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Abstract

In this work we model the dynamics of a population that evolves as a continuous
time branching process with a trait structure and ecological interactions in form of
mutations and competition between individuals. We generalize existing microscopic
models by allowing individuals to have multiple offspring at a reproduction event.
Furthermore, we allow the reproduction law to be influenced both by the trait type of
the parent as well as by the mutant trait type.

We look for tractable large population approximations. More precisely, under
some natural assumption on the branching and mutation mechanisms, we establish
a superprocess limit as the solution of a well-posed martingale problem. Standard
approaches do not apply in our case due to the lack of the branching property, which
is a consequence of the dependency created by the competition between individuals.
In order to show uniqueness we therefore had to develop a generalization of Dawson’s
Girsanov Theorem that may be of independent interest.
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1 Introduction

The study of interactions between organisms and their environment which influence
their reproductive success and contribute to genotype and phenotype variation is one of
the main questions in evolutionary ecology and population genetics. In this paper, we
are interested in modelling the dynamics of populations by emphasizing the ecological
interactions, namely the competition between individuals for limited resources, where
each individual is characterized by a quantitative trait which remains constant during the
individual’s life and which is passed on to offspring unless a mutation occurs. Motivated

*Supported by the DFG-SPP Priority Programme 1590, Probabilistic Structures in Evolution.
†Georg-August-Universität Göttingen, Germany. E-mail: gabriel.berzunza-ojeda@uni-goettingen.de
‡Georg-August-Universität Göttingen, Germany. E-mail: asturm@math.uni-goettingen.de
§Universität Duisburg-Essen, Germany. E-mail: asturm@math.uni-goettingen.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP707
https://ams.org/mathscinet/msc/msc2020.html
mailto:gabriel.berzunza-ojeda@uni-goettingen.de
mailto:asturm@math.uni-goettingen.de
mailto:asturm@math.uni-goettingen.de


Trait-dependent branching particle systems with competition and multiple offspring

by the work of Bolker-Pacala [6] and Dieckmann-Law [17], several models have been
rigorously developed in this context. Firstly, Fournier and Méléard [24] considered
spatial seed models. Secondly, Champagnat, et al. [8], Jourdain, et al. [29], Méléard and
Viet Chi [37] studied phenotypic trait structured populations when the mutation kernel
behaves essentially as a Gaussian law or belongs to the domain of attraction of a stable
law. Finally, Méléard and Viet Chi [36] considered also structured populations whose
dynamics depends on the past. In these works, the population is essentially modelled by
a continuous time pure birth-death process with mutation. The birth and death rates of
this Markov process may depend on each individual’s trait and the interactions between
them. While traits are normally hereditarily transmitted from a parent to its offspring
with a (small) probability a mutation may occur. In this case, the offspring makes an
instantaneous mutation step at birth to a new trait value. This mutation step is driven
by a mutation kernel (a probability kernel) that depends only on the parent trait. The
authors then pass from the microscopic description of the population on the level of
individuals to a macroscopic description on the level of population mass distribution in
the trait space.

It is important to point out that whereas most organisms rely on binary reproduction
for propagation, many other use alternative mechanisms which include multiple offspring
in order to reproduce and remain competitive; see for example [2], [9] and [44]. Thus,
in this work, we are interested in generalizing this microscopic model in that we allow
individuals to have multiple offspring at a reproduction event. More precisely, we
consider a general offspring distribution where the number of children produced by
each individual depends on its trait as well as on the new trait that appears in case a
mutation occurs. We have a number of scenarios in mind in which such a dependence
may occur. One such scenario is modelling so-called “jackpot” events, introduced in a
seminal paper of Luria and Delbrück [35], in which particular mutants rapidly create a
sizeable mutant subpopulation – in the original famous Luria and Delbrück experiment
because they are more resistant to detrimental effects of the environment.

In our model, this mutant subpopulation is created instantaneously and we refer
to them simply as mutant offspring. Let us consider a particular scenario, namely
the evolution of different strains of virus populations or other microparasites with fast
adaptation, in order to motivate a dependence of the offspring distribution on the parent
as well as on the mutant strain.

Virus populations evolve as subpopulations within hosts that in turn infect other
hosts and thus create new evolving subpopulations. Within each host subpopulations of
different strains of the virus will generally be present (due to the initial infection but
in particular due to mutation during the infection) and their evolution is affected by
the immune system, that reacts to the presence of particular strains that it has already
recognized. This leads to an increased death rate of a prevalent subpopulation, which
we model by a competition term, effectively a death rate that depends on the size and
proximity (in type space) of the entire virus population.

A mutant type -sufficiently different from the parent type say- may on the other
hand quickly establish a sizeable subpopulation, whose size could also depend on the
intrinsic fitness of their trait type, before they are targeted by the immune system
(“immune escape”). Admittedly, a dependence on the size and proximity of the entire
virus population (as in the competition term), which is shaping the current immune
system and its response, could be even more desirable. But we view the dependence on
the parent type as a first step in this direction, which is in particular realistic if a mutation
to an epitope site results in a completely new phenotype of the virus’ antibody-binding
sites. (We note that our general type space and set-up may also be used to explicitly
model the interplay between frequent epitope mutations and relatively rare non-epitope
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mutations affecting the fitness, see Strelkowa and Lässig [49] for a discussion.)

On the level of the hosts a similar dynamic is at play. The infection of a new host
(with a particular virus type) is affected by the (local) availability of hosts that are yet
uninfected by a particular strain. Thus again new mutants may have an initial advantage
that could depend on a strain’s intrinsic fitness as well as on how different it is from
previous strains. We refer to Remark 3.3 (c) for a choice of mutation dependent offspring
distributions that could be suitable in modelling the situation described above.

We note that there is an extensive research literature on analysing the spread
of different virus strains (and their genealogies), see for example [49, 16, 39, 40] and
references therein. Mathematically rigorous results for models with fixed total population
size and particular type spaces can be found in recent work by Schweinsberg [47, 48],
see Dawson and Greven [15] for a general treatment of such models.

Apart from an interpretation of the type space as a space of genetic or phenotypic
traits we could also go back to the interpretation of the type space as a spatial location of
individuals (or a combination of the two). In a spatial setting Fournier and Méléard [24]
interpreted individuals as plants and the production of new individuals in the type space
as a result of seed dispersal (with immediate maturation). But unlike in the model of [24]
seeds are not always dispersed individually but may be dispersed in groups, in particular
when the seeds within fruit are consumed by animals and carried over larger distances,
see [10, 46] for some recent biological literature highlighting the importance of these
dispersal mechanisms. How many of these seeds establish themselves at their new
location may depend on the parent location, which can influence how many viable seeds
were produced, as well as on the new location, which may be more or less favorable.

Finally, we point out that our model can easily be adjusted to also include mutation of
individuals during their lifetime. In this case, the “birth” of a (or multiple) individuals at
a new location in the type space would happen at the same time as the “death” of the
individual at the original location. (If we think again of a geographical space then this
would be migration.) Details are left to the interested reader.

As in previous work, the main goal of our work is to look for macroscopic approxi-
mations, namely for tractable large population approximations of the individual-based
models when the size of the population tends to infinity, combined with frequent mutation
and accelerated birth and death. The latter is known as allometric demographies or
allometric effects (larger populations made up of smaller individuals who reproduce
and die faster); see for example [8, Section 4.2] and reference therein for background.
Basically, this leads to systems in which organisms have short lives and reproduce fast
while their colonies or populations grow or decline on a slow timescale. We proceed with
tightness-uniqueness arguments inspired by the classical theory of superprocesses [13]
and [32] without interaction. Clearly, difficulties arise due to the lack of the branching
property which is a consequence of the dependency created by the competition between
individuals. Nevertheless, following ideas of Méléard [24] and Champagnat, et al. [8]
we introduce a new infinite dimensional martingale problem. In the limit, we obtain a
measure-valued process defined as the solution of this nonlinear martingale problem.
The proof of uniqueness of such a martingale problem requires substantial work. We
develop a new Girsanov type theorem which allows us to get rid of the non-linearities
caused by the competition. This Girsanov theorem may be viewed as a generalization of
Dawson’s Girsanov Theorem [11] and may also be of independent interest. The effect
of multiple branching makes the analysis more complicated due to the loss of some
moments. Therefore, we adapt the localization procedure introduced by Stroock [50]
and generalized by He [25] to the measure-valued context.

It is important to point out that the nonlinear superprocess obtained as the limit
generalizes, for instance, the work of [19], [23], [14] or [42] by incorporating interaction.
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On the other hand, the general reproduction law of the approximating population system
yields a limiting process with a general branching mechanism, which extends the models
proposed by Méléard [24], Champagnat, et al. [8], Jourdain, et al. [29] and Etheridge
[20] to study spatially interactive structured populations. Let us remark that our model
allows the description of massive reproduction events which translate into discontinuities
of the limiting process. This can be the first step to analyzings superprocesses with
interactions that possess a jump structure.

The outline of the remainder of this paper is as follows. Section 2 is devoted to the
introduction of the individual-based model we are interested in. Here, we also prove
some useful properties of the model. The main convergence result based on a large
population limit is stated in Section 3. In Section 4, we prove tightness of the laws of
the particle processes and we identify the limiting values as solutions of a nonlinear
martingale problem. The uniqueness of such a martingale problem is attended to in
Sections 5 and 6.

2 The individual-based model

In this section, we formally introduce our interacting particle Markov process for
Darwinian evolution in an asexual population with non-constant population size in which
each individual is characterized by hereditary types. Our model’s construction starts
with a microscopic description of a population in which the adaptive traits influence
the birth rate, the mutation process, the death rate, and how the individuals interact
with each other and their external environment. More precisely, we assume that the
phenotype of each individual is described by a quantitative trait. Throughout the paper,
we will assume that

the trait space X is a Polish space that is locally compact.

In the following we should consistently refer to x ∈ X as either a “trait” or a “type”. We
consider a parameter K ∈ N that scales the resources or area available. It is called the
“system size” by Metz et al. [38]. It will become apparent later that this parameter is
linked to the size of the population: large K means a large population (provided that the
initial condition is proportional to K). We have the following definition of the stochastic
interacting individual system where individuals behave independently:

1. Birth and mutation: An individual of trait type x ∈ X gives birth at rate bK(x) ∈
R+. The number of offspring born at each birth time is controlled by a Markov
kernel πK on X 2 ×N i.e. by a family of offspring distributions indexed by X × X ,
say

πK =
(
πK(x, h) = (πK(x, h, k), k ≥ 1), x, h ∈ X

)
(2.1)

such that (x, h) 7→ πK(x, h, ·) is measurable and
∑∞
k=1 π

K(x, h, k) = 1 for all x, h ∈ X .
More precisely, each individual of type x gives birth independently to k clonal
individuals with probability πK(x, x, k)(1− p(x)), where p(x) ∈ [0, 1] is the mutation
probability of an individual with trait x ∈ X . Otherwise, it produces k individuals
of type h with probability p(x)πK(x, h, k)mK(x, dh), where mK(x, ·) is a probability
measure on X called the mutation kernel or mutation step law. Note here that the
new type h only depends on x while the number of individuals produced depends
on x and h.

2. Natural death: An individual of type x ∈ X dies naturally at rate dK(x) ∈ R+.

3. Competition: We let cK(x, y) ∈ R+ be the competition kernel which models the
competition pressure felt by an individual with trait x ∈ X from an individual
with type y ∈ X . We then add extra death due to competition. Specifically, each
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individual of type y points independent exponential clocks of parameter cK(x, y) on
each individual of type x. Then, the death of an individual of type x occurs as soon
as a clock pointed at this individual rings.

LetM(X ) denote the set of finite Borel measures on X equipped with the weak topology,
and define the subsetMK(X ) ofM(X ) by

MK(X ) =

{
1

K

n∑
i=1

δxi : n ≥ 0, x1, . . . , xn ∈ X

}
,

where δx is the Dirac measure at x. For any µ ∈M(X ) and any measurable function f
on X , we set 〈µ, f〉 =

∫
X fdµ.

At any time t ≥ 0, we let Nt be the finite number of individuals alive, each of which is
assigned a trait type in X . Let us denote by x1, . . . , xNt the trait types of these individuals.
The state of the population at time t ≥ 0, rescaled by K, can be described by the finite
point measure νKt on X defined by

νKt =
1

K

Nt∑
i=1

δxi .

We let 1A be the indicator function of a set A ⊂ X . For simplicity, we denote by 1 := 1X
the indicator function on the whole space. We observe that 〈νKt ,1〉 = NtK

−1. For any
x ∈ X , the positive number 〈νKt ,1{x}〉 is called the density of the trait x at time t.

In the next section, we are going to construct under suitable assumptions aMK(X )-
valued Markov process with infinitesimal generator, LK , defined for a convergence
determining subspace of bounded measurable functions f fromMK(X ) to R and for all
µK ∈MK(X ) by

LKf(µK) = K

∫
X

∞∑
k=1

bK(x)(1− p(x))πK(x, x, k)

(
f

(
µK + k

δx
K

)
− f(µK)

)
µK(dx)

+K

∫
X

∞∑
k=1

bK(x)p(x)

∫
X
πK(x, h, k)

(
f

(
µK + k

δh
K

)
− f(µK)

)
mK(x, dh)µK(dx)

+K

∫
X

(
dK(x) +K

∫
X
cK(x, y)µK(dy)

)(
f

(
µK − δx

K

)
− f(µK)

)
µK(dx). (2.2)

The construction is inspired by [8] and [24], who consider the case of binary reproduction
and an offspring distribution that is independent of the trait type. In this more general
setting to the best of our knowledge, the construction has not been made rigorous before.
Therefore, we present the details in order to make this work self-contained.

Remark 2.1. In our model we assume that in case of mutation all offspring will have the
same mutant trait. One could consider more general dynamics in which at a mutation
event each new offspring could mutate into a different trait independently of its sibling.
This clearly will make the model more realistic but mathematically more involved and
complicated. Thus, we leave it as an open problem. On the other hand, we recall that we
are primarily interested in studying the (potentially fast) rise in numbers of individuals
of new traits, and this is what the proposed model is trying to capture.

In the present paper we use the following notation. Given a topological space V ,
let B(V ) denote the Borel σ-algebra on V . Let W be another topological space with its
respective σ-algebra B(W ). Then we denote by B(V,W ) the set of bounded measurable
functions from V to W . Let T > 0 and D([0, T ], V ) (resp. D([0,∞), V )) denote the
space of càdlàg paths from [0, T ] (resp. from [0,∞)) to V furnished with the Skorokhod
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topology. For a metric space V̄ let P(V̄ ) be the family of Borel probability measures
on V̄ equipped with the Prohorov metric. Let B(V,R) be furnished with the supremum
norm (i.e. for f ∈ B(V,R), we write ‖ f ‖∞= supx∈V |f(x)|) and B(V,R+) denote the
subset of B(V,R) of positive elements. We use Cb(V,R) (resp. Cb(V,R+)) to denote
the set of bounded continuous functions from V to R (resp. from V to R+). For any
integer n ≥ 1, let Cnb (R,R) (resp. Cnb (R,R+), Cnb (R+,R+)) be the subset of Cb(R,R)

(resp. Cb(R,R+), Cb(R+,R+)) of functions with bounded continuous derivatives up to
the n-th order. If V is locally compact and separable, we write C0(V,R) for the space
of continuous functions from V to R which vanish at infinity (i.e. f ∈ C0(V,R) if for all
ε > 0 there exists E ⊂ V compact such that for all x ∈ V \ E one has that |f(x)| ≤ ε).
Let X̂ = X ∪ {∂} be the one-point compactification of X , with X̂ = X whenever X
is compact. Let C∂(X ,R) (resp. C∂(X ,R+), C∂(X × X ,R+)) be the set of functions
in Cb(X ,R) (resp. Cb(X ,R+), Cb(X × X ,R+)) that can be extended continuously to
X̂ (resp. X̂ × X̂ ). Furthermore, in the case that X is a subset of Rl (l ≥ 1), we let
Cn∂ (X ,R) (resp. Cn∂ (X ,R+), Cn∂ (X × X ,R+)) be the set of functions in Cnb (X ,R) (resp.
Cnb (X ,R+), Cnb (X × X ,R+)) which together with their derivatives up to the n-th order
can be extended continuously to X̂ (resp. X̂ × X̂ ). Finally, we use the superscript “+” to
denote the subsets of non-negative elements bounded away from zero e.g., B(V,R+)+,
Cb(V,R+)+, etc. That is, for f ∈ B(V,R+)+ (or Cb(V,R+)+) there exists an ε > 0 such
that f(x) ≥ ε for all x ∈ V .

2.1 Poissonian construction

We provide a path-wise description of the stochastic process (νKt , t ≥ 0). For this we
will use the following:

Assumption 2.2. Assumptions on the population parameters of the model:

(i) The birth and natural death rate belong to B(X ,R+). So, there exist 0 < b, d < +∞
(that may depend on K) such that bK(·) ≤ b and dK(·) ≤ d.

(ii) The competition kernel belongs to B(X × X ,R+). So, there exists 0 < c < +∞
(that may depend on K) such that cK(·, ·) ≤ c.

