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Abstract

This paper is concerned with the asymptotic empirical eigenvalue distribution of some
non linear random matrix ensemble. More precisely we consider M = 1

m
Y Y ∗ with

Y = f(WX) where W and X are random rectangular matrices with i.i.d. centered
entries. The function f is applied pointwise and can be seen as an activation function
in (random) neural networks. We compute the asymptotic empirical distribution of
this ensemble in the case where W and X have sub-Gaussian tails and f is real
analytic. This extends a result of [32] where the case of Gaussian matrices W and X is
considered. We also investigate the same questions in the multi-layer case, regarding
neural network and machine learning applications.
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1 Introduction

In this article, we are interested in the asymptotic spectral properties of some Gram
matrices whose definition comes from machine learning. Machine learning has shined
through a large list of successful applications over the past five years or so (see for
instance applications in image or speech recognition [25, 23] or translation [37]) but is
also used now in video, style transfer, dialogues, games and countless other topics. The
interested reader can go to [35] for an overview of the subject. However, a complete
theoretical and mathematical understanding of learning is still missing. The main
difficulty comes from the complexity of studying non-convex functions of a very large
number of parameters [9, 31]. We also refer to [10] for a comprehensive exposition of
the problem.

An artificial neural network can be modeled as follows: some input column vector
x ∈ Rn0 goes through a multistage architecture of alternated layers with both linear and
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Nonlinear models of random matrices

non linear functionals: let gi : R → R, i = 1, . . . , L be some given activation functions
and Wi, i = 1 . . . L be ni × ni−1 matrices. The output vector after layer L is sL where

s1 = g1(W1x), si = gi(Wisi−1), i = 2, . . . , L. (1.1)

The functions gi are here applied componentwise. The matrices Wi are the (synaptic)
weights in the layer i and the activation function gi models the impact of the neurons
in the architecture. There are different possible choices for the activation functions:
some notable examples are g(x) = max(0, x) (known as the ReLU activation function for
Rectified Linear Unit) or the sigmoid function g(x) = (1 + e−x)−1. The parameter L is
called the depth of the neural network.

In supervised machine learning, one is given a n0 ×m matrix dataset X coinjointly
with a target dataset Z of size d×m. Here m is the sample size and the parameters to
be learned are the weight matrices. A possible idea to understand better such large
complex systems is to approximate the elements of the system by random variables:
the weights are random. This is the place where random matrix theory can bring its
techniques in principle. The aim of the so-called training phase (with X and Z) is to
determine a function h so that, given a new photo x, the output of the function h(x) yields
an acceptable approximation of the target (true) object. The error when performing such
an approximation is measured through a loss function. In the context of Feed Forward
Neural Networks as in (1.1), when the input vector is high dimensional and the sample
size is comparably large, one of the commonly used learning method is ridge regression
(and h is linear in Y = g1(WX)). More precisely, in the one layer case (L = 1) the loss
function is

B ∈ Rd×n1 7→ L(B) :=
1

2dm
||Z −B∗(g1(W1X))||2F + γ||B||2F ,

where γ is the penalizing parameter. The optimal matrix B can then be proved to be
proportional to Y QZ∗ where

Q =

(
1

m
Y ∗Y + γI

)−1
. (1.2)

As a consequence, the performance of such a learning procedure can be measured
thanks to the asymptotic spectral properties of the matrix 1

mY
∗Y . Indeed, for the one

layer case, the expected training loss can be proved to be related to its asymptotic e.e.d.

(and Stieltjes transform). It is given by E(L(B)) = −γ
2

m
∂
∂γE(Tr Q), where Q is given by

(1.2) and Tr denotes the unnormalized trace. The case where L = 1, which is a particular
model of interest in this paper, is rather known as extreme learning. One may also refer
to [27] for more information on the development of deep learning (L > 1).

