlying the implementation of the Wasserstein GoF tests (Section 1.3). In
Section 2, we give a formal description of the GoF test procedure for simple null
hypotheses. Section 3 addresses the composite null hypothesis that the unknown
distribution belongs to some group family. Composite null hypotheses covering
general parametric models are treated in Section 4. In Section 4.1 we mention a
hybrid approach, where some components of the parameter vector are factored
out by relying on a transformation group. In Section 5, finally, we report on
the results of our numerical experiments. In Appendix A, the convergence of
the empirical Wasserstein distance uniformly over certain classes of underlying
distributions is stated and proved. Appendix B is related to the consistency
of the parametric bootstrap. Appendices C—E contain further details on the
simulation study.

1.1. Wasserstein distance

Let P(R?) be the set of Borel probability measures on R? and let P,(R?) be the
subset of such measures with a finite moment of order p € [1,00). For P and Q
in P(R%), let I'(P,Q) be the set of probability measures v on R? x R? with
marginals P and Q, i.e., such that y(B x R?) = P(B) and v(R? x B) = Q(B)
for Borel sets B C RY. The p-Wasserstein distance between P, Q € P,(R?) is

1/p
Wp(P,Q):—( | ||xy|pdv<x,y>> ,
R4 x R4

YEr(P,Q)

with || -|| the Euclidean norm. In terms of random variables X and Y with
laws P and Q, respectively, the p-Wasserstein distance is the smallest value
of {E(||X — Y||?)}!/P over all possible joint distributions v € T'(P, Q) of (X,Y).

The p-Wasserstein distance W, defines a metric on Pp(Rd), which thereby
becomes a complete separable metric space (Villani, 2009, Theorem 6.18 and
the bibliographical notes). Convergence in the W, metric is equivalent to weak
convergence plus convergence of moments of order p; see for instance Bickel and
Freedman (1981, Lemmas 8.1 and 8.3) and Villani (2009, Theorem 6.9).

For univariate distributions P and Q with distribution functions F' and G,
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the p-Wasserstein distance boils down to the LP-distance

W) - ([ ) G-1<u>|pdu)1/p 1)

between the respective quantile functions F~' and G~!. This representation
considerably facilitates both the computation of the distance and the asymptotic
theory of its empirical versions. Also, the optimal transport plan mapping X ~ P
to Y ~ Q is immediate: if F' has no atoms, then Y := G~! o F(X) ~ Q, while
monotonicity of G=! o F' implies the optimality of the coupling (X,Y), see for
instance Panaretos and Zemel (2019, Section 1.2.3).

1.2. Asymptotic theory: results and an open problem

To construct critical values for Wasserstein GoF tests of general parametric
models, we will propose in Section 4 the use of the parametric bootstrap. In
general, proving consistency of the parametric bootstrap requires having, un-
der contiguous alternatives, non-degenerate limit distributions of the statistic of
interest (Beran, 1997; Capanu, 2019). For Wasserstein distances involving em-
pirical distributions, such results are still far beyond the horizon, as the following
short survey will show.

Let Xi,..., X, be an i.i.d. (independent and identically distributed) sample
from P € P(R?). The empirical distribution of the sample is P,, := n~! S0,
with d, the Dirac measure at z. Assuming that P has a finite moment of or-
der p € [1, 00), we are interested in the empirical Wasserstein distance W,,(P,, P).

According to Bickel and Freedman (1981, Lemma 8.4), the empirical dis-
tribution is strongly consistent in the Wasserstein distance: for an ii.d. se-
quence X1, X, ... with common distribution P, we have W,(P,,,P) — 0 almost
surely as n — oo. Bounds and rates for the expectation of the empirical Wasser-
stein distance have been studied intensively; see Panaretos and Zemel (2019,
Section 3.3) for a review. If P is non-degenerate, then ]E[Wp(ﬁm P)] is at least of
the order n='/2, and if P is absolutely continuous, which is the case of interest
here, the convergence rate cannot be faster than n~/¢. Actually, the rate can be
arbitrarily slow, even in the one-dimensional case (Bobkov and Ledoux, 2019,
Theorem 3.3). Precise rates under additional moment assumptions are given,
for instance, in Fournier and Guillin (2015). In Appendix A, we will show that
the convergence in pth mean takes place uniformly over families M C P,(R?)
of probability measures satisfying a uniform integrability condition. For distri-
butions on compact metric spaces, Weed and Bach (2019) provide sharp rates
for E[Wp(f’n,P)] in terms of what they coin the Wasserstein dimension of P.
For Lebesgue-absolutely continuous measures on R?, this dimension is just d.
Moreover, they exploit McDiarmid’s bounded difference inequality to derive a
concentration inequality of WP (P, P) around its expectation.

Asymptotic results on the distribution of the empirical Wasserstein distance
in dimension d > 2 are, however, surprisingly scarce. The question is whether
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there exist sequences a,, > 0 and b,, > 0 such that an{Wlf’(lgn, P)—b,} converges
in distribution to a non-degenerate limit. Although this problem has already
attracted a lot of attention, a general answer remains elusive.

The one-dimensional case is well-studied thanks to the link (1) to empirical
quantile processes (del Barrio, Giné and Utzet, 2005; Bobkov and Ledoux, 2019).
For discrete distributions, large-sample theory for the empirical Wasserstein dis-
tance is available too (Sommerfeld and Munk, 2018; Tameling, Sommerfeld and
Munk, 2019). For multivariate Gaussian distributions, a central limit theorem
for the empirical Wasserstein of order p = 2 between the true distribution and
the one with estimated parameters is given in Rippl, Munk and Sturm (2016).
Although interesting and useful for GoF testing (see Section 5.1.1), this result
does not cover the empirical distribution 1371

Ambrosio, Stra and Trevisan (2018) exploit the possibility to linearize the
2-Wasserstein distance in dimension d = 2 in case the optimal transport plan
is close to the identity. The technique requires balancing the errors due to the
dual Sobolev norm approximation and a smoothing step. Mena and Niles-Weed
(2019) derive a limit theorem for the empirical entropic optimal transport cost.
We refer to the latter for an introduction to optimal transport with entropic
regularization. Recent progress has been booked in Goldfeld and Kato (2020),
who obtain a central limit theorem for the empirical 1-Wasserstein distance after
smoothing the empirical and the true distributions with a Gaussian kernel.

Important advances on the limit distribution have been made by del Bar-
rio and Loubes (2019) who obtained results under fixed alternatives. For gen-
eral P,Q € Pyys(R?) for some § > 0, they establish a central limit theorem
for

D2 [W2(P,, Q) — E{W2(P,.Q)}].

The result is proved using the Efron—Stein inequality combined with stability
of optimal transport plans. Unfortunately, if Q = P, the asymptotic variance is
zero, meaning that the random fluctuations of W5 (P,,,P) around its mean are
of order smaller than n=1/2. The authors conclude that their proof technique is
of little use for the case we are interested in. The crucial problem of the limiting
distribution of the empirical Wasserstein distance thus remains an important
and difficult open problem.

1.3. Computational issues

In the last decade, important numerical developments have taken place in the
area of measure transportation. The problem to be faced here is the computation
of the Wasserstein distance between a discrete and a continuous distribution,
the so-called semi-discrete optimal transportation problem. Most algorithms to
date rely on the dual formulation of the problem, assuming that the source con-
tinuous probability measure P admits a density f w.r.t. the Lebesgue measure
on RY; see, e.g., Santambrogio (2015, Section 6.4.2) for a didactic exposition.
This formulation is the basis for the multi-scale algorithm for the squared Eu-
clidean distance (p = 2) developed in Mérigot (2011), with further improve-
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ments in Lévy (2015) and Kitagawa, Mérigot and Thibert (2017). It requires
constructing a power diagram or Laguerre-Voronoi diagram, partitioning R?
into convex polyhedra called power cells. With the Euclidean distance as cost
function (p = 1) the edges of the cells involved in the tessellation are no longer
linear, making the computation more demanding (Hartmann and Schuhmacher,
2020). Genevay et al. (2016) show that a semi-discrete reformulation of the dual
program can be tackled by the stochastic averaged gradient (SAG) method
(Schmidt, Le Roux and Bach, 2017).

In our numerical experiments in Section 5, we assess the finite-sample perfor-
mance of the test statistic based on the p-Wasserstein distance for p € {1, 2} and
for d-variate distributions for d € {2,5}. To the best of our knowledge, an im-
plementation of the SAG method is not yet available in R (R Core Team, 2018).
After preliminary tests and running time assessment, we made the following
choices of algorithms and implementations:

e Incase p = 2 and d = 2, we relied on the R package transport (Schuhmacher
et al., 2019), which implements the multi-scale algorithm in Mérigot (2011).

e In all other cases (p = 1 or d = 5), we relied on our own C implementation
of the SAG method as employed in Genevay et al. (2016).

A first version of the package making our implementation available is to be
found on https://github.com/gmordant/WassersteinGoF.

2. Wasserstein GoF tests for simple null hypotheses

Let X,, = (X1,...,X,) be an independent random sample from some unknown
distribution P € P(R?). For some given fixed Py € P,(R?), consider testing the
simple null hypothesis

Hy : P =Py against HT : P # Py

based on the observations X,,. Note that P, under the alternative, is not required
to have finite moments of order p.
Let P, = n~! >i, 0x, denote the empirical distribution and consider the
test statistic R
T, == W] (Pn, Po), (2)

the pth power of the p-Wasserstein distance between ﬁn and the distribution Py
specified by the null hypothesis. Having bounded support, P,, trivially belongs
to Pp(R?), so that T, is well defined.

Actual computation of T},, amounts to solving the semi-discrete optimal trans-
port problem. In the numerical experiments of Section 5, we provide results
for p € {1,2}. The theory, however, is developed for general p > 1.

