
Electronic Journal of Statistics
Vol. 15 (2021) 1228–1262
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1813

Quantification of the weight of

fingerprint evidence using a ROC-based

Approximate Bayesian Computation

algorithm for model selection∗

Jessie Hendricks and Cedric Neumann and Christopher P. Saunders

Department of Mathematics and Statistics
South Dakota State University

Brookings, SD, USA
e-mail:

jessiehhendricks@gmail.com; cedric.neumann@me.com; christopher.saunders@sdstate.edu

Abstract: For more than a century, fingerprints have been used with con-
siderable success to identify criminals or verify the identity of individu-
als. The categorical conclusion scheme used by fingerprint examiners, and
more generally the inference process followed by forensic scientists, have
been heavily criticised in the scientific and legal literature. Instead, schol-
ars have proposed to characterise the weight of forensic evidence using the
Bayes factor as the key element of the inference process. In forensic science,
quantifying the magnitude of support is equally as important as determin-
ing which model is supported. Unfortunately, the complexity of fingerprint
patterns render likelihood-based inference impossible. In this paper, we use
an Approximate Bayesian Computation (ABC) model selection algorithm
to quantify the weight of fingerprint evidence. We supplement the original
ABC model selection algorithm using a Receiver Operating Characteristic
curve to mitigate its known shortcomings with respect to the choice of a
suitable threshold and the curse of dimensionality. In a sense, we offer an
alternative to other methods that have tried to address the same issues. Our
method is straightforward to implement, computationally efficient, and vi-
sually intuitive for lay individuals (i.e., jurors). We apply our method to
quantify the weight of fingerprint evidence in forensic science, but we note
that it can be applied to any other forensic pattern evidence.
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1. Introduction

For more than a century, fingerprints have been used with considerable success to
identify criminals or verify the identity of individuals. In this paper, we define a
fingermark (left panel of Figure 1), or mark, as the impression resulting from the
inadvertent contact between the finger of an unknown donor and a surface (e.g.,
at a crime scene). We define a control print (right panel of Figure 1), or print,
as a finger impression collected under controlled conditions from a known donor
(e.g., a suspect). The purpose of forensic fingerprint examination is to support
the inference of the identity of the donor of a fingermark (source level in Cook
et al. (1998)). Currently, this inference process relies on the visual comparison
between the fingermark and control prints from one or more candidate donors
who may have been selected through a police investigation or by searching the
fingermark in a database of prints from known individuals.

Following the examination of fingerprint evidence, it is currently custom-
ary for the examiner to report one of two possible conclusions: an opinion of
“identification”, implying that the source of the fingermark is the donor of a
given control print; or an opinion of “exclusion”, implying that the source of
the fingermark is not a considered candidate. Alternatively, the examiner may
find the examination “inconclusive”, indicating that the characteristics of the
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Fig 1. Left panel: fingermark. Right panel: fingerprint taken under controlled conditions.
Ridges appear darker than background. Both impressions were made by the same finger. Their
comparison shows that both ridge flows are affected by different distortion and degradation
effects.

impressions being compared are not sufficient to reach one of the two possible
conclusions (e.g., when the impressions are too small or too degraded).

The categorical conclusion scheme used by fingerprint examiners, and more
generally the inference process followed by forensic scientists, has been heavily
criticised in the scientific and legal literature (Cole, 2004, 2005, 2009; Kaye, 2003;
Saks and Koehler, 2005, 2008; Zabell, 2005). Instead, scholars have proposed to
characterise the weight of forensic evidence using the Bayes factor as the key
element of the inference process (see Aitken and Taroni (2004) and Aitken,
Roberts and Jackson (2010) for a comprehensive discussion).

It is worth stressing that forensic scientists do not have a complete picture
of all the evidence available in a given criminal case (e.g., eyewitness evidence;
means, motive and opportunity of an individual of interest; other material and
non-material evidence), which prevents them from assigning probabilities to the
different propositions that the parties may have regarding a particular criminal
activity. Furthermore, forensic scientists are not tasked with the fact-finding
mission in the criminal justice system and are not in charge of the decision-
making with respect to the propositions of the parties. Therefore, the role of the
scientist is necessarily limited to reporting the amount of support of the forensic
evidence for these propositions in the form of a Bayes factor. It is of primary
importance to note that, in this setting, it is not only of interest to support
the correct model, but also to support it with the appropriate magnitude. An
appropriate magnitude of support is critical to ensure the coherent combination
of the respective weight of the multiple pieces of evidence that may be considered
in a given case. This imperative requirement is the main motivation behind the
present work and is the main force that drives us away from more deterministic
pattern recognition algorithms.



ROC-based ABC algorithm for fingerprint evidence 1231

Fig 2. Details of the ridge pattern. Ridges appear darker than background. The ridge pattern
can be disturbed by different events, such as: A - ridge ending; B - bifurcation; C - enclosure
or lake; D - island (very short ridges are called dot); E - incipient ridges (short, narrow and
non-continuous ridges that appear between two parallel ridges). White dots within the ridges
are sweat pores and are sometimes used by fingerprint examiners (see F).

Assuming a fingermark recovered in connection with a crime and a suspect,
Mr. X., we consider the following two alternative propositions:

H1 : the fingermark originates from Mr. X.
H2 : the fingermark does not originate from a finger of Mr. X., but from another

person in a relevant population of potential donors.

To address the so-called prosecution and defence propositions, H1 and H2, we
consider two models, M1, which represents how Mr. X. generates fingermarks,
and M2, which represents how fingermarks are generated by the donors in the
population of alternative sources. These models enable us to sample fingermarks
under the two alternative propositions and are necessary to generate the data
used in the algorithm proposed in this paper. These models and their use are
described in more details below. Let eu denote the set of observations made on
the fingermark which originates from an unknown donor u. We are interested
in evaluating the following Bayes factor:

BF =
π(M1|eu)
π(M2|eu)

· π(M2)

π(M1)
=

m(eu|M1)

m(eu|M2)
, (1)

where π(·) is a measure of belief about the model and its parameters (see Robert
(2007), chapter 7, for a formal discussion on Bayesian model selection), and m(·)
represents a (marginal) probability density function.

Fingerprints are usually characterised through certain features of the ridge
pattern, such as the general pattern formed by the friction ridge flow and events
disturbing the continuity of the ridges. These events, traditionally called minu-
tiae, occur when a ridge ends (ridge ending) or bifurcates (bifurcation). Other
types of events exist but are mainly combinations of these two basic types.
Figure 2 illustrates details of the ridge pattern on a finger impression.

When comparing two fingerprints, an examiner first verifies the compatibility
of their general patterns and then determines whether the spatial relationships,
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types, and orientations of the minutiae on both impressions correspond. Math-
ematically characterising fingerprint patterns results in heterogeneous, high-
dimension random vectors: minutia locations and spatial relationships are con-
tinuous measurements; minutia types are discrete observations; and minutia
orientations are circular measurements. In addition, the dimensionality of the
problem increases with the number of minutiae observed on a given impres-
sion. Therefore, modelling the joint likelihood of the characteristics of multiple
features observed on a finger impression seems to be an unreasonable challenge.

The complexity of modelling the probability distribution of fingerprint pat-
terns explains why, despite the many attempts that have been made to assign
Bayes factors for fingerprint evidence (see Abraham et al. (2013) for a recent
review), no algorithm has gained wide acceptance. In particular, while the re-
sults obtained with the algorithm proposed by Neumann, Evett and Skerrett
(2012) were used to support the general admissibility of fingerprint evidence
in U.S. courts (State v. Hull, 2008; State v. Dixon, 2011), commentators of the
Neumann, Evett and Skerrett (2012) paper argued that the model had two main
shortcomings. Several researchers discussed that the algorithm did not result in
a formal Bayes factor as it does not formally incorporate user beliefs (Kadane,
2012; Lauritzen, Cowell and Graversen, 2012; Stern, 2012). Others noted that
the algorithm relied on an ad-hoc weighting function used to palliate the inabil-
ity of the authors to assign Bayes factors at 0, and that this function had no
other justification than convenience (Balding, 2012; Jandhyala and Fotopoulos,
2012; Kadane, 2012).

In this paper, we take advantage of the similarities between the algorithm
proposed by Neumann, Evett and Skerrett (2012) and the original Approxi-
mate Bayesian Computation (ABC) model selection framework (Grelaud et al.,
2009; Toni and Stumpf, 2010) to provide a method to formally and rigorously
assign Bayes factors to fingerprint evidence. Our method leverages the well-
known Receiver Operating Characteristic (ROC) curve (Pepe, 2003) to address
shortcomings in the original ABC model selection algorithm. Our application
addresses the issues raised in relation to Neumann, Evett and Skerrett (2012)
and provides a much needed general framework for the quantification of the
weight of any type of forensic pattern evidence, as long as a similarity measure
can be defined to compare two pieces of evidence.

2. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) originated as a class of algorithms
designed to sample from the approximate posterior density of a vector of pa-
rameters, θ, given an observed data set, D, without direct evaluation of the
likelihood function, f(D|θ). This class of algorithms is especially useful in com-
plex and high-dimensional settings where the likelihood function is not available
in a usable form (see Sisson, Fan and Beaumont (2019) for a recent overview).