Random matrix theory has already been proved to be useful in machine learning. In
[19] for instance, neural networks with random Gaussian weights have been studied for
practical interest while eigenvalues of non-Hermitian matrices were used to understand
neural networks in [34]. See also [38] who study echo state networks used to model
nonlinear dynamical systems. In [5, 12], a random matrix approach has been used to
study spectral clustering by considering the random Gram matrix WW ∗. They compute
the asymptotic deterministic empirical distribution (e.e.d.) of this matrix which allows
the analysis of the spectral clustering algorithm in large dimensions. The e.e.d. of
nonlinear random matrix models of the form f(XX∗) have also been studied in [14] and
[8] with different variance scalings for the entries of X. We also mention [15] where the
question is further studied including the behavior of extreme eigenvalues, with a view to
statistical estimation of the covariance of the population.
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Nonlinear models of random matrices

We are here interested in random neural networks where both the number of samples
m and the number of parameters n0 are large. We consider rectangular matrices of
size n0 ×m in the regime where n0/m goes to some constant φ as the dimension grows
to infinity. The study of such matrix models for random neural networks was first
accomplished in [29, 32], where they consider

M =
1

m
Y ∗Y ∈ Rn1×n1 with Yij = f

(
1
√
n0

(WX)ij

)
for 1 6 i 6 n1, 1 6 j 6 m.

In the above equation f is a nonlinear activation function, W is the n1 × n0 matrix
corresponding to the weights and X the n0 ×m matrix of the data. There are several
possibilities to incorporate randomness in this model. In [29], the authors consider ran-
dom weights with deterministic data X. The weights are given by functions of Gaussian
random variables and the asymptotic eigenvalue distribution of M is studied thanks to
concentration inequalities in the case where the function f is Lipschitz continuous. They
prove that the eigenvalue distribution corresponds to that of a (usual) sample covariance
matrix 1

mT
∗X∗XT with population covariance T ∗T = M as studied in [36]. However,

there is a difference from a usual sample covariance matrix ensemble, which is the
non universality of the eigenvalue distribution (as M depends on the distribution of W
beyond its first two moments). The authors [29] use this equation to study the effect of
the fourth moments of the distribution for the efficiency of the neural networks. The
general approach based on concentration arguments that they develop is detailed in the
recent preprint [28].

The model we are interested in has been introduced by [32]. Another approach, based
on entropy and an information theory approach, has been obtained for the same model in
[18]. [32] consider the case where both matrices W and X are random and independent
with normalized Gaussian entries. Interestingly, they derive a fixed point equation for
the Stieltjes transform of the asymptotic e.e.d., which is a quartic equation (recalled in
Theorem 2.3 below). Before discussing our result, one may note that the quartic equation
specializes in some special cases of the parameters to the Marčenko-Pastur equation

for the Stieltjes transform: zm(z)2 +
((

1− ψ
φ

)
z − 1

)
m(z) + ψ

φ = 0. Thus there exists a

class of functions such that the nonlinear matrix model has the same limiting e.e.d. as
that of Wishart matrices. The equation also becomes cubic when the function f is linear
and corresponds to the product Wishart matrix. The limiting e.e.d. of such matrices,
known as the Fuss–Catalan or Raney distribution, has been computed in [33, 13, 17, 3].
For the general case, [30] (see Theorem 1.4) shows that µ is actually the limiting e.e.d.
of an information plus noise sample covariance matrix.
We refer the reader to Sections 4 and 5 of [32] for a more detailed discussion on
machine learning applications of such a result. Regarding potential applications, the
question of multiple layers is of particular interest. In particular [32] use this equation
to facilitate the choice of activation function, a problem which has a crucial impact
on the training procedure. In [22], the choice of activation function was studied for
random neural networks after going through a large number of layers. One may first
note that for linear models, the multilayer case corresponds to the maybe simpler setting
of products of random matrices. One refers the reader to [26, 11, 1, 2, 33] for products
of complex Ginibre matrices and to [21] where a large product of large random matrices
is considered. In the non linear setting, [32] conjecture that the Marčenko-Pastur is
invariant through multiple layers for some appropriate activation functions f , which
could speed up training through the network. This is also a question we are interested
in.

The scope of this paper is first theoretical: one aims to study the asymptotic e.e.d. of
Gram matrices f(WX)f(WX)∗ where f is applied entrywise and to extend the result
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Nonlinear models of random matrices

established by [32] to non-Gaussian matrices. In particular, the question of universality
of the limiting e.e.d. is of interest here as initial weights can be chosen to be non-
Gaussian (a typical example is the uniform distribution as in [20]). In this setting, it
has to be compared to the result of [14] where some kernel matrices are investigated
(with another universal limiting empirical eigenvalue distribution). Our result may be of
use for applications as it provides an easy way to compare different possible activation
functions for a certain class of distribution for both weights and data. We also investigate
the multilayer case Y (`) = f(W (`−1)Y (`−1)) for ` = 1 . . . L with L fixed and study again
the asymptotic empirical eigenvalue distribution for a class of activation functions. This
is actually a toy model for the multi-layer model (1.1), due to the fact that the matrices
W (`−1) are here independent. This gives one step to understand the multilayer random
neural networks and also confirms the conjecture made in [32].