(iii) The mutation kernel mK(x,dh) is absolutely continuous with respect to a σ-finite
probability measure m̄ on X with density mK(x, h).

We need the following notation:

Notation 2.3. Fix 0 ∈ X (an arbitrary element), let H = (H1, H2, . . . ,Hk, . . . ) :MK(X )

7→ XN be defined by

H

(
1

K

n∑
i=1

δxi

)
= (xθ(1), . . . , xθ(n), 0, . . . , 0), for n ≥ 1,

where xθ(1) � · · · � xθ(n) for some arbitrary (but fixed) order � on X .

To avoid confusion, it is important to notice that the function H is listing all the xi’s
in some order and that there may be repetitions. The function H allows us to label the
individuals in a population described by a measure inMK(X ) in an arbitrary way (here
depending on their types). The vector that is given by H will be useful later on when
we want to attach Poisson processes to all individuals and want them to interact (at the
jump times of these Poisson processes) with the rest of the population according to their
trait type.

Notation 2.4. We consider the space CK ⊆ D([0,∞),M(X )) of piecewise constant
càdlàg paths, i.e.

CK :=

{
(νt, t ≥ 0)

∣∣∣ ∀ t ≥ 0, νt ∈MK(X ), and ∃ 0 = t0 < t1 < t2 < · · · ,
limn→∞ tn =∞ with νt = νti ∀ t ∈ [ti, ti+1)

}
.
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Observe that for (νt, t ≥ 0) ∈ CK , and t > 0 we can define νt− in the following way: If
t 6∈
⋃
i≥0{ti}, νt− = νt, while if t = ti, for some i ≥ 1, νt− = νti−1

.
We now introduce some Poisson point processes that we need. We will write λ for the

Lebesgue measure on R+ and n for the counting measure on N.

Definition 2.5. Let (Ω,F ,P) be a (sufficiently large) probability space. On this space,
we consider the following four independent random elements:

1. Initial distribution: Let νK0 be aMK(X )-valued random variable.

2. Clonal birth: Let Nc be a Poisson point measure on R+ × N × N × R+, with
intensity measure λ⊗ n⊗ n⊗ λ.

3. Mutation: Let Nm be a Poisson point measure on R+ × N × X × N × R+, with
intensity measure λ⊗ n⊗ m̄⊗ n⊗ λ.

4. Natural death and competition: Let Nd be a Poisson point measure on R+ ×
N×R+, with intensity measure λ⊗ n⊗ λ.

Let us denote by (Ft)t≥0 the canonical filtration generated by these processes.

Finally, we define the population process in terms of the previous Poisson measures.

Definition 2.6. An (Ft)t≥0-adapted stochastic process νK = (νKt , t ≥ 0) that belongs a.s.
to CK will be called the population process if a.s., for all t ≥ 0,

νKt = νK0 +

∫
[0,t]

∫
N

∫
N

∫
R+

k
δHi(νKs−)

K
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))(1−p(Hi(νKs−)))πK(Hi(νKs−),Hi(νKs−),k)}Nc(ds,di,dk, dz)

+

∫
[0,t]

∫
N

∫
X×N

∫
R+

k
δh
K
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))p(Hi(νKs−))πK(Hi(νKs−),h,k)mK(Hi(νKs−),h)}Nm(ds,di,dh,dk, dz)

−
∫

[0,t]

∫
N

∫
R+

δHi(νKs−)

K
1{i≤K〈νKs−,1〉}

1{z≤dK(Hi(νKs−))+K
∫
X cK(Hi(νKs−),y)νKs−(dy)}Nd(ds,di,dz).

In order to show existence and some moment properties for the population process
in Definition 2.6 we need another assumption.

Assumption 2.7. We consider the following moment conditions:

(i) The offspring distribution πK has finite mean, namely

κ1 = sup
x,h∈X

∞∑
k=1

kπK(x, h, k) < +∞.

(ii) The measure νK0 has finite mean, that is

E[〈νK0 ,1〉] < +∞.

We now show that under Assumptions 2.2 and 2.7 the stochastic process νK =

(νKt , t ≥ 0) from Definition 2.6 is well-defined. Observe that the total jump rate of νKt is
bounded by a polynomial in the total mass at time t ≥ 0 by Assumption 2.2. Therefore,
the process is well-defined on the interval [0, τn], where for n ≥ 1,

τn := inf{t ≥ 0 : 〈νKt ,1〉 ≥ n/K}. (2.3)

Moreover, the process is shown to be well-defined if we can exclude explosion of the
total mass. Thus the goal then is to show that τn →∞ almost surely as n→∞.

EJP 26 (2021), paper 153.
Page 7/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

Theorem 2.8. Suppose that Assumptions 2.2 and 2.7 are fulfilled. Then the following
hold:

(a) The stochastic process νK = (νKt , t ≥ 0) from Definition 2.6 is well-defined and it is
not explosive.

(b) Moreover, assume that for some q ≥ 1,

κq = sup
x,h∈X

∞∑
k=1

kqπK(x, h, k) < +∞ and E[〈νK0 ,1〉q] < +∞.

Then for any 0 < T < +∞,

E
[

sup
t∈[0,T ]

〈νKt ,1〉q
]
< +∞. (2.4)

Proof. Claim (a) is a consequence of claim (b). Indeed, we can build the solution
νK = (νKt , t ≥ 0) step by step using Definition 2.6 (see for instance [24, Section 2.3] in a
similar setting). We have to check only that the sequence of (effective or fictitious) jump
instants (Tn, n ≥ 0) goes a.s. to infinity as n → ∞ (i.e. there is no explosion in finite
time), and this follows from (b) with q = 1 due to the uniform (in X ) boundedness of the
rates by Assumption 2.2.

We now prove (b). Recall τn from (2.3). Then, a simple computation using Assumption
2.2 shows that, dropping the non-positive death terms on Definition 2.6 yields

sup
s∈[0,t∧τn]

〈νKs ,1〉q ≤ 〈νK0 ,1〉q

+

∫
[0,t∧τn]

∫
N

∫
N

∫
R+

((
〈νKs−,1〉+

k

K

)q
− 〈νKs−,1〉q

)
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))(1−p(Hi(νKs−)))πK(Hi(νKs−),Hi(νKs−),k)}Nc(ds,di,dk,dz)

+

∫
[0,t∧τn]

∫
N

∫
X×N

∫
R+

((
〈νKs−,1〉+

k

K

)q
− 〈νKs−,1〉q

)
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))p(Hi(νKs−))πK(Hi(νKs−),h,k)mK(Hi(νKs−),h)}Nm(ds,di,dh,dk,dz).

By taking expectations and recalling Assumption 2.2, we obtain that

E
[

sup
s∈[0,t∧τn]

〈νKs ,1〉q
]
≤ E

[
〈νK0 ,1〉q

]
+KbE

[∫ t∧τn

0

∫
X

( ∞∑
k=1

πK(x, x, k)

((
〈νKs ,1〉+

k

K

)q
− 〈νKs ,1〉q

)

+

∞∑
k=1

∫
X
πK(x, h, k)mK(x, h)

((
〈νKs ,1〉+

k

K

)q
− 〈νKs ,1〉q

)
m̄(dh)

)
νKs (dx)ds

]
.

Next, we recall the inequality

(x+ k)q − xq ≤ Cq(kq + kq−1xq−1), for k, x ∈ N ∪ {0},

and some positive constant Cq depending only on q. We thus obtain

E
[

sup
s∈[0,t∧τn]

〈νKs ,1〉q
]
≤ E[〈νK0 ,1〉q] + 2Cq bK

2−qE

[∫ t∧τn

0

(κq〈νKs−,1〉+ κq−1〈νKs−,1〉q)ds
]

≤ Cq,K
(

1 + E

[∫ t

0

(1 + 〈νKs∧τn ,1〉
q)ds

])
,
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where Cq,K is a positive constant depending only on q and K (for the last inequality, we
used that x ≤ 1 + xq, for x ≥ 0). The Gronwall Lemma allows us to conclude that for any
T <∞, there exists a constant Cq,T (not depending on n) such that

E
[

sup
s∈[0,T∧τn]

〈νKs ,1〉q
]
≤ Cq,T . (2.5)

Finally, we only need to deduce that τn tends a.s. to infinity in order to finish the
proof. Indeed, if not, we may find a T0 <∞ such that εT0

= P(supn≥1 τn < T0) > 0. This
would imply that E[supt∈[0,T0∧τn]〈νKt ,1〉q] ≥ εT0

(n/K)q for all n which contradicts our
last inequality. Therefore, we may let n→∞ in (2.5) thanks to Fatou’s Lemma and get
(2.4).

Let us now show that if the population parameters satisfy Assumptions 2.2 and 2.7
and νK = (νKt , t ≥ 0) solves the stochastic equation in Definition 2.6, then it follows the
dynamic we are interested in, i.e. that it has infinitesimal generator given by (2.2).

Let Z = (Zt, t ≥ 0) be a Markov process Z = (Zt, t ≥ 0) with state space (E, d)

defined on some probability space (Ω̃, F̃ , P̃). Recall that the infinitesimal generator G of
a Markov process Z is given by

G (f(z)) :=
d

dt
Ẽ[f(Zt)]

∣∣∣
t=0

= lim
t→0

Ẽ[f(Zt)]− f(z)

t
,

for z ∈ E and f ∈ B(E,R) for which this limit exists, see [21, equation (1.10) in Section
1.1].

Proposition 2.9. Assume Assumption 2.2 and 2.7 and consider νK = (νKt , t ≥ 0) as in
Definition 2.6. Then νK is a Markov process. Its infinitesimal generator LK is given
by (2.2), and it is defined for all functions f ∈ B(MK(X ),R) such that for u ∈ [0, 1] and
µ ∈MK(X ) ∫

X
|f(µ− uδx)− f(µ)|µ(dx) < Cu, (2.6)

where C is a positive constant that does not depend on µ. In particular, the law of νK

does not depend on the chosen order (see Notation 2.3).

Proof. The fact that νK = (νKt , t ≥ 0) is a Markov process follows from its definition by
classical results from the theory of Poisson random measures, see [7, Section VI.6 and
IX.3] for background and examples. Let us now prove that the infinitesimal generator
of the process νK has the desired form. Consider a function f as in the statement and

recall that in our notation νK0 = 1
K

∑K〈νK0 ,1〉
i=1 δHi(νK0 ). We notice that a.s.

f(νKt ) = f(νK0 ) +
∑
s≤t

(f(νKs− + (νKs − νKs−))− f(νKs−)),
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for t ≥ 0. Then,

f(νKt ) = f(νK0 ) +

∫
[0,t]

∫
N

∫
N

∫
R+

(
f

(
νKs− + k

δHi(νKs−)

K

)
− f(νKs−)

)
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))(1−p(Hi(νKs−)))πK(Hi(νKs−),Hi(νKs−),k)}Nc(ds,di,dk, dz)

+

∫
[0,t]

∫
N

∫
X×N

∫
R+

(
f

(
νKs− + k

δh
K

)
− f(νKs−)

)
1{i≤K〈νKs−,1〉}

1{z≤bK(Hi(νKs−))p(Hi(νKs−))πK(Hi(νKs−),h,k)mK(Hi(νKs−),h)}Nm(ds,di,dh,dk,dz)

+

∫
[0,t]

∫
N

∫
R+

(
f

(
νKs− −

δHi(νKs−)

K

)
− f(νKs−)

)
1{i≤K〈νKs−,1〉}

1{z≤dK(Hi(νKs−))+K
∫
X cK(Hi(νKs−),y)νKs−(dy)}Nd(ds,di,ds).

Taking expectations, we obtain that

E[f(νKt )] = E[f(νK0 )]

+

∫ t

0

E

K〈νKs ,1〉∑
i=1

{ ∞∑
k=1

bK(Hi(ν
K
s−))(1− p(Hi(ν

K
s−)))πK(Hi(ν

K
s−), Hi(ν

K
s−), k)

×

(
f

(
νKs− + k

δHi(νKs−)

K

)
− f(νKs−)

)

+

∞∑
k=1

bK(Hi(ν
K
s−))p(Hi(ν

K
s−))

∫
X
πK(Hi(ν

K
s−), h, k)mK(Hi(ν

K
s−), h)

×
(
f

(
νKs− + k

δh
K

)
− f(νKs−)

)
m̄(dh)

+

(
dK(Hi(ν

K
s−)) +K

∫
X
cK(Hi(ν

K
s−), y)νKs−(dy)

)(
f

(
νKs− −

δHi(νKs−)

K

)
− f(νKs−)

)}]
ds.

Recalling Notation 2.3 and that we are integrating with respect to Lebesgue measure,
we have that

E[f(νKt )] = E[f(νK0 )]

+

∫ t

0

E

[
K

∫
X

∞∑
k=1

bK(x)(1− p(x))πK(x, x, k)

(
f

(
νKs + k

δx
K

)
− f(νKs )

)
νKs (dx)

+K

∫
X

∞∑
k=1

bK(x)p(x)

∫
X
πK(x, h, k)mK(x, h)

(
f

(
νKs + k

δh
K

)
− f(νKs )

)
m̄(dh)νKs (dx)

+K

∫
X

(
dK(x) +K

∫
X
cK(x, y)νKs (dy)

)(
f

(
νKs −

δx
K

)
− f(νKs )

)
νKs (dx)

]
ds.

Since LK(f(νK0 )) = d
dtE[f(νKt )]

∣∣
t=0

, Assumption 2.2 and condition (2.4) for q = 1, a
consequence of Assumption 2.7, and (2.6) lead to (2.2) by differentiating the previous
expression. It is now clear that the law of νK does not depend on the chosen order.

Remark 2.10. We point out that any function f ∈ B(M(X ),R) of the form

f(µ) =

n∑
i=1

θie
−λi〈µ,φi〉, n ∈ N,

EJP 26 (2021), paper 153.
Page 10/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

where µ ∈M(X ), λi ∈ R+, θi ∈ R and φi ∈ B(X ,R+) for i = 1, . . . , n, satisfies condition
(2.6). More precisely, for u ∈ [0, 1],

∫
X
|f(µ− uδx)− f(µ)|µ(dx) ≤

n∑
i=1

|θi|e−λi〈µ,φi〉
∫
X
|euλφi(x) − 1|µ(dx)

≤ u
n∑
i=1

Ci|θi|λi〈µ, φi〉e−λi〈µ,φi〉

≤ u
n∑
i=1

Ci|θi|λi, (2.7)

for some Ci > 0. We have used the inequality |ex − 1| ≤ |x|e|x|, for x ∈ R, in order to
obtain the second line. This class of functions clearly separates points inM(X ). It is
not clear whether they are convergence determining or not. However, this will not be
needed later on.

On the other hand, we point out that the class of functions which satisfy (2.6) contains
the functions f ∈ B(M(X ),R) of the form

f(µ) = e−λµ(X )

∫
Xn

φ(x1, . . . , xn)µ(dx1) · · ·µ(dxn),

with λ ∈ R+, n ∈ N ∪ {0}, φ ∈ Cb(Xn,R), and where Xn denotes the n-fold space
of X . These functions clearly separate points in M(X ) and moreover, they are also
convergence determining (observe that the class is closed under multiplication and apply,
for example, [34, Theorem 2.7]).

2.2 Martingale properties

We finally give some martingale properties of the process νK = (νKt , t ≥ 0), which are
the key point of our approach. Recall that πK = (πK(x, h) = (πK(x, h, k), k ≥ 1), x, h ∈ X )

is the offspring distribution associated to the model described in Section 2. Let gK(x, h, ·)
be the associated probability generating function for x, h ∈ X , that is,

gK(x, h, z) =

∞∑
k=1

πK(x, h, k)zk, |z| ≤ 1. (2.8)

We consider the mean value of the offspring distribution πK ,

κK(x, h) =

∞∑
k=1

kπK(x, h, k), for x, h ∈ X . (2.9)

Theorem 2.11. Suppose that Assumption 2.2 and 2.7 are fulfilled.

(a) For all functions f ∈ B(MK(X ),R) that satisfy (2.6) and such that for some
constant C ≥ 0 (that may depend on K) and ν ∈MK(X ) we have that
|f(ν)|+ |LK(f(ν))| ≤ C(1 + 〈ν,1〉), the process MK(f) = (MK

t (f), t ≥ 0) given by

MK
t (f) = f(νKt )− f(νK0 )−

∫ t

0

LK(f(νKs ))ds

is a càdlàg (Ft)t≥0-martingale starting from 0.
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(b) For any function φ ∈ Cb(X ,R+), EK(φ) = (EKt (φ), t ≥ 0) given by

EKt (φ) = exp(−〈νKt , φ〉)− exp(−〈νK0 , φ〉)

−K
∫ t

0

∫
X̂

(
bK(x)

(
gK
(
x, x, e−

φ(x)
K

)
− 1
)

+ dK(x)
(
e
φ(x)
K − 1

))
exp(−〈νKs , φ〉)νKs (dx)ds

+K

∫ t

0

∫
X̂
bK(x)p(x)

(∫
X̂

(
gK
(
x, x, e−

φ(x)
K

)
− gK

(
x, h, e−

φ(h)
K

))
mK(x, h)m̄(dh)

)
exp(−〈νKs , φ〉)νKs (dx)ds

−K2

∫ t

0

∫
X̂

(∫
X̂
cK(x, y)νKs (dy)

)(
e
φ(x)
K − 1

)
exp(−〈νKs , φ〉)νKs (dx)ds, (2.10)

is a càdlàg (Ft)t≥0-martingale starting from 0.