To sample from an approximate posterior density, vectors of parameter val-
ues are first sampled from a prior distribution over the parameter space, and
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then used to generate pseudo-observations (each denoted D∗) from a generative
model. In the original approach, a vector of parameter values is retained if the
distance measured by a kernel function, Δ{·, ·}, between values of a summary
statistic, η(·), of D and D∗ is less than some tolerance, t > 0. In other words,
the ith sampled parameter vector, θ(i), is retained if the corresponding distance
satisfies Δ{η(D), η(D∗(i))} < t.

In some application problems, such as forensic science, statisticians are not
concerned with assigning posterior probability distributions in the parameter
space, but are interested in performing model selection. However, performing
likelihood-based inference using patterns of forensic interest, such as finger-
prints, shoe sole impressions, or striations on bullets, is not feasible in the orig-
inal feature space of the data. Starting with Pritchard et al. (1999), ABC has
evolved into an algorithm that can be used for model selection by considering
a model index parameter, M, and its prior distribution over model indices.
The model index determines the prior distribution over the parameter space
and the likelihood structure used to generate pseudo-observations. In the orig-
inal approach, the ith sampled model index parameter, M(i), is retained if the
corresponding score satisfies Δ{η(D), η(D∗(i))} < t.

The original ABC approach for assigning a posterior probability to a model,
given the observed data, is a function of the ratio of the number of times that
model index has been retained over the total number of times any model was
retained (Grelaud et al., 2009; Toni and Stumpf, 2010; Didelot et al., 2011;
Robert et al., 2011). Mathematically, the ABC posterior odds for the comparison
between two models is given by:

πt(M = 1|D)

πt(M = 2|D)
= lim

N→∞

∑N
i=1 I[M(i) = 1] · I[Δ{η(D), η(D∗(i))} ≤ t]∑N
i=1 I[M(i) = 2] · I[Δ{η(D), η(D∗(i))} ≤ t]

, (2)

where I(·) is the indicator function and the subscript t in πt indicates that this
measure is a function of the choice of the tolerance level. The original ABC
Bayes Factor, BFabc, is assigned using the ABC approximation of the posterior
odds, divided by the prior odds

BFabc =
πt(M = 1|D)

πt(M = 2|D)
· π(M = 2)

π(M = 1)
. (3)

The original ABC algorithm for comparing two models is summarised in
Algorithm 1.

The benefits of Approximate Bayesian Computation methods are not without
cost. Model selection using ABC is subject to two primary sources of error:

1. the quality of the approximation to the Bayes factor due to the use of the
tolerance, t,

2. and the loss of information engendered by using insufficient summary
statistics.

The effect of the tolerance level, t, on the performances of ABC algorithms
has been widely discussed since the inception of ABC methods. In short, if t is
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Algorithm 1: Original ABC model selection algorithm
Data: Observed data, D.
Result: ABC Bayes factor, BFabc.
for i = 1 to N do

Sample a model index M(i) from the model prior, π(M = m), where m = 1, 2;

Sample a vector of parameters, θ(i), from the prior density, π(θ|M(i));

Generate a pseudo-observation, D∗(i), from the generative model, f(D∗|θ(i),M(i));

Compute Δ{η(D), η(D∗(i))};
Calculate the ratio of counts as defined in Equation (2);
Assign BFabc as in Equation (3);

too large, too many samples from the prior distribution are accepted and the
approximation becomes invalid; and, if t is too small, the rate of acceptance is
too small to produce a stable result.

The motivation for using summary statistics, rather than the full data, stems
from the curse of dimensionality encountered with the high-dimensional data
sets that are common to scenarios in which ABC is necessary. To enable conver-
gence of BFabc to the Bayes factor based on the full data, a summary statistic
that is sufficient across models must be used (Robert et al., 2011; Didelot et al.,
2011). However, in general, it seems difficult (if not impossible) to find sufficient
summary statistics for the types of data that typically require ABC methods.
The goal is then to minimise the loss of relevant information to the model se-
lection task that may be encountered when using insufficient statistics. If the
curse of dimensionality was less of an issue, a general solution addressing the
issue of the potential lack of sufficiency of summary statistics could consist in
using a large set of summary statistics with the hope that they will jointly tend
towards sufficiency by decreasing the loss of information.

Several modifications of the original ABC algorithm for model selection (Al-
gorithm 1) have been proposed with the goal of addressing some of the issues
related to the determination of the tolerance and the selection of low-dimensional
summary statistics that minimise the loss of information that is relevant to the
model selection task. Most of these modified algorithms are aimed at alleviating
issues posed by use of the tolerance, t. Most of these algorithms are rooted in
the one proposed by Beaumont (2008), which uses a polychotomous weighted
logistic regression model that has been trained on the summary statistics of the
pseudo-observations and corresponding model indices to predict the posterior
probability of a model. Modifications include constructing low-dimensional vec-
tors of summary statistics that are informative about the model index parameter
(Estoup et al., 2012; Prangle et al., 2014) and replacement of logistic regression
by artificial neural networks (Blum and Francois, 2010) or random forest al-
gorithm (Pudlo et al., 2016). While these methods may help reduce the loss
of information due to the use of insufficient summary statistics, computational
challenges are associated with using summary statistics of high dimension.

The literature shows that the issues of sufficiency, variable selection and tol-
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erance level are usually entangled. The solutions to these issues proposed to
date, and summarised above, have their own sets of complications:

1. None of these solutions enables formal monitoring of the convergence of
BFabc to the Bayes factor as the value of the tolerance, t, is reduced, or
as the number of samples increases.

2. Most of these solutions are focusing on selecting the correct model, but
are not necessarily designed to support the selected model with the ap-
propriate magnitude, which is a critical requirement in forensic science.

3. Some of the model selection algorithms, such as the one proposed by Beau-
mont (2008), are trained using a limited subset of pseudo-observations.
These pseudo-observations are selected or weighted based on the proxim-
ity of their summary statistics with those of the observed data. Unfortu-
nately, this results in replacing user-defined prior probabilities on model
indices with probabilities assigned in unpredictable ways by the algorithm
based on the proportions of training data selected from each model.

4. Methods based on generalised linear models (Beaumont, 2008), artificial
neural networks (Blum and Francois, 2010), random forests (Pudlo et al.,
2016) or other classifiers can be very computationally intensive depending
on the dimension of the summary statistics or the number of pseudo-
observations generated from the considered models. They also heavily rely
on appropriately estimating a very large number of parameters.

In this paper, we propose a novel extension to the original ABC model selec-
tion algorithm that utilises a relationship between the ABC Bayes factor and
the Receiver Operating Characteristic (ROC) curve. Our ROC-based approach
addresses issues with the original ABC Bayes factor posed by the use of a heuris-
tic tolerance level. Our algorithm shifts the focus away from the tolerance level,
and in doing so, can accommodate larger sets of summary statistics in a com-
putationally efficient manner. Our method is not designed to extend upon the
models based on logistic regression and other classifiers, but rather proposes an
alternative development of the original ABC algorithm that addresses shortcom-
ings related to the choice of a suitable threshold in the original algorithm. Our
method preserves user-defined priors, is straightforward to implement, compu-
tationally efficient, and promotes inferences that are visually intuitive and can
be communicated effectively. Critically, our solution enables us to rigorously
control its convergence as the number of simulations increases.

3. ROC-ABC algorithm for model selection

ROC curves have traditionally been used to measure the performance of a
binary classifier as the decision threshold, t, is varied across the domain of
(dis)similarity scores, Δ{·, ·}, that can be returned by the classifier (Pepe, 2003).
In this paper, the ROC curve will be considered as a tool to convey the rela-
tionship between two distributions of scores as a function of a threshold, t.
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ROC curves are constructed by plotting the rate of correct decisions in favour
of the first model against the rate of incorrect decisions (false positives) in favour
of the first model (i.e. when the second model is true) for all possible values of
the decision threshold. Defining F (·) and G(·) as the cumulative distribution
functions of scores arising under models 1 and 2, respectively, the general form
of the ROC is given by (Pepe, 2003) as ROC(p) = F (G−1(p)), where p denotes
the rate of false positives in favour of the first model and G−1(·) denotes the
quantile function (van der Vaart, 1998) for scores under the second model.

Here, we show that the Bayes factor depending only on the summary statis-
tic of the data, BFη, is a function of the ROC curve constructed on the set
of Δ{η(D), ·} arising under model 1 and the set of Δ{η(D), ·} arising under
model 2.

First note that, from Robert et al. (2011), we have

BFη = lim
t→0+

BFabc (4)

= lim
t→0+

lim
N→∞

∑N
i=1 I[M(i) = 1] · I[Δ{η(D), η(D∗(i))} ≤ t]∑N
i=1 I[M(i) = 2] · I[Δ{η(D), η(D∗(i))} ≤ t]

· π(M = 2)

π(M = 1)

(5)

Define K as the total number of times pseudo-data is sampled from model 1
out of N trials and let L = N −K. Note that, by construction of the sampling
algorithm, K/L converges almost surely to the ratio π(M = 1)/π(M = 2), as
N → ∞, for π(M = 1) �= 0 and π(M = 2) �= 0.