Let F,(t) = Py[T, < t] for t € [0,00) denote the distribution function of the
test statistic under H{. Here, P{ stands for the distribution under H{ of the
observation X,,, the n-fold product measure of Py on (R?)™. The p-value of the
test statistic is 1 — F),(7T},), while the critical value for a test of size o € (0,1) is

cn(a,Po) i=inf {t > 0: F,(t) > 1—a} (3)
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The test we propose is then

(4)

n 1 if 1 — F(T,) < « or, equivalently, T,, > ¢, (a, Py),
d)Pg = .
0 otherwise.

The exact size of the GoF test in (4) is 1 — F,,(cn (e, Po)) < «, with equality if
and only if F,, is continuous at ¢, (o, Pg). The type I error is thus bounded by
the nominal size «, and often equal to it. The null distribution of 7, depends
on Py, so that ¢,(«, Pg) needs to be calculated for each Py separately.

Although p-values and critical values usually cannot be calculated analyti-
cally, they can be approximated with any desired degree of precision via the
following simple Monte Carlo algorithm. Draw a large number of independent
random samples of size n from Pg, compute the test statistic for each such sam-
ple, and approximate F;, by the empirical distribution function of the simulated
test statistics. Critical values and p-values then can be calculated from the ap-
proximated Fj,. By the Donsker theorem, any desired accuracy can be achieved
by drawing sufficiently many samples.

Under the alternative hypothesis, the test rejects the null hypothesis with
probability tending to one, i.e., is consistent against any fixed alternative P = Py.

Proposition 1 (Consistency). For every Py € P,(R?), the test ¢p, s consistent
against any P € P(R?) with P # Py:
nh_)ngo P"pp, =1] =1 for any o > 0.

Proof. Fix Py € P,(R?). For any a > 0, the critical value c(a,n,Py) tends
to zero as n — oo. Indeed, by Bickel and Freedman (1981, Lemma 8.4), we
have T;, — 0 in P§-probability and thus lim,,_, . P§[T, > €] = 0 for any € > 0.
It follows that, for every o > 0 and every € > 0, we have ¢, («a,Pg) < ¢ for all
sufficiently large n.

Let P € P(R?) with P # Py. We consider two cases according as P has finite
moments of order p or not.

First, suppose that P € P,(R%). Still by Bickel and Freedman (1981, Lem-
ma 8.4), we have Wp(ﬁmP) — 0 in P"-probability as n — oo. The triangle
inequality for the metric W, yields

(W, (P, Po) — Wy(P,Po)| < Wy(Pn,P) =0,  n— o0

in P"-probability. Hence T;, = W;’(ﬁm Pog) — WJ(P,Pg) in P"-probability
as n — co. But WZ(P,Pg) > 0 since P, P € P,(R?) and P # Py by assumption.
It follows that lim,,—,~ P™[T}, > c,(c, Pg)] = 1, as required.

Second, suppose that P € P(RY) \ P,(R%). Let dy denote the Dirac measure
at 0 € R?. Since W, is a metric, the triangle inequality implies

W, (P, Po) = W, (Py, 60) — Wy (Po, &)

Now, W,(Py, do) is a constant and W;,’(lgn,(;o) =n"t30 |1 X6]|P. As the ex-
pected value of || X1]|P under P is infinite, the law of large numbers implies
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that sz’(lgn, d0) — oo in P™-probability as n — oo. The same then holds for T;,
and thus
lim P"[T, > cp(o, Po)] = 1. O

n— oo

3. Wasserstein GoF tests for group families

Let Qo € P(R?) and let G be a group of measurable transformations g of R%.
That is, G is closed under composition (g1, g2 € G implies ¢; 0 g € G) and in-
version (g € G implies g~! € G). If the random variable Z has distribution Qo,
the random variable g(Z) has distribution g4Qo := Qo o g~1, where the sub-
script # denotes the push-forward of a measure by a measurable function.
Let M = {g4Qo : g € G} be the group family generated by G and Qp. We as-
sume further that the transformation g is identifiable, that is, the map g — g4 Qo
is one-to-one, so that g1 # go implies that ¢1(Z) and g2(Z) have different
distributions, with again Z ~ Q. Note that for any element P of M we
have M = {gxP : g € G}, so that the choice of Qg in M is in some sense
arbitrary.

Group families form one of the two principal classes of models covered in
Lehmann and Casella (1998). Here are some prominent examples of transfor-
mation groups G on R? and some models M that they generate.

Ezample 1 (Location—scale families). For (a,b) € R% x (0,00)¢, consider the
transformations gq 5 : R* — R? defined by gas(x) = (a; + bjz)4_, for 2 € R
The model M is the location-scale family generated by Py. We can also consider
the location family generated by the subgroup = +— g,1(z) = (z; + a;)¢

j=1
and the scale family generated by the subgroup z +— gop(z) = (bjxj)?zl. In
dimension d = 1, we can generate in this way the normal and exponential

families, for instance.

Ezample 2 (Affine transformations and elliptical families). For a € R? and non-
singular B € R? x R?, define g, 5 : R — R? by g, p(z) = a + Bz for x € RY.
If Qp is the d-variate standard normal distribution Ng(0, I4), then M is the
family of all d-variate Gaussian distributions with positive definite covariance
matrix. More generally, if Qg is spherically symmetric around the origin, then M
is the family of elliptical distributions with a given characteristic generator and
positive definite scatter matrix (Cambanis, Huang and Simons, 1981; Fang, Kotz
and Ng, 1990). Besides the Gaussian family, another common example is the
multivariate Student t distribution with a fixed number of degrees of freedom.
For elliptical families, the matrix B is not identifiable from the model but only
the matrix BB’ is. Identifiability can be restored by restricting B to the set of
lower triangular matrices with positive elements on the diagonal.! Note that the
case of elliptical distributions with possibly degenerate scatter matrices is not
covered here, as the corresponding affine transformation is not invertible.

1For every symmetric positive definite matrix S € R%X?, there exists a unique lower trian-
gular matrix L € R%X? with positive diagonal elements, called Cholesky triangle, producing
the Cholesky decomposition S = LL’ (Golub and Van Loan, 1996, Theorem 4.2.5).
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In the examples above, the group G is parametrized by a Euclidean para-
meter § € © with © C R¥ for some dimension k, so that G = {gg : § € O}.
We will assume this to be the case in general and write Py = (gg)»Qo. The
model then takes the form M = {Py : § € ©}. The mappings 6 — gy
and g — gx#Qo are assumed to be one-to-one. The parametrization § — Py then
is also one-to-one, i.e., the model parameter 6 is identifiable. Models generated
by infinite-dimensional transformation groups exist as well, but the theory here
is intended for the finite-dimensional situation, as the conditions to come seem
too restrictive otherwise.

Let Qo € P,(R?) for some p € [1,00). Assume that, for all g € G, there
exists ¢y > 0 such that

Vo eRY, lg(a)l < (1 + ). (5)

Then it is easy to verify that g4Qq belongs to P,(R?) for every g € G too and,
therefore, M C P,(R%). This condition on g is fulfilled for the transformations
in Examples 1 and 2.

Let M = {Py = (g9)2Qo : 0 € ©} C P,(R?) be a group family as
just described. Given an i.i.d. sample X,, = (Xi,...,X,,) from some unspeci-
fied P € P,(R?), we wish to test the hypothesis

Hy :PeM against HY :P & M. (6)

The parameter 6 of the transformation gy is an unknown nuisance. In contrast
to Section 2, the null hypothesis is thus a composite one. An important special
case is when Qg is the d-variate standard normal distribution and G is the affine
group in Example 2: the testing problem (6) then concerns the hypothesis of
multivariate normality with unspecified positive definite covariance matrix.
Our testing strategy is to choose some estimator 6, for # and compute “resi-
duals” of the form
ZAnﬂv = gé_l(Xi), i1=1,...,n, (7)
yielding an empirical distribution 1“35 =n"! Z?Zl é 7. - The test statistic we
propose is A '
Tran = WP (PZ,Qo). (8)

If the null distribution of (Z,1,..., Znn) does not depend on the unkown pa-
rameter 6, then we can compute critical values and p-values for T, as if the
true distribution is Q. As in Section 2, the null distribution of Tz, then can
be computed up to any desired accuracy via Monte Carlo random sampling
from Qg, and this prior to having observed the sample.

For any g € G, let g : © — © denote the mapping 6 — g(0) characterized
by g o g9 = g5(s), so that g4Py = Py(9). The estimator 0, = 0,,(X,,) is said to
be equivariant (Lehmann and Casella, 1998, Definition 2.5) if for every g € G
and for every (z1,...,2,) € (R)", we have

Hn(g(xl),...,g(xn)) :§(9n(x1,...,xn)). (9)
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Equivariance is a natural symmetry requirement and is satisfied for many com-
mon estimators. For a location parameter, it is satisfied by the mean and the
median, or in fact any weighted average of the order statistics. For a scale
parameter, it is satisfied by the standard deviation and by the mean or me-
dian absolute deviation. For the affine group in Example 2 with B restricted
to be lower triangular and with positive diagonal elements, it is satisfied by
the lower Cholesky triangle of the empirical covariance matrix. The proof of
the latter is elementary and follows from the uniqueness of the Cholesky de-
composition and the fact that the set of lower triangular matrices with positive
diagonal elements forms a multiplicative group. Equivariance is also satisfied by
maximum likelihood estimators provided the transformations g are diffeormor-
phisms: by the change-of-variables formula, #,, maximizes the likelihood given

the sample z1,...,z, if and only if g(6,) maximizes the likelihood given the
sample g(1),...,9(zn). )
In the group model M = {Py = (g9)%Qo : 0 € O}, if the estimator 6,

is equivariant, then for an ii.d. sample Xi,..., X, from Py € M, the joint
distribution of (Z, ;)" in (7) does not depend on § € O and is the same as
if Xy,...,X, were an i.i.d. sample from Q.