Proof. Point (a) follows from [43, Theorem I.51] by showing that

E
[

sup
s∈[0,t]

∣∣MK
s (f)

∣∣ ] <∞, for every t ≥ 0.

This is a consequence of the assumption on f , Theorem 2.8 and Proposition 2.9. The
point (b) is a consequence of (a) with f(ν) = exp(−〈ν, φ〉) with ν ∈MK(X ).

3 The superprocess limit

In this section, we investigate the limit, when the system size K increases to +∞, of
the interactive particle system described in Section 2. As we will see, this will lead to a
random measure-valued process. In an obvious way, we regard the previous interactive
particle system as a process with state spaceMK(X̂ ) ⊂M(X̂ ). We denote by gK(x, h, ·)
and κK(x, h) the probability generating function and mean, of the offspring distribution
πK(x, h), for x, h ∈ X̂ , defined as in (2.8) and (2.9), respectively. Similarly, we write bK(x)

and dK(x), for x ∈ X̂ . For α ∈ (0, 1], we also consider the 1 + α moment of the offspring
distribution πK ,

κK1+α(x, h) =

∞∑
k=1

k1+απK(x, h, k), for x, h ∈ X̂ .

Note that if κK1+α(x, h) <∞ for x, h ∈ X̂ then also κK(x, h) <∞ for x, h ∈ X̂ .
We consider the following hypotheses.

Assumption 3.1. The population parameters satisfy:

(i) cK(x, y) = K−1c(x, y) for all x, y ∈ X̂ and c ∈ C∂(X × X ,R+).

(ii) There exists α ∈ (0, 1] such that the (1 + α)-th moment of the offspring distribution
is uniformly bounded, i.e.,

sup
x,h∈X̂

κK1+α(x, h) = sup
x,h∈X̂

∞∑
k=1

k1+απK(x, h, k) < +∞.

(iii) supK supx∈X̂
(
|κK(x, x)bK(x)− dK(x)|+K−α|κK1+α(x, x)bK(x) + dK(x)|

)
< +∞.
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(iv) For z ≥ 0 and x ∈ X̂ , we define

ψK(x, z) = bK(x)(gK(x, x, e−z)− 1) + dK(x)(ez − 1).

The sequence (KψK(x, z/K))K converges, uniformly on X̂ × [0, a] for each a ≥ 0, to

ψ(x, z) = −b(x)z + σ(x)z2 +

∫ ∞
0

(e−zu − 1 + zu)Π(x,du),

where b ∈ C∂(X ,R), σ ∈ C∂(X ,R+) and Π(x, ·) is a kernel from X̂ to (0,∞) such
that

sup
x∈X̂

∫ ∞
0

(u ∧ u2)Π(x, du) < +∞, and

∫
B

(u ∧ u2)Π(x, du) ∈ C∂(X ,R+),

for each B ∈ B(R+).

(v) p ∈ C∂(X , [0, 1]).

(vi) For x ∈ X̂ , the mutation kernel mK(x, dh) is absolutely continuous with respect to
a σ-finite probability measure m̄ on X̂ with density mK(x, h). Moreover,

sup
K

sup
x∈X̂

∣∣∣∣bK(x)

∫
X̂

(κK(x, h)− κK(x, x))mK(x, h)m̄(dh)

∣∣∣∣ <∞,
and

sup
K

sup
x∈X̂

∣∣∣∣K−αbK(x)

∫
X̂

(κK1+α(x, h)− κK1+α(x, x))mK(x, h)m̄(dh)

∣∣∣∣ <∞.
(vii) There is a bounded generator A of a Feller semi-group on Cb(X̂ ,R) with domain

D(A), dense in Cb(X̂ ,R), such that for all φ ∈ D(A)

lim
K→∞

sup
x∈X̂

∣∣∣∣KbK(x)

∫
X̂

(
gK
(
x, x, e−

φ(x)
K

)
−gK

(
x, h, e−

φ(h)
K

))
mK(x, h)m̄(dh)−Aφ(x)

∣∣∣ = 0.

The motivation behind Assumption 3.1 (iv) comes from the theory of superprocesses.
More precisely, from the approximation of branching particle systems that leads to
measure-valued branching processes with local branching mechanisms; see for example
[13, Section 4.4] or [32, Proposition 4.3].

Remark 3.2. A classical choice for the competition function in Assumption 3.1 (i) is
c ≡ 1. This corresponds to density dependence involving the total population size known
as the “mean field case” or the “logistic case”.

Remark 3.3. Typically, the choice of the functions bK and dK will depend on the offspring
distribution. We illustrate this with several examples:

(a) Single offspring distribution. The reproduction law satisfies

gK(x, h, z) = z, x, h ∈ X̂ and |z| ≤ 1.

In particular, choosing bK and dK proportional to K yields the case studied by
Champagnat, et al. [8]. More precisely, Champagnat, et al. [8] considered

bK(x) = Kσ(x) + b(x) and dK(x) = Kσ(x),
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for x ∈ X̂ and where b, σ ∈ C∂(X ,R+). In particular, the sequence (KψK(x, z/K))K
converges, uniformly on X̂ × [0, a] for each a ≥ 0, to

ψ(x, z) = −b(x)z + σ(x)z2.

Note also that the parameters in this example satisfy Assumption 3.1 (ii), (iii)
and (vi) with α = 1. This model has been also studied in [29], [36] and [37] in a
similar setting. Finally, let us mention that Champagnat, et al. [8] also studied
the case of single offspring distribution where the natural birth and death rates
are proportional to Kη, for some η ∈ (0, 1). In this scenario, they showed that the
limit process is deterministic and described by a partial differential equation. This
follows from the fact that the variance vanishes in the limit.

(b) β-stable offspring distribution. The reproduction law satisfies

gK(x, h, z) =
1

β
(1− z)1+β +

1 + β

β
z − 1

β
, x, h ∈ X̂ , |z| ≤ 1, and β ∈ (0, 1].

This type of offspring distribution has been used in order to get convergence of
branching particle systems to the so-called (α, d, β)-superprocess (see for example
[13, Section 4.5]). In this case, in order to obtain a nontrivial limit we must choose
bK and dK proportional to Kβ. Moreover, Assumptions 3.1 (ii), (iii), and (vi) have
to hold with α = β. Clearly, the variance of the offspring distribution is infinite and
therefore the limiting process can no longer have finite second moments. On the
other hand, as in the example (a), we expect that the limit process is deterministic
and described by a partial differential equation if the offspring distribution is
β-stable and bK , dK are proportional to Kη′ , for some η′ ∈ (0, β).

(c) Consider a function ΛK ∈ B(X̂ ×X̂ ,R+) such that ΛK(x, x) = 0, for x ∈ X̂ . Suppose
that the reproduction law satisfies

gK(x, h, z) = z exp(−ΛK(x, h)(1− z)), x, h ∈ X̂ and |z| ≤ 1.

By considering bK(x) = Kσ(x) + b(x) and dK(x) = Kσ(x), for x ∈ X̂ and where
b, σ ∈ C∂(X ,R+), one can check that Assumption 3.1 (iv) is fulfilled. This generating
function corresponds to a random variable Xx,h + 1, where Xx,h is distributed
according to a Poisson random variable of parameter ΛK(x, h). For instance, we
could take X = [x1, x2], with −∞ < x1 < x2 < +∞, and ΛK(x, h) = |x− h|. In this
case Assumptions 3.1 (ii) and (iii) are satisfied with α = 1. In general, this depends
on the choice of ΛK .

(d) Let bK , dK ∈ C∂(X ,R+) such that bK → b and dK → d, as K → ∞, (uniformly on
X̂ ) where b, d ∈ C∂(X ,R+). Suppose that Assumption 3.1 (ii) is satisfied and that
for each a ≥ 0,

bK(x)
(
gK
(
x, x, e−

z
K

)
− 1
)

= − z

K
bK(x)κK(x, x) + o(1/K),

for x ∈ X̂ and z ∈ [0, a] (the small o term is uniform on X̂ × [0, a]). Then
(KψK(x, z/K))K converges, uniformly on X̂ × [0, a] for each a ≥ 0,

ψ(x, z) = (b(x)κ(x)− d(x))z

if κK(x, x)→ κ(x) ∈ C∂(X ,R+), as K →∞, uniformly on X̂ . In this case, one may
expect to obtain a deterministic limiting process described by a partial differential
equation as [8, Theorem 4.2] or [24, Theorem 5.3].
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Let us now state our main theorem. For 0 < T < +∞ and µK ∈ MK(X ), let us call
QK = L(µK) the law of the process νK = (νKt , t ∈ [0, T ]) such that QK(νK0 = µK) = 1.
We denote by EK the expectation with respect QK . We make a slight abuse of notation
and denote by 1 = 1X̂ the indicator function on the whole space X̂ , unless we specify
otherwise.

Theorem 3.4. Suppose that Assumption 3.1 is fulfilled. Assume also that there exists
µ ∈M(X ) (possibly random) such that

lim
K→∞

νK0 = µ

in law for the weak topology onM(X ) and that

sup
K

EK [〈νK0 ,1〉1+α] <∞, (3.1)

where α ∈ (0, 1] is as in Assumption 3.1 (ii). Then, for each 0 < T < +∞:

(a) The sequence of laws (QK)K is tight in P(D([0, T ],M(X̂ ))).

(b) Let Qµ be a limit point of (QK)K . Then, the measure-valued process ν ∈ D([0, T ],

M(X̂ )), with law Qµ such that Qµ(ν0 = µ) = 1, satisfies the following conditions:

1. We have that
sup
t∈[0,T ]

EQµ
[〈νt,1〉1+α] < +∞.

2. The measure-valued process ν ∈ D([0, T ],M(X̂ )), or equivalently its law Qµ,
solves the following martingale problem: For any

φ ∈ D(M) := C∂(X ,R+)+ ∩D(A)

the process M(φ) = (Mt(φ), t ∈ [0, T ]) given by

Mt(φ) = 〈νt, φ〉 − 〈ν0, φ〉 −
∫ t

0

∫
X̂
p(x)Aφ(x)νs(dx)ds

−
∫ t

0

∫
X̂
φ(x)

(
b(x)−

∫
X̂
c(x, y)νs(dy)

)
νs(dx)ds (M)

is a Qµ-martingale. Moreover, M(φ) admits the decomposition M(φ) =

M c(φ) + Md(φ), where M c(φ) is a continuous martingale with increasing
process

2

∫ t

0

∫
X̂
σ(x)φ2(x)νs(dx)ds, (3.2)

and Md(φ) is a purely discontinuous martingale, i.e.

Md
t (φ) =

∫ t

0

∫
M(X̂ )

〈µ, φ〉Ñ(ds,dµ), (3.3)

where Ñ(ds,dµ) is the compensated random measure of the optional random
measure N(ds,dµ) on [0,∞)×M(X̂ ) given by

N(ds,dµ) =
∑
s>0

1{∆νs 6=0}δ(s,∆νs)(ds,dµ) (3.4)

with ∆νs = νs − νs− ∈M(X̂ ) and 0 denoting the null measure. We then have
Ñ = N − N̂ with the compensator N̂(ds,dµ) = ds n̂(νs,dµ) and n̂(νs,dµ) given
by ∫

M(X̂ )

f(µ)n̂(νs,dµ) =

∫
X̂

∫ ∞
0

f(uδx)Π(x,du)νs(dx), (3.5)
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for f ∈ B(M(X̂ ),R) and Ñ(ds,dµ) the corresponding compensated random
measure.

Let us provide some specific examples of Assumption 3.1 (vii), in order to show that a
large class of dynamics can be included.

Remark 3.5. Suppose that there exists a sequence (aK)K of positive real numbers such
that aK →∞ and bK(·)/aK → 1 (uniformly on X̂ ), as K →∞. For φ ∈ B(X̂ ,R), suppose
also that

gK
(
x, x, e−

φ(x)
K

)
− gK

(
x, h, e−

φ(h)
K

)
=
φ(h)

K
− φ(x)

K
+ o

(
1

KaK

)
,

for x, h ∈ X̂ and where the small o term is uniform on X̂ × X̂ .

(a) Consider the case when X = [x1, x2] with −∞ < x1 < x2 < +∞. Then the mutation
kernel mK(x,dh) can be a Gaussian distribution (conditioned to be in [x1, x2]) with
mean x ∈ [x1, x2] and variance θ2/aK such that (θ2/aK)bK(·)→ θ2 ∈ R+ (uniformly

on X ), as K → ∞. In this case, we have Aφ = θ2

2 φ
′′ for φ ∈ C2

b ([x1, x2],R) such
that φ′(x1) = φ′(x2) = 0. If in addition mK(x, ·) has mean x + γK such that
γKbK(·)→ γ ∈ R (uniformly on X ), as K →∞, corresponding to a mutational drift,

then Aφ = θ2

2 φ
′′ + γφ′.

(b) Consider the case when X = Rl, l ≥ 1. For x ∈ X̂ , let the mutation ker-
nel mK(x, dh) be the density of a random variable with mean vector x and co-
variance matrix Σ(x)/aK = (Σij(x)/aK , 1 ≤ i, j ≤ l). Moreover, assume that
the function Σ is bounded and that the third moment of mK(x,dh) is of order
1/a2

K uniformly on x ∈ X̂ . Then, the generator A is for φ ∈ C2
b (Rl,R) given by

Aφ(x) = 1
2

∑l
i,j=1 Σij(x) ∂

2φ(x)
∂xi∂xj

. For instance,

mK(x, dh) =

(
aK

2πθ2(x)

)l/2
exp

(
−aK |h− x|

2

2θ2(x)

)
1{h∈Rl} dh,

for x ∈ Rl and θ2(x) positive and bounded.
(c) Take X = R, and for x ∈ X̂ , let the mutation kernel mK(x, dh) be the distribution

of a Pareto random variable with index γ ∈ (1, 2) divided by Kβ/γ , for β ∈ (0, 1]. It
has been proved by Jourdain et al. [29] that for φ ∈ C2

b (R,R),

lim
K→∞

sup
x∈X̂

∣∣∣∣Kβ

∫
X

(φ(h)− φ(x))mK(x, dh)− γ

2
Dγφ(x)

∣∣∣∣ = 0,

where

Dγφ(x) =

∫
X

(φ(x+ h)− φ(x)− hφ′(x)1{|h|≤1})
dh

|h|1+γ
, x ∈ X̂ ,

is the fractional Laplacian of index γ. Thus, in this example, Assumption 3.1 (vii) is
satisfied with A = γ

2D
γ as long as we take aK = Kβ .

(d) An interesting example is when X = {x1, x2} is a set of two traits. Consider the
mutation kernel

mK(x, dh) = 1{x=x1}
(
qKx1

δx2
(dh) + (1− qKx1

)δx1
(dh)

)
+ 1{x=x2}

(
qKx2

δx1
(dh) + (1− qKx2

)δx2
(dh)

)
,

where qKx1
, qKx2

∈ (0, 1) such that aKqKx1
→ qx1

and aKq
K
x2
→ qx2

, as K → ∞, with
qx1

, qx2
∈ (0, 1). Thus, Assumption 3.1 (vii) is satisfied with

Aφ(x) = 1{x=x1}qx1
(φ(x2)− φ(x1)) + 1{x=x2}qx2

(φ(x1)− φ(x2)),

where φ ∈ Cb(X ,R).
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Remark 3.6. Let X = [x1, x2] with −∞ < x1 < x2 < +∞ and suppose that there
exists a sequence (aK)K of positive real numbers such that aK → ∞, aK = O(K) and
bK(·)/aK → 1 (uniformly on X̂ ), as K →∞. We consider a reproduction law that satisfies

gK(x, h, z) = z exp(−a−1/2
K |x− h|(1− z)), x, h ∈ [x1, x2] and |z| ≤ 1;

recall the example in Remark 3.3 (c). For φ ∈ B(X̂ ,R), note that

gK
(
x, x, e−

φ(x)
K

)
− gK

(
x, h, e−

φ(h)
K

)
=
φ(h)

K
− φ(x)

K
+
φ(x)2

2K2
− φ(h)2

2K2

+
φ(h)

K
a
−1/2
K |x− h|+ o

(
1

KaK

)
,

for x, h ∈ [x1, x2] with a small o term that is uniform on [x1, x2] × [x1, x2]. Assume
that the mutation kernel mK(x, dh) is the Gaussian distribution (conditioned to be in
[x1, x2]) with mean x ∈ [x1, x2] and variance θ2/aK as in Remark 3.5 (a). Then an

elementary computation shows that Aφ = θ2

2 φ
′′ +

√
2/πθφ, for φ ∈ C2

b ([x1, x2],R) such
that φ′(x1) = φ′(x2) = 0.