2 Model and results

Consider a random matrix X ∈ Rn0×m with i.i.d. elements with distribution ν1. Let
also W ∈ Rn1×n0 be a random matrix with i.i.d. entries with distribution ν2. W is called
the weight matrix. Both distributions are centered and we denote the variance of each
distribution by

E
[
X2
ij

]
= σ2

x and E
[
W 2
ij

]
= σ2

w. (2.1)

We also need the following assumption on the tails of W and X: there exist constants
ϑw, ϑx > 0 and α > 1 such that for any t > 0 we have

P (|W11| > t) 6 e−ϑwt
α

and P (|X11| > t) 6 e−ϑxt
α

. (2.2)

Note that the above implies that there exists a constant C > 0 such that

P

(∣∣∣∣∣ 1
√
n0

n0∑
k=1

W1kXk1

∣∣∣∣∣ > t

)
6 Ce−t

2/2. (2.3)

We now consider a smooth function f : R→ R scaled so that it has zero Gaussian mean
in the sense that ∫

f(σwσxx)
e−x

2/2

√
2π

dx = 0. (2.4)

This assumption has no impact on the asymptotic e.e.d. as this amounts to consider
a rank one modification of the model if needed. However this greatly simplifies the
exposition of the proof.

As an additional assumption, we also suppose that there exist positive constants Cf
and cf and A0 > 0 such that for any A > A0 and any n ∈ N we have,

sup
x∈[−A,A]

|f (n)(x)| 6 CfA
cfn. (2.5)

Remark 2.1. (2.5) guarantees that the function is real analytic which may be seen as a
strong restriction. However, commonly used activation functions fall within the scope of
this paper such as the sigmoid function f(x) = (1 + e−x)−1, f(x) = tanhx or the softplus
function f(x) = β−1 log(1 + eβx), i.e. a smooth variant of the ReLU. Extensions to more
general (non analytic) functions f is the object of current research.

We consider the following random matrix,

M =
1

m
Y Y ∗ ∈ Rn1×n1 with Y = f

(
WX
√
n0

)
(2.6)
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where f is applied entrywise. We suppose that the dimensions of both the columns
and the rows of each matrix grow together in the following sense: there exist positive
constants φ and ψ such that

n0
m
−−−−→
m→∞

φ,
n0
n1
−−−−→
m→∞

ψ

Denote by (λ1, . . . , λn1) the eigenvalues of M given by (2.6) and define its e.e.d. by

µn1 =
1

n1

n1∑
i=1

δλi . (2.7)

Theorem 2.2. There exists a deterministic compactly supported measure µ such that
we have

µ(f)
n1
−−−−→
n1→∞

µ weakly almost surely.

Similarly we denote by (λ̃1, . . . , λ̃n1
, 0 . . . , 0) the eigenvalues of 1

mY
∗Y (note thatm−n1

such eigenvalues are necessarily null). We set µ̃m its e.e.d. and by µ̃ its limit.
The moments of the asymptotic empirical eigenvalue distribution depend on the two

following parameters of the function f : we set

θ1(f) =

∫
f2(σwσxx)

e−x
2/2

√
2π

dx and θ2(f) =

(
σwσx

∫
f ′(σwσxx)

e−x
2/2

√
2π

dx

)2

. (2.8)

We also define the following Stieltjes transforms: let z ∈ C \R, we set

G(z) :=

∫
dµ(x)

x− z
, G̃(z) :=

∫
dµ̃(x)

x− z
and H(z) :=

ψ − 1

ψ
− z

ψ
G(z).

Theorem 2.3. The measure µ satisfies the following fixed point equation for its Stieljes
transform G:

H(z)

z
=

1

z
+
G(z)G̃(z)(θ1(f)− θ2(f))

ψ
+

G(z)G̃(z)θ2(f)

ψ − zG(z)G̃(z)θ2(f)
,

with θ1(f) and θ2(f) are defined in (2.8).