As a consequence, the distribution of T, in (8) under any Py € M is the
same as under Qg. Let Frq,, denote its cumulative distribution function. The
p-value of the observed test statistic is

1- FM,n(TM,n)
while the critical value at level @ € (0,1) is
cmn(a) =inf{c > 0: Fan(c) > 1 —a}.

For the testing problem (6), we propose the test
o= 1 if 1 — Fan(Taman) < @, or equivalently, Thn > caqn(a), (10)
~ |0 otherwise.

The actual size of the test is 1 — Faqn(can(@)) < o, with equality if and only
if Faqp is continuous in cpqpn (). Formally, the case of a single null hypothesis
in Section 2 can be seen as a special case by letting Py = Q¢ and G the trivial
group containing only the identity mapping.

Since the null distribution Fy4,, does not depend on any unknown parameter,
critical values and p-values values can be computed with arbitrary precision by
a Monte Carlo algorithm as we did in Section 2. The difference is now that we
generate samples from Qg. Note that the critical values can be computed prior
to having seen the data.

To show that the test is consistent, we need an extra assumption on G: for
every 6 € O there exists mg > 0 such that for all & € © in some neighbourhood
of 6, we have

710 xr)—x
wup 190 0 90(@)

< mgll® — 6. 11
e 16"l D
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The condition is fulfilled for the transformation groups and parametrizations in
Examples 1 and 2. For the affine group in Example 2, the property (11) follows
from continuity of matrix inversion with respect to the matrix norm induced by
the Euclidean norm. We will also need weak consistency of the estimator: for
every 6 € O, we have 6, — 0 as n — oo in P§-probability. To prove this for
the affine group in Example 2, it is helpful to know that the map that sends
a positive definite symmetric matrix to its Cholesky triangle is differentiable
(Smith, 1995) and thus continuous.

Proposition 2 (Consistency against fixed alternatives). Let the group fami-
ly M = {Pg = (g9) Qo : 0 € O} C P,(R?) be such that 0 is identifiable as
above and such that (5) and (11) are satisfied. Let 6, be an equivariant and
weakly consistent estimator sequence of 0 € ©.

(i) We have Tr,, — 0 as n — oo in Py-probability for any 6 € ©.
(ii) Let P € Py(RY)\ M. If 8, converges weakly to some § € © under P",
then P"[¢ = 1] = 1 as n — oo.

The pseudo-parameter 6 in Proposition 2(ii) depends on the estimator: for
instance, in a location-scale model and if p > 2, if we estimate the location and
scale parameters by the empirical mean and standard deviation, respectively,
then 6 denotes the vector of population means and standard deviations.

Proof. (i) The sample (X,...,X,) is equal in distribution to (gg(Z;))? for
some 0 € O, where (Z;)'_; is an i.i.d. sample from Qq. Since we are interested
in convergence in probability, we can then in fact suppose that X; = go(Z;) for
all i =1,...,n and compute probabilities under Qg.

The empirical distribution of (Z;)"_; is denoted by ﬁTZL . By the triangle in-
equality for the Wasserstein distance,

TyE =W, (P2, Qo) < W, (P2, PZ) + W, (PZ,Q). (12)

Since Qg has a finite moment of order p, the second term on the right-hand side
converges to zero in probability by Bickel and Freedman (1981, Lemma 8.4).

To bound the first term on the right-hand side of the previous equation,
consider the coupling of 135 and ﬁf via the discrete uniform distribution on the
pairs (ZAnl, Z;) fori=1,...,n. It follows that

~ 1 < . 1S
WEBY, Qo) < =D I1Zi = ZillP = - > _llg; " (Z0) = Zill”,
i=1 i=1 '

where én,z =0,(Z1,...,2Zy,) is the estimated parameter from (Z;)_,. Let 6. € ©
denote the parameter that corresponds to the identity transformation: gg_(z) =
for all z € R%. Then Py, = Qo and, by assumption, én,z — 0, as n — oo
in probability. Let € > 0 be small enough so that (11) holds for all € ©
with ||/ — .|| < . Then, on the event that ||, 7 — 6.|| < &, we have

n

1o, _ . 1
=3 llgp) (20 = ZillP < i 6z = 6P D (141201
i=1 ’

=1
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As Qo € P,(R?), the weak consistency of én, z and the law of large numbers
imply that, in probability,

1 n
“Slgst (Z) - ZilP =0, 0 oo
nim

We conclude that both terms in the bound (12) for T’ }//lpn converge to zero in
probability. Hence the same is true for Taq .

(ii) By (i), it follows that lim, oo Faqn(e) = 1 for every e > 0. It is thus
sufficient to show that, under the alternative hypothesis, there exists € > 0 such
that lim,, 0 P"[Taq,n > €] = 1.

Let Q = (g‘g_l)#P7 that is, Q; is the law of Y = ge_l(X), where g9_1 € G is the
inverse transformation of gy and where X has law P. By assumption, Q; # Qq,
for otherwise P € M. Also, Q; € P,(R?), since P € P,(R?) and since each g
in G satisfies (5).

Put Y; = g(;l(Xi) for s = 1,...,n, an i.i.d. sample from Q; and denote
by 135 = n~ 'Y " dy, its empirical distribution. The estimated residuals
are Z; = gg”l (X;) = gefnl o go(Y;). By the same argument as in (i), we have

1/p
. 1 n - .
WP 1) < | D Mg oY - YilP| W (Y1) o,

as m — oo in probability. By the continuous mapping theorem, it follows
that Thy,, — WP(Q1,Qo) > 0 in probability as n — oo. But this implies
that 1 — Faqn(Tamn) — 0 as n — oo in probability: the null hypothesis, thus,
is rejected with probability tending to one. O

4. Wasserstein GoF tests for general parametric families

Extending the scope of Section 3, consider the problem of testing whether the
unknown common distribution P of a sample of observations belongs to some
parametric family M := {Py : § € ©} of distributions on R%. The parameter
space O is some metric space and the map 6 — Py is assumed to be one-to-
one and continuous in a sense to be specified. Given an independent random
sample X,, = (X1,...,X,) from some unknown distribution P € P(R?), the
goodness-of-fit problem consists of testing

Hy :PeM against HY :P ¢ M. (13)

Assume that every Py € M has a finite moment of order p € [1,00), that
is, M C P,(R?). Recall that P,, denotes the empirical distribution of the sample.
The test statistic we propose is

Tagn := WP (P, P; ) (14)
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where 6,, = 0, (X,,) is some consistent (under H{) estimator sequence of the true
parameter 6. The distribution of X,, under Hg in (13) being Py for some 6 € ©,
let F,, 9(t) = Py[Tm,n < t] for t € R denote the null distribution function of the
test statistic. As p-value and critical value, we would like to take

1—F,9(Trm,n) and cpg(a) =inf{t > 0: F,¢(t) > 1 — a}, (15)

respectively, for some « € (0,1). This choice is infeasible, however, since the
true parameter 0 is unknown. Therefore, we propose to replace ¢, g(a) by the
bootstrapped quantity ¢, 5 (), yielding the test

. (16)
0 otherwise.

o= {1 if 1 —F, ; (Tmn) < a or, equivalently, Tarn = ¢, 4 (@),
We reject Hg as soon as T, exceeds the critical value at the estimated pa-
rameter. The substitution of 6 by 0, qualifies as a parametric bootstrap.

To compute the critical value Cri, () in practice, we rely, as before, on a
Monte Carlo approximation: resample from P, compute the test statistic, and
approximate Fn7én by the empirical distribution function of the resampled test
statistics. By the Dvoretzky—Kiefer—Wolfowitz inequality (Massart, 1990), the
difference between F,, ; () and its Monte Carlo approximation can be controlled
explicitly and uniformly in ¢ > 0 and in the unknown parameter, and this in
terms of the Monte Carlo sample size only. To speed up the calculations in case
of a low-dimensional parameter space, we pre-compute an approximation of the
critical value function 6 — ¢, ¢(«) in this way for 0 in a finite grid © C © and
then compute ¢, ; (@) by interpolation and/or smoothing.

Under the null hypothesis and if the true parameter is 0, the size of the test
is now the random quantity

1-— Fnﬁ (Cmé (Oé))

In contrast to Sections 2 and 3, it is no longer guaranteed that this risk is
bounded by a. The question remains open whether under the null hypothesis
the actual size of the test indeed converges to a. To prove this conjecture would
require non-degenerate limit distribution theory for W2 (P, Pg), not only for
fixed § € ©, but even for sequences 6,, converging to 6 at certain rates which
depend on the model M under study (Beran, 1997; Capanu, 2019). As discussed
in Section 1.2, such asymptotic distribution theory is still far beyond the hori-
zon. Our numerical experiments in Section 5, however, support the conjecture
that the parametric bootstrap produces a test with the right asymptotic size.
For any 6 € O, any € > 0, and a sufficiently regular parametric model M and
estimator sequence 6,,, we conjecture that P}[1 — F, (¢pa, (@) < a+e] con-
verges to one as n — co. In Appendix B, we provide a theoretical justification
of the consistency of the parametric bootstrap in the univariate case, for which
the asymptotic distribution theory of the empirical Wasserstein distance is well
developed.

n
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Nevertheless, against a fixed alternative, the consistency of the test (16) based
on the parametric bootstrap can be established theoretically. The key is a law of
large numbers for the empirical distribution in Wasserstein distance uniformly
over classes of distributions that satisfy a uniform integrability condition, see
Appendix A. For the parameter estimator én, we assume weak consistency lo-
cally uniformly in 6: if p denotes the metric on © and if K(O) denotes the
collection of compact subsets of O, we will require that

Ve > 0, VK € K(©), lim sup Py [p(6,,0) > ¢] = 0. (17)

n—oo 9cK

As illustrated in Remark 1 below, this condition is satisfied, for instance, for
moment estimators of a Euclidean parameter under a uniform integrability con-
dition.