Now let

F̂K(t) = K−1
K∑

k=1

I[Δ{η(D), η(D∗(k))} ≤ t|M = 1] (6)

denote the proportion of times that pseudo-data is accepted for threshold t when
generated from model 1 and

ĜL(t) = L−1
L∑

l=1

I[Δ{η(D), η(D∗(l))} ≤ t|M = 2] (7)

be defined in an analogous manner for pseudo-data from model 2. Noting that

as N → ∞ both supt |F̂K(t) − F (t)| p→ 0 and supt |ĜL(t) − F (t)| p→ 0 (please
see Appendix C for a proof), this implies that

BFη = lim
t→0+

lim
N→∞

∑K
k=1 I[Δ{η(D), η(D∗(k))} ≤ t|M = 1]∑L
l=1 I[Δ{η(D), η(D∗(l))} ≤ t|M = 2]

· π(M = 2)

π(M = 1)
(8)

= lim
t→0+

lim
N→∞

K · F̂K(t)

L · ĜL(t)
· π(M = 2)

π(M = 1)
(9)

= lim
t→0+

F (t)

G(t)
+ op(1) (10)
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= lim
t→0+

F (G−1(G(t)))

G(t)
+ op(1) (11)

= lim
p→0+

F (G−1(p))

p
+ op(1) (12)

= lim
p→0+

ROC(p)

p
+ op(1) (13)

where ROC(p) = F (G−1(p)).
The relationship expressed between Equations (8) and (13) shows that the

ABC Bayes factor for two alternative models of interest can be assigned using
the ratio between ROC(p) and p as the rate of false positives in favour of model
1 approaches 0. This notable result allows us to express the convergence of the
ABC Bayes factor as a function of the rate of false positives in favour of model
1. Our result has significant practical implications when it comes to using ABC
for model selection:

1. Our solution allows to monitor the convergence of the output of the al-
gorithm to BFη as a function of a single, well-defined, measure, p, that
depends only on the data generated under one of the considered models, as
opposed to t which depends on both models and is usually set arbitrarily.

2. Our solution addresses the curse of dimensionality affecting the origi-
nal ABC model selection algorithm, since it does not require any of the
Δ{η(D), ·} to be close to 0. Indeed, our solution considers only the relative
ranks of the Δ{η(D), ·} calculated for the data generated under models 1
and 2.

3. Our approach provides a natural setting for selecting summary statistics
that are informative for the model selection task. As with random forest
based ABC model selection algorithms (Pudlo et al., 2016), our approach
can accommodate large vectors of summary statistics. It requires only
the careful design of a kernel function that ensures that the distributions
of Δ{η(D), ·} are well-separated under the competing models. In other
words, we are replacing the variable selection that is part of classifier-
based ABC model selection algorithms by choosing a kernel function that
weights the components of η(·) in a particular and influential way.

4. Our solution uses the entire pseudo-data generated and does so in a com-
putationally efficient manner.

5. Finally, our solution formally preserves the user’s priors on the model
indices.

Leveraging this result requires estimation of the ROC curve, which is the
topic of the next two sections.

3.1. Empirical ROC

We can leverage the relationship between Equations (8) and (13) to assign an
ABC Bayes factor in several ways. Our first method is purely data driven and
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uses the following approximation of the ratio in Equation (13):

R̂OC(p)

p
=

F̂K

(
Ĝ−1

L (p)
)

p
=

F̂K(t)

ĜL(t)
(14)

=
K−1

∑K
k=1 I[Δ{η(D), η(D∗(k))} ≤ t|M = 1]

L−1
∑L

l=1 I[Δ{η(D), η(D∗(l))} ≤ t|M = 2]
(15)

where R̂OC(·) is the empirical estimate of the ROC curve constructed from the
set of K Δ {η(D), ·} generated under model 1 and the set of L Δ {η(D), ·}
generated under model 2. Expression (15) can be interpreted as the ratio of the
proportion of Δ {η(D), ·} arising under model 1 that are less than t and the
proportion of Δ {η(D), ·} arising under model 2 that are less than t. While this
interpretation is still stated in terms of the tolerance, t, the convergence can
be expressed in terms of p, by defining t such that

∑L
l=1 I[Δ{η(D), η(D∗(l))} ≤

t|M = 2] is fixed (e.g., define t such that
∑L

l=1 I[Δ{η(D), η(D∗(l))} ≤ t|M =
2] = 10), while allowing the total number of simulations, N , and necessarily, L,
to increase. As a result, the expression in the denominator of Equation (15) will
be driven to 0; hence, approximating the limit as p → 0+ in Equation (13). This
approach has several major advantages as compared to the original approach
for assigning ABC Bayes factors:

1. t is chosen as a function of only the distance scores between the value of
the summary statistic of the observed data and the value of the summary
statistic of the data generated under model 2 (versus all distance scores
in other implementations of the ABC algorithm).

2. t is chosen such that the number of accepted distance scores under model
2 is fixed (versus a fixed value of t arbitrarily close to 0, or a varying value
of t based on a fixed quantile of the empirical distribution of all the scores
from models 1 and 2 combined).

For a given set of observed data, the original ABC model selection algorithm
results in unpredictable variations of both the numerator and the denominator
of the ratio in Equation (5) as N increases, which makes its convergence difficult
to monitor. By fixing the rate of convergence of the denominator in Equation (5),
our approach has the potential to better plan computing resources and monitor
convergence in comparison to the original ABC model selection algorithm.

3.2. The non-central dual beta ROC model

Our second approach extends further the relationship between the ABC Bayes
factor and the ROC curve by noting (Pepe, 2003):

lim
p→0+

ROC(p)

p
=

d

dp
ROC(p)

∣∣∣
p=0

(16)

=
d

dp
F (G−1(p))

∣∣∣
p=0

(17)
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=
f(G−1(p))

g(G−1(p))

∣∣∣
p=0

(18)

=
f(G−1(0))

g(G−1(0))
(19)

where f(·) and g(·) denote the probability density functions of distance scores
under models 1 and 2, respectively. Assigning an ABC Bayes factor using equa-
tion (19) requires evaluation of the first derivative of ROC(p), evaluated at

p = 0, or estimation of the ratio of densities, f(·)
g(·) evaluated at G−1(0).

Following Metz, Herman and Shen (1998), Mossman and Peng (2016), and
Chen and Hu (2016), we fit a parametric model to the empirical ROC curve
obtained from the finite number of Δ{η(D), ·} generated by the algorithm.
As noted by these authors, fitting a model to each of the score distributions
separately requires a direct assumption about the distribution of each set of
scores. Instead, fitting a model directly to the ROC curve relies on the weaker
assumption that there exists a monotonic transformation of the observed scores
that results in scores whose distributions can be described by a simple model.
Since the ROC curve is invariant to monotonic increasing transformations of the
scores (Pepe, 2003; Metz, Herman and Shen, 1998; Mossman and Peng, 2016;
Chen and Hu, 2016), the simple model can be used to represent the ROC curve
without knowledge of the underlying score distributions.

We considered the common binormal representation of the ROC (Pepe, 2003),
however, it can be easily shown that the first derivative of the binormal model,
at p = 0, takes a value of 0, 1 or ∞, depending on the values of its parameters.
Instead, we use a model based on two non-central beta distributions (Johnson,
Kotz and Balakrishnan, 1995). Placing a restriction on the first shape parameter
of each distribution (αF = αG = 1) results in the following parametric model
for the ROC curve

ROC(p) = F (G−1(p | αG = 1, βG, λG) | αF = 1, βF , λF ) (20)

where F (·) and G(·) are non-central beta distribution functions with parameters
αF , βF , λF , and αG, βG, λG corresponding to F and G respectively. We will
refer to this parametric model for the ROC curve as the non-central dual beta
ROC model for the remainder of this paper (Mossman and Peng, 2016). Note
that, contrary to current ABC methods for model selection based on pattern
recognition algorithms, our method only requires the estimation of four param-
eters. The restriction on the first shape parameter of the densities guarantees
that the first derivative of ROC(p), at p = 0, produces a stable result for all
parameter values within the support:

d

dp
ROC(p)

∣∣∣
p=0

=
f(G−1(0))

g(G−1(0))
(21)

=
f(0)

g(0)
(22)

=
exp {−1

2λF }
B(1, βF )

B(1, βG)

exp {−1
2λG}

. (23)
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Fitting the parametric model requires the use of numerical optimisation tech-
niques to estimate the parameter values. We apply a two step fitting procedure:

1. Obtain an initial set of parameter estimates for βF , λF , βG, λG using a
Maximum Likelihood Estimation approach (Metz, Herman and Shen, 1998;
Mossman and Peng, 2016; Chen and Hu, 2016) for fitting a non-central
dual beta ROC model to continuous data.