Remark 3.7. In this remark, we consider β-stable branching that allows for jumps in
the limit and present an example of a mutation kernel that satisfies Assumption 3.1. Let
X = R and suppose that the reproduction law is given as in Remark 3.3 (b) with β ∈ (0, 1].
For simplicity, we also assume that κK(x, x)bk(x) = dk(x) = Kβ for all x ∈ X̂ .(Indeed,
κK(x, x) = (1 + β)/β.) For φ ∈ B(X̂ ,R), note that

gK
(
x, x, e−

φ(x)
K

)
− gK

(
x, h, e−

φ(h)
K

)
=

1 + β

β

(
φ(h)

K
− φ(x)

K

)
+

1

β

(
φ(x)1+β

K1+β
− φ(h)1+β

K1+β

)
+ o

(
1

K1+β

)
,

for x, h ∈ X̂ with a small o term that is uniform on X̂ ×X̂ . Assume that the mutation kernel
mK(x, dh) is given by the distribution of Pareto random variable with index γ ∈ (1, 2)

divided by Kβ/γ as in Remark 3.5 (c). In this case, Assumption 3.1 (vii) is satisfied with
A = γ

2D
γ , where Dγ is the fractional Laplacian of index γ. Here we have used that it

also follows from the convergence result of Jourdain et al. [29] (see Remark 3.5 (c)) that

lim
K→∞

sup
x∈X̂

∣∣∣∣∫
X

(φ(h)1+β − φ(x)1+β)mK(x, dh)

∣∣∣∣ = 0,

so that the second term vanishes.

We state the following result on uniqueness of the limiting process of Theorem
3.4. Recall that C∂(X ,R+)+ denotes the subset of functions in Cb(X ,R+) that can be
extended continuously to X̂ and that are bounded away from zero.

Theorem 3.8. Let µ ∈ M(X ) be non random and suppose that the coefficients in
the martingale problem (M) are as in Assumption 3.1 and such that in addition σ ∈
C∂(X ,R+)+. Then uniqueness holds for the martingale problem (M) and it is thus well
posed. In particular, (QK)K in Theorem 3.4 converge to this unique solution of the
martingale problem.

Finally, we provide a criterion to check that no mass escapes.

Theorem 3.9. Assume that X is not compact and that Assumption 3.1 is fulfilled with
σ ∈ C∂(X ,R+)+. Moreover, suppose that there exists a sequence (φn)n≥1 ⊂ D(M) such
that
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(i) for every n ≥ 1, limd(x,∂)→0 φn(x) = 1, limd(x,∂)→0Aφn(x) = 0 (where d is some
metric in the Polish space X ),

(ii) supn≥1 supx∈X φn(x) <∞ and supn≥1 supx∈X Aφn(x) <∞. Furthermore, φn → 1{∂}
and Aφn → 0, as n→∞, pointwise.

For a non random µ ∈M(X ), let Qµ be the unique solution to the martingale problem
(M). Then, Qµ is actually the law of a measure-valued process in D([0, T ],M(X )).

Remark 3.10. We give an example that satisfies the conditions of Theorem 3.9. Consider
the framework of Remark 3.5 (b) where X = Rl, l ≥ 1. In this case, A is given for

φ ∈ C2
∂(Rl,R) by Aφ(x) = 1

2

∑l
i,j=1 Σij(x) ∂

2φ(x)
∂xi∂xj

. For n ≥ 1, let

φn(x) =

{
exp

(
− 1
|x|2−n2

)
if |x| > n,

0 if |x| ≤ n.

Then, one can easily check that (φn)n≥1 ⊂ D(M) and that the conditions of Theorem 3.9
are satisfied.

Remark 3.11. We notice the following:

(a) Following the terminology of the theory of superprocesses (see for example [13],
[23] and [32]), one could refer to the solution of the martingale problem (M) as
the (A,ψ, c)-superprocess with competition, i.e. a superprocess with spatial motion
governed by the infinitesimal generator A, reproduction mechanism or branching
mechanism ψ, and with competition kernel c.

(b) In the non-spatial setting (i.e. one type setting without mutation), Lambert [30]
introduced a class of general branching processes with logistic growth, abbrevi-
ated LB-processes. These processes may be viewed as continuous-state branching
processes (CSBP’s) with an extra negative interaction between each pair of individ-
uals in the population. Then the solution to the martingale problem (M) can also
be thought-out as a generalization of LB-processes to model spatially structured
populations.

(c) The solution of the martingale problem (M) generalizes the models proposed by
Méléard [24], Champagnat, et al. [8], Jourdain, et al. [29]. These can be recovered
by considering ψ(x, z) = −b(x)z + σ(x)z2 for x ∈ X and z ≥ 0, and A the Laplacian
or the fractional Laplacian. The solution to (M) can also be seen as an extension
of the model of Etheridge [20] by taking ψ(x, z) = −bz + σz2 for x ∈ X , z ≥ 0, b, σ
constants, A the Laplacian and c(x, y) = h(|x− y|), for x, y ∈ X , with a nonnegative
decreasing function h on R+ that satisfies

∫∞
0
h(r)rd−1dr <∞.

(d) It is important to point out that we were not able to show uniqueness in general
for the martingale problem (M). More precisely, the case when the diffusion part
in the branching mechanism ψ, i.e. σ in Assumption 3.1 (iv), is not bounded away
from zero is not covered in Theorem 3.8. We could not obtain a useful Girsanov
type theorem in this case (see Section 5.2) to get rid of the nonlinearity problems,
which prevent us to use Laplace-transform techniques as in the classical theory of
superprocess. It seems that this is a really hard problem.

Section 4 is devoted to the proof of Theorem 3.4. We firstly establish in Section 4.1
the tightness of the sequence (νK)K , i.e., Theorem 3.4 (a). In Section 4.2, we identify
its limiting values ν, and we show that they satisfy the properties of Theorem 3.4 (b).
In Section 5, we prove Theorem 3.8 about uniqueness of the limiting process and the
convergence of the sequence (νK)K . Finally, we show that there is no escape of mass
for the limiting process, i.e. Theorem 3.9, in Section 6.
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4 Proof of Theorem 3.4

Throughout this section we assume that the assumptions of Theorem 3.4 are fulfilled.

4.1 Tightness

For 0 < T < +∞ and µK ∈M(X ), recall that QK = L(µK) is the law of the process
νK = (νK , t ∈ [0, T ]) such that QK(νK0 = µK) = 1. We denote by EK the expectation with
respect to QK .

We shall prove that:

Proposition 4.1. The sequence of laws (QK)K in P(D([0, T ],M(X̂ ))) is tight.

First, we obtain the following moment estimate.

Lemma 4.2. For all 0 < T <∞, we have that

sup
K

EK
[

sup
t∈[0,T ]

〈νKt ,1〉1+α
]
< +∞,

where α ∈ (0, 1] is as in Assumption 3.1 (ii).

Proof. Following a similar construction as in Section 2.1, one can define aMK(X̂ )-valued
Markov process ν̃ = (ν̃Kt , t ≥ 0) with infinitesimal generator L̃K given by

L̃Kf(µK) = K

∫
X̂

∞∑
k=1

bK(x)(1− p(x))πK(x, x, k)

(
f

(
µK + k

δx
K

)
− f(µK)

)
µK(dx)

+K

∫
X̂

∞∑
k=1

bK(x)p(x)

∫
X̂
πK(x, h, k)

(
f

(
µK + k

δh
K

)
− f(µK)

)
mK(x, h)m̄(dh)µK(dx)

+K

∫
X̂
dK(x)

(
f

(
µK − δx

K

)
− f(µK)

)
µK(dx),

for all µK ∈ MK(X̂ ) and f a measurable and bounded function from MK(X̂ ) to R.
This process can be associated with a stochastic interacting individual system where
individuals behave as in the model described in Section 2 but with the difference that
there is no death due to competition.

Note also that the processes (〈νKt ,1〉, t ≥ 0) and (〈ν̃Kt ,1〉, t ≥ 0) can be coupled
together such that 〈νK0 ,1〉 = 〈ν̃K0 ,1〉 and 〈νKt ,1〉 ≤ 〈ν̃Kt ,1〉 for all t ≥ 0. Therefore, it is
enough to prove the following moment bound to finish the proof,

sup
K

EK
[

sup
t∈[0,T ]

〈ν̃Kt ,1〉1+α
]
< +∞. (4.1)

Following a similar argument as in the proof of Theorem 2.8 (i.e., a Poissonian construc-
tion for the system associated to the operator L̃K), one can deduce that

EK
[
〈ν̃Kt ,1〉1+α

]
≤ EK

[
〈νK0 ,1〉1+α

]
+K EK

[∫ t

0

∫
X̂

( ∞∑
k=1

bK(x)(1− p(x))πK(x, x, k)

((
〈ν̃Ks ,1〉+

k

K

)1+α

− 〈ν̃Ks ,1〉1+α

)

+

∞∑
k=1

bK(x)p(x)

∫
X̂
πK(x, h, k)mK(x, h)

((
〈ν̃Ks ,1〉+

k

K

)1+α

− 〈ν̃Ks ,1〉1+α

)
m̄(dh)

+ dK(x)

((
〈ν̃Ks ,1〉 −

1

K

)1+α

− 〈ν̃Ks ,1〉1+α

))
ν̃Ks (dx)ds

]
,

EJP 26 (2021), paper 153.
Page 19/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

for t ≥ 0. Note the following inequalities

(x+ k)1+α − x1+α ≤ (1 + α)(xαk + k1+α) and (x− 1)1+α − x1+α ≤ (1 + α)(1− xα),

for x, k ∈ N and α ∈ (0, 1]. Then,

EK
[
〈ν̃Kt ,1〉1+α

]
≤ EK

[
〈νK0 ,1〉1+α

]
+ (1 + α)EK

[∫ t

0

∫
X̂

(
(bK(x)κK(x, x)− dK(x))〈ν̃Ks ,1〉α

+K−α(bK(x)κK1+α(x, x) + dK(x))

+ 〈ν̃Ks ,1〉αbK(x)p(x)

∫
X̂

(κK(x, h)− κK(x, x))mK(x, h)m̄(dh)

+K−αbK(x)p(x)

∫
X̂

(κK1+α(x, h)− κK1+α(x, x))mK(x, h)m̄(dh)

)
ν̃Ks (dx)ds

]
.

It follows from Assumption 3.1 (ii), (iii), (v) and (vi) that

EK
[
〈ν̃Kt ,1〉1+α

]
≤ EK [〈νK0 ,1〉1+α] + C

∫ t

0

EK [1 + 〈ν̃Ks ,1〉1+α]ds,

for some positive constant C (that does not depend on K). For all 0 < T <∞, Gronwall’s
Lemma and Condition (3.1) allow us to conclude that there exists another constant
CT > 0, not depending on K, such that

EK
[
〈ν̃Kt ,1〉1+α

]
≤ CT for all t ∈ [0, T ]. (4.2)

On the other hand, it is not difficult to see that the process M̃K = (M̃K
t , t ≥ 0) given by

M̃K
t = 〈ν̃Kt ,1〉 − 〈νK0 ,1〉 −

∫ t

0

L̃Kg(ν̃Ks )ds,

where g(ν̃Ks ) = 〈ν̃Ks ,1〉, is a martingale. Recall that (x+y+z)1+α ≤ C(x1+α+y1+α+z1+α),
for x, y, z ≥ 0 and some constant C > 0. Then, by Doob’s maximal inequality and the
previous inequality, there exists a constant C ′ > 0 (that does not depend on K) such that

EK
[

sup
t∈[0,T ]

〈ν̃Kt ,1〉1+α
]
≤ C ′EK [〈νK0 ,1〉1+α] + C ′EK [|M̃K

T |1+α]

+ C ′EK

(∫ T

0

|L̃Kg(ν̃Ks )|ds

)1+α
 .

Note that Assumptions 3.1 (ii), (iii), (v) and (vi) imply that there is a constant C ′′ > 0, not
depending on K, such that

|L̃Kg(ν̃Ks )| ≤
∫
X̂

(bK(x)κK(x, x)− dK(x))ν̃Ks (dx)

+

∫
X̂
bK(x)p(x)

(∫
X̂

(κK(x, h)− κK(x, x))mK(x, h)m̄(dh)

)
ν̃Ks (dx),

≤ C ′′〈ν̃Ks ,1〉, (4.3)

for s ∈ [0, T ]. Then the above inequality together with Jensen’s inequality shows that

EK
[

sup
t∈[0,T ]

〈ν̃Kt ,1〉1+α
]
≤ C ′EK [〈νK0 ,1〉1+α] + C ′EK [|M̃K

T |1+α]

+ C ′T sup
t∈[0,T ]

EK [〈ν̃Kt ,1〉1+α], (4.4)
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for some constant C ′T > 0 that does not depend on K. Finally, the claim in (4.1) follows
by combining Condition (3.1), the inequalities (4.2), (4.3), (4.4) and the expression for
the martingale M̃K .

Proof of Proposition 4.1. Notice that M(X̂ ) is a Polish space by [21, Theorem 3.1.7]
which implies that D([0, T ],M(X̂ )) is also a Polish space. We use Jakubowski’s criterion
for tightness [28, Theorem 3.1] that gives necessary and sufficient conditions for tight-
ness in D([0, T ],M(X̂ )). More precisely, let E be a family of continuous functions on
M(X̂ ) that separates points inM(X̂ ) and is closed under addition. We show that

(a) For each ε > 0 there exits Γ > 0 such that

QK

(
sup

0≤t≤T
〈νKt ,1〉 ≤ Γ

)
≥ 1− ε, K ∈ N.

(b) The family (QK)K is E -weakly tight, i.e. the laws of (f(νKt ) : t ∈ [0, T ]) under QK

are tight for each f ∈ E .

We define the family of functions

E :=

∞⋃
n=1

{
n∑
i=1

θie
−λi〈µ,φi〉 : µ ∈M(X̂ ), λi ∈ R+, θi ∈ R and φi ∈ C∂(X ,R+)

}
.

Observe that it separates points onM(X̂ ) (it follows from Dynkin’s π-λ Theorem; see for
example [4, Theorem 1.3.2 and 1.3.3]) and that it is closed under addition. On the other
hand, Lemma 4.2 implies (a). Therefore, it only remains to show (b). We consider f ∈ E ,
i.e.,

f(µ) =

n∑
i=1

θie
−λi〈µ,φi〉, n ∈ N,

where µ ∈ M(X̂ ), λi ∈ R+, θi ∈ R and φi ∈ C∂(X ,R+), for i = 1, . . . , n. It has been
shown in Remark 2.10 that f ∈ E satisfies condition (2.6) in Proposition 2.9. Then,

|LKf(νKt )|=
∣∣∣∣K ∫

X̂

∞∑
k=1

bK(x)(1− p(x))πK(x, x, k)

(
f

(
νKt + k

δx
K

)
− f(νKt )

)
νKt (dx)

+K

∫
X̂

∞∑
k=1

bK(x)p(x)

∫
X̂
πK(x, h, k)

(
f

(
νKt + k

δh
K

)
− f(νKt )

)
mK(x,dh)νKt (dx)

+K

∫
X̂

(
dK(x) +K

∫
X̂
cK(x, y)νKt (dy)

)(
f

(
νKt −

δx
K

)
− f(νKt )

)
νKt (dx)

∣∣∣∣
≤

n∑
i=1

|θi|e−λi〈ν
K
t ,φi〉

∣∣∣∣ ∫
X̂
K
(
bK(x)

(
g
(
x, x, e−

λiφi(x)

K

)
− 1
)

+ dK(x)
(
e
λiφi(x)

K − 1
))

νKt (dx)

−
∫
X̂
KbK(x)p(x)

(
g
(
x, x, e−

λiφi(x)

K

)
− g

(
x, h, e−

λiφi(h)

K

))
mK(x, h)m̄(dh)νKt (dx)

+

∫
X̂
K2

(∫
X̂
cK(x, y)νKt (dy)

)(
e
λiφi(x)

K − 1
)
νKt (dx)

∣∣∣∣. (4.5)

We now use Assumption 3.1: We apply condition (iv) to the fourth line, (v) and (vii)
to the fifth line, and (i) to the last line together with (2.7) which implies that writing
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f(νK) =
∑n
i=1 θie

−λi〈νK ,φi〉 this last line can be bounded by∣∣∣∣∫
X̂
K

(∫
X̂
c(x, y)νKt (dy)

)(
f

(
νKt −

1

K
δx

)
− f(νKt )

)
νKt (dx)

∣∣∣∣
≤ KC

∫
X̂

∫
X̂

∣∣∣∣f (νKt − 1

K
δx

)
− f(νKt )

∣∣∣∣ νKt (dx)νKt (dy)

≤ C〈νKt ,1〉,

where C is a nonnegative constant (not depending on K and whose value changes from
line to line). Thus, we obtain

sup
t∈[0,T ]

|LKf(νKt )| ≤ C sup
t∈[0,T ]

〈νKt ,1〉,

for a positive constant C (that does not depend on K). Note that Lemma 4.2 implies that

sup
K

EK
[

sup
t∈[0,T ]

|LKf(νKt )|
]
< +∞

and that [43, Theorem I.51] implies also that for each f ∈ E , the process MK(f) =

(MK
t (f), t ∈ [0, T ]) given by

MK
t (f) = f(νKt )− f(νK0 )−

∫ t

0

LKf(νKs )ds

is a martingale. It then follows from [21, Theorems 3.2.2 and 3.9.4] with p = ∞ and
Lemma 4.2 that the laws of (f(νKt ) : t ∈ [0, T ]) under QK are tight. This shows (b) and
our claim follows from [28, Theorem 3.1].