Proposition 3 (Consistency). Let M = {Py : 0 € O} C P,(R?), forp € [1,0),
be a model indexed by a metric space (O, p). Assume the following conditions:

(a) the map © — P,(R?) : 0+ Py is one-to-one and W,-continuous;
(b) 0, is weakly consistent locally uniformly in 0 € ©, i.e., (17) holds.

Then, the following properties hold:
(i) Tra.n — 0 in Py-probability locally uniformly in § € ©, i.e.,

Ve > 0, VK € K(0), lim sup Py [Th,, >¢] =0;

n—oo 0cK

(ii) the critical values cpp(c) tend to zero uniformly in 6, i.e.,

Ya > 0, VK € K(0), lim sup ¢, g(a) = 0;

N0 ge K
(i4i) for every P € P(R?)\ M such that there exists K € K(0) with
P”[éneK}ﬁl as n — oo,
we have lim,,_, ., P™ [qb?vl = 1] =1.
Proof. (i) By the triangle inequality, it follows that
T, = Wy(Pr Py ) < Wy (P Po) £ Wy (Py, Py ) (18)

for all 6 € ©. It is then sufficient to show that, for any compact K C O, each of
the W,,-distances on the right-hand side of (18) converges to 0 in P§-probability
uniformly in 6 € K.

First, since K is compact and 6 — Py is W,-continuous, the set

Mg :={Pp:0€ K}

is compact in Pp(Rd) equipped with the W),-distance. By Bickel and Freedman
(1981, Lemma 8.3(b)) or Villani (2009, Definition 6.8(b) and Theorem 6.9) and



1344 M. Hallin et al.

a subsequence argument, it follows that x + ||z||? is uniformly integrable with
respect to Mg, i.e.,

lim sup/ || APy () = 0.
lz||>r

7—00 0cK

Corollary 1 then implies that Wp(ﬁn,Pg) — 0 in Pj-probability as n — oo,
uniformly in 6 € K.

Second, as K is compact and § — Py is W),-continuous, there exists, for every
scalar € > 0, a scalar § = §(g) > 0 such that?

Ve K, V0' €O,  p(0,0) <5 = W,(Py,Py) <e.
It follows that
Ve K,  Py[W,(Py.Py ) >e] <Pylp(0.0,) > d].

By condition (b), the latter probability converges to 0 as n — oo uniformly
infeK.
(i1) Fix a > 0, & > 0, and K € K(©). By (i), there exists an integer n(e) > 1
such that
Vn > n(e), V0 € K, Py [Thmn > ] <a.

By definition of the critical values, also ¢, g(a) < ¢ for all n > n(e) and 0 € K.
(iii) Let P and K be as in the statement. Put ¢, = supyc g ¢n,9(a). We have

P" (@R =1] = P[Tain > ¢, 4. (a), O € K]
> P [T > cn, 0, € K.

In view of (ii), we have ¢, — 0 as n — oo, so that it is sufficient to show that
there exists € > 0, depending on P and M, such that lim,, ., P™ [TM,n > 5] =1.
Consider two cases, P € P,(R?) \ M and P € P(R?) \ P,(R?), according as P
has a finite moment of order p or not.

First, suppose that P € 7P,(R%) \ M. We have W,(P,Py) > 0 for
every § € © while the map § — W,(P,Py) is continuous. As K is
compact, 1 := inf {W,(P,Pg) : § € K} > 0. On the event {0, € K}, the
triangle inequality implies

Ty = Wy(Pu, Py ) > W,(P,P; ) — Wy(Py, P)
>n— Wp(lgm P)'

2This is a slight generalization of the well-known property that a continuous function on
a compact set is uniformly continuous. As a proof, fix ¢ > 0 and consider for each 8 € K
a scalar 6(6) > 0 such that for all 8 € © with p(6,60") < §(8) we have Wj,(Py,Py/) < /2.
Cover K by open balls with centers § € K and radii §(0)/2. By compactness, extract a
finite cover with centers 61,...,0,n € K. Put 6 = min; §(6;)/2. For every 0 € K and ¢’ € ©
with p(6,6) < 8, there exists j = 1,...,m such that p(0,6;) < §(6;)/2, hence p(0’,0;) < §(0;).
By the triangle inequality, Wy, (Pg,Pg/) < WP(P@J. ,Po) + Wp(ng ,Por) <e.
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We obtain that
P (¢} = 1] > P[T\(%, > /7, 0, € K]
> P[W,(P,,P) <n—c/? 8, c K.

As n > 0 and lim,, ¢, = 0, the latter probability converges to one by the
assumption made on K and the fact that W,(P,,P) — 0 in P"-probability
as n — 0o.

Second, suppose that P € P(R?) \ P,(R?). Since 6 — W, (Py,d) is contin-
uous, supye g Wp(Pg,do) is finite, with K as in (iii) and dy the Dirac measure
at 0 € R?. By an argument similar to the second part of the proof of Proposi-
tion 1, it follows that P"[Th ., > cp, 0, € K] — 1 as n — oo. O

Remark 1 (Uniform consistency). Under a mild moment condition, the uniform
consistency condition (b) in Proposition 3 is satisfied for method of moment
estimators—call them moment estimators—of 6 € © C RF. In the method of
moments, an estimator 6,, of 6 is obtained by solving (with respect to 6) the
equations

%ij(Xi) =Eolf;(X)], j=1,...,k
i=1

for some given k-tuple f := (f1,..., fx) of functions such that m: § — Ea[f(X)]
is a homeomorphism between © and m(0); see, for instance, van der Vaart
(1998, Chapter 4). The consistency of 6, = m~'(n~' Y27, f(X;)) uniformly
in § € K for any compact K C © then follows from the uniform consistency
over K of n™1 Y"1 | f(X;) as an estimator of Eg[f(X)] for such 6. By van der
Vaart and Wellner (1996, Proposition A.5.1), a sufficient condition for the latter
is that the functions f; are Pg-uniformly integrable for 0 € K, i.e.,

Jim sup B [0 H{If,(0)| > MY =0, j=1,....k,
—RPeK

Since I{|f;(X)| > M} < |f;(X)|"/M" for n > 0, a further sufficient condition
is that there exists 7 > 0 such that supge 5 Eo[| f;(X)|'™7] < 0o for j = 1,...,k.
Remark 2 (Parameter estimate under the alternative). In Proposition 3(iii), the
condition that there exists a compact K C © such that lim,, P”[én eKl=1
holds, for instance, when © is locally compact and 6,, is consistent for a pseudo-
parameter §(P) € ©. This is the case for the moment estimators of Remark 1
when © C R” is open and f is P-integrable with [ f(z)dP(z) € m(©).
Remark 3 (Non locally compact parameter spaces). Proposition 3 allows for
infinite-dimensional parameter spaces ©. An example would be the space of all
copulas of given dimension equipped with a metric that metrizes weak conver-
gence, a space that is still compact thanks in view of Prohorov’s theorem. If © is
not locally compact, however, then condition (iii) is too severe and the compact
set K should be replaced by its enlargement

K°={0€©:30 € K,p6,0) <} for some sufficiently small § > 0
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(van der Vaart and Wellner, 1996, Definition 1.3.7). The conditions on 6 — Py
and the estimator 6,, then should be modified accordingly. We are grateful to
an anonymous Referee for pointing this out.

4.1. Parametric models with group subfamailies

Consider again the testing problem (13). Sometimes the unknown parameter
can be decomposed as 6 = (v,n) € ¥ x H = O, where, for fixed v, the sub-
family My, = {Py, : 7 € H} is a group family as in Section 3, generated by
a group G = {g, : 7 € H} of transformations g, : R? — R independent of .
Think for instance of the case where v is a vector of shape parameters and 7 a
vector of location-scale parameters, with G the group of Example 1.

Suppose further that a weakly consistent estimator 0, = (1/1n, fin) exists with
the following two properties:

(i) p, is invariant under G: writing ¥, = U (X1,...,Xn), we have

Un (@1, 20) = U (gy(21), .., gn(20)) (19)
for all n € H and all possible samples (z;)}_;.
(i) 7y, is equivariant as in (9).
Then we propose a hybrid approach: compute the estimated residuals
Zinm=g; (X)), i=1,....n, (20)
and form the test statistic

T = WZ;)( 'Y 0 wnme) (21)

with n. € H the parameter yielding the 1dent1ty transformation g, (z) = x.

For 6 = (4, n), the distribution function ¢ — F,, o(t) = Py [Trm,n < t] of the test

statistic depends on ¥ but not on 5. It can thus be computed as if n = 7., that

is, Fyu p.n = Fi .y, - The proof of this invariance property relies on (i)-(ii) above.
The actual p-value of Ty, under HO is

L= Foyn(Trmn)
while the critical value for a test of size a € (0,1) is now
Cnp(e) =inf{t > 0: Fy . (1) >1—a}.
Both are infeasible, however, since the null distribution of T, depends on the

unknown 1. We therefore compute p-values and critical values under (ﬁn, e )-
More precisely, we apply the parametric bootstrap. The test thus takes the form

o = L ifl—F, 5 (Trm,n) < a or, equivalently, T, > ¢, 5 (a), (22)
M7 10 otherwise.
In practice, the distribution F - and the associated critical values ¢ rn (@)

are computed by Monte Carlo’ approximation, as described in the paragraph
following (16). If the dimension of 1 is sufficiently low, we can pre-compute the
critical values ¢, () for ¢ on a finite grid ¥/ C ¥ and then reconstruct the
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critical value function by interpolation or smoothing. The reduction from 6 to 1
thus brings a clear computational benefit.

We conjecture that, asymptotically, the test has the correct size under the
null hypothesis. The obstacle for the proof is the same as before: required is the
asymptotic distribution of the empirical Wasserstein distance, which is a very
hard, long-standing open problem. In Section 5.3, we provide numerical sup-
port for the conjecture by an application to a five-dimensional distribution with
separate location-scale parameters for each margin (ten parameters in total)
and a single copula parameter. By exploiting invariance, the computation of the
critical value is facilitated as the copula parameter remains as single argument.