Remark 2.4. Theorem 2.3 is a universality statement: the asymptotic e.e.d. derived in
[32] is universal for some class of distributions and activation functions. We observe first
that all the dependence on f lies in the two parameters θ1(f) and θ2(f). The class of
activation function that we consider is restrictive as we need strong regularity. However,
these assumptions are needed in the proof to consider less assumptions on the random
variables since we do not need strong concentration bounds. Our proof is based on a
method of moments to recover the self-consistent equation for the Stieltjes transform.
We defer the study of the asymptotic behavior of the largest eigenvalue as in [15] to
another article.

The model given by (2.6) consists in passing the input data through one layer of a
neural network as we apply the function f a single time. However, we could reinsert
the output data through the network again, thus multiplying layers. It was conjectured
in [32] that for activation functions such that θ2(f) = 0 the limiting e.e.d. is invariant
and given by the Marčenko–Pastur distribution at each layer. We prove this statement in
Theorem 2.5 below. We denote by L the number of layers and consider, for p ∈ J0, L− 1K
a family of independent matrices W (p) ∈ Rnp+1×np where (np)p is a family of growing
sequences of integers such that there exists φ and (ψp)p with

n0
m
−−−−→
m→∞

φ
np
np+1

−−−−→
m→∞

ψp.
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Nonlinear models of random matrices

(a) f(x)=tanh(x) (b) f(x)=max(x, 0)

(c) f(x)=cos(x) (d) f(x)=x3 − 3x

Figure 1: Eigenvalues of M for different activation functions. Note that every function displayed
here is actually scaled so that θ1(f) = 1 and centered so that there is no very large eigenvalue.
For the two bottom figures, we have θ2(f) = 0 and the Marcenko–Pastur of shape parameter φ/ψ
density is plotted in red.

We suppose that all the matrix entries (W
(p)
ij )ij , 1 ≤ i ≤ np+1, 1 ≤ j ≤ np, p = 0, . . . , L− 1

are i.i.d with variance σ2
w. Consider also X ∈ Rn0×m with i.i.d entries of variance σ2

x and
define the sequence of random matrices

Y (p+1) = f

(
σx√
θ1(f)

W (p)Y (p)

√
np

)
∈ Rnp+1×m with Y (0) = X. (2.9)

The scaling is here chosen to normalize the variance of the entries of Y (p) at every layer.
This normalization is known (adding centering) as batch normalization and is proved to
improve the training speed [24]. The centering (2.4) is only important here. Now, one
can define

M (L) =
1

m
Y (L)Y (L)∗ and µ(L)

nL =
1

nL

nL∑
i=1

δ
λ
(L)
i
,

where (λ
(L)
k ) are the eigenvalues of M (L). We then prove the following theorem under

the additional assumption that the function f is bounded.

Theorem 2.5. Let L be a given integer. Suppose that f is a bounded analytic function
such that (2.4) and (2.5) hold. In the case where θ2(f) = 0, then the asymptotic e.e.d.

µ
(L)
nL is given almost surely by the Marčenko-Pastur distribution of shape parameter

φ
ψ0ψ1···ψL−1

.

In particular the above result is consistent at any layer with the dimensions of the
matrix ˜M (L′) = 1

nL
Y (L′)∗Y (L′), 1 ≤ L′ ≤ L. This suggests that the limiting e.e.d. shall be

the Marcenko-Pastur distribution for any L, (in particular when L→∞). Unfortunately
our result does not encompass the case of a number of layers also growing to infinity.

Remark 2.6. The model we consider for several layers can be thought as a theoretical
toy model since in practicality, weights would be updated along the neural network
(using gradient descent for instance). Thus the independence assumption on the weights
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shall not hold true. However, we are not able so far to handle the case where the entries
of the the weight matrices are correlated.

The next section is dedicated to proving Theorem 2.2 for polynomial activation func-
tions using the moment method. Our choice is motivated by the fact that [32] introduce
a family of graphs to describe the asymptotic e.e.d. of Gaussian non linear random
matrices, which we want to understand in greater generality. Thus the main part of
the article has some combinatorial aspects and we believe that this point of view can
give some insights in the study of these matrix models. Such a combinatorial method
to study nonlinear random matrix models was previously used in [15] in the context of
kernel matrices. In Section 4, we generalize the result to other functions by using a
polynomial approximation. Finally, in Section 5 we first give a combinatorial description
of the multilayer case for polynomials and then prove Theorem 2.5.