Remark 4.3. Alternative to show tightness of (QK)K in P(D([0, T ],M(X̂ ))), it suffices,
following [13, Theorem 3.7.1, Chapter 3], to show that for any continuous function
φ : X̂ → R, the sequence of laws of the processes (〈νKt , φ〉t, t ∈ [0, T ]) is tight in
D([0, T ],R). From the moment estimate in Lemma 4.2, we believe that this can be
achieved by using Aldous criterion [1]. We refer to [12, Proof of Theorem 5.5.3], where
this approach is implemented in a similar setting.

4.2 Identifying the limit

Recall that QK = L(µK) denotes the law of the process νK such that QK(νK0 =

µK) = 1, and denote by Qµ a limiting value of the tight sequence (QK)K . Recall
also that D([0, T ],M(X̂ )) is a separable space; see for example [5]. By Skorokhod’s
representation (see [21, p. 102]), we may assume that the càdlàg processes (νKt , t ∈ [0, T ])

and (νt, t ∈ [0, T ]) with distributions QK and Qµ respectively are defined on the same
probability space and that the sequence (νKt , t ∈ [0, T ]) converges almost surely to
(νt, t ∈ [0, T ]) on D([0, T ],M(X̂ )). Define D(ν) = {t ∈ [0, T ] : P(νt = νt−) = 1}. Then the
complement in [0, T ] of D(ν) is at most countable by [21, Lemma 3.7.7]. It follows from
[21, Proposition 3.5.2] that for each t ∈ D(ν) we have limK→∞ νKt = νt almost surely.

In this section, we show that the limit point Qµ of the sequence (QK)K satisfies the
properties stated in Theorem 3.4 (b).
Proof of the moment bound. The first moment bound of the limiting process (νt, t ∈
[0, T ]) follows from condition (3.1) together with Fatou’s Lemma and Lemma 4.2 (we have
implicitly used that D(v) is at most countable [21, Lemma 3.7.7] and right continuity).
Proof of the martingale property. Recall from Theorem 3.4 that

D(M) = C∂(X ,R+)+ ∩D(A),
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where D(A) is defined in Assumption 3.1. Let φ ∈ D(M), Theorem 2.11 (b) implies that
EK(φ) = (EKt (φ), t ∈ [0, T ]) given in equation (2.10) is a martingale. More precisely,

EKt (φ) = exp(−〈νKt , φ〉)− exp(−〈νK0 , φ〉)

−K
∫ t

0

∫
X̂

(
bK(x)

(
gK
(
x, x, e−

φ(x)
K

)
− 1
)

+ dK(x)
(
e
φ(x)
K − 1

))
exp(−〈νKs , φ〉)νKs (dx)ds

+K

∫ t

0

∫
X̂
bK(x)p(x)

(∫
X̂

(
gK
(
x, x, e−

φ(x)
K

)
− gK

(
x, h, e−

φ(h)
K

))
mK(x, h)m̄(dh)

)
× exp(−〈νKs , φ〉)νKs (dx)ds

−K2

∫ t

0

∫
X̂

(∫
X̂
cK(x, y)νKs (dy)

)(
e
φ(x)
K − 1

)
exp(−〈νKs , φ〉)νKs (dx)ds, (4.6)

for t ∈ [0, T ]. Assumption 3.1 (by applying condition (iv) to the second line, (vii) to the
third to fourth line and (i) as well as (2.6) to the last line) now shows that if a subsequence
(νKn)n converges to a ν then we obtain that EKnt (φ) converges weakly to Et(ν, φ) where

Et(ν, φ) = exp(−〈νt, φ〉)− exp(−〈ν0, φ〉) +

∫ t

0

∫
X̂
b(x)φ(x) exp(−〈νs, φ〉)νs(dx)ds

−
∫ t

0

∫
X̂
σ(x)φ2(x) exp(−〈νs, φ〉)νs(dx)ds

−
∫ t

0

∫
X̂

(∫ ∞
0

(e−uφ(x) − 1 + uφ(x))Π(x,du)

)
exp(−〈νs, φ〉)νs(dx)ds

+

∫ t

0

∫
X̂
p(x)Aφ(x) exp(−〈νs, φ〉)νs(dx)ds

−
∫ t

0

∫
X̂

(∫
X̂
c(x, y)νs(dy)

)
φ(x) exp(−〈νs, φ〉)νs(dx)ds. (4.7)

This also suggests that Et(ν, φ) for any limit point ν of the sequence (νK)K should be
a martingale. To justify this conclusion we need to know that the martingale property
was preserved under passage to the limit. Therefore, it is enough to check that for each
l ∈ N, (sj)lj=1 ⊂ D(ν), s, t ∈ D(ν) with 0 ≤ s1 ≤ · · · ≤ sn < s < t ≤ T , some continuous

and bounded maps h1, h2, . . . , hl onM(X̂ ),

E [(Et(ν, φ)− Es(ν, φ))h1(νs1) · · ·hl(νsl)] = 0. (4.8)

It follows from Theorem 2.11 (b) that

0 = E
[
(EKt (φ)− EKs (φ))h1(νKs1 ) · · ·hl(νKsl )

]
= E

[(
Et(ν

K , φ)− Es(νK , φ)−RK(t, s)
)
h1(νKs1 ) · · ·hl(νKsl )

]
,

where
RK(t, s) = EKt (φ)− EKs (φ)− Et(νK , φ) + Es(ν

K , φ).

We notice that Assumption 3.1 implies due to φ ≥ 0 that

|Et(νK , φ)− Es(νK , φ)| ≤ e−〈ν
K
t ,φ〉 + e−〈ν

K
s ,φ〉 +

∫ t

s

e−〈ν
K
u ,φ〉

(
‖ b ‖∞ 〈νKu , φ〉

+ ‖ σ ‖∞‖ φ ‖∞ 〈νKu , φ〉

+

(
sup
x∈X̂

∫ ∞
0

(u ∧ u2)Π(x, du)

)
‖ φ ‖∞ 〈νKu , φ〉

+ ‖ Aφ ‖∞ 〈νKu ,1〉+ ‖ c ‖∞ 〈νKu ,1〉〈νKu , φ〉
)

du. (4.9)
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Recall that φ is bounded away from zero such that 〈νKu ,1〉 ≤ C〈νKu , φ〉 for some constant
C > 0. Using that (x ∨ x2)e−x is bounded with x = 〈νKu , φ〉 we thus obtain

sup
s,t∈[0,T ]

|Et(νK , φ)− Es(νK , φ)| ≤ C1,

for some positive constant C1 that does not depend on K. By using (4.6) above and a
little bit of extra effort (similar computations have been done in (4.5)), one can check
that

sup
s,t∈[0,T ]

|RK(s, t)| ≤ C2,

for some positive constant C2 that does not depend on K. Now we see that for a
subsequence (νKn)n that converges to a ν we have, by the Dominated Convergence
Theorem, since all the hj are also bounded that

0 = lim
n→∞

E
[
(EKnt (φ)− EKns (φ))h1(νKs1 ) · · ·hl(νKsl )

]
= E [(Et(ν, φ)− Es(ν, φ))h1(νs1) · · ·hl(νsl)]

which shows (4.8). Thus, E(φ) = (Et(ν, φ), t ∈ [0, T ]) defined in (4.7) is a Qµ-martingale.
Next, we show that M(φ) defined in (M) is a martingale with the desired decomposi-

tion. Our proof follows similar ideas to those of [13, Theorem 6.1.3] or [32, Theorem 7.13].
We show that Z = (Zt(φ), t ∈ [0, T ]) given by Zt(φ) := e−〈νt,φ〉 is a special semimartingale,
i.e., it has a representation

Zt(φ) = Z0(φ) +Wt + Vt, t ∈ [0, T ],

where W = (Wt, t ∈ [0, T ]) is a local martingale with W0 = 0, V = (Vt, t ∈ [0, T ]) is a
process of locally bounded variation that has locally integrable variation; see, e.g. [33, p.
85]. In the following, we abbreviate

It(φ) := 〈νt, pAφ〉 − 〈νt, ψ(φ)〉 −
∫
X̂

(∫
X̂
c(x, y)νt(dy)

)
φ(x)νt(dx),

where ψ(φ) := ψ(x, φ(x)) for x ∈ X̂ with ψ defined as in Assumption 3.1. We now consider
the processes Y = (Yt, t ∈ [0, T ]) and H = (Ht, t ∈ [0, T ]) given by

Yt(φ) := exp

(∫ t

0

Is(φ)ds

)
and Ht(φ) := Zt(φ)Yt(φ).

We note that Et(ν, φ) = Zt(φ)− Z0(φ) +
∫ t

0
Is(φ)Zs(φ)ds. Using this and integration

by parts together with the fact that Y (φ) is a process of locally bounded variation we
obtain that ∫ t

0

Ys(φ)dEs(ν, φ) =

∫ t

0

Ys(φ)dZs(φ) +

∫ t

0

Ys(φ)Is(φ)Zs(φ)ds

=

∫ t

0

Ys(φ)dZs(φ) +

∫ t

0

Zs(φ)dYs(φ)

= Ht(φ)−H0(φ) = Ht(φ)− Z0(φ)

is a Qµ-local martingale. We have Zt(φ) = Ht(φ)Yt(φ)−1 with Yt(φ)−1 of locally bounded
variation and so, again by integration by parts,

dZt(φ) = Yt(φ)−1dHt(φ) +Ht(φ)dYt(φ)−1

= Yt(φ)−1dHt(φ)− It(φ)Zt−(φ)dt. (4.10)
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Then Z = (Zt(φ), t ∈ [0, T ]) is a special semi-martingale (one can follow a similar
estimation procedure as in (4.9) in order to check that the locally bounded variation
term of Z has locally integrable variation). On the other hand, using Itô’s formula [43,
Theorem II.32] we conclude that 〈ν·, φ〉 = − logZ·(φ) is also a semi-martingale. Let
M±(X̂ ) denote the space of signed Borel measures on X̂ endowed with the σ-algebra
generated by the mappings µ 7→ µ(B) for all B ∈ B(X̂ ). Let M◦±(X̂ ) = M±(X̂ ) \ {0}
(where 0 denotes the null measure). We define the optional random measure N(ds,dµ)

on [0,∞)×M◦±(X̂ ) by

N(ds,dµ) =
∑
s>0

1{∆νs 6=0}δ(s,∆νs)(ds,dµ),

where ∆νs = νs − νs− ∈ M◦±(X̂ ). Let N̂(ds,dµ) denote the predictable compensator of
N(ds,dµ) and let Ñ(ds,dµ) denote the compensated random measure; see [33, p. 172].
It follows that

〈νt, φ〉 = 〈ν0, φ〉+ Ut(φ) +M c
t (φ) +Md

t (φ), (4.11)

where U(φ) = (Ut(φ), t ∈ [0, T ]) is a predictable process with locally bounded variation,
M c(φ) = (M c

t (φ), t ∈ [0, T ]) is a continuous local martingale with increasing process
C(φ) = (Ct(φ), t ∈ [0, T ]) and Md(φ) = (Md

t (φ), t ∈ [0, T ]) given by

Md
t (φ) =

∫ t

0

∫
M◦±(X̂ )

〈µ, φ〉Ñ(ds,dµ), t ∈ [0, T ],

is a purely discontinuous local martingale; see [27, p. 85]. We apply Itô’s formula [43,
Theorem II.32] to exp(−〈ν·, φ〉), with 〈ν·, φ〉 given by (4.11), and we get that

Ēt(φ) = Zt(φ)− Z0(φ)

+

∫ t

0

Zs−(φ)

(
dUs(φ)− 1

2
dCs(φ)−

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
N(ds,dµ)

)
(4.12)

is a local martingale. Note that

0 ≤ Zs−(φ)
(
e−〈∆νs,φ〉 − 1 + 〈∆νs, φ〉

)
≤ C

(
|〈∆νs, φ〉| ∧ |〈∆νs, φ〉2|

)
for some constant C ≥ 0. According to Theorem I.4.47 of [27],

∑
s≤t〈∆νs, φ〉2 <∞. Thus

the second term in (4.12) has finite variation over each finite interval [0, T ]. Since Z is a
special semi-martingale, Proposition I.4.23 of [27] implies that∫ t

0

Zs−(φ)

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
N(ds,dµ)

is of locally integrable variation. Thus it is locally integrable. According to Proposition
II.1.28 of [27], ∫ t

0

Zs−(φ)

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
Ñ(ds,dµ)

is a purely discontinuous local martingale. Therefore,

Ē′t(φ) = Zt(φ)− Z0(φ)

+

∫ t

0

Zs−(φ)

(
dUs(φ)− 1

2
dCs(φ)−

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
N̂(ds,dµ)

)
(4.13)
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is a local martingale. The uniqueness of canonical decomposition of special semi-
martingales (see, e.g. [33, p. 85]) allows us to identify the predictable components of
locally integrable variation in the two decompositions (4.10) and (4.13) to obtain that

−Zt−(φ)It(φ)ds=Zt−(φ)

(
−dUt(φ)+

1

2
dCt(φ)+

∫
M±(X̂ )

(
e−〈µ,φ〉−1+〈µ, φ〉

)
N̂(dt,dµ)

)
.

Then

−It(φ) = −Ut(φ) +
1

2
Ct(φ) +

∫ t

0

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
N̂(ds,dµ). (4.14)

It is not difficult to deduce that Ut(λφ) = λUt(φ) and Ct(λφ) = λ2Ct(φ), for λ ∈ R+.
Replacing φ by λφ in (4.14), we have

−It(λφ) = −λUt(φ) +
λ2

2
Ct(φ) +

∫ t

0

∫
M±(X̂ )

(
e−λ〈µ,φ〉 − 1 + λ〈µ, φ〉

)
N̂(ds,dµ).

This allows to conclude (in the semimartingale representation of 〈νt, λφ〉):

Ct(φ) = 2

∫ t

0

〈νs, σφ2〉ds, (4.15)

Ut(φ) =

∫ t

0

∫
X̂
φ(x)

(
b(x)−

∫
X̂
c(x, y)νs(dy) + p(x)Aφ(x)

)
νs(dx)ds

and ∫ t

0

∫
M±(X̂ )

(
e−〈µ,φ〉 − 1 + 〈µ, φ〉

)
N̂(ds,dµ)

=

∫ t

0

∫
X̂

∫ ∞
0

(e−uφ(x) − 1 + uφ(x))Π(x,du)νs(dx)ds.

That is, the jump measure of the process ν has compensator given by (3.5). In particular,
this implies that the jumps of the ν are almost surely inM(X̂ ).

Finally, from the identity (4.11), we observe that M(φ) = M c(φ) +Md(φ). Therefore,
it is enough to show that M c(φ) and Md(φ) are actually martingales to conclude that
M(φ) defined in (M) is a martingale. Following the argument in Section 2.3 of [31] we
obtain the martingale property of Md(φ). We consider Md,1(φ) = (Md,1

t (φ), t ∈ [0, T ]) and
Md,2(φ) = (Md,2

t (φ), t ∈ [0, T ]) given by

Md,1
t (φ) =

∫ t

0

∫
M(X̂ )

〈µ, φ〉1{〈µ,φ〉≥1}Ñ(ds,dµ)

and

Md,2
t (φ) =

∫ t

0

∫
M(X̂ )

〈µ, φ〉1{〈µ,φ〉<1}Ñ(ds,dµ),

for t ∈ [0, T ]. We observe that Md(φ) = Md,1(φ) +Md,2(φ) and that

E

[∫ t

0

∫
M(X̂ )

〈µ, φ〉1{〈µ,φ〉≥1}N̂(ds,dµ)

]
<∞

and

E

[∫ t

0

∫
M(X̂ )

〈µ, φ〉21{〈µ,φ〉<1}N̂(ds,dµ)

]
<∞
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due to Assumption 3.1 (iv) for φ ∈ D(M) and where N̂ is given by (3.5). Hence,
Proposition II.1.28 and Theorem II.1.33 in [27] show that Md,1(φ) is a martingale and
Md,2(φ) is a square-integrable martingale with quadratic variation process given by

[
Md,2(φ)

]
t

=

∫ t

0

∫
M(X̂ )

〈µ, φ〉21{〈µ,φ〉<1}N̂(ds,dµ),

which implies that Md(φ) is a martingale. On the other hand, recall that the continuous
local martingale M c(φ) possesses an increasing process C(φ) given by (4.15), and such
that

E[Ct(φ)] = E

[
2

∫ t

0

∫
X̂
σ(x)φ2(x)νs(dx)ds

]
<∞

by the moment property in Theorem 3.4 (b). Hence Corollary 1.25 in [45] implies that
M c(φ) is a square-integrable martingale. This conclude the proof of Theorem 3.4 (b).