Since the distribution of T, under 6 = (¥,n) is the same as
under 6, = (¥, n.), consistency of the hybrid test can be established by combin-
ing ideas from Propositions 2 and 3.

5. Finite-sample performance of GoF tests

This section is devoted to a numerical assessment of the finite-sample perfor-
mance of the Wasserstein-based GoF tests introduced in the previous sections.
We compare them, whenever possible, with other tests. The case of a simple
null hypothesis (Section 2) is treated in Section 5.1. The performances of var-
ious tests for multivariate normality, which is a special case of the hypothesis
of a group model in Section 3, are compared in Section 5.2.1, along with an
illustration involving a Student ¢ distribution with known degrees of freedom in
Section 5.2.2. Section 5.3 considers, in line with Section 4.1, the more general
composite null hypothesis of a parametric family indexed by marginal location
and scale parameters along with a copula parameter. Numerical results support
the conjecture of the (asymptotic) validity of the parametric bootstrap for cal-
culating critical values. To the best of our knowledge, no GoF test is available
in the literature for such cases except for the method described by Khmaladze
(2016), the numerical implementation of which, however, remains unsettled.

Throughout, we consider the Wasserstein distances of order p € {1,2}. The
level o of the tests is set to 5%, the sample size is n = 200, and the number of
replicates considered in the estimation of power curves is 1000. As mentioned
in Section 1.3 we relied on the R package transport (Schuhmacher et al., 2019)
in case p = 2 and d = 2 and on our own C implementation of the algorithm
proposed by Genevay et al. (2016) in all other cases. See also Appendix D for
some details on the calculation of the critical values.

5.1. Sitmple null hypotheses

The setting is as in Section 2: given an independent random sample X7,..., X,
from some unknown P € P(R?), we consider testing the simple null hypothe-
sis HE : P = Py, where Py € P,(R?) is fully specified.

Two other goodness-of-fit tests will be used as benchmarks: the test by Rippl,
Munk and Sturm (2016), which is based on the 2-Wasserstein distance and
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is specific for multivariate Gaussian distributions, and the adaptation of the
Kolmogorov—Smirnov test by Khmaladze (2016), which is based on empirical
process theory. Both tests are described in some detail in Appendix C.

5.1.1. Bivariate Gaussian distribution

In Figure 1, we assess the performance of the GoF tests of Hj : P = Py
where Py = N3(0, I2) is a centered bivariate Gaussian with identity covariance
matrix. The alternatives P in panels (a)—(f) are as follows:

(a) P = N5((4),I2) with location shift 4 along the main diagonal (rejection
frequencies plotted against u € R);

(b) P = N5(0,02I5) (rejection frequencies plotted against o > 0);

(c) P =N (07 (; ’1))) with correlation p (rejection frequencies plotted against
p€(—1,1))

(d) P has standard normal margins but Gumbel copula with parameter 0 (re-
jection frequencies plotted against 6 € [1,00));

(e) P has standard Gaussian margins but a bivariate Student ¢ copula with v =
4 degrees of freedom and correlation parameter p (rejection frequencies plot-
ted against p € (—1,1));?

(f) P is the “boomerang-shaped” Gaussian mixture described in Appendix E
(rejection frequencies plotted against the mixing weight p € (—1,1)).4

The Gumbel and Student ¢ copula simulations in (d) and (e) were implemented
from the R package copula (Hofert et al., 2018).

Inspection of Figure 1 indicates that the Khmaladze test, as a rule, is uni-
formly outperformed by the Rippl-Munk-Sturm and Wasserstein tests. The
Rippl-Munk—Sturm test, of course, does relatively well under the Gaussian al-
ternatives of panels (a)—(c) where, however, the Wasserstein test is almost as
powerful (while its validity, contrary to that of the Rippl-Munk—Sturm test, ex-
tends largely beyond the Gaussian null hypothesis). Against the non-Gaussian
alternatives in panels (d)—(f), the Wasserstein test has higher power than the
Rippl-Munk—Sturm and Khmaladze tests, with the exception of the Gumbel
copula alternative in panel (d), where the Rippl-Munk—Sturm and Wasserstein
tests perform equally well. For the “boomerang mixture” of panel (f), the Rippl-
Munk—Sturm test fails to capture the change in distribution. There is little dif-
ference between the Wasserstein tests with p = 1 and p = 2, except for the
t-copula, where p = 2 yields a more powerful test than p = 1.

5.1.2. Mixture of bivariate Gaussian distributions

Figures 2 to 4 concern non-Gaussian null distributions Py, so that the Rippl—
Munk-Sturm test no longer applies. In Figure 2, the null distribution is the

3Note that P is not Gaussian, even for p = 0.
4The mixture is constructed so that the first and second moments of P remain close to
those of Pg.
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Fic 1. Empirical powers of various GoF tests for the simple Gaussian null hypothesis Hg :
P = N2(0, I2). Four tests are considered: the 2- and 1-Wasserstein distances (Section 2), the
Rippl-Munk—Sturm test (Rippl, Munk and Sturm, 2016), and the Khmaladze Kolmogorov—
Smirnov type test (Khmaladze, 2016), see Section C. The alternatives P in panels (a)-(f)
are described in Section 5.1.1. Note that in (e), P is not Gaussian even when p = 0.

Gaussian mixture Py = 0.5 N5(0, I3) +0.5 N> (( B ) , .[2). The alternatives in both

panels

are as follows:

(a) P =0.5N2(0,12) + 0.5N3 ((34°),1) (rejection frequencies plotted against
the location shift § € R);
(b) Po = AN(0,12)+(1=A) N> ((3),I2) (rejection frequencies plotted against
the mixing weight A € [0, 1]).

Both Wasserstein tests have higher power than the Khmaladze (2016) test.
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alternatives in (a)—(b) are described in Section 5.1.2.

5.1.3. Gumbel copula and Gaussian marginals

In Figure 3, Py has standard Gaussian margins and a Gumbel copula with
parameter § = 1.7. The alternative P is of the same form but with another
value 0 # 1.7 of the copula parameter 8 € [1,00). Again, the Wasserstein tests

at p € {1,2} have quite comparable performance and yield higher empirical
powers in most cases.

5.1.4. A five-dimensional Student t distribution

Let us turn now to a higher-dimensional case. In Figure 4, we test for the null
hypothesis H{ : P = Py with Py = ®15:1t25 a five-dimensional distribution with
independence copula and Student to5 margins. The following alternatives are
considered:

(a) A distribution with independence copula and Student ¢, margins. The re-
jection frequencies are plotted against v.

(b) A distribution with independence copula and margins equal to the Student
tos distribution shifted by u. The rejection frequencies are plotted against p.

(c) A distribution tos ® tas @t @tas 5, Where t, s is the bivariate Student ¢ dis-
tribution with v degrees of freedom and dependence parameter §. Note that

0 = 0 does not correspond to the null hypothesis. The rejection frequencies
are plotted against J.

The Khmaladze Kolmogorov—Smirnov test is most sensitive to the change in
location (b), although the two Wasserstein tests perform quite well too. For the
other two alternatives, the Wasserstein tests have much higher power than the
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alternative copula parameter 0.

Khmaladze test. For the Wasserstein test, there is little difference between p = 1
and p = 2, except for case (c), in which the choice of p = 2 yields higher power.

5.2. Elliptical families as group models

Elliptical distributions arise as group models for the group of affine transforma-
tions, see Example 2 in Section 3. Two notable examples are the multivariate
normal family and the multivariate Student ¢ distribution with a fixed number of
degrees of freedom. We assess the finite-sample performance of the Wasserstein
test in (10) for p € {1, 2} with residuals computed by

Zpi= LM (Xi = fin),  i=1,...,m,

with fi,, the sample mean vector and L, the lower Cholesky triangle of the
empirical covariance matrix of Xq,..., X,,.

5.2.1. Testing for multivariate normality

Testing for multivariate normality is a well-studied problem for which many tests
have been put forward. As benchmarks, we will consider here the tests proposed
in Royston (1983), Henze and Zirkler (1990), and Rizzo and Székely (2016).
Royston’s test is a generalisation of the well-known Shapiro—Wilks test. It only
tests whether the margins are Gaussian and ignores the dependence structure.
The Henze—Zirkler test statistic is an integrated weighted squared distance be-
tween the characteristic function of the multivariate standard normal distribu-
tion and the empirical characteristic function of the empirically standardized
data. Interestingly, Ramdas, Garcia Trillos and Cuturi (2017) showed that the
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obtained via the Wasserstein test of order p € {1,2} and the Khmaladze Kolmogorov—Smirnov
one. Alternatives (a)—(c) are described in Section 5.1.4; in (c), no setting is corresponding
to the null hypothesis.

Wasserstein distance and the energy distance of Rizzo and Székely (2016) are
connected, as the so-called entropy-penalized Wasserstein distance interpolates
between them two. We borrowed the implementation of these tests from the
R package MVN (Korkmaz, Goksuluk and Zararsiz, 2014). The test by Rippl,
Munk and Sturm (2016) considered in Section 5.1 does not apply, since it only
can handle fully specified Gaussian distributions, while here, the mean vector
and covariance matrix are unknown.

In Figure 5, we consider dimensions d = 2 [top row, panels (a) and (b)]
and d = 5 [bottom row, panels (c¢) and (d)]. Here are the alternative distribu-
tions P:

(a) A bivariate distribution with standard normal margins and a bivariate Gum-
bel copula with parameter ¢ € [1,00). Rejection frequencies are plotted
against ¢ € [1, 00).

(b) A bivariate distribution with independent margins, one of which is standard
normal while the other one is Student ¢ with v > 0 degrees of freedom.
Rejection frequencies are plotted against v > 0.