3 Limiting e.e.d. when f is a polynomial

The point of this section is to compute the moments of the empirical eigenvalue
distribution of the matrix M when the activation is a polynomial. The following statement
gives the expected moment of the distribution in this case using a graph enumeration.
Before stating the result, we need the following definition.

Definition 3.1. Let q ≥ 1 be a given integer. A coincidence graph is a connected graph
built up from the simple (bipartite) cycle of vertices labeled i1, j1, i2, . . . , iq, jq (in order)
by identifying some i-indices respectively and j-indices respectively. Such a graph is
admissible if the formed cycles are joined to another by at most a common vertex and
each edge belongs to a unique cycle.

Remark 3.2. In the following, the edges and vertices of such an admissible graph are
colored red.

Remark 3.3. An admissible graph has 2q edges. It can also be seen as a tree of cycles
(simply replacing cycles by edges) also called a cactus graph. These graphs appear also
in random matrix theory in the so-called theory of traffics when expanding injective
traces (see [6] e.g.).

The basic admissible graph is given by the simple cycle (left figure on Figure 2) whose
associated tree is a simple edge. The two right figures show a tree and one admissible
graph that is associated to the tree: note that the points i1 and j1 where cycles are glued
to each other are not determined by the tree, neither the lengths of the cycles.

i1
jq

iq

. . .

i2

j1

i0

i0

i0 j1

i1

Figure 2: Two admissible graphs and their associated trees.

Definition 3.4. A(q, Ii, Ij , b) is the number of admissible graphs with 2q edges, Ii i-
identifications, Ij j-identifications and with exactly b cycles of size 2.

We can now state the following Theorem. Let θ1 and θ2 be defined as in (2.8).

Theorem 3.5. Let f =
∑K
k=1

ak
k! (xk − k!!1k even) be a polynomial such that (2.4) holds.
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The degree of f , K, can grow with n1 but we suppose that

K = O
(

log n1
log log n1

)
. (3.1)

Let µ(f)
n1 be defined in (2.7) and its expected moments mq := E

[
〈µ(f)
n1 , x

q〉
]

We then have

the following asymptotics

mq =

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj (1 + o(1)) . (3.2)

Note that in this theorem we allow the degree K of the polynomial to grow with n1
as in (3.1) but the theorem holds true for any fixed integer q (independent of n). It is
possible to improve the assumption (3.1) in the sense that K could grow faster with n1.
However, this bound is enough for the polynomial approximation we need later (using
a Taylor approximation of the function f ). The proof of the above Theorem relies on
combinatorial arguments we now develop.

3.1 Proof of Theorem 3.5 when f is a monomial of odd degree:

We first consider the case where f(x) = xk

k! for an odd integer k. We first assume that
the entries of W and X are bounded in the following sense: there exists A > 0 such that

max
ij
|Wij |+ |Xij | 6 A almost surely.

3.1.1 Basic definitions

For this activation function, the entries of Y = f(WX/
√
n0) are of the form

Yij =
1

k!

(
WX
√
n0

)k
ij

=
1

n
k/2
0 k!

(
n0∑
`=1

WikXkj

)k
=

1

n
k/2
0 k!

n0∑
`1,...`k=1

k∏
p=1

Wi`pX`pj . (3.3)

We want to study the normalized tracial moments of the matrix M . Thus we want to
consider, for a positive integer q,

1

n1
E [TrMq] =

1

n1mq
E [Tr (Y Y ∗)

q
]

=
1

n1mq
E

n1∑
i1,...,iq=1

m∑
j1,...,jq=1

Yi1j1Yi2j1Yi2j2Yi3j2 . . . YiqjqYi1jq . (3.4)

We first encode each of the summand in (3.4) as a coincidence graph (not necessarily ad-
missible) by simply marking the coinciding indices in the summand. Then injecting (3.3)
in the previous equation we obtain the following expansion

1

n1
E [TrMq]

=
1

n1mqnkq0 (k!)2q
E

n1∑
i1,...,iq

m∑
j1,...,jq

n0∑
`11,...`

1
k

...
`2q1 ...`2qk

k∏
p=1

Wi1`1p
X`1pj1

k∏
p=1

Wi2`2p
X`2pj1

· · ·
k∏
p=1

Wi1`
2q
p
X`2qp jq

(3.5)
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To take the l-indices into account, we now add to the red graph 2kq blue vertices. We can
represent the vertices in a graph such as in Figure 3a. We call a red edge a niche. Each
niche is decorated by k blue vertices from which leave blue edges corresponding to a
term Wi`X`j in (3.5). Since the Wi` and X`j are centered and independent, each such
entry has to arise at least twice in the summand in equation (3.5). Thus, to compute
the spectral moment, one needs to match the blue edges so that each entry arises with
multiplicity at least 2. The matching of ` indices in (3.5) corresponds to a matching of the
blue vertices. Then, the main contribution shall come from those summands maximizing
the number of pairwise distinct indices.