2. Refine the initial estimates by minimising some distance between the para-
metric model and the empirical ROC. A distance that is designed to weight
differences near p = 0 more heavily is preferable. In this case:

n∑
i=1

(
p−1
i

(
F (G−1(pi | 1, βG, λG) | 1, βF , λF )− R̂OC(pi)

))2

,

where 0 < p1, ...pn ≤ 1.

The first step of our procedure enables us to include information on which
model produced each distance score Δ{η(D), η(D∗(i))}. However, during our
implementation we found that the fit of the parametric model to the empirical
ROC curve could be improved from this method. Meanwhile, the second step
alone did not allow us to fit an adequate model when the score distributions
overlapped heavily. Combining both processes gave the best results.

Once estimates for βF , λF , βG, and λG are obtained, it is trivial to use
Equation (23) to assign the ROC-ABC Bayes factor. In practice, when a limited
number of distance scores near 0 are observed, the quality of the fit of the
ROC model near 0 can produce Bayes factors of meaningless magnitude (e.g.,
larger than 10100 or smaller than 10−100); these Bayes factors would vary wildly
from one computation to another using the same observed data. We found that
evaluating the ratio in the left side of Equation (16) using some low value for
p, dependent on the sample size, produced more robust ABC Bayes factors
in comparison to those assigned using Equation (23) directly. This is likely
due to the fact that p = 0 is at the boundary of the support of the ROC
function.

4. Weight of fingerprint evidence using ROC-ABC

ABC for model selection possesses some obvious similarities with the algorithm
proposed by Neumann, Evett and Skerrett (2012). To assign a Bayes factor for an
observed fingermark, Neumann, Evett and Skerrett (2012) algorithm considers
two sets of scores. The first set contains scores measuring the level of dissimilarity
between the observed fingermark and pseudo-fingermarks generated by Mr. X.
The second set contains scores measuring the dissimilarity between the observed
fingermark and pseudo-fingermarks originating from a sample of individuals
from a population of potential alternative sources. Pseudo-fingermarks from any
given individual can be directly obtained by repeatedly sampling impressions
from that individual’s finger, or by generating artificial impressions (see section
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4.1). The general idea behind Neumann, Evett and Skerrett (2012)’s model is
that, if H1 is true, Mr. X. would generate many more pseudo-fingermarks that
are similar to the observed fingermark than the individuals in the population of
alternative sources.

If we draw a parallel between Algorithm 1 and the fingerprint problem, we
can:

1. replace the observed data D, by observations, eu, made on the fingermark
that was recovered at the crime scene and whose donor is unknown;

2. replace models 1 and 2 in Equations (2) and (3) by methods to generate
pseudo-fingermarks, e∗u, from any individual considered under the prose-
cution or the defence model (please refer to section 4.1 which describes
generation of pseudo-fingermarks and section 5 which describes the sample
of the population of potential sources);

3. define a kernel function, Δ{·, ·}, to compare pairs of finger impressions;

to obtain an ROC-ABC algorithm to assign a Bayes factor for fingerprint evi-
dence. The ROC-ABC algorithm for fingerprint evidence is summarised in Al-
gorithm 2. The ROC-ABC Bayes factor will converge to the Bayes factor under
the same conditions as discussed above (i.e. sufficient statistic across all models,
optimal kernel function, infinite/large number of simulations, etc.).

Algorithm 2: ROC-ABC algorithm for fingerprint evidence

for i = 1 to N do

Sample a model index, M(i), from π(M = m), where m = 1, 2;

if M(i) = 1: Select the control print;
else: Sample a print from the alternative source dataset;
Sample a set of distortion parameters;

Generate a pseudo-fingermark, e
∗(i)
u , by distorting the selected print using the

sampled distortion parameters;

Compute Δ{η(eu), η(e∗(i)u )};
Assign the ROC-ABC Bayes factor using methods from Section 3.1 or 3.2.

4.1. Generation of pseudo-fingermark data

Implementation of the ROC-ABC algorithm for fingerprint evidence requires a
model from which pseudo-fingermarks can be generated. We utilise the same
fingerprint distortion model as Neumann, Evett and Skerrett (2012) to generate
pseudo-fingermarks from any given control print. This model mimics the way fin-
gerprint features are displaced as the skin on the tip of a finger is distorted when
pressed against a flat surface. This model relies on thin-plate splines (Bookstein,
1989) and involves the estimation of the parameters of a 2-dimension vector field
(Allassonniere et al., 2013). The parameter space of the model represents a wide
variety of distortion directions and pressures. These parameters were estimated
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using 704 replicate impressions taken under 11 different controlled directions
and 4 pressure conditions from 17 fingers. The model allows many different dis-
tortions to be produced from a single finger. Our distortion model assumes that
fingers distort in the same way, independently of factors related to the donor
(e.g., age, weight, profession) and to the finger number (e.g., right vs. left hand,
thumb vs. index finger). The model obviously does not cover all possible distor-
tion and pressure conditions, and donor related factors; however, it is currently
the only option to obtain a large number of pseudo-fingermarks from any given
individual.

4.1.1. Generation of pseudo-fingermarks under the prosecution model

When comparing fingerprints, an examiner first detects k features of interest
on the fingermark. Second, the examiner compares it to the 10 control prints
from the donor considered by the prosecution proposition and selects the fin-
ger appearing to be the most likely source of the mark. Finally, the examiner
attempts to identify the most similar k corresponding features out of the n
features present on the control print from the selected finger. Note that, once
selected, the sets of features on the fingermark and the control print remain
fixed for the duration of the experiment, and that the selection process results
in a unique bijective pairing between the two sets of k features. Our algorithm
assumes that this selection and pairing process has been done before generating
pseudo-fingermarks under M1. When M1 is selected by the algorithm, a pseudo-
fingermark is generated from the k features selected on the control print using
the distortion model. By construction, the features on this pseudo-fingermark
have the same pairing with the features of the fingermark as the ones on the
control print. By repeating this process each timeM1 is selected, a set of pseudo-
fingermarks can be obtained from the k features selected on the control print of
Mr. X.

4.1.2. Generation of pseudo-fingermarks under the defence model

The defence proposition considers that, if the fingermark was not left by Mr. X,
it must have been left by another person in a relevant population of alternative
sources. We can generate data under M2, first, by randomly selecting an individ-
ual from a representative sample of donors from that population, and secondly,
by generating a pseudo-fingermark from this individual’s k minutiae configura-
tion that is most similar to the k minutiae observed on the fingermark. As in
the previous section, the features of this pseudo-fingermark have a unique bijec-
tive pairing with the features on the fingermark by construction. This process is
repeated each time M2 is selected to obtain a random set of pseudo-fingermarks
from the population of potential donors considered by M2. Since it would be
unrealistic to repeat manually the selection of the most similar k minutiae for
each individual in a large sample, we use a commercially available automated
fingerprint matching system to perform this task.
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Table 1

Variable types of various measurements from a friction ridge pattern.

measurement variable type
minutia locations Cartesian coordinates in pixels continuous
minutia orientations angular measure circular
minutia types bifurcation vs. ridge ending discrete

Fig 3. (a) An annotated configuration of features on a friction ridge pattern. Squares and
circles denote the types of the features and serve as markers for the locations of the features,
while the extending line indicates the direction of the feature. (b) Cross-distances between
minutiae locations. (c) Cross-distances between the ends of the fixed-length segments origi-
nating from the centre of the minutiae and oriented in the same direction as the minutiae.
(d) Angles between the axes going from the centroid through the locations of the minutiae and
the segments representing the minutiae directions are indicated by the solid line.

4.2. Summary statistic

Configurations of minutiae can be described numerically in the form of hetero-
geneous multi-dimensional random vectors containing the measurements sum-
marised in Table 1. Minutiae locations and orientations are taken with respect
to a coordinate system based on the frame of the impression’s picture (Figure 3
(a)). Different framings of the same impression result in different measurements
for the same set of features. For this reason, the original measurements need to
be summarised in a way that is rotation and translation invariant.

Several invariant measurements capturing the spatial relationships between
the minutiae in a configuration can be calculated, such as the distances between
every pair of minutiae in the configuration (Figure 3 (b)). A similar approach
can be used to define invariant summaries of the direction of each feature by
using fixed-length segments to represent minutiae directions and by taking the
distances between the ends of these segments for every pair of minutiae in the
configuration (Figure 3 (c)). We also choose to represent minutiae directions
as a function of the axes going from the centroid through the location of each
minutia (angles are measured counterclockwise) (Figure 3 (d)). Feature types
can be directly recorded since types are rotation and translation invariant.

All of these measurements can be brought together to create a vector of sum-
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mary statistics of the original representation. For the example in Figure 3 with
7 features, a vector of summary statistics would include 21 cross-distances be-
tween pairs of minutiae, 21 cross-distances to capture the spatial representation
of the minutiae directions, 7 angles and 7 types, for a total length of 56. For 10
features, the length of the vector of summary statistics would be 110; and for
15 features, it would be 240.