(¢) A five-variate distribution given by N3(0, I3) ® D, where D is a bivariate
distribution with Gumbel copula indexed by a parameter ¢ € [1,00) and
with standard normal margins. Rejection frequencies are plotted against 1.

(d) A five-variate distribution with independent margins, all of which are Stu-
dent t,. Rejection frequencies are plotted against the common parameter v.

The Wasserstein tests have the highest power against the copula alterna-
tives in (a) and (c), while Royston’s test has no power at all, as expected. For
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Fic 5. Empirical power curves of various tests that P is d-variate Gaussian with unknown
mean vector and covariance matriz. Top: d = 2. Bottom: d = 5. The Wasserstein test in
Section 3 is compared to three other multivariate normality tests mentioned in Section 5.2.1,
where the alternatives (a)—(d) are described as well.

the Student ¢ alternatives in panels (b) and (d), Royston’s test comes out as
most powerful, but the Wasserstein and energy tests (Rizzo and Székely, 2016)
perform quite well too. It is also worth noticing that in panel (b), Royston’s test
had a type I error of 6.3% and in panel (d) this rose to 8.8%.

5.2.2. Bivariate elliptical Student t with unknown location and scatter

For fixed scalar v > 0, the d-variate elliptical Student ¢ family with v degrees
of freedom and unknown location and scatter is generated by the affine trans-
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Rej. freq.

Fic 6. Empirical power of the Wasserstein test in (10) for the hypothesis that P is bivari-
ate Student t with v = 12 degrees and unknown mean vector and covariance matriz. The
alternatives P are bivariate skew-t with skewness parameters a; and az.

formation group in Example 2 applied to a spherical distribution whose radial
density is that of the square root of a rescaled Fisher F(d,v) variable. In di-
mension d = 2, we consider the hypothesis that P is of this form with v = 12.

Figure 6 provides a plot of rejection frequencies under bivariate skew-¢ alter-
natives (Azzalini, 2014) with marginal skewness parameters a7 and as. Simula-
tions were based on the R package sn (Azzalini, 2020). In principle, the empirical
process approach in Khmaladze (2016) leads to test statistics that are asymptot-
ically distribution-free, but their numerical implementation involves a number
of multiple integrals, the computation of which remains problematic.

5.3. General parametric families

Turning to more general parametric families M = {Py : § € O}, we investi-
gate the finite-sample performance of the Wasserstein-based tests in Section 4.
We consider models indexed by location, scale, and shape parameters. As in
Section 4.1, the location-scale parameters are treated as stemming from the
transformation group in Example 1 of Section 3, while for the shape param-
eters, we apply the parametric bootstrap. The test is thus the one we define
n (22). We numerically investigate our conjecture that the test has the correct
size asymptotically. In theory, the Khmaladze (2016) approach also applies, but
its implementation is intricate and remains unsettled, especially when there are
multiple parameters.

5.8.1. Gaussian margins and AMH copula

Let M consist of the bivariate distributions with Gaussian marginals and an
Ali-Mikhail-Haq (AMH) copula, yielding a vector 8 = (¢, u1, 01, 2, 02) of five
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parameters: the AMH copula parameter ¢ € © = [—1, 1], the means p1, 2 € R,
and the standard deviations 01,09 € (0,00). The means and standard devia-
tions are estimated by their empirical counterparts, so that the residuals (20)

are Zi,n = (Zi,l,ru Zi’g}n) with
Zijn = (Xijj = fyn)/Gjm (23)

fori=1,...,n and j = 1,2. Following Genest, Ghoudi and Rivest (1995), the
copula parameter v is estimated via a rank-based maximum pseudo-likelihood
estimator. Obviously, the component-wise ranks of the data and those of the
residuals in (23) coincide, so that v, as required, depends on the data only
through the residuals. The test statisti Tiq,y in (21) is the Wasserstein distance
between the empirical distribution of the residuals and the bivariate distribution
with standard Gaussian margins and AMH copula with the estimated parame-
ter.

We first checked the validity of the parametric bootstrap procedure of Sec-
tion 4. To do so, we simulated 1000 independent random samples of size n = 200
from P € M with ¢ = 0.7. For each sample, we calculated the test statis-
tic T, in (21) and checked whether or not it exceeds the bootstrapped criti-
cal value caq(a, n, zﬁn) for v equal to multiples of 5%. The critical values were
computed as described below (22). The points in Figure 7(a) show the empirical
type I errors as a function of a. The diagonal line fits the points well, supporting
the conjecture that the parametric bootstrap is asymptotically valid.

Figure 7(b) similarly displays the rejection frequencies of the Wasserstein test
for p = 2 under an alternative P whose copula belongs to the Frank family. If
the Frank copula parameter is equal to zero, the Frank copula reduces to the
independence copula, which is a member of the AMH family too.

5.8.2. A multivariate Gumbel maz-stable family

Next, let M = {Qg : 6§ € O} be the family of d-variate distributions with Gum-
bel margins with unknown location and scale parameters (/;,s;) € R x (0, 00)
for j =1,...,d and a Gumbel copula with unknown shape parameter ¢ € [1,00).
Each Py € M is thus a d-variate max-stable distribution, that is, a possible
large-sample limit of the vector of affinely normalized component-wise maxima
of an i.i.d. sample from a common distribution (Beirlant et al., 2004, Chapter 9).

There are 2d+1 parameters in total. We treat the 2d location-scale parameters
as indexing the transformation group in Example 1 of Section 3. The parameters
are estimated in two stages:

1. The 2d location-scale parameters are estimated separately for each margin
j=1,...,d by maximum likelihood, producing l} and 5;.

2. The copula parameter is estimated by maximum likelihood on the basis
of the estimated residuals Z; ,, = (ZAi,j7,L)?:1 with

ZLjvn:(Xiyj*lAj)/éj, ’L:].,,Tl
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Fic 7. Wasserstein tests for Hy : P € M with M the parametric family of bivariate distribu-
tions with Gaussian margins and AMH copula (Section 5.3). Test statistics and critical values
are computed from estimated residuals via a parametric bootstrap as in Section 4.1. Panel (a):
real versus nominal type I errors a based on 1000 samples of size n = 200 drawn from P € M
with ¢ = 0.7. Panel (b): powers against alternatives P with Gaussian marginals and Frank
copula with varying parameter; if the latter is zero, the Frank copula is the independence one,
which belongs to the AMH family too.

This two-stage maximum pseudo-likelihood estimation procedure usually enjoys
a high relative efficiency with respect to the full maximum likelihood estimator
and is computationally much simpler (Joe, 2005). The location-scale estima-
tors are equivariant under location-scale transformations. The residuals and the
copula parameter estimator are thus invariant under such transformations.

We then proceed as in Section 4.1. The goodness-of-fit statistic T,y in (21)
measures the Wasserstein distance between the empirical distribution of the esti-
mated residuals and the d-variate max-stable distribution with standard Gumbel
margins and Gumbel copula with the estimated parameter. The goodness-of-fit
test is carried out as in (22).

Figure 8 shows simulation results in dimensions d = 2 and d = 5 on top and
bottom rows, respectively.

e On the left, the evaluation of the bootstrap accuracy is carried out as in
Figure 7(a). Samples are generated from a distribution in the model with
Gumbel copula parameter ¢ = 5/3. The results support the conjecture
that the Wasserstein-based tests with critical values calculated by the
parametric bootstrap have the correct size, at least asymptotically.

e On the right, the power is calculated against alternative distributions
whose margins are Generalized Extreme-Value (GEV) distributions with
common shape parameter £ indicated on the horizontal axis. Note
that £ = 0 corresponds to the null hypothesis. For £ > 0, the distribution
has finite moments up to order p < 1/£ only. This explains perhaps why
the power of the Wasserstein test for p = 2 is less than for p = 1.
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(Corollary 1) the desired uniform convergence in probability. The notation is
that of Section 1.2, with Ep standing for expectation under an independent
random sample from P.

Theorem 1. Let M C P,(R?) be such that

lim sup / [lz]|? dP(x) = 0. (24)
flzl|>r

T—00 PeM

Then we have R
nl;néo Sél}\)/t Ep {W;(PR,P)} =0.

The condition on M is equivalent to assuming that the closure of M in
the metric space (P,(R%),W,,) is compact. This follows from Prohorov’s theo-
rem and the characterization of W,-convergence in Bickel and Freedman (1981,
Lemma 8.3) or Villani (2009, Theorem 6.9).

The convergence rate of Ep{Wg’(ﬁn,P)} has been studied intensively. In
Fournier and Guillin (2015, Theorem 1), for instance, the expectation is bounded
by an explicit expression involving n, p,d, and the moment of order g of P for
some g > p. Bounds on such moments for all P € M then imply a uniform
rate of convergence in P € M. In contrast, we do not impose the existence of
moments of order ¢ higher than p, but only the uniform integrability of the p-th
order moment.

The challenge in the proof of Theorem 1 is to obtain a sufficiently sharp
and explicit bound on Ep{W}(P,,P)}. Such a bound is known for absolutely
continuous measures in terms of a weighted total variation distance (Villani,
2009, Theorem 6.15). To apply that bound, an additional smoothing step is
needed, and the whole procedure needs to work uniformly in the underlying
probability measure, relying only on the uniform integrability condition (24).

Proof of Theorem 1. The following smoothing argument is inspired by the proof
of Theorem 1.1 in Horowitz and Karandikar (1994). Let U, denote the Lebesgue-
uniform distribution on the ball {z € R? : |lz|| < ¢} in R? with radius o €
(0,00) and centered at the origin. Denoting by * the convolution of probability
measures, we have, for any Q € P,(R?),

W,(Q=*U,,Q) <o.