3.1.2 The simplest admissible graph: a cycle of length 2q

In this subsection, we assume that the i and j indices are pairwise distinct and consider
the associated contribution to the spectral moment, which we denote by Eq(k). We show
the following Lemma:

Lemma 3.6. One has that

Eq(k) =

θ
q
2(f)ψ1−q +O

(
θq2(f) q+kn0

)
if q > 1

θ1(f) +O
(
k2(2k−2)!!
n0(k!)2

)
if q = 1.

Proof of Lemma 3.6: Because the i- and j-indices are pairwise distinct, the associated
red graph is the simple cycle of length 2q. Thus we can really encode the products in
the summand as in the left case of Figure 3. Since each matrix entry has to arise twice,
say for instance Wi1,`11

, it needs to occur at least an other time in the product. There are
then two different ways it can happen:

(i) There exists p ∈ {2, . . . , k} such that `1p = `11.

(ii) There exists p ∈ {1, . . . , k} such that `2qp = `11. Applying the same reasoning for
X`11,j1

, there exists p′ ∈ {1, . . . , k} such that `2p′ = `11.

The same reasoning applies for each niche. Now, in order to maximize the number of
pairwise distinct indices, one has to perform the most perfect matchings inside each
niche. Note that, as k is odd, case (ii) necessarily occurs.

We first consider the contribution of those decorated graphs maximizing the number
of pairwise distinct indices.
The case where q > 1: In this case, there is a blue cycle of size 2q as in Figure 3a.
Thus we can construct the decorated graphs maximizing the number of pairwise distinct

i1

j3

i3

j2

i2

j1

`63`62
`61

`53

`52

`51

`43
`42 `41 `33

`32
`31

`23

`22

`21

`13
`12

`11

(a) Leading order graph for k = q = 3

i1

j3

i3

j2

i2

j1

`63`62
`61

`53

`52

`51

`43
`42 `41 `33

`32
`31

`23

`22

`21

`13
`12

`11

(b) Lower order graph for k = q = 3

Figure 3: The contribution of the simple cycle
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indices in the following way: One chooses an index `p in each niche which is in the only
blue cycle of the graph and then the remaining blue edges are perfectly matched inside
niches. The corresponding contribution from the basic cycle to the moment is, as every
entry exactly occurs twice in the products, using (2.1),

Eq(k) =
((σwσx)kk(k − 1)!!)2qn0

n1mqnkq0 (k!)2q
m!

(m− q)!
n1!

(n1 − q)!
n0!

(n0 − (k − 1)q)!

To obtain this formula, note that we choose the i-labels over n1 possible indices and the
j-labels over m indices. Now, we also choose the `-labels over n0: the one for the blue
cycle and those vertices corresponding to matched edges. Finally, we have to fix the
blue vertices belonging to the blue cycle: there are k2q possible choices. The number of
perfect matchings on the rest of the vertices in each niche is then equal to ((k − 1)!!)2q.
We then obtain that

Eq(k) =

(
(σwσx)kk(k − 1)!!

k!

)2q

ψ1−q +O

((
(σwσx)kk(k − 1)!!

k!

)2q
q + k

n0

)
. (3.6)

Note that, by (2.8), one has that θ2(f) =

(
(σwσx)kk(k − 1)!!

k!

)2

and we can write

Eq(k) = θq2(f)ψ1−q +O
(
θq2(f)

q + k

n0

)
.

Case where q = 1. The case where k = 1 is slightly different. Indeed we can do any
perfect matching between the 2k blue vertices. The graph can bee seen in Figure 4a.
Thus, the contribution of the moments in this case is the following

E1(k) =
(σwσx)2k(2k)!!