5 Proof of Theorem 3.8

In this subsection, we will prove that uniqueness holds for solutions of the martingale
problem (M). Our approach is based on the use of a Girsanov type transform and the
localization method introduced by Stroock [50] in the measure-valued context (see He
[25]). More precisely, we first introduce in Section 5.1 the “killed” martingale problem
associated with the martingale problem (M). The “killed” martingale problem may be
seen as the martingale problem (M) where the randomness is eliminated from the big
jumps. Secondly, we develop a Girsanov type theorem in Section 5.2 for the “killed”
martingale problem in order to get rid of the non-linearities (caused by the competition)
which allows us to deduce uniqueness for the “killed” martingale problem. Finally, we
develop a localization argument to show that uniqueness of the “killed” martingale
problem implies uniqueness for the martingale problem (M). In this section, we always
assume that Assumption 2.2 and 3.1 are fulfilled.

It is important to mention that the use of Girsanov type transforms was first applied
in the measure-valued diffusions setting by Dawson [11, Section 5] (or [22, Theorem
2.3]). However, in our case Dawson’s Girsanov Theorem is not applicable since the
measure-valued process possesses jumps. Thus, we shall extend Dawson’s result to our
setting.

5.1 The killed martingale problem

In this section, we introduce the killed martingale problem. The measure-valued
process ν′ ∈ D([0, T ],M(X̂ )), or equivalently its law Q′µ, solves the killed martingale
problem at the fixed level 1 < l < +∞ if for µ ∈ M(X ), Q′µ(ν′0 = µ) = 1, and for any
φ ∈ D(M), the process M ′(φ) = (M ′t(φ), t ∈ [0, T ]) given by

M ′t(φ) = 〈ν′t, φ〉 − 〈ν′0, φ〉 −
∫ t

0

∫
X̂
p(x)Aφ(x)ν′s(dx)ds

−
∫ t

0

∫
X̂
φ(x)

(
b(x)−

∫
[l,∞)

uΠ(x, du)−
∫
X̂
c(x, y)ν′s(dy)

)
ν′s(dx)ds (M′)

is a Q′µ-martingale that admits the decomposition M ′(φ) = M c′(φ) + Md′(φ), where

M c′(φ) is a continuous martingale with increasing process as in (3.2) and Md′(φ) is a
purely discontinuous martingale, defined as in (3.3) by

Md′

t (φ) =

∫ t

0

∫
M(X̂ )

〈µ, φ〉Ñ ′(ds,dµ), (5.1)
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where Ñ ′ is the compensated random measure of an optional random measure N ′ defined
as in (3.4) and where Ñ ′ is characterized analogously to (3.5). The only difference is that
in the definition of the compensator

N̂ ′(ds,dµ) = ds n̂′(ν′s,dµ) (5.2)

in equation (3.5) is replaced by∫
M(X̂ )

f(µ)n̂′(ν′s,dµ) =

∫
X̂

∫
(0,l)

f(uδx)Π(x, du)ν′s(dx) for f ∈ B(M(X̂ ),R).

Let us note that for the rest of the section 1 < l <∞ is a fixed number and we will
thus not specifically mention the dependence on l. For example, we will refer to the
killed martingale problem at level l simply as the (M′) martingale problem. Heuristically,
we observe from the decomposition of the martingale (M′) that the randomness of “big”
jumps of size larger than l are suppressed by replacing them by the immigration term
added in the drift. The latter yields an additional drift in the compensator of such “big
jumps” in (M′).

It is important to point out that the killed martingale problem also arises as a limit of
a sequence of interacting particle systems as described in Section 2, where Assumption
3.1 (iv) is satisfied with

ψ′(x, z) =

(
−b(x) +

∫
[l,∞)

uΠ(x, du)

)
z + σ(x)z2 +

∫
(0,l)

(e−zu − 1 + zu)Π(x, du),

for x ∈ X̂ and z ≥ 0; see proof of Theorem 3.4. We now show that each solution of
the killed martingale problem has bounded moments of any order. We write E′µ for the
expectation with respect Q′µ.

Lemma 5.1. Suppose that theM(X̂ )-valued càdlàg process ν′ = (ν′t, t ∈ [0, T ]) with law
Q′µ is a solution of the killed martingale problem. Then for n ≥ 1, we have

E′µ[〈ν′t,1〉n] ≤ (〈µ,1〉n + 1)eCnt − 1, t ∈ [0, T ],

where 0 < Cn < +∞ is a constant which depends on n.

Proof. We stress that the value of the non-negative constants Cn appearing in the proof
may change from line to line. Moreover, Cn denotes a constant depending only on n. Let
τm = inf{t ∈ [0, T ] : 〈ν′t,1〉 ≥ m}, for m ≥ 1, and note that τm →∞ as m→∞ Q′µ-almost
surely. We also observe that (M ′t∧τm(φ), t ∈ [0, T ]) is a Q′µ-martingale. Setting φ ≡ 1, Itô’s
formula implies that for n ≥ 1 and t ∈ [0, T ],

E′µ
[
〈ν′t∧τm ,1〉

n
]

≤ 〈µ,1〉n+nE′µ

[∫ t

0

∫
X̂

(
b(x)−

∫
[l,∞)

uΠ(x, du)

)
〈ν′s∧τm ,1〉

n−1ν′s∧τm(dx)ds

]

+n(n−1)E′µ

[∫ t

0

∫
X̂
σ(x)〈ν′s∧τm ,1〉

n−2ν′s∧τm(dx)ds

]
+E′µ

[∫ t

0

∫
X̂

∫
(0,l)

(
(〈ν′s∧τm ,1〉+u)n−〈ν′s∧τm ,1〉

n−nu〈ν′s∧τm ,1〉
n−1
)

Π(x,du)ν′s∧τm(dx)ds

]

where we have used that Aφ ≡ 0 and omitted the negative competition term on the right
hand side. Since b ∈ C∂(X ,R), σ ∈ C∂(X ,R+)+, c ∈ C∂(X × X ,R+) and supx∈X̂

∫∞
0

(u ∧
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u2)Π(x, du) < +∞ (by Assumptions 3.1), we conclude with the binomial formula that
there is a positive constant Cn such that

E′µ[〈ν′t∧τm ,1〉
n] ≤ 〈µ,1〉n + Cn

(
n∑
k=1

∫ t

0

E′µ
[
〈ν′s∧τm ,1〉

k
]

ds

)

≤ 〈µ,1〉n + Cn

∫ t

0

(
1 + E′µ

[
〈ν′s∧τm ,1〉

n
])

ds,

for t ∈ [0, T ]. Then, the moment estimate follows by Gronwall’s Lemma, first for 〈ν′t∧τm ,1〉
and by letting m→∞ and using monotone convergence for 〈ν′t,1〉.

5.2 Dawson’s Girsanov type Theorem

We next develop a Dawson’s Girsanov type theorem. Recall that for each 0 < T < +∞,
the process ν′ = (ν′t, t ∈ [0, T ]) ∈ D([0, T ],M(X̂ )), with law Q′µ, denotes a solution of the
(M′) martingale problem. Informally, we want to find a measure Qµ under which, for all
φ ∈ D(M),

M ′t(φ)−
∫ t

0

∫
X̂

∫
X̂
φ(x)c(x, y)ν′s(dy)ν′s(dx)ds

is a Qµ-martingale.
To achieve this we will use the fact that the continuous part M c′(φ) = (M c′

t (φ), t ∈
[0, T ]) of the martingale M ′(φ) can be expressed as an integral with respect to an
orthogonal martingale measure (see [11, Section 7.1]). As in Walsh [52, Chapter 2], we
write

M c′

t (φ) =

∫ t

0

∫
X̂
φ(x)W (ds,dx), t ≥ 0,

where W (ds,dx) is an orthogonal continuous martingale measure with covariance given
by

d[W (dx),W (dy)]t = R(ν′t,dx, dy)dt,

and R is defined by R(µ,dx,dy) = 2σ(x)δy(dx)µ(dy), for µ ∈M(X̂ ).
We consider the continuous local martingale L = (Lt, t ∈ [0, T ]) given by

Lt =

∫ t

0

∫
X̂
a(ν′s, x)W (ds,dx), (5.3)

where

a(ν′s, x) =

(∫
X̂
c(x, y)ν′s(dy)

)
(2σ(x))−1 for x ∈ X̂

Recall here that the function σ is bounded away from zero and that the competition
kernel c(x, y) is bounded such that

a(ν′s, x) ≤ C〈ν′s,1〉 uniformly over x ∈ X̂ . (5.4)

Then, the stochastic linear equation

zt = 1 +

∫ t

0

zsdLs

has a unique nonnegative solution (see for example [18]) known as the Doléan-Dade
exponential,

zt = exp

(∫ t

0

∫
X̂
a(ν′s, x)W (ds,dx)− 1

2

∫ t

0

∫
X̂

∫
X̂
a(ν′s, x)a(ν′s, y)R(ν′s,dx,dy)ds

)
.
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It is well-known that z is a nonnegative local martingale (see [18]), and therefore it is
a supermartingale with E[zt] ≤ 1 for any t ≥ 0. Moreover, if there exists T > 0 such
that E[zT ] = 1 then z = (zt, t ∈ [0, T ]) is a martingale. The martingale property plays
an important role in many applications. In particular, zT usually plays the role of the
Random-Nykodym derivative of one probability measure with respect to another, and
thus, this will allow us to generalize Dawson’s Girsanov Theorem [11] in our setting.

Theorem 5.2. Under Assumption 3.1 such that σ ∈ C∂(X ,R+)+, we have that

(a) The process z = (zt, t ∈ [0, T ]) is a martingale for any T > 0.

(b) Moreover, under the probability measure Qµ defined by

dQµ
dQ′µ

= zT ,

the process ν′ = (ν′t, t ∈ [0, T ]) solves the following martingale problem: For
µ ∈M(X ), Qµ(ν′0 = µ) = 1 and for any φ ∈ D(M), the process M̄(φ) = (M̄t(φ), t ∈
[0, T ]) given by

M̄t(φ) = M ′t(φ)−
∫ t

0

∫
X̂

∫
X̂
φ(x)c(x, y)ν′s(dy)ν′s(dx)ds

is a Qµ-martingale.

(c) Furthermore, M̄(φ) admits the decomposition M̄(φ) = M̄ c(φ) + M̄d(φ), where
M̄ c(φ) is a continuous martingale with increasing process as in (3.2) and M̄d(φ) is
a purely discontinuous martingale defined as in (3.3). That is, M̄ c(φ) has increasing
process

2

∫ t

0

∫
X̂
σ(x)φ2(x)ν′s(dx)ds,

and M̄d(φ) has optional random measure given by N̄(ds,dµ) := N ′(ds,dµ) on
[0,∞)×M(X̂ ), where its compensator and compensated random measure are

ˆ̄N(ds,dµ) := N̂ ′(ds,dµ) and ˜̄N(ds,dµ) := Ñ ′(ds,dµ),

respectively, with N ′, N̂ ′ and Ñ ′ defined in (5.1) and (5.2).

Proof. First, we prove point (a). We fix T > 0 and let τn = inf {t ∈ [0, T ] : 〈ν′t,1〉 ≥ n} for
n ≥ 1. Note that τn →∞ as n→∞, Q′µ-almost surely. We now note that by Assumption
3.1 and (5.4) we have that

E

[
exp

(
1

2

∫ T∧τn

0

∫
X̂
σ(x)a(ν′s, x)2ν′s(dx)ds

)]
<∞.

This allows us to conclude by the so-called Novikov condition [41] that (z(t∧τn), t ∈ [0, T ])

is a Q′µ-martingale.
We write E′µ and Eµ for the expectation with respect Q′µ and Qµ. Our aim is to show

that E′µ[zT ] = 1 for which it is enough to prove that Qµ(τn ≤ T )→ 0 as n→∞. By [43,
Theorem III.39, p. 134], we get that under Qµ, the process (M̄t∧τn(φ), t ∈ [0, T ]) is a
martingale. By the same argument as in the proof of Lemma 5.1, we have that

Eµ
[
〈ν′t∧τn ,1〉

m
]
≤ (〈µ,1〉m + 1)eCmt − 1, m ≥ 1, (5.5)

for t ∈ [0, T ]. This implies that (M̄t∧τn(φ), t ∈ [0, T ]) is a square integrable Qµ-martingale.
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Claim. M̄·∧τn(φ) can under Qµ furthermore be decomposed into a continuous and purely
discontinuous martingale M̄·∧τn(φ) = M̄ c

·∧τn(φ) + M̄d
·∧τn(φ) which are up to the stopping

time τn characterized as in (c) of Theorem 5.2. That is, M̄ c
·∧τn(φ) has increasing process

2

∫ t∧τn

0

∫
X̂
σ(x)φ2(x)ν′s(dx)ds,

and M̄d
·∧τn(φ) has optional random measure given by N̄n(ds,dµ) := 1{s≤τn}N̄(ds,dµ) on

[0,∞)×M(X̂ ), where its compensator and compensated random measure are

ˆ̄Nn(ds,dµ) := 1{s≤τn}
ˆ̄N(ds,dµ) and ˜̄Nn(ds,dµ) := 1{s≤τn}

˜̄N(ds,dµ),

respectively. We postpone the proof of this claim to the end of the proof.
Recall that we want to show that Qµ(τn ≤ T )→ 0 as n→∞. For this we take m = 1

in the inequality (5.5) and we integrate to obtain that∫ T

0

Eµ
[
〈ν′t∧τn ,1〉

]
dt ≤ 1

C1
(〈µ,1〉+ 1)(eC1T − 1)− T. (5.6)

The Burkholder-Davis-Gundy inequality applied to theQµ-martingale (M̄t∧τn(1), t ∈ [0, T ])

gives that there is a constant C ′ > 0 (the value of C ′ changing from line to line) such that

Eµ

( sup
t∈[0,T ]

M̄t∧τn(1)

)2
 ≤ C ′Eµ [〈M̄(1)〉T∧τn

]
.

On the other hand, it is not difficult to see that

〈M̄(1)〉T∧τn = 2

∫ T∧τn

0

∫
X̂
σ(x)ν′s(dx)ds+

∫ T∧τn

0

∫
X̂

∫
(0,l)

u2Π(x, du)ν′s(dx)ds,

under Qµ. Then, Assumption 3.1 implies that

Eµ

( sup
t∈[0,T ]

M̄t∧τn(1)

)2
 ≤ C ′Eµ [∫ T

0

〈ν′s∧τn ,1〉ds

]

≤ C ′
(

1

C1
(〈µ,1〉+ 1)(eC1T − 1)− T

)
. (5.7)

We observe that

〈ν′t∧τn ,1〉 ≤ M̄t∧τn(1) + 〈µ,1〉+

∫ t∧τn

0

∫
X̂

(
b(x)−

∫
[l,∞)

uΠ(x, du)

)
ν′s(dx)ds

Then, (5.6) and (5.7) as well as Assumption 3.1 imply that

Eµ
[

sup
t∈[0,T ]

〈ν′t∧τn ,1〉
]
≤ C̄ (C ′, C1, T, 〈µ,1〉) . (5.8)

where C̄ (C ′, C1, T, 〈µ,1〉) is a positive constant. We observe that

Qµ(τn ≤ T ) ≤ Qµ

(
sup
t∈[0,T ]

〈ν′t∧τn ,1〉 ≥ n

)
,

and we notice that the Markov inequality together with the estimation (5.8) implies that

Qµ

(
sup
t∈[0,T ]

〈ν′t∧τn ,1〉 ≥ n

)
→ 0, as n→∞.
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Finally, we have shown that Qµ(τn ≤ T )→ 0 as n→∞ and so, we deduce that E′µ[zT ] = 1.
Therefore, z is a martingale as required.

Proof of Claim. We first check that the random measure ˆ̄Nn is a Qµ-compensator of the
optional random measure N̄n. Let θn be a stopping time such that θn ≤ τn for n ≥ 1. Let
B ⊂M(X̂) \ {0} be a measurable set. Then,

Eµ

[∫ t

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉N̄n(ds,dη)

]

= Eµ

[∫ t∧τn

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉N̄(ds,dη)

]

= Eµ

[
zt∧τn

∫ t∧τn

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉N
′(ds,dη)

]

= Eµ

[
zt∧τn

∫ t∧τn

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉Ñ
′(ds,dη)

]

+ Eµ

[∫ t∧τn

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉N̂
′(ds,dη)

]

= Eµ

[∫ t

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉 ˆ̄Nn(ds,dη)

]
,

where we have used the fact that

Eµ

[
zt∧τn

∫ t∧τn

0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉Ñ
′(ds,dη)

]

= Eµ

[〈
z·∧τn ,

∫ ·∧τn
0

∫
M(X̂)

1{s≤θn}1{η∈B}〈η, φ〉Ñ
′(ds,dη)

〉
t

]
= 0.

This follows from well-known results of square integrable martingales (recall Lemma
5.1), and the fact that 1·∧τnÑ

′(ds,dη) has bounded variation while z·∧τn does not. Then
our first claim follows in view of the arbitrariness of θn and B; see [33, Chapter 4, Section
5, p. 222] and [27, Proof of Theorem III.3.17].