Indeed, if X and Y are independent random vectors with distributions Q and U,,,
respectively, then (X 4+ Y, X) is a coupling of Q x U, and Q, so that

Wp(Q=Uy, Q) <E[IY[F] < 0.
By the triangle inequality, it follows that
W,(P,,,P) < 20 + W, (P,, % Uy, P % U,).
Taking expectations and using the elementary inequality

(a+b)p§2p_1(ap—|—bp) forp>1, a>0, and b >0,
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we obtain
Ep {WF(P,,P)} <207 [2P6P + E{WZ(P,  U,,P +U,)}].
If we can show that

Yo > 0, lim sup E{Wp P, Uy, PxU, )} =0, (25)
nﬁOOpeM

then it will follow that

Yo > 0, limsup sup Ep {W? (P, P) }<2%loP,
n—oo PeM

But then the limsup is actually a limit and is equal to zero, as required.

Let us proceed to show (25). Fix ¢ > 0 for the remainder of the proof.
Let f, denote the density function of U,. The measures l?’n x U, and Px U, are
absolutely continuous too and have density functions z — n=1 3" | fo(x — X;)
and @ — [5q fo(z — y)dP(y), respectively. The Wasserstein distance can be
controlled by weighted total variation (Villani, 2009, Theorem 6.15):

WE(P, Uy, P 5 U, )
<2t [ el Py + Uy =P Ul (@)

:21’*1/ ke Zfa z— i)—/Rd fo(x —y)dP(y)

Take expectations and apply Fubini’s theorem to see that

dzx.

Ep {W2(B, % Uy, PxU,)} < 2071 /RdH:UHpgn(w;P)dx (26)

1 n
ﬁ;fa(l'_Xi) —/Rd Jo(z —y)dP(y) ] :

Let r > o and split the integral in (26) according to whether |z| > r
or ||z|| £ r. Note that f,(u) = f,(0) if |ly|| < ¢ and f,(u) = 0 otherwise.
For any P € P(R%) and any = € R?, we have, by the Cauchy-Schwarz inequal-
ity,

where

gn(x; P) =Ep

gn(;P) < 0”2 £,(0).
It follows that

lim  sup / l2]|P gn (z; P) dz = 0.
T PEPRY) S| <r

But then, in view of (26), we have

limsup sup Ep {WP(P P, #U,, PxU,)} <limsup sup 27~ 1/ lz||P gn (z; P) da.
n—oo PeM n—oo PeM H33H>T
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By the triangle inequality, we also have, for all n,

i) <2 [ oo = y)aPl).

Applying Fubini’s theorem once more, we obtain

Pgn(z:P)da < 2 P (z —y)dP(y)d
/Wmng(x )de /H$|>T||x /yeRdf(w y) dP(y) dz
- / / el gt = arapy)

- / / i+ gl fo (u) du dP(y).
yeR J |lu+ty|>r

Since f(u) = 0 whenever ||u|| > ¢ and since r > o, we have

227 P +lylP) i [lyll > r o,
0 otherwise.

/ a4 ylP £ () du <
[[uty||>r

Choosing r > 20, we get that ||y|| > o for all y in the non-zero branch above,
and thus, for all n,

/| ety de <2 / lylP dP(y).
x||>r

lyl>r—c

It follows that, for every r > o,

limsup sup Ep {W;(ﬁn *Ug, P+ U,)} < 2% sup / ly||? dP(y).
n—oo PeM PeM J|y||>r—0c

The left-hand side does not depend on 7. The condition on M implies that
the right-hand side converges to zero as r — oo. It follows that the left-hand
side must be equal to zero. But this is exactly (25), as required. The proof is
complete. O

Corollary 1. For M as in Theorem 1, we have

Ve > 0, lim sup P"[WZ(P,,P) > ¢] =0,
n—oo PeM

i.e., W;’(f’n,P) — 0 in probability as n — oo, uniformly in P € M.
Proof. By Markov’s inequality, for every e > 0 and every P € P,(R?), we have
P"[W,(P,,P) >¢] < e PEp {WZ(P,,P)}.

In view of Theorem 1, the expectation converges to zero uniformly in P € M.
O
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For a single P € P,(R%), Lemma 8.4 in Bickel and Freedman (1981) says

that Wp(13n7P) — 0 almost surely as n — oo. Whether Corollary 1 can be
strengthened to almost sure convergence uniformly in P, i.e., whether

Ve > 0, lim sup P" | sup W”(Pm,P) >e| =0,
n—00 pc M m>n

remains an open problem.

Appendix B: Consistency of the parametric bootstrap in the
univariate case

In Section 4, we left open the conjecture of the consistency of the parametric
bootstrap procedure for the Wasserstein GoF test in general parametric families.
Proving it requires asymptotic distribution theory for the empirical Wasserstein
distance, which, in general, is a difficult and long-standing open problem (Sec-
tion 1.2). In the univariate case, however, the large-sample distribution of the
empirical Wasserstein distance is known, enabling a theoretical analysis.
Consider the same notation as in Section 4 and assume d = 1. In the uni-
variate case, the Wasserstein distance can be expressed as the L, distance be-
tween quantile functions, see Panaretos and Zemel (2019, Section 1.2.3) and
the references therein. Let Fn’ I denote the empirical quantile function of the
sample X1,..., X, and let F, 1 denote the quantile function of Py, defined as
the (generalized) inverse of the cumulative distribution function Fp of Py. The
normalized Wasserstein GoF test statistic in Section 4 takes the form

Ry = 0P Tpg = P2 WE (P, Py / [Ca(w)]” du, (27)

where (,, is the empirical quantile process at the estimated parameter:
Gulw) = Va{F7 w) = F M (w)}, e (0,1). (28)

We follow the notation and logic of Beran (1997). Let H,,(#) denote the sam-
pling distribution of R,, under P}. We would like to use H,, () to draw inference
based on the observed value of R,,, for instance by comparing the latter to a criti-
cal value computed under H,,(¢). Since we do not know 6, we do not know H,,(6)
either. The parametric bootstrap consists of estimating the unknown sampling
distribution of R, by the random probability measure Hn(én), the sampling
distribution of the statistic R,, under the estimated parameter. In practice,
we calculate relevant quantities related to H,(6,) such as critical values or p-
values by Monte Carlo simulation, drawing many bootstrap samples X7, ..., X
from P; and calculating the test statistic R}, from those.

The question is whether inference drawn from R, based on Hn(én) rather
than on H, () is still valid, at least asymptotically. Let H(6) denote the limit
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distribution of R,, under P} as n — oo, assuming it exists. If H,,(6,,) converges
weakly to the same limit H(6) for any sequence 6,, € © such that

\/E(an —0) =0(1), n — 00, (29)
then it follows that in Pj-probability, the estimated sampling distribution H, (én)
converges weakly to H(6) for all estimator sequences 6, such that \/n(6, — 6)
is Opy (1) as n — co. [The estimator 6, in the definition of R, need not even be

the same as the one under which we calculate the sampling distribution H,(6,,),
but for simplicity, we assume it is.]

The normalized test statistic R, in Eq. (27) is a functional of the empirical
quantile process (, in Eq. (28). In Proposition 4 below, we will show that the
weak limits as n — oo of the finite-dimensional distributions of ¢,, under Py
for 0,, — 0 € © do not depend on the particular sequence 6,, as long as Eq. (29)
and certain assumptions on the model and the estimator sequence are fulfilled.

Assumption 1. M = {Py : § € ©} C P(R) is a parametric model and 6, is an
estimator sequence satisfying the following properties:

(A1) © is an open subset of R¥;

(A2) Py has density fo with respect to one-dimensional Lebesgue measure for
every 0 € ©;

(A3) M is differentiable in quadratic mean at any 6 € © with score function
by = Vylog fo(x) : R — R* and non-singular k& x k Fisher information
matrix Zy = ]Eg[ég(X)é@(X)T];

(A4) the estimator sequence 6, is regular and asymptotically linear at § € ©
with influence function yg.

Asymptotic linearity in Assumption (A4) means that
. 1 &
1/2 _
n?(0, - 0) = 7n ;:1 Yo(Xi) +opp(l),  n— oo, (30)

with Py-square integrable influence function 1y : R — R* satisfying
Eo[1ho(X)] = 0.

Regularity in (A4) means that the influence function vy satisfies
o — Ly Lo by

where 0y = Iy 14y is the efficient influence function for estimating 6 and Ly
means orthogonality in Ls(Py); an equivalent criterion is that

Eo[tho(X) bg(X)T] = I, (31)

the k x k identity matrix. We refer to van der Vaart (1998, Chapters 7-8) and
Bickel et al. (1993, Chapter 2) for more background on these assumptions, which
are standard.
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Proposition 4. Let M = {Py: 0 € ©} C P(R) be a parametric model and 6,
an estimator sequence such that Assumption 1 is satisfied. Suppose that fg is
continuous and strictly positive on the interior of the support of Py and that, for
every fized u € (0,1), the quantile function Fgl(u) is continuously differentiable
as a function of 0. Then, for all 0,0, € © satisfying Eq. (29) and for every
vector (uy, ..., um) € (0,1)™, the quantile process ¢, in Eq. (28) satisfies

(Galuy)) B Ni(0,Tg), 1 — o0, (32)

where Ty is a certain m X m covariance matriz given in Eq. (37) below and
where the arrow means weak convergence of the law under Py — of the random
vector on the left-hand side to the law of the random vector on the right-hand
side.

The proof of Proposition 4 is given below. Passing from the asymptotics of
the finite-dimensional distributions of ¢, to those of R, in Eq. (27) requires
two things: asymptotic tightness of (, as well as regularity conditions on Py
controlling the tails of the quantile functions to be integrated. The former is a
classical topic in empirical process theory, see for instance Chapters 19 and 21
in van der Vaart (1998). Regarding the latter, see del Barrio, Giné and Utzet
(2005) for the case p = 2 and Bobkov and Ledoux (2019) for general p > 1.