Given the nature of the problem, it is unlikely that a sufficient summary
statistic exists for fingerprint data. Hence, we adopt an approach, similar to the
one taken by Pudlo et al. (2016), which consists in pooling together as many indi-
vidual summary statistics as possible in order to minimise the loss of information
with respect to the original data. However, contrarily to previously proposed
ABC model selection approaches, our method replaces the summary statistic
selection process by a careful design of the kernel function that weights the dif-
ferent components of η(·) in order to maximise the separation between the distri-
butions of Δ{η(eu), ·}. Therefore, the dimensionality of the summary statistics
and the computational aspects are not so problematic for our algorithm.

4.3. Kernel function

Our ABC algorithm depends on a kernel function, Δ{·, ·}, which compares pairs
of summarised configurations of minutiae. As mentioned in Section 3, we wish
to use a kernel function that best separates the distributions of Δ{η(eu), ·}
obtained under the competing models considered in Section 1 and which satisfies
the conditions for a metric to be used in an ABC algorithm (Prangle, 2017).

We carefully designed a kernel function to compare pairs of summarised con-
figurations of minutiae, and optimised the weights of several components to
best separate the two distributions of Δ{η(eu), ·}. For completeness, we have
included this development and optimisation process in Appendix A; however, we
stress that other summary statistics, kernel functions and optimisation proce-
dures could be considered without loss of generality of our proposed ROC-ABC
method.

4.4. Number of simulations

For the purpose of this application, we limited the total number of pseudo-
fingermarks generated for each test configuration to 500,000 (approximately
250,000 under each model, due to our choice of equal model priors). If it was of
interest to assign the ROC-ABC Bayes factor for a specific fingermark in forensic
casework, a much larger number of pseudo-fingermarks could be generated.

5. Datasets

The algorithm has been developed, optimised, and tested using two datasets.
The first dataset (Population Dataset), containing prints taken under controlled
conditions from more than 400,000 individuals (only identified through ran-
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domly assigned ID numbers), was used as a sample of a population of potential
sources. The size of the dataset was not driven by scientific considerations, but
corresponds to the number of control prints that the authors managed to gather
for research purposes. This dataset was used to generate pseudo-fingermarks un-
der the defence model (see Section 4.1.2) and to generate special test cases under
the prosecution model (see below).

The second dataset (Test Dataset) contains 207 quadruplets of finger impres-
sions. Each quadruplet includes:

1. a fingermark obtained from casework archives. These fingermarks were
developed on multiple surfaces using different physicochemical methods
and represent a range of fingermarks that can be observed in casework;

2. a control print from an individual deemed to be the true source (TS) of
the fingermark by an experienced fingerprint examiner;

3. the closest matching control print from another individual (CNM) than
the true source, as selected by an automated fingerprint matching system
among the individuals contained in Population Dataset;

4. a random control print from another individual (RS) than the true source
selected among the individuals contained in Population Dataset;

Within each quadruplet, the features observed on the fingermark and the TS
print were manually labelled, while the features observed on the CNM and RS
prints were automatically labelled. Each feature observed on the fingermark
was manually paired to a single feature on the TS print. Each feature observed
on the fingermark was automatically paired with the single best corresponding
feature on the CNM print and on the RS print by the automated fingerprint
matching system used in this study.

Each dataset comprises fingermarks or control prints captured digitally at
1:1 magnification and a resolution of 500 pixels per inch. The following features
were extracted from every fingerprint used in the study:

1. the finger of origin of the impression, from 1 – right thumb – to 10 – left
little finger (for control prints only);

2. the Cartesian coordinates of each minutia in pixels, using the bottom left
of the image as the origin;

3. the direction of each minutia in radians, using the bottom left of the image
as the origin and measuring counterclockwise;

4. the type of each minutia: ridge ending, bifurcation or unknown;
5. the Cartesian coordinates of the centre of the impression (for control prints

only).

6. Results

We sampled 4067 minutiae configurations ranging from 3 to 25 minutiae from
the 207 fingermarks contained in the Test Dataset (one configuration with a
given number of minutiae per fingermark). For each minutiae configuration, the
corresponding minutiae on the TS, CNM and RS prints were also selected, thus
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Table 2

Number of test configurations for each number of minutiae in the Test Dataset.

# of minutiae 3 4 5 6 7 8 9 10 11 12
# of configurations 207 207 207 205 203 203 199 197 190 187
# of minutiae 13 14 15 16 17 18 19 20 21 22
# of configurations 184 179 174 173 170 168 162 154 151 144
# of minutiae 23 24 25 total
# of configurations 142 133 128 4067

Table 3

Rates of misleading evidence for the experiments presented in Figures 4 and 5.

# of minutiae
method scenario

3 4 5 6 7 8 9 10 11 12 13 14
TS 0.44 0.47 0.28 0.21 0.07 0.06 0.04 0.02 0.02 0.02 0.01 0.01
CNM 0.20 0.09 0.09 0.06 0.16 0.17 0.10 0.19 0.14 0.14 0.16 0.18empirical ROC
RS 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01
TS 0.40 0.32 0.15 0.07 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.01
CNM 0.42 0.33 0.51 0.43 0.59 0.58 0.40 0.49 0.40 0.35 0.37 0.38non-central dual beta ROC
RS 0.12 0.04 0.05 0.06 0.03 0.03 0.01 0.03 0.02 0.01 0.01 0.04

# of minutiae
method scenario

15 16 17 18 19 20 21 22 23 24 25
TS 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02
CNM 0.12 0.16 0.11 0.11 0.10 0.10 0.07 0.09 0.06 0.06 0.06empirical ROC
RS 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.01 0.00
TS 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00
CNM 0.37 0.30 0.22 0.21 0.19 0.21 0.15 0.22 0.07 0.14 0.12non-central dual beta ROC
RS 0.01 0.03 0.02 0.02 0.01 0.03 0.04 0.03 0.00 0.02 0.02

providing quadruplets of “matching” configurations. Table 2 summarises the
number of configurations per number of minutiae.

The configurations sampled from the fingermark were used as eu when gen-
erating the results presented below. The corresponding configurations on the
TS, CNM and RS prints were used as control prints from Mr. X to test the
ROC-ABC algorithm under three different prosecution propositions, H1:

TS: The fingermark originates from the donor of the TS print;
CNM: The fingermark originates from the donor of the CNM print;
RS: The fingermark originates from the donor of the RS print.

In these experiments, the configurations on the TS, CNM and RS prints were
used to resample pseudo-fingermarks underM1, and the Population Dataset was
used to resample pseudo-fingermarks underM2. Results for all three experiments
can be found in Figures 4 and 5, and in Table 3. ROC-ABC Bayes factors
presented in Figure 4 were assigned using the empirical ROC method discussed
in Section 3.1. Figure 5 presents ROC-ABC Bayes factors that were assigned
using the non-central dual beta ROC model described in Section 3.2. Note that
the vertical axis in Figure 5 has been truncated to focus on the mass of the
distributions and that some extreme outliers may not be represented.

In experiment TS, the control prints originate from the true sources of the
marks, and so H1 is true. Both figures show a similar behaviour where the
magnitude of the ROC-ABC Bayes factor increases as the number of minutiae
increases. In both cases, the ROC-ABC Bayes factors appear bounded. The
bound for the empirical ROC-ABC Bayes factors stems from Equation (14),
which requires us to set a value for p. In this case, we defined p as the false
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Fig 4. Results obtained using the empirical ROC method. Blue: results from the experiment
where the control prints originate from the true sources (TS). Red: results when the control
prints originate from sources with close non-matching prints (CNM). Green: results when the
control prints originate from randomly selected sources (RS).

Fig 5. Results obtained using the non-central dual beta ROC model. Blue: results from the ex-
periment where the control prints originate from the true sources (TS). Red: results when the
control prints originate from sources with close non-matching prints (CNM). Green: results
when the control prints originate from randomly selected sources (RS).

positive rate evaluated at the 10th smallest Δ{η(eu), ·} generated underH2. This
corresponds to approximately 1 in 25,000. The bound for the non-central dual
beta ROCmodel stems from using the same p to evaluate the ratio in the left side
of Equation (16) as in the empirical model. Bayes factors erroneously supporting
H2 are noted in both series of results for smaller configurations of minutiae
(from 40% of configurations with 3 minutiae down to 5% of configurations with 7
minutiae, as seen in Table 3). This result is not surprising as these configurations
contain less discriminative information and are more likely to be observed by
chance in fingers from different individuals. Nevertheless, we note that only
around 1% of the ROC-ABC Bayes factors support the wrong proposition for
configurations with 10 minutiae or more (Table 3). Upon further investigation,
we found that these cases involve configurations displaying unusual distortion
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that cannot be handled by the current generation of the distortion algorithm, or
minutiae that are miss-paired by the fingerprint analyst between the fingermark
and the control print. Improvement of the summary statistic, kernel function,
distortion algorithm as well as procedures for documenting comparisons may be
able to minimise further the number of cases where the Bayes factor erroneously
supportsH2. Finally, we observe that the range of values taken by the ROC-ABC
Bayes factor for configurations with different numbers of minutiae overlap. This
result supports the observations made by Neumann, Evett and Skerrett (2012)
that there is no scientific justification for the use of a fixed number of minutiae as
a decision point to distinguish between H1 and H2, and that the evidential value
of each configuration needs to be quantified based on its own characteristics.