Recall that z·∧τn , M c′
·∧τn(φ) and Md′

·∧τn(φ) are square integrable martingales (recall
also Lemma 5.1). Moreover, their quadratic characteristic are defined as〈

z·∧τn ,M
c′

·∧τn(φ)
〉
t

=

∫ t∧τn

0

∫
X̂
φ(x)zsa(ν′s, x)R(ν′s,dx, dx)ds

=

∫ t∧τn

0

∫
X̂
φ(x)zs

(∫
X̂
c(x, y)ν′s(dy)

)
ν′s(dx)ds,

and
〈
z·∧τn ,M

d′
·∧τn(φ)

〉
t

= 0. By [33, Theorem 2, Chapter 4, Section 5] (see also [43,

Theorem 39, p. 134]), we know that

M̄ c′

·∧τn(φ) = M c′

·∧τn(φ)−
∫ ·

0

z−1
(s∧τn)−d

〈
z·∧τn ,M

c′

·∧τn(φ)
〉
s

and

M̄d′

·∧τn(φ) = Md′

·∧τn(φ)−
∫ ·

0

z−1
(s∧τn)−d

〈
z·∧τn ,M

d′

·∧τn(φ)
〉
s

= Md′

·∧τn(φ),

are continuous and purely discontinuous Qµ-martingales. Therefore, we conclude that
under Qµ the martingales M̄ c′

·∧τn(φ) and M̄d′
·∧τn(φ) obey the desired representations and

it shows our Claim.
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Finally, the points (b) and (c) follow from [33, Theorem 2, Chapter 4, Section 5] and a
similar argument as the Claim.

The following proposition shows uniqueness for the killed martingale problem.

Proposition 5.3. Under Assumption 2.2 and 3.1, there is a unique solution of the killed
martingale problem, or equivalently, for the (M′) martingale problem.

Proof. The result is a direct consequence of Theorem 5.2 (see for example [11, Section
5] or [22, Theorem 2.3] in a similar setting). More precisely, under the measure Qµ
(that is equivalent to the measure Q′µ), the martingale problem M̄(φ) = (M̄t(φ), t ∈ [0, T ])

corresponds to the one of general measure-valued Markov branching processes studied
by Dawson [13, Theorem 6.1.3] and Fitzsimmons [23].

5.3 Localization method

In this section, we will consider the localization procedure introduced by Stroock
[50] and generalized to the measure-valued context by He [25] in order to show that
uniqueness for the martingale problem (M) follows from the uniqueness of the martingale
problem (M′). We briefly describe the idea. First, we show that each solution of the
martingale problem (M) behaves in the same way as the solution of the killed martingale
problem until it has a “big jump”. Since we have proven uniqueness for the killed
martingale problem, the solution of the martingale problem (M) is uniquely determined
before it has a “big jump”. Furthermore, we show that when a “big jump” event happens,
the jump size is also uniquely determined. Finally, we prove by induction that the
distribution of the branching particle system corresponding to the martingale problem
(M) is uniquely determined, since after the first “big jump” event happens, the system
also behaves in the same way as the solution of the killed martingale problem until the
second “big jump” event happens. We point out that the arguments and results of this
section are similar to those of [25, 50], thus we are going to provide as many details as
necessary for clarity and the convenience of the reader but leave out cumbersome steps
that are entirely analogous. In order for this to be possible, we translate our set-up to
the notation used in [25]. We first start with some preliminary notation and definitions.

Definition 5.4. For µ ∈ M(X̂ ) and 0 < T < +∞, we say that a stochastic process
ν ∈ D([0, T ],M(X̂ )), or equivalently its law Pµ, solves the (L ,D(L ), µ)-martingale
problem if Pµ(ν0 = µ) = 1 and

F (νt)− F (ν0)−
∫ t

0

LF (νs)ds, t ∈ [0, T ],

is a Pµ-martingale, for all F in some appropriate domain of functions on D(L ) ⊂
B(M(X̂ ),R).

We consider the following two operators,

LF (µ) =

∫
X̂
p(x)A

(
δF (µ)

δµ(x)

)
µ(dx) +

∫
X̂

(
b(x)−

∫
X̂
c(x, y)µ(dy)

)
δF (µ)

δµ(x)
µ(dx)

+

∫
X̂

∫ ∞
0

(
F (µ+ uδx)− F (µ)− δF (µ)

δµ(x)
u

)
Π(x,du)µ(dx) +

∫
X̂
σ(x)

δ2F (µ)

δµ(x)2
µ(dx)
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and

L ′F (µ) =

∫
X̂
p(x)A

(
δF (µ)

δµ(x)

)
µ(dx)

+

∫
X̂

(
b(x)−

∫
[l,∞)

uΠ(x,du)−
∫
X̂
c(x, y)µ(dy)

)
δF (µ)

δµ(x)
µ(dx)

+

∫
X̂

∫
(0,l)

(
F (µ+ uδx)− F (µ)− δF (µ)

δµ(x)
u

)
Π(x, du)µ(dx) +

∫
X̂
σ(x)

δ2F (µ)

δµ(x)2
µ(dx)

defined for some appropriate functions F in B(M(X̂ ),R), where the so-called variational
derivatives are defined by

δF (µ)

δµ(x)
:= lim

h↓0

F (µ+ hδx)− F (µ)

h
=

∂

∂h
F (µ+ hδx)|h=0, x ∈ X̂

and
δ2F (µ)

δµ(x)δµ(y)
:=

∂2

∂h1∂h2
F (µ+ h1δx + h2δy)|h1=h2=0, x, y ∈ X̂ .

For n ≥ 0, we define the function Fφ,λ,θn onM(X̂ ) by

Fφ,λ,θn (µ) :=

n∑
i=1

θie
−λi〈µ,φi〉,

where µ ∈ M(X̂ ), λi ∈ R+, θi ∈ R and φi ∈ C∂(X ,R+), for i = 1, . . . , n. We also define
the family of functions

E :=

∞⋃
n=1

{
Fφ,λ,θn (µ) : µ ∈M(X̂ ), λi ∈ R+, θi ∈ R andφi ∈ C∂(X ,R+), for i = 1, . . . , n

}
that is a subset of B(M(X̂ ),R).

Remark 5.5. Recall that X̂ is the one-point compactification of X . ThusM(X̂ ) equipped
with the weak topology is also compact. On the other hand, recall from the proof of
tightness (Proposition 4.1) that E separates points onM(X̂ ) (this follows from Dynkin’s
π-λ Theorem). Moreover, E has the non-vanishing property, i.e, for every µ ∈M(X̂ ) there
exists Fφ,λ,θn ∈ E such that Fφ,λ,θn (µ) 6= 0. Therefore the Stone-Weierstrass Theorem (see
for example [3, Appendix A7, Theorem 5, p. 393]) implies that E is dense in C0(M(X̂ ),R).

We make the link between the martingale problems (M), (M′) and Definition 5.4.

Corollary 5.6. Let

D(L ) =

∞⋃
n=0

{
Fφ,λ,θn ∈ E : φi ∈ D(M), for i = 1, . . . , n

}
.

Then, Qµ (resp. Q′µ) solves the (L ,D(L ), µ)-martingale problem (resp. (L ′,D(L ), µ)-
martingale problem) if and only if it solves the martingale problem (M) (resp. (M′)).

Proof. The result is a consequence of Theorem 3.4 (b) and its proof as well as an
application of Itô’s formula.

By Proposition 5.3, we henceforth assume throughout this section that for µ ∈M(X ),
there is a unique solution to the martingale problem (M′) which is the killed martingale
problem.
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Let ω = (ωt, t ∈ [0, T ]) denote the coordinate process of D([0, T ],M(X̂ )) and let Q′

denote the unique solution of the killed martingale problem. For 0 ≤ s < T < +∞ and
µ ∈ M(X ) let Q′s,µ = Q′(·|ωs = µ). Hence Q′s,µ is also a unique solution of the killed
martingale problem starting from time s at the value µ. We set

Ω = D([0, T ],M(X̂ )), Ft = σ(ωs : 0 ≤ s ≤ t ≤ T ) and F t = σ

 ⋃
t≤s≤T

Fs

 ,

for 0 ≤ t ≤ T . In particular, we write F = F0. For µ ∈ M(X ) let Qµ be a solution of
the martingale problem (M). Then, for φ ∈ D(M) the process M(φ) = (Mt(φ), t ∈ [0, T ])

defined in (M) (with ω instead of ν) is a Qµ-martingale. We set

ωlt := ωt −
∫ t

0

∫
M(X̂ )

µ · 1{〈µ,1〉≥l}N(ds,dµ), t ∈ [0, T ],

for 1 < l <∞ and where N is the optional random measure on [0,∞)×M(X̂ ) associated
with the purely discontinuous part of M in Theorem 3.4. Recall that N̂ and Ñ denote
the compensator and compensated random measure of N , respectively. Recall also that
M c(φ) denotes the continuous martingale part of M . Then, Theorem 3.4 implies that

〈ωlt, φ〉 = 〈ω0, φ〉+

∫ t

0

∫
X̂
p(x)Aφ(x)ωs(dx)ds

+

∫ t

0

∫
X̂
φ(x)

(
b(x)−

∫
X̂
c(x, y)ωs(dy)

)
ωs(dx)ds

+M c
t (φ) +

∫ t

0

∫
M(X̂ )

〈µ, φ〉1{〈µ,1〉<l}Ñ(ds,dµ)

−
∫ t

0

∫
M(X̂ )

〈µ, φ〉1{〈µ,1〉≥l}N̂(ds,dµ),

for t ∈ [0, T ]. Thus, by Itô’s formula (see also the computation in (4.7)) the process
In = (Int , t ∈ [0, T ]) for n ≥ 0 an integer given by

Int = Fφ,λ,θn (ωlt)− Fφ,λ,θn (ωl0)−
∫ t

0

L ′Fφ,λ,θn (ωls)ds

is a local martingale under Qµ, where λi ∈ R+, θi ∈ R and φi ∈ D(M), for i = 1, . . . , n.
Let τ1(ω) = inf{t ≥ 0 : 〈ωt,1〉 ≥ l + 〈ω0,1〉} ∧ T and τ2(ω) = inf{t ≥ 0 : |〈ωt,1〉 −

〈ωt−,1〉| ≥ l}. Set τ(ω) = τ1(ω) ∧ τ2(ω). The following lemma gives another martingale
characterization for ωl.

Lemma 5.7. For µ ∈M(X ), let Pµ be a probability measure on (Ω,F) such that Pµ(ω0 =

µ) = 1. Then the process I(φ) = (It(φ), t ∈ [0, T ]) given by

It(φ) = exp

(
− 〈ωlt∧τ(ω), φ〉+

∫ t∧τ(ω)

0

∫
X̂
p(x)Aφ(x)ωs(dx)ds

+

∫ t∧τ(ω)

0

∫
X̂

(
b(x)−

∫
X̂
c(x, y)ωs(dy)−

∫ ∞
l

uΠ(x, du)

)
φ(x)ωs(dx)ds

−
∫ t∧τ(ω)

0

∫
X̂

∫ l

0

(
e−uφ(x) − 1 + uφ(x)

)
φ(x)Π(x,du)ωs(dx)ds

−
∫ t∧τ(ω)

0

∫
X̂
σ(x)φ2(x)ωs(dx)ds

)
is a Pµ-martingale for every φ ∈ D(M) if and only if (Int∧τ , t ∈ [0, T ]) is a Pµ-martingale
for each n ≥ 1.
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Proof. The result follows from the formula for integration by parts and the same argu-
ment as in the proof of Theorem 7 in [19]. Here, it is used that up to time τ(ω) we have
〈ωt,1〉 bounded almost surely.

The next two theorems correspond to [25, Theorem 2.4 and Theorem 2.5]. The
first result shows that the solution of the martingale problem (M) is determined by the
martingale problem (M′) before it has a jump of size larger than 1 < l < +∞. Define

Fτ(ω) = {E ∈ F : E ∩ {τ ≤ t} ∈ Ft for all t ∈ [0, T ]}.

It is not hard to see that Fτ(ω) = σ(ω(t ∧ τ) : t ∈ [0, T ]). We also define

Fτ(ω)− = σ({E ∈ F : E ∩ {τ > t} ∈ Ft for all t ∈ [0, T ]}).

Theorem 5.8. For µ ∈ M(X ), let Pµ be a probability measure on (Ω,F) such that
Pµ(ω0 = µ) = 1 and (Int∧τ(ω), t ∈ [0, T ]) is a Pµ-martingale for each n ≥ 1. We define the
measure Sω = δω ⊗Q′

τ(ω),ωl
τ(ω)

on (Ω,F) that satisfies

Sω(E1 ∩ E2) = 1E1
(ω)Q′τ(ω),ωl

τ(ω)
(E2), for E1 ∈ Fτ(ω)− and E2 ∈ Fτ(ω).

We set
P′µ(E) = EPµ(Sω(E)), E ∈ F ,

and define F lτ(ω)− = σ(ωlt∧τ(ω) : t ∈ [0, T ]). Then P′µ is a solution of the killed martingale

problem and Pµ = Q′µ on F lτ(ω)−. In particular, we can take Pµ = Qµ.

Proof. The statement is obtained along exactly the same lines as the proof of [25,
Theorem 2.4].

We now see that uniqueness of the killed martingale problem implies uniqueness for
the solution Qµ of the martingale problem (M) on F lτ(ω)−. Our next step is to show that
uniqueness of the killed martingale problem implies uniqueness of Qµ on Fτ(ω). The next
theorem shows that when a jump of size larger than 1 < l < +∞ happens, the jump size
is uniquely determined by F lτ(ω)−. We denote by Eµ the expectation with respect to Qµ.

Theorem 5.9. For 1 < l < +∞ let Ml(X̂ ) = {µ ∈ M(X̂ ) : 〈µ,1〉 ≥ l}. There is an
F lτ(ω)−-measurable function τ ′ : Ω→ [0, T ] such that for E ∈ B(Ml(X̂ ))

Eµ

[
N((0, τ(ω)], E)

∣∣∣F lτ(ω)−

]
=∫ τ ′

0

∫
X̂

∫ ∞
0

exp

(
−
∫ t

0

∫
X̂

∫
[l,∞)

Π(x,du)ωls∧τ(ω)(dx)ds

)
1E(vδy)Π(y,dv)ωls∧τ(ω)(dy)dt

holds for any solution Qµ of the martingale problem (M). In particular, given F lτ(ω)− the
distribution of the random measure N up to time τ(ω) is uniquely determined.

Proof. The formula for the conditional expectation follows from [25, Theorem 2.5] by
using Theorem 5.8 and Lemma 5.7 to show that the requirements of [50, Theorem
3.2] are satisfied. Since the distribution of the random measure N up to time τ(ω) is
characterized by its intensity the result follows.

Since

ωτ(ω) = ωlτ(ω) +

∫
(0,τ(ω)]

∫
M(X̂ )

µ · 1{〈µ,1〉≥l}N(ds,dµ),

we see that the distribution of ωτ(ω) under Qµ given F lτ(ω)− is uniquely determined, and
therefore Theorem 5.8 implies that the measure Qµ is uniquely determined on Fτ(ω).
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Lemma 5.10. Let Qµ be a solution of the martingale problem (M). Let β(ω) be a finite
stopping time and let Qω be a regular conditional probability distribution of Qµ|Fβ(ω).
Then, there is a set E ∈ Fβ(ω) such that Qµ(E) = 0 and when ω 6∈ E,

Fφ,λ,θn (ωt∨β(ω))− Fφ,λ,θn (ωβ(ω))−
∫ t∨β(ω)

β(ω)

LFφ,λ,θn (ωs)ds, t ∈ [0, T ]

is a Qω-martingale for Fφ,λ,θn ∈ D(L ).

Proof. The result is proved in the same way as [51, Theorem 1.2.10].

We now state the main theorem in this section.

Theorem 5.11. Suppose that for 1 < l < +∞ there is a unique solution of the martingale
problem (M′), or equivalently the killed martingale problem. Then there is a unique
solution of the martingale problem (M).

Proof. The argument of this proof is exactly the same as that in [25, Theorem 2.6]. Thus,
we only sketch it here. Suppose that Qµ is a solution of the martingale problem (M) and
observe that (Int∧τ(ω), t ∈ [0, T ]) is a Qµ-martingale for each n ≥ 1. Define the following
sequence of stopping times, β0 = 0 and

βn+1 = (inf{t ≥ βn : |〈ωt,1〉 − 〈ωt−,1〉| ≥ l or 〈ωt,1〉 − 〈ωβn ,1〉 ≥ l}) ∧ (βn + 1).

Notice that for each n ≥ 1, βn is bounded by nl. By Lemma 5.10 and Theorem 5.9, we
can prove by induction that Qµ is uniquely determined on Fβn for all n ≥ 1. Therefore, it
is enough to check that Qµ(βn ≤ T )→ 0 as n→∞ for each T > 0, which follows along
exactly the same lines as in [25, Theorem 2.6].

Finally, the previous result together with Proposition 5.3 concludes the proof of
Theorem 3.8.

6 Proof of Theorem 3.9

In this section, we just check that no mass escapes for the unique solution to the
martingale problem (M). The proof follows exactly as in [25, Theorem 3.1 and Theorem
3.2]. Specifically, one first shows that the solution to the killed martingale problem (M′)
is actually the law of a measure valued process in D([0, T ],M(X )). From this one builds
a solution to the martingale problem (M) that is the law of a measure valued process in
D([0, T ],M(X )) and concludes by uniqueness.