The important thing in Proposition 4 is that the limit (32) does not depend
on the sequence (0,,),. If integration and passage to the limit in Eq. (27) is
permitted, the asymptotic equivariance in law in Eq. (32) for ¢, continues to
hold for the normalized test statistic R,. The consistency of the parametric
bootstrap for the Wasserstein GoF test then follows as explained in the lines
below Eq. (29).

Proof of Proposition 4. By a subsequence argument, we can and will assume
that h,, = /n(6, —0) — h € R* as n — oo. The proof proceeds by Le Cam’s
third lemma following the strategy in van der Vaart (1998, Section 7.5).

By Theorem 7.2 in the same reference, Assumption 1 implies that the log-
likelihood ratio of Py with respect to Py admits the expansion

- I o, 1
tog [ %(Xi) = = S Th(X) — gh Toh oy (1), oo (39)
i=1 =1

with n= /23" | f5(X;) asymptotically Ny (0,Zp) under P} as n — oo. This
means that the sequence of statistical experiments {Py : 6 € ©} is locally
asymptotically normal.

To show Eq. (32), we need to find the joint limit distribution under 6 of the
finite-dimensional distributions of (,, together with the log-likelihood ratio in
Eq. (33). If the joint limit is Gaussian and if the asymptotic cross-covariance
with the term corresponding to the log-likelihood ratio is zero, then by Le Cam’s
third lemma (van der Vaart, 1998, Example 6.7), the asymptotic distribution
of (,, under 6,, is the same as under 6, as required.
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Fix 0 < u < 1. We derive an asymptotically linear expansion of ¢, (u). By the

delta method (van der Vaart, 1998, Theorem 3.1) and the asymptotic linearity
of 6, in Eq. (30), we have

Vi{E; H(u) = FyH(w)} = V(0 = 0) T VoFyH (u) + opg (1)
WZ% " VoFy (u) +opg(1), o0,

Further, by the functional delta method, the empirical quantile function satisfies

Va{F ) - Fy ) = Z“X<F (u)))}‘“mpg(l), n = 0o,

see van der Vaart (1998, Corollary 21.5). Subtract both expansions to get
1 n
Cn(u) = _ﬁ ;gg(Xz,u) +Opg(1), n — oo, (34)

where

+ () VoFy (u).

go(,u) = He=Fy (u)i —-

fo(Fy ()

-1
Differentiating the identity u = f_lz‘io (u) fo(x)dz with respect to 6 using
Leibniz’ integral rule yields, after some calculations, the identity

1 .
1y Bolle(X) 1{X < Fy ' (u)}]. (35)
fo(Ey ™ (u)) ’
The regularity property (31) of the influence function vy, the centering pro-
perty Eg[lg(X)] = 0 of the score function in Assumption 1 and the identity (35)
for the gradient Vo F, ! (u) combine to imply that

Eo [(6(X) go(X,w)| = 0. (36)

Let u; € (0,1) for j = 1,..., m. By the multivariate central limit theorem, the
expansions (33) and (34) combine with Slutsky’s lemma to yield the convergence
in distribution of the sequence of (m + 1)-dimensional random vectors

T S, v
(Cn(ul), ol (n(um),logil;[l ﬁ(XZ)>

to a certain (m + 1)-variate normal variable. Each of the first m components of
the limiting normal random vector is centred and, by Eq. (36), uncorrelated with
the (m~+1)th one. By Le Cam’s third lemma (van der Vaart, 1998, Example 6.7),
the limit distribution of (¢, (u;))}2; under 6, is then the same as under : an m-
variate centred normal distribution with covariance matrix I'y having elements

Lo(j1,42) = Eo [90(X, uj,) 9o (X, ug, )], Ji,J2 €{1,...,m}. (37)
O

vng_l(u) = -
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The above argument for the consistency of the parametric bootstrap in case
d = 1 was made possible by the representation in Eqs (27)—(28) of the nor-
malized test statistic R, in terms of the empirical quantile process (,. This
representation made it possible to find the invariant limit distribution of R,
under contiguous alternatives 6, = 6 + O(1/y/n). In case d > 2, however, no
sufficiently explicit representations of the empirical Wasserstein distance are
hitherto known to enable a similar analysis.

Appendix C: Some other GoF tests

We provide details about the tests appearing in the comparisons in Section 5.1.

Rippl, Munk and Sturm (2016) consider the fully specified Gaussian null
hypothesis Hi : P = Ny(uo, Xo) with given mean and covariance. Recall that the
squared 2-Wasserstein distance between two d-variate Gaussian distributions is

W3 (Na(pr, £1), Na(pz, 22)) = llua — pol|* + tr {31 + T2 — 2(21/22221/2)1/2}-

The Rippl-Munk-Sturm test statistic is W3 (Ng(Xn, Sn,x), Na(po, Xo)), with X,
and 5, x the sample mean and sample covariance matrix, respectively. This test
is sensitive to changes in the parameters of the Gaussian distribution but not to
other types of alternatives. Calculation of the test statistic is straightforward.
To compute critical values, we relied on a Monte Carlo approximation, draw-
ing many samples from the Gaussian null distribution and taking the empirical
quantiles of the resulting test statistics.

Khmaladze (2016) constructs empirical processes in such a way that they are
asymptotically distribution-free, which facilitates their use for hypothesis test-
ing. A special case of the construction is as follows. Let the d-variate cumulative
distribution function (cdf) F be absolutely continuous with joint density f,
marginal densities f1,..., fq, and copula density c. Define

I(z) = {C(Fl(a:l),...,Fd(xd))}l/g, z € RY

with Fy, ..., Fy the marginal cdfs of F'. The d-variate cdf G(z) = H?:l Fj(x;)
has the same margins as F', but coupled via the independence copula. Letting

s = [ 1wyl = 1) 5w

it follows from Corollary 4 in Khmaladze (2016) that the empirical process

Opn(z \/_Z{l 1(X; <) — (x)}G(:?T\FZ{z ) — K}

of an independent random sample Xi,...,X, from F converges weakly to
a G-Brownian bridge, i.e., the same weak limit of the ordinary empirical process

Z 1(Y; <z) - G(z)}

UG’n =

%\
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of an independent random sample Y7, ...,Y, from G. The asymptotic distribu-
tion of a test statistic based on vF , which is invariant with respect to coordinate-
wise continuous monotone increasing transformations is thus the same as if F'
(or G) were the uniform distribution on [0, 1]¢. This includes the Kolmogorov—
Smirnov type statistic sup,cga |0F,n ()], which (with F' the cdf of Py) we con-
sider in Section 5.1 for comparison with the Wasserstein-based test. In case F
has independent margins, F' and G coincide and the procedure reduces to a
classical Kolmogorov—Smirnov test. To ensure that the test has the right finite-
sample size, we calculate critical values by Monte Carlo approximation rather
than by relying on asymptotic theory.

Appendix D: Algorithms for the computation of critical values

Our test statistics involve the Wasserstein distance between an empirical mea-
sure and a continuous one. Calculating such a distance requires solving a semi-
discrete optimal transport problem (Section 1.3).

In dimension d = 2 and for the Wasserstein distance of order p = 2, we relied
on the function semidiscrete in the R package transport (Schuhmacher et al.,
2019), which implements the method of Mérigot (2011). The method starts
from a discretization of the source density. The quality of approximation can be
set by choosing a sufficiently fine mesh and selecting the tolerance parameter to
a low value. The meshes considered here are providing approximately 10° cells.

For the simulations involving the Wasserstein distance of order p = 1 or
in dimension d larger than two, we resort to our own implementation of the
stochastic average gradient algorithm as employed in Genevay et al. (2016). The
number of random points chosen for the reference measure was 2 x 10° which
corresponds to a thousand times the sample sizes considered in the various
simulation settings. The C' parameter appearing in their algorithm was set to 1.

The test statistics in (2) and (8) involve a fixed continuous measure Py or Qo,
respectively, but those in (14) and (21) concern a continuous measure with
estimated parameter 0,, or 1&,1 Moreover, to calculate critical values with the
parametric bootstrap, even a single execution of the test requires a large number
of evaluations of the test statistic at random parameter values. To speed up the
calculations, we perform the following two steps prior to observing the data:

1. We compute the discretizations of the target density mentioned above
for each value of the unknown parameter in a large but finite subset of
the parameter space. We then force the Monte Carlo replications of the
parameter estimates to take values in that subset. In this way, we do not
need to recompute the discretization of the target density each time.

2. We compute the critical values at a finite subset of the parameter space,
by drawing random samples of the test statistic for each value of the
parameter in that finite subset and applying the reduction of Step 1. Then
we learn the critical value as a function of the (continuous) parameter by
smoothing. See Figure 9 for an illustration.
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Fic 9. IHlustration of Step 2 in Appendiz D for learning the critical value function of the 2-
Wasserstein GoF test for the bivariate five-parameter Gaussian—AMH model in Section 5.3.1
using the location—scale reduction in Section 4.1. The function ¥ — caq(a, n, ) (in red) is
constructed by smoothing Monte Carlo estimates (circles) of cp(a,n, ) for p € ¥/ C U =
[—1,1], with @ = 0.05, n = 200 and B = 1000 samples per point. The smoother is a 6th-degree
polynomial fitted by ordinary least squares.

F1G 10. Scatterplot of a sample of size 500 from the “boomerang-shaped” mizture (38).

Appendix E: A boomerang-shaped distribution

The “boomerang-shaped” distribution in Section 5.1 and Figure 1(f) is a mixture
0 0.352 0 -0.9 0.358 —0.55
1 —2p) NV , +pN: ;
=2 || o5 0 0352)) P (( 03/ \-055 102
0.9 0.358  0.55
+ pNZ )
0.3 0.55 1.02
(38)

of three Gaussian components. Figure 10 shows a scatterplot for p = 0.35 of a
random sample of size n = 500 from this distribution.
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