(k!)2
+O

(
k2(2k − 2)!!

n0(k!)2

)
= θ1(f) +O

(
k2(2k − 2)!!

n0(k!)2

)
,

where the error comes from performing a matching which is not a perfect one. We now

i1 j1

(a) Contribution in the case where q = 1

i1 j1

(b) Subleading term in the case q = 1.

consider the contribution of other matchings. We will show that Eq(k) is indeed the
typical contribution from the basic cycle, that is all other matchings lead to a negligible
contribution with respect to Eq(k). There are four different phenomena that can give a
(lower order) contribution. First, there may be more than one cycle linking every niche
as in Figure 3b. Also, in at least one niche there could be more identifications between
`-indices, which raises moments of entries of W and X. There could be an identification
between the index of the cycle and an index from a perfect matching inside a niche.
Finally, there could also exist identifications between two distinct niches; note we can
only get higher moments in the case where the two niches are adjacent. While these
four behaviors can happen simultaneously, we see the contribution separately since it
would induce an even smaller order if counted together.

a) There is more than one cycle between niches. We call E(1)
q the contribution

to the moments of such decorated graphs. Suppose there are c cycles. Note that

EJP 26 (2021), paper 150.
Page 10/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP699
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Nonlinear models of random matrices

necessarily c is odd since k is odd and entries are centered, then we can write, if we
suppose that indices ` not in cycles are being perfectly matched,

E(1)
q =

(kc(k − c)!!)2q

n1mqnkqo (k!)2q

n1∑
i1,...,iq
pairwise
distinct

m∑
j1,...,jq
pairwise
distinct

n0∑
`0,...,`c

n0∑
`11,...`

1
k−c
2...

`2q1 ...`2qk−c
2

(σwσx)2kq

=
((σwσx)kkc(k − c)!!)2q

n1mqnkq−c0 (k!)2q
m!

(m− q)!
n1!

(n1 − q)!
n0!

(n0 − (k − c)q)!
.

In order to understand the very first term, note that one has to select in each niche c
blue vertices to create the cycles and then do a perfect matching for the rest of the
vertices. Thus one has that

E(1)
q =

((σwσx)kk(k − c)!!)2qψ1−q

n
(c−1)(q−1)
0 (k!)2q

(1 + o (1)) . (3.7)

Thus this is of smaller order than (3.6) when the number of cycles is strictly greater than
1 as in Figure 3b for instance. Indeed, one obtains that

E
(1)
q

Eq(k)
= O

(
1

n
(c−1)(q−1)
0

(
(k − c)!!
(k − 1)!!

)2q
)
.

b) The matching in each niche is not a perfect matching- apart from the
vertex in the cycle. If the matching is more complicated than a perfect matching, the
associated moments could be of higher order than the variance. Consider a matching
inside a niche which is not a perfect one: there exists then an identification between
a1, . . . , ab entries such that a1 + · · ·+ ab = k − 1 and such that at least one of the ai’s is
greater than 2. For ease we suppose that a1 = · · · = ab1 = 2 and ab1+1, . . . , ab > 2 for
some b1 ∈ J1, b− 1K. See e.g. Figure 5.

i1

`1 `2 `3 `4 `5 `6 `7

j1

. . .

Figure 5: Niche where the induced graph is not a perfect matching which raises a fourth
moment in the case where k = 7.

We call E(2)
q the contribution of all such matchings where a single niche breaks the

perfect matching condition. Then we obtain that:

E
(2)
q

Eq(k)
=

k−1
2 −1∑
b=1

b−1∑
b1=1

∑
ab1+1...ab>2∑
aj=k−1−2b1

(k − 1)!

(k − 1)!!
∏b
i=1 ai!b!

n0!

(n0 − (1 + b+ k−1
2 (2q − 1)))!

×

× (n0 − (1 + (k − 1)q)!

n0!

∏b
b1+1E|W11|apE|X11|ap

(σwσx)2(
k−1
2 −b1)

.
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The first term in the summand counts the number of matchings of the k − 1 remaining
blue vertices (after the choice of the cycle) into b classes of size a1 . . . ab. We can bound
it in the following way

(k − 1)!

(k − 1)!!
∏b
i=1 ai!b!

6
2
k−1
2 −b1(k−12 )!∏b
i=b1+1 ai!

6

(
k − 1

2

) k−1
2 −b 2

k−1
2 −b1∏b

i=b1+1 ai!b!
6 (k − 1)

( k−1
2 −b) .