Recall that we are assuming that

Assumption 6.1. There exists a sequence (φn)n≥1 ⊂ D(M) such that

(i) for n ≥ 1, limd(x,∂)→0 φn(x) = 1, limd(x,∂)→0Aφn(x) = 0 (where d is some metric in
the Polish space X ),

(ii) supn≥1 supx∈X φn(x) <∞ and supn≥1 supx∈X Aφn(x) <∞. Furthermore, φn → 1{∂}
and Aφn → 0, as n→∞, pointwise.

Theorem 6.2. Suppose that Assumptions 3.1 and 6.1 are satisfied with σ ∈ C∂(X ,R+).
For a non random µ ∈ M(X ) let ν′ ∈ D([0, T ],M(X̂ )), or equivalently its law Q′µ, solve
the martingale problem (M′) for some 1 < l < +∞. Then,

Q′µ(νt({∂}) = 0 for all t ∈ [0, T ]) = 1.
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Proof. Let φ ∈ D(M). By Lemma 5.1, the process M ′(φ) = (M ′t(φ), t ∈ [0, T ]) given by

M ′t(φ) = 〈ν′t, φ〉 − 〈ν′0, φ〉 −
∫ t

0

∫
X̂
p(x)Aφ(x)ν′s(dx)ds

−
∫ t

0

∫
X̂
φ(x)

(
b(x)−

∫
[l,∞)

uΠ(x,du)−
∫
X̂
c(x, y)ν′s(dy)

)
ν′s(dx)ds (6.1)

is a square-integrable Q′µ-martingale with quadratic variation process given by

〈M ′(φ)〉t = 2

∫ t

0

∫
X̂
σ(x)φ2(x)ν′s(dx)ds+

∫ t

0

∫
X̂

∫
(0,l)

u2φ2(x)Π(x, du)ν′s(dx)ds, t ∈ [0, T ],

Let (φn)n≥1 ⊂ D(M) be a sequence that fulfills Assumption 6.1. Then, using Doob’s
inequality, we obtain

E′µ

[
sup
t∈[0,T ]

|M ′t(φi)−M ′t(φj)|
2

]

≤ 4

∫ T

0

E′µ

[∫
X̂

(φ2
i (x)− φ2

j (x))

(
2σ(x) +

∫
(0,l)

u2Π(x, du)

)
ν′s(dx)

]
ds,

for i, j ≥ 1 Therefore, Assumptions 3.1, 6.1 and the moment bound supt∈[0,T ] E
′
µ[〈ν′t,1〉n]

<∞, n ≥ 1 (from Lemma 5.1) together with the Dominated Convergence Theorem imply
that

lim
i,j→∞

E′µ

[
sup
t∈[0,T ]

|M ′t(φi)−M ′t(φj)|
2

]
= 0.

So M ′t(φn) converges uniformly on [0, T ] in mean square as n → ∞ to a limit that
we denote by M∂ = (M∂

t , t ∈ [0, T ]) and with probability one along an appropriate
subsequence. By [26, Lemma 2.1.2] we obtain that M∂ is a càdlàg square-integrable
martingale with E′µ[M∂

t ] = limn→∞E′µ[M ′t(φn)] = limn→∞E′µ[M ′0(φn)] = 0. Then from
(6.1) we deduce by Lebesgue’s convergence theorem that

M∂
t = ν′t({∂})−

∫ t

0

(
b(∂)−

∫
[l,∞)

uΠ(∂,du)−
∫
X̂
c(∂, y)ν′s(dy)

)
ν′s({∂})ds.

Taking expectations in the last equality and using Gronwall’s inequality (with Assumption
3.1) yields E′µ[ν′t({∂})] = 0, for all t ∈ [0, T ]. Hence ν′t({∂}) = 0 with probability one, for
all t ∈ [0, T ] and now the conclusion follows from the right continuity of (ν′t({∂}), t ∈
[0, T ]).

Proof of Theorem 3.9. By Proposition 5.3 and Theorem 6.2, there is an unique solution
to the martingale problem (M′). Then one may follow exactly the same argument as in
the proof of [25, Theorem 3.2] to conclude that there is a process ν∞ ∈ D([0, T ],M(X ))

that is a solution to the martingale problem (M). Therefore our claim is a consequence
of Theorem 3.8. It is important to point out that in order to be in the framework of [25,
Theorem 3.2] one needs to put the martingale problems (M) and (M′) in the form of
Definition 5.4 by Corollary 5.6 (recall also Remark 5.5).

Acknowledgements. We are very grateful to an anonymous referees for numerous
valuable remarks which helped in improving this paper significantly.

EJP 26 (2021), paper 153.
Page 38/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

References

[1] D. Aldous, Stopping times and tightness, Ann. Probability 6 (1978), no. 2, 335–340.
MR0474446

[2] E. R. Angert, Alternatives to binary fission in bacteria, Nature Reviews Microbiology 3 (2005),
no. 3, 214–224.

[3] R. B. Ash, Real analysis and probability, Academic Press, New York-London, 1972, Probability
and Mathematical Statistics, No. 11. MR0435320

[4] P. Billingsley, Probability and measure, third ed., Wiley Series in Probability and Mathemat-
ical Statistics, John Wiley & Sons, Inc., New York, 1995, A Wiley-Interscience Publication.
MR1324786

[5] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability
and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-
Interscience Publication. MR1700749

[6] B. Bolker and S. W. Pacala, Using moment equations to understand stochastically driven
spatial pattern formation in ecological systems, Theoretical population biology 52 (1997),
no. 3, 179–197.

[7] E. Çınlar, Probability and stochastics, Graduate Texts in Mathematics, vol. 261, Springer,
New York, 2011. MR2767184

[8] N. Champagnat, R. Ferrière, and S. Méléard, From individual stochastic processes to macro-
scopic models in adaptive evolution, Stoch. Models 24 (2008), no. suppl. 1, 2–44. MR2466448

[9] A. Concas, M. Pisu, and G. Cao, A novel mathematical model to simulate the size-structured
growth of microalgae strains dividing by multiple fission, Chemical Engineering Journal 287
(2016), 252–268.

[10] M. C. Côrtes and U. María, Integrating frugivory and animal movement: a review of the
evidence and implications for scaling seed dispersal, Biological Reviews 88 (2012), no. 2,
255–272.

[11] D. A. Dawson, Geostochastic calculus, Canad. J. Statist. 6 (1978), no. 2, 143–168. MR0532855

[12] D. A. Dawson, Infinitely divisible random measures and superprocesses, Stochastic analysis
and related topics (Silivri, 1990), Progr. Probab., vol. 31, Birkhäuser Boston, Boston, MA,
1992, pp. 1–129. MR1203373

[13] D. A. Dawson, Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour
XXI—1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1–260. MR1242575

[14] D. A. Dawson, L. G. Gorostiza, and Z. Li, Nonlocal branching superprocesses and some
related models, Acta Appl. Math. 74 (2002), no. 1, 93–112. MR1936024

[15] D. A. Dawson and A. Greven, Spatial Fleming-Viot models with selection and mutation,
Lecture Notes in Mathematics, vol. 2092, Springer, Cham, 2014. MR3155790

[16] M. M. Desai, A. M. Walczak, and D. S. Fisher, Genetic diversity and the structure of genealo-
gies in rapidly adapting populations, Genetics 193 (2013), no. 2, 565–585.

[17] U. Dieckmann and R. Law, Relaxation projections and the method of moments, Pages 412-455
in The Geometry of Ecological Interactions: Symplifying Spatial Complexity (U Dieckmann, R.
Law, J.A.J. Metz, editors), vol. 1, IIASA, Laxenburg; Cambridge University Press, Cambridge,
2005. MR2265382

[18] C. Doléans-Dade, Quelques applications de la formule de changement de variables pour
les semimartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 181–194.
MR0283883

[19] N. El Karoui and S. Roelly, Propriétés de martingales, explosion et représentation de Lévy-
Khintchine d’une classe de processus de branchement à valeurs mesures, Stochastic Process.
Appl. 38 (1991), no. 2, 239–266. MR1119983

[20] A. M. Etheridge, Survival and extinction in a locally regulated population, Ann. Appl. Probab.
14 (2004), no. 1, 188–214. MR2023020

[21] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical
Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986,
Characterization and convergence. MR0838085

EJP 26 (2021), paper 153.
Page 39/41

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0474446
https://mathscinet.ams.org/mathscinet-getitem?mr=0435320
https://mathscinet.ams.org/mathscinet-getitem?mr=1324786
https://mathscinet.ams.org/mathscinet-getitem?mr=1700749
https://mathscinet.ams.org/mathscinet-getitem?mr=2767184
https://mathscinet.ams.org/mathscinet-getitem?mr=2466448
https://mathscinet.ams.org/mathscinet-getitem?mr=0532855
https://mathscinet.ams.org/mathscinet-getitem?mr=1203373
https://mathscinet.ams.org/mathscinet-getitem?mr=1242575
https://mathscinet.ams.org/mathscinet-getitem?mr=1936024
https://mathscinet.ams.org/mathscinet-getitem?mr=3155790
https://mathscinet.ams.org/mathscinet-getitem?mr=2265382
https://mathscinet.ams.org/mathscinet-getitem?mr=0283883
https://mathscinet.ams.org/mathscinet-getitem?mr=1119983
https://mathscinet.ams.org/mathscinet-getitem?mr=2023020
https://mathscinet.ams.org/mathscinet-getitem?mr=0838085
https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

[22] S. N. Evans and E. A. Perkins, Measure-valued branching diffusions with singular interactions,
Canad. J. Math. 46 (1994), no. 1, 120–168. MR1260341

[23] P. J. Fitzsimmons, On the martingale problem for measure-valued Markov branching pro-
cesses, Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991), Progr. Probab.,
vol. 29, Birkhäuser Boston, Boston, MA, 1992, pp. 39–51. MR1172141

[24] N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated
population and macroscopic approximations, Ann. Appl. Probab. 14 (2004), no. 4, 1880–1919.
MR2099656

[25] H. He, Discontinuous superprocesses with dependent spatial motion, Stochastic Process.
Appl. 119 (2009), no. 1, 130–166. MR2485022

[26] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-
Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam-New York;
Kodansha, Ltd., Tokyo, 1981. MR0637061

[27] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
288, Springer-Verlag, Berlin, 1987. MR0959133

[28] A. Jakubowski, On the Skorokhod topology, vol. 22, 1986, pp. 263–285. MR0871083

[29] B. Jourdain, S. Méléard, and W. A. Woyczynski, Lévy flights in evolutionary ecology, J. Math.
Biol. 65 (2012), no. 4, 677–707. MR2966667

[30] A. Lambert, The branching process with logistic growth, Ann. Appl. Probab. 15 (2005), no. 2,
1506–1535. MR2134113

[31] J.-F. Le Gall and L. Mytnik, Stochastic integral representation and regularity of the density
for the exit measure of super-Brownian motion, Ann. Probab. 33 (2005), no. 1, 194–222.
MR2118864

[32] Z. Li, Measure-valued branching Markov processes, Probability and its Applications (New
York), Springer, Heidelberg, 2011. MR2760602

[33] R. S. Liptser and A. N. Shiryayev, Theory of martingales, Mathematics and its Applications
(Soviet Series), vol. 49, Kluwer Academic Publishers Group, Dordrecht, 1989, Translated
from the Russian by K. Dzjaparidze [Kacha Dzhaparidze]. MR1022664

[34] W. Löhr, Equivalence of Gromov-Prohorov- and Gromov’s �λ-metric on the space of metric
measure spaces, Electron. Commun. Probab. 18 (2013), no. 17, 10. MR3037215

[35] S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance,
Genetics 28 (1943), 491–511.

[36] S. Méléard and V. C. Tran, Nonlinear historical superprocess approximations for population
models with past dependence, Electron. J. Probab. 17 (2012), no. 47, 32. MR2946154

[37] S. Méléard and V. C. Tran, Slow and fast scales for superprocess limits of age-structured
populations, Stochastic Process. Appl. 122 (2012), no. 1, 250–276. MR2860449

[38] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, and J. S. van Heerwaarden, Adaptive
dynamics, a geometrical study of the consequences of nearly faithful reproduction, Stochastic
and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad.
Wetensch. Verh. Afd. Natuurk. Eerste Reeks, vol. 45, North-Holland, Amsterdam, 1996,
pp. 183–231. MR1773114

[39] R. A. Neher, Genetic draft, selective interference, and population genetics of rapid adaptation,
Ann. Rev. Ecol. 44 (2013), no. 1, 195–215.

[40] R. A. Neher and O. Hallatschek, Genealogies of rapidly adapting populations, Proceedings of
the National Academy of Sciences 110 (2013), no. 2, 437–442.

[41] A. A. Novikov, A certain identity for stochastic integrals, Teor. Verojatnost. i Primenen. 17
(1972), 761–765. MR0312567

[42] E. Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions, Lectures on
probability theory and statistics (Saint-Flour, 1999), Lecture Notes in Math., vol. 1781,
Springer, Berlin, 2002, pp. 125–324. MR1915445

EJP 26 (2021), paper 153.
Page 40/41

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1260341
https://mathscinet.ams.org/mathscinet-getitem?mr=1172141
https://mathscinet.ams.org/mathscinet-getitem?mr=2099656
https://mathscinet.ams.org/mathscinet-getitem?mr=2485022
https://mathscinet.ams.org/mathscinet-getitem?mr=0637061
https://mathscinet.ams.org/mathscinet-getitem?mr=0959133
https://mathscinet.ams.org/mathscinet-getitem?mr=0871083
https://mathscinet.ams.org/mathscinet-getitem?mr=2966667
https://mathscinet.ams.org/mathscinet-getitem?mr=2134113
https://mathscinet.ams.org/mathscinet-getitem?mr=2118864
https://mathscinet.ams.org/mathscinet-getitem?mr=2760602
https://mathscinet.ams.org/mathscinet-getitem?mr=1022664
https://mathscinet.ams.org/mathscinet-getitem?mr=3037215
https://mathscinet.ams.org/mathscinet-getitem?mr=2946154
https://mathscinet.ams.org/mathscinet-getitem?mr=2860449
https://mathscinet.ams.org/mathscinet-getitem?mr=1773114
https://mathscinet.ams.org/mathscinet-getitem?mr=0312567
https://mathscinet.ams.org/mathscinet-getitem?mr=1915445
https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Trait-dependent branching particle systems with competition and multiple offspring

[43] P. E. Protter, Stochastic integration and differential equations, Stochastic Modelling and
Applied Probability, vol. 21, Springer-Verlag, Berlin, 2005, Second edition. Version 2.1,
Corrected third printing. MR2273672

[44] M. M. Rading, T. A. Engel, R. Lipowsky, and A. Valleriani, Stationary size distributions of
growing cells with binary and multiple cell division, J. Stat. Phys. 145 (2011), no. 1, 1–22.
MR2841930

[45] D. Revuz and M. Yor, Continuous martingales and Brownian motion, third ed., Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 293, Springer-Verlag, Berlin, 1999. MR1725357

[46] E. W. Schupp, P. Jordano, and G. J. Maria, Seed dispersal effectiveness revisited: a conceptual
review, New Phytologist 188 (2010), no. 2, 333–353.

[47] J. Schweinsberg, Rigorous results for a population model with selection I: evolution of the
fitness distribution, Electron. J. Probab. 22 (2017), Paper No. 37, 94. MR3646063

[48] J. Schweinsberg, Rigorous results for a population model with selection II: genealogy of the
population, Electron. J. Probab. 22 (2017), Paper No. 38, 54. MR3646064

[49] N. Strelkowa and M. Lässig, Clonal interference in the evolution of influenza, Genetics 192
(2012), no. 2, 671–682.

[50] D. W. Stroock, Diffusion processes associated with Lévy generators, Z. Wahrscheinlichkeits-
theorie und Verw. Gebiete 32 (1975), no. 3, 209–244. MR0433614

[51] D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
233, Springer-Verlag, Berlin-New York, 1979. MR0532498

[52] J. B. Walsh, An introduction to stochastic partial differential equations, École d’été de
probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin,
1986, pp. 265–439. MR0876085

EJP 26 (2021), paper 153.
Page 41/41

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2273672
https://mathscinet.ams.org/mathscinet-getitem?mr=2841930
https://mathscinet.ams.org/mathscinet-getitem?mr=1725357
https://mathscinet.ams.org/mathscinet-getitem?mr=3646063
https://mathscinet.ams.org/mathscinet-getitem?mr=3646064
https://mathscinet.ams.org/mathscinet-getitem?mr=0433614
https://mathscinet.ams.org/mathscinet-getitem?mr=0532498
https://mathscinet.ams.org/mathscinet-getitem?mr=0876085
https://doi.org/10.1214/21-EJP707
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	The individual-based model
	Poissonian construction
	Martingale properties

	The superprocess limit
	Proof of Theorem 3.4
	Tightness
	Identifying the limit

	Proof of Theorem 3.8
	The killed martingale problem
	Dawson's Girsanov type Theorem
	Localization method

	Proof of Theorem 3.9
	References