In experiment CNM, the control prints originate from non-mated sources
that are chosen due to their similarity to the minutiae configuration on the
fingermarks, and so H2 is true. In both Figures 4 and 5, we observe that a large
proportion of the ROC-ABC Bayes factors erroneously support the hypothesis
of common source, H1, although the algorithm using the empirical ROC appears
to perform significantly better (Table 3). The high rate of misleading evidence
is not a surprise for low numbers of minutiae (e.g., between 20% and 42% for
configurations with 3 minutiae, as seen in Table 3) since it is not difficult to
find multiple similar configurations on different fingers in large a dataset. The
high rate of misleading evidence is more surprising for configurations with more
minutiae (e.g., between 18% and 38% for configurations of 14 minutiae, as seen
in Table 3). Larger values of the ROC-ABC Bayes factor when H2 is true occur
when the kernel function used by the algorithm considers the pseudo-fingermarks
generated using M1 more similar to the observed fingermark than they really
are. As mentioned before, improvement of the summary statistic and the kernel
function should significantly reduce the rate of misleading evidence in favour of
H1. In practice, we believe that examiners comparing close non-matching finger
impressions would be able to exclude that they originate from a common source
by visual inspection using friction ridge characteristics that are not taken into
account by our kernel function.

In experiment RS, the control prints are obtained from randomly selected
sources, and so H2 is also true. In both cases the majority of observations cor-
rectly support the hypothesis of different sources, H2. As in the second exper-
iment, the algorithm using the empirical ROC curve significantly outperforms
the one based on the non-central dual beta ROC model (Table 3).

Overall, we note that the parametric modelling of the ROC curve needs to be
improved. In many situations, it appears that the non-central dual beta ROC
model is not optimal. We are currently investigating more flexible models.

These experiments were repeated using the logistic regression method by
Beaumont (2008) (see Appendix B). Results can be found in Figure 8 and Ta-
ble 4 of Appendix B. It is important to note that the logistic method does not
present an obvious upper bound for the results in experiment TS and assigns
Bayes factors with notably large magnitudes. This property is not desirable
since it may lead to unrealistic magnitude of support.

A comparison of the computational times for the empirical and parametric
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ROC methods and the logistic method is presented in Figure 9 of Appendix B.
The empirical ROC-ABC method was without rival in terms of computation
time. The logistic method performed at a much slower rate, with the differ-
ence between the two methods increasing with the dimensionality of the data.
In comparison to the widely used Beaumont (2008) ABC algorithm, we find
that our method provides the high computational efficiency that is necessary to
provide real-time calculation of the weight of forensic evidence in casework.

7. Discussion

The contribution of this paper is twofold. Firstly, we have proposed a method to
rigorously quantify the weight of fingerprint evidence using the formal statistical
framework provided by ABC. Our application addresses the issues raised in
relation to Neumann, Evett and Skerrett (2012) and provides a much needed
general framework for the quantification of the weight of any type of forensic
pattern evidence, as long as a kernel function can be defined to compare two
pieces of evidence. Secondly, our ROC-ABC algorithm addresses some issues
associated with the original ABC model selection algorithm. Our intention is
not to extend on the more modern approaches, but to propose an alternative
approach to these strategies while serving to address shortcomings related to
the choice of a suitable threshold in the original ABC model selection algorithm.

Overall, our results are consistent with the results presented by Neumann,
Evett and Skerrett (2012) while capturing the user’s belief about the parameters
of the two competing models and providing an alternative to the weighting
function that they proposed:

1. The probability of misleading evidence in favour of the defence proposition
decreases dramatically as the number of minutiae increases.

2. The probability of misleading evidence in favour of the prosecution propo-
sition is very low for configurations with more than 7 minutiae, when the
donor has been randomly selected. As expected, this probability is higher
when the donor has been selected based on the similarity of its finger-
prints with the fingermark. Improvements in the summary statistic used
to describe fingerprint patterns and in the kernel function used to com-
pare them, together with the ability of fingerprint examiners to account
for more discriminative information than our model, will certainly reduce
the rate of misleading evidence in favour of the prosecution proposition in
an operational implementation of the model.

3. The overlap between the ranges of values of the ROC-ABC Bayes factor
across different numbers of minutiae confirms that the use of the num-
ber of corresponding minutiae is only one of the criteria for inferring the
identity of the source, and that the contribution of additional informa-
tion regarding fingerprint pattern needs to be taken into account when
determining the donor of a fingermark.

In addition to the straightforward operational implementation of our ROC-
ABC approach, Figures 6 and 7 illustrate the powerful visual representation



1250 J. Hendricks et al.

Fig 6. Left panel: Fingermark (top) and control print (bottom), both originating from the
same source. Corresponding features between the two impressions have been annotated in
yellow. Middle panel: Kernel density estimates of the densities of the scores generated under
H1 (green) and H2 (red). Note that the distribution of scores generated under H1 is situated
much closer to 0, but neither of the curves cover 0. Right panel: Empirical ROC curve (black)
which is nearly perfectly overlapped by the parametric ROC curve (blue) generated from the
distributions of scores in the middle panel. Note the steep slope of the curve near p = 0.

Fig 7. Left panel: Fingermark (top) and control print (bottom) originating from the different
sources. Potentially corresponding features between the two impressions have been annotated
in yellow. Middle panel: Kernel density estimates of the densities of the scores generated
under H1 (green) and H2 (red). Note that the algorithm has detected many more random
impressions that are more similar to the fingermark than the impression from the suspect.
Right panel: Empirical ROC curve (black) and parametric ROC curve (blue) generated from
the distributions of scores in the middle panel. Note the flat slope of the curve near p = 0
indicating that the algorithm supports H2.

of the probative value of fingerprint comparisons that is offered by the ROC-
ABC algorithm. In Figure 6, the fingermark originates from same source as the
control print and BFabc = 2.51×107 (log10 BFabc = 7.4). The score distributions
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and the ROC curve in the middle and right panels intuitively show that the
data supports the hypothesis that the fingermark and control prints originate
from the same source. In contrast, Figure 7 shows a situation where the same
fingermark as in Figure 6 is compared to a randomly selected control print.
In this scenario, accounting for computational approximation, BFabc = 3.56 ×
10−153 is virtually 0. The clear support of the algorithm for the hypothesis that
the fingermark and control impressions do not originate from the same source
can be seen using the score distributions and ROC curve in the middle and right
panels. We believe that this intuition can easily be conveyed to jurors and other
factfinders.

We do not claim that the kernel function that was used in this paper is
optimal. It is worth exploring adaptive kernels that maximise the separation
between the pseudo-data generated by both models in any specific case. Nev-
ertheless, while the summary statistic and the kernel function used to generate
the results presented in this paper can be improved upon, they are adequate
to show the potential of the concept of the ROC-ABC algorithm. Operational
implementation of the method would require further studies of the repeatability
of the values obtained by the algorithm as a function of different samples (and
different sample sizes) of the population of potential donors considered by H2.

Our proposed ROC-ABC algorithm results in several improvements to the
original ABC model selection algorithm. Our approach, based on properties of
the ROC curve, transforms the convergence of the algorithm into a function
of the rate of false positives in favour of the model considered in the numer-
ator of the Bayes factor. The original ABC model selection algorithm results
in unpredictable variations of both the numerator and the denominator of the
ABC Bayes factor as the number of simulations, N , increases, which makes the
convergence of the algorithm more difficult to monitor. In our approach, the tol-
erance level, t, for a given data set is chosen such that the number of accepted
samples under the model considered in the denominator of the Bayes factor is
fixed for all N . Hence, as N increases, the approximation of the limit as the
rate of false positives approaches 0 improves. Our approach has the potential
to better plan computing resources. Critically, our method allows for rigorously
monitoring convergence.

Additionally, the shift of focus from tolerance level on Δ{η(D), ·} to the rate
of false positives in favour of model 1 does not require any of the Δ{η(D), ·} to
be close to 0. Instead, only the relative ranks of the Δ{η(D), ·} calculated for the
data generated under models 1 and 2 are considered. This implies that the kernel
function used to assess level of similarity can accommodate large vectors of
summary statistics because there is no need for any of the scores to be close to 0.
Our algorithm only requires a carefully designed kernel function that maximises
the separation between the distributions of Δ{η(eu), ·}. In addition to having the
ability to accommodate large vectors of summary statistics, our method is also
able to process the entire amount of pseudo-data generated in a computationally
efficient manner and does not require filtering the pseudo-data: as the dimension
of the summary statistic vector increases, the time required to assign Bayes
factors using other methods (such as the logistic regression approach) increases
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exponentially (Figure 9). Finally, our solution allows to formally preserve the
user’s priors on the model indices. Nevertheless, our approach may produce
inconsistent Bayes factors as their inverses may no longer be the Bayes factors
for the other model. We are currently investigating this and other properties of
our approach.

In our approach, we have not formally addressed the issue of sufficiency of
the summary statistic across models that is required for the convergence of the
ABC Bayes factor to the Bayes factor. This convergence is extremely impor-
tant in some contexts, such as forensic science, where fact-finders are as equally
interested in the proposition supported by the Bayes factor as in the magni-
tude of this support. However, since the method that we propose is able to
accommodate large vectors of summary statistics, it permits including as much
information in the summary statistic vectors with the aim that they will jointly
tend toward sufficiency by decreasing the loss of information.

To implement our approach in practice, we have proposed two methods to as-
sign ROC-ABC Bayes factors. Our results show significant differences in perfor-
mance between the empirical ROC and the non-central dual beta ROC method.
Currently, the empirical model appears to produce more stable and meaningful
results (i.e., ABC Bayes factors with reasonable magnitude). As we increase the
number of simulations, the empirical model naturally approximates the limit as
p → 0+ in Equation (13). A parametric ROC model has the potential to explore
the limit as p → 0+ in Equation (13) with a smaller sample size. In our applica-
tion using the non-central dual beta ROC model, we observed that the values
obtained using Equation (23) for multiple runs of the ROC-ABC algorithm for
a given set of observed data differ greatly from one another (many orders of
magnitude on the log10 scale). It appears that Equation (23) is very sensitive
to small changes in the values of the estimates of the model’s parameters. In-
stead, we evaluated the ratio in the left side of Equation (16) at approximately

1
25,000 (corresponding to the false positive rate evaluated at the 10th smallest

Δ{η(eu), ·} generated under H2) to obtain more robust values and generate the
data in Figure 5. Our results show that in several cases our algorithm does not
support the correct model; this may be due to our modelling of the ROC curve
in the neighbourhood of 0 not being an accurate representation of the data.
Once again, this shows that the non-central dual beta ROC model is very sensi-
tive to small changes in the estimates of its parameters. Improvements could be
made to the fitting procedure for the non-central dual beta ROC model, such
as an explicit monotonic increasing transformation of the distance scores to ini-
tiate the numerical optimisation procedure with distributions that are closer to
the assumed model; in addition, we are currently investigating other parametric
approaches for estimating the first derivative of the ROC curve for p = 0.

8. Conclusion

In this paper, we propose an algorithm to formally and rigorously assign Bayes
factors to forensic fingerprint evidence. Our ROC-ABC model selection algo-
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rithm was used to address several criticisms of the model proposed by Neu-
mann, Evett and Skerrett (2012) by framing the problem into a formal Bayesian
framework. The results presented here show that our method is promising, with
low rates of misleading evidence, and has the potential to be applied to many
other complex, high-dimension evidence forms such as shoe prints, questioned
documents, firearms, and paint fragments, glass fragments, and fibers charac-
terised by analytical chemistry. Ultimately, the widespread use of statistical
approaches to quantify the weight of forensic evidence to replace the existing
inference paradigm can only be enabled by technology providers offering com-
mercial products to the forensic community. Our method leverages currently
available technology that was designed to search forensic traces recovered at
crime scenes into large databases and retrieve the most likely candidates. For
mainstream evidence types such as fingerprints, firearms, and shoe impressions,
our algorithm can readily be implemented, validated, and integrated in current
commercial offerings, such as Automatic Fingerprint Identification Sytems. Fur-
thermore, we note that the use of ROC curves in the algorithm will be naturally
familiar to engineers and scientists designing these systems, which may facili-
tate the implementation of our method in commercial systems. In addition to
its straightforward implementation, which leverages currently available technol-
ogy and its computationally efficiency, our method provides a visually intuitive
presentation for lay individuals (i.e., jurors).

As an added benefit, our algorithm addresses several shortcomings of the
original ABC model selection algorithm. We use properties of the Receiver Op-
erating Characteristic curve to address the issue of choosing a suitable tolerance
level when assigning ABC Bayes factors using the original approach. Our mod-
ification allows for a natural convergence of the algorithm as the number of
simulations increases, and for monitoring this convergence as a function of the
sole rate of false positives in favour of the model considered in the numerator of
the Bayes factor. Focusing on the rate of false positives (rather than the toler-
ance level) allows our method to rely on the ordering of scores, rather than the
magnitudes of scores, and thus, is less affected by the curse of dimensionality
in comparison to the original ABC model selection algorithm. In addition, our
method considers the entire amount of pseudo-data generated under the consid-
ered models in a computationally efficient manner, preserving the prior beliefs
of the user.

Appendix A: Kernel function development

As mentioned in Section 4.3, we wish to use a kernel function that best separates
the distributions of Δ{η(eu), ·} obtained under the competing models considered
in Section 1. Our kernel function, Δ{·, ·}, is a linear combination of several
metrics, denoted by Δ1{·, ·}, Δ2{·, ·}, and Δ3{·, ·}, corresponding to the different
summary statistics described above (see Section 4.2) and aimed at capturing
differences in spatial relationships and directions of the features:

Δ{·, ·} = c1Δ1{·, ·}+ c2Δ2{·, ·}+ c3Δ3{·, ·} (24)



1254 J. Hendricks et al.

where ci, for i ∈ {1, 2, 3}, are real-valued constants. The components of the
kernel function are described below. We remind the reader that by construction
(see Section 4.1) the ith measurement in eu is uniquely paired with the ith

measurement in any given pseudo-fingermark, e∗u.

A.1. Components of the kernel function

The first component, Δ1{·, ·}, captures the differences in cross-distances be-
tween the locations of the minutiae in a pair of configurations (as illustrated
in Figure 3 (b)). Denoting the ith cross-distance from eu by di, and the ith

cross-distance from e∗u by d∗i , the first component of the kernel function is given

by Δ1{eu, e∗u} =

(∑(k2)
i=1

(di−d∗
i )

2

di

)1/2

. The second component, Δ2{·, ·}, takes

the same form as Δ1{·, ·}, but instead uses di and d∗i as the ith cross-distance
between location markers for feature directions (as illustrated in Figure 3 (c))
on eu and e∗u respectively. This component captures differences in directions of
the features. The third component, Δ3{·, ·}, captures the difference in direction
between the paired features for two configurations. Denoting the angle (mea-
sured in degrees) depicted in Figure 3 (d) for the ith minutiae of eu by ρi, and
the same from e∗u by ρ∗i , the third component is given by

Δ3{eu, e∗u} =

k∑
i=1

⎧⎪⎨
⎪⎩

|ρi − ρ∗i |
ρi

if |ρi − ρ∗i | ≤ 180

(180− |ρi − ρ∗i |) mod 180

ρi
if |ρi − ρ∗i | > 180

.

We considered including minutiae type in the kernel function, however, we
discovered that this characteristic was not reliable enough to be included.

A.2. Optimisation of the kernel function

As noted in Section 4.2, our method replaces the summary statistic selection
process by carefully designing a kernel function that weights the different com-
ponents of η(·) in order to maximise the separation between the distributions of
Δ{η(eu), ·}. Values for all ci in Equation (24) can be obtained by maximising
the separation between the distribution of Δ{·, ·}’s from minutiae configurations
generated by the same donor, and the distribution of Δ{·, ·}’s from minutiae con-
figurations generated by different donors. To obtain the results presented later
in this paper, we used numerical optimisation to maximise the average area
under 450 ROC curves obtained from configurations with k = {5, 8, 12, 17, 23}
minutiae. Each ROC curve was based on 50,000 distance scores as calculated in
Equation 24 and obtained by comparing k minutiae on a fingermark to pseudo-
fingermarks resulting from the distortion of the true source of the fingermark
(Section 4.1.1) and from the distortion of other fingers (Section 4.1.2). Our re-
sults indicated that component 2 was the most useful to maximise the average
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area under the ROC curve (c2 = 6.5), followed by component 1 (c1 = 1) and by
component 3 (c3 = 0.1).

We stress that other summary statistics, kernel functions and optimisation
procedures could be considered without loss of generality of our proposed ROC-
ABC method.

Appendix B: Results using Beaumont (2008)’s method

Results for all three experiments were also generated using the logistic regression
method proposed by Beaumont (2008) since this method is the basis for most
current ABC model selection algorithms and has been widely used and tested.
We use the logistic regression method with the same kernel function as the one
used in our ROC-based ABC algorithm in order to have directly comparable
results. We want to re-emphasise that it is critical for the forensic application
to have a fair idea of the magnitude of support for a given model, and not only
to be able to select the correct one. Thus, we did not compare our method to
machine learning based ABC methods since they seem to be only focusing on
the posterior distributions for the models (Pudlo et al., 2016).

These results are presented in Figure 8 and Table 4. A comparison of the
computation times for each of the three methods (empirical ROC, parametric
ROC, and logistic regression) is presented in Figure 9.

The general trend of the results of the logistic regression method are similar
to those of the ROC-based methods. For the experiment TS, the magnitude of
the ABC Bayes factor increases as the number of minutiae increases, while for
experiments CNM and RS, the ABC Bayes factors tend to generally support
H2.

However, the logistic method does not present an obvious upper bound for
the results in experiment TS and assigns Bayes factors with notably large mag-
nitudes. Based on the convergence results shown in Equations (8) to (13), we
do not believe that the larger magnitude of the Bayes factors in Figure 8 can
be justified by the number of simulations performed in this experiment. We
can only conclude that these Bayes factors severely overstate the weight of the
evidence observed and generated in these cases. In addition, we note the very
large variance of the Bayes factor assigned using the logistic regression method
during experiment TS. This large variance results in a high rate of misleading
evidence in favour of H2. This rate is noticeably greater than that from the
empirical method (Table 4).

Interestingly, results from experiments CNM and RS show that the logistic
regression method produces less misleading evidence in favour of H1 when H2

is true, even when very similar prints are used (Table 4). The logistic regression
method maximises the separation between the two models by leveraging all
of the content of the vectors of summary statistics, while the kernel function
described in Section 4.3 has been optimised for the average case. The ROC-ABC
method may be improved in this aspect by using an adaptable kernel function
that would also maximise the separation in each case.
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Table 4

Rates of misleading evidence for the experiments presented in Figures 4, 5, and 8.

# of minutiae
method scenario

3 4 5 6 7 8 9 10 11 12 13 14
TS 0.44 0.47 0.28 0.21 0.07 0.06 0.04 0.02 0.02 0.02 0.01 0.01
CNM 0.20 0.09 0.09 0.06 0.16 0.17 0.10 0.19 0.14 0.14 0.16 0.18empirical ROC
RS 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01
TS 0.40 0.32 0.15 0.07 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.01
CNM 0.42 0.33 0.51 0.43 0.59 0.58 0.40 0.49 0.40 0.35 0.37 0.38non-central dual beta ROC
RS 0.12 0.04 0.05 0.06 0.03 0.03 0.01 0.03 0.02 0.01 0.01 0.04
TS 0.57 0.49 0.39 0.37 0.27 0.27 0.22 0.20 0.13 0.08 0.07 0.06
CNM 0.13 0.06 0.05 0.02 0.02 0.02 0.02 0.00 0.02 0.00 0.01 0.00Beaumont (2008)
RS 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

# of minutiae
method scenario

15 16 17 18 19 20 21 22 23 24 25
TS 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02
CNM 0.12 0.16 0.11 0.11 0.10 0.10 0.07 0.09 0.06 0.06 0.06empirical ROC
RS 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.01 0.00
TS 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00
CNM 0.37 0.30 0.22 0.21 0.19 0.21 0.15 0.22 0.07 0.14 0.12non-central dual beta ROC
RS 0.01 0.03 0.02 0.02 0.01 0.03 0.04 0.03 0.00 0.02 0.02
TS 0.03 0.02 0.02 0.04 0.04 0.02 0.03 0.02 0.09 0.05 0.07
CNM 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00Beaumont (2008)
RS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig 8. Results obtained using the logistic regression method. Blue: results from the experiment
where the control prints originate from the true sources (TS). Red: results when the control
prints originate from sources with close non-matching prints (CNM). Green: results when the
control prints originate from randomly selected sources (RS).

Overall, while using the logistic regression method as proposed by Beaumont
(2008), we noted that the weighting of the pseudo-data prior to fitting the
logistic regression model resulted in the removal of large portions, if not all,
of the data generated under either M1 or M2. As discussed previously, this
results in altering the user-defined priors on the model index and replacing
them by unpredictable data-driven priors. Furthermore, this led to instability
when fitting the logistic regression model.

A comparison of the computation time among the three methods (empirical
ROC, parametric ROC, and logistic regression) is presented in Figure 9. This
computation time represents the time required to assign ABC Bayes factors us-
ing the three different methods once the pseudo-data has been generated. The
empirical ROC-ABC method was without rival in terms of computation time.
Even as data complexity / dimensionality increased, computation time was rel-
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Fig 9. A comparison of the computation time for the empirical ROC method (red), the para-
metric ROC model (blue), and logistic regression method (green). The computation time
represents the time required to assign Bayes factors once the pseudo-data has been generated.

atively constant. The logistic method outperformed the parametric ROC-ABC
method up until 9 minutiae. At this point, the total computation time for the
logistic method continued to increase at an exponential rate while the computa-
tion time for the parametric ROC-ABC method remained fairly uniform. This is
unsurprising since the computational complexity of the parametric ROC-ABC
is driven by the number of univariate scores in the ROC curve, and not by the
dimension of the vectors of summary statistics. In addition to an increase in
computing time, an increase in computing resources was also required by the
logistic regression method such that fingerprint data with more than 22 features
could not be processed on a standard desktop computer, while the ROC-based
methods have a very small computing footprint (once the initial pseudo-data
has been generated).

Appendix C: Proof of convergence result

Theorem. Main result. Let Zi
iid∼ Bernoulli(π), where π ∈ (0, 1), and Xi

iid∼ F
for i = 1, 2, .... Define

F̂n(t) =

∑n
i=1 ZiI[Xi ≤ t]∑n

i=1 Zi
(25)

where t ∈ R. Then,

sup
t

|F̂n(t)− F (t)| p→ 0 as n → ∞.

A proof of this theorem will follow after proofs of two preliminary results.

Theorem. Preliminary result (a). Define

F̃n(t) =

∑n
i=1 ZiI[Xi ≤ t]

πn
. (26)
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Then
sup
t

∣∣∣F̃n(t)− F̂n(t)
∣∣∣ p→ 0 as n → ∞.

Proof. Consider

sup
t

∣∣∣F̃n(t)− F̂n(t)
∣∣∣ = sup

t

∣∣∣∣
∑n

i=1 ZiI[Xi ≤ t]

πn
−

∑n
i=1 ZiI[Xi ≤ t]∑n

i=1 Zi

∣∣∣∣ (27)

= sup
t

∣∣∣∣∣
(

1

πn
− 1∑n

i=1 Zi

)(
n∑

i=1

ZiI[Xi ≤ t]

)∣∣∣∣∣ (28)

= sup
t

∣∣∣∣∣
(
1

π
− n∑n

i=1 Zi

)(
n−1

n∑
i=1

ZiI[Xi ≤ t]

)∣∣∣∣∣ (29)

= sup
t

∣∣∣∣∣n−1
n∑

i=1

ZiI[Xi ≤ t]

∣∣∣∣∣
∣∣∣∣ 1π − n∑n

i=1 Zi

∣∣∣∣ (30)

= Op(1)op(1) (31)

= op(1). (32)

Equality (27) is by definition; equalities (28) and (29) are through algebraic ma-
nipulation; in equality (30), the second term has been removed from
supt | · | since it does not involve t. Because ZiI[Xi ≤ t] is bounded, then

supt
∣∣n−1

∑n
i=1 ZiI[Xi ≤ t]

∣∣ = Op(1). Also, n∑n
i=1 Zi

a.s.→ 1
π as n → ∞,

so
∣∣∣ 1π − n∑n

i=1 Zi

∣∣∣ = op(1).

Theorem. Preliminary result (b). Define Fn(t) = n−1
∑n

i=1 I[Xi ≤ t]. Then

sup
t

∣∣∣F̃n(t)− Fn(t)
∣∣∣ p→ 0 as n → ∞.

Proof. Consider

sup
t

∣∣∣F̃n(t)− Fn(t)
∣∣∣ = sup

t

∣∣∣∣∣(πn)−1
n∑

i=1

ZiI[Xi ≤ t]− n−1
n∑

i=1

I[Xi ≤ t]

∣∣∣∣∣ (33)

= sup
t

∣∣∣∣∣(πn)−1
n∑

i=1

(Zi − π) I[Xi ≤ t]

∣∣∣∣∣ (34)

p→ 0 as n → ∞. (35)

Equality (33) is by definition. Equality (34) is a result of algebraic manipu-
lation. Noting that E [(Zi − π)I[Xi ≤ t]] = E (Zi − π)E (I[Xi ≤ t]) = 0, the
convergence on line (35) is implied by the Weak Law of Large Numbers.

A proof of the main result follows.

Proof. Consider

sup
t

|F̂n(t)− F (t)| = sup
t

|F̂n(t)− F̃n(t) + F̃n(t)− F (t)| (36)
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≤ sup
t

|F̃n(t)− F̂n(t)|+ sup
t

|F̃n(t)− F (t)| (37)

= sup
t

|F̃n(t)− F̂n(t)|+ sup
t

|F̃n(t)− Fn(t) + Fn(t)− F (t)|

(38)

≤ sup
t

|F̃n(t)− F̂n(t)|+ sup
t

|F̃n(t)− Fn(t)|+ sup
t

|Fn(t)− F (t)|

(39)

= op(1) + op(1) + op(1) (40)

= op(1) (41)

Equation (36) is obtained by adding an identity for 0; equation (37) is by the tri-
angle inequality; equation (38) is obtained by adding an identity for 0; equation
(39) is by the triangle inequality; the first term in equation (40) is by prelimi-
nary result (a), the second term is by preliminary result (b), and the third term
is a result of the Glivenko-Cantelli Theorem. Equality (32) is a result of the
Continuous Mapping Theorem.

Therefore, supt |F̂n(t)− F (t)| p→ 0 as n → ∞.
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