In the first inequality we use the fact that a1 = · · · = ab1 = 2 and the definition of the
double factorial. Then we expand the factorial and in the last inequality we use the fact
that ai > 3 for i > b1. Now, for the second term, we compare the number of possible
choices for ` indices, yielding that

(n0 − (1 + (k − 1)q)!

(n0 − (1 + b+ k−1
2 (2q − 1)))!

6
1

n
k−1
2 −b

0

e−
C(kq)2

N .

Finally, the last term in the summand corresponds to the different possible moments, as
only variances intervene in the leading contribution, while higher moments can appear
inside the niche {i1, j1}. We use the fact that∏b

b1+1E|W11|apE|X11|ap

(σwσx)2(
k−1
2 −b1)

6
A2

∑
i>b1+1 ai∏

i>b1+1 σ
ai
w σ

ai
x

=

(
A4

σ2
wσ

2
x

) k−1
2 −b1

. (3.8)

Now we need to bound the combinatorial factor coming from the sums:

b−1∑
b1=1

∑
ab1+1,...,ab>3∑
aj=k−1−2b1

6
b−1∑
b1=1

(
k − 1− 3b− b1 + b− b1 − 1

b− b1 − 1

)

6
b−1∑
b1=1

(k − 1)k−1−3b+b1 6 (k − 1)2(
k−1
2 −b),

where we use in the first inequality that
∑
j(aj − 3) = k − 1 − 2b1 − 3(b − b1). Finally,

putting all these contributions together, we obtain the following comparison between
E

(2)
q and Eq(k),

E
(2)
q

Eq(k)
6

k−1
2 −1∑
b=1

(
CA4

σ2
wσ

2
x

(k − 1)3

n0

)3( k−1
2 −b)

= O
(
Ck3

n0

)
. (3.9)

Note that k3 = o(n0). Here we suppose that in all other niches a perfect matching
and a single cycle is used to match the blue vertices. The other cases are just negligible.

c) There are identifications between matchings from different niches If
these niches are not adjacent, then such matchings would not increase the moments of
the entries of W or X. On the contrary, matchings between adjacent niches may result
into moments of higher order than the variance. We can then perform the same analysis
as the previous one where we replace k − 1 (the remaining indices after the choice of
the cycle in one niche) to 2k − 2 corresponding to the number of vertices of two adjacent
niches. This yields a contribution in the order of (3.9) with respect to Eq(k).

d) There are identifications between the cycle and perfect matchings inside
niches. Suppose that these identifications happen in d niches, and for p ∈ {1, . . . , d},
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we identify the index from the cycle with 2bp blue vertices from the niche. Indeed if the
number of identifications was odd, in order to obtain a non-vanishing term, we would
need to either create another cycle or perform more identifications inside the niches.
Thus, we obtain the following upper bound

E
(3)
q

Eq(k)
=

2q∑
d=1

k−1
2∑

b1,...,bd=1

(
2q

d

)[ d∏
p=1

(
k − 1

bp

)] d∏
i=1

E|W11|2+2bpE|X11|2+2bp×

×
((k − 1)!!)2q−d

∏d
p=1((k − 2bp − 1)!!)

n
∑d
p=1 bp

0 ((k − 1)!!)2q(σwσx)2d+
∑d
p=1 2bp

.

This comes from the choices of the niches, the identifications we make in each niche,
and the perfect matchings we perform in the other niches. Finally, we suppose that we
perform perfect matchings in the rest of the d niches. Then, we can use the bounds

d∏
p=1

1

bp!
6 1,

d∏
i=1

E|W11|2+2bpE|X11|2+2bp 6 A4d+4
∑d
i=1 bi (3.10)

and
(k − 1)!!2q−d

∏d
p=1(k − 1− 2bp)!!

(k − 1)!!2q
6 1.

From the above we obtain that

E
(3)
q

Eq(k)
6

2q∑
d=1

(
2q

d

)(
A4

σ2
wσ

2
x

)d k−1
2∑

b1,...,bp=1

(
A4(k − 1)

2σ2
wσ

2
xn0

)∑p
i=1 bi

=

2q∑
d=1

(
2q

d

) A4

σwσx

k−1
2∑
b=1

(
A4(k − 1)

2σ2
wσ

2
xn0

)bd

.

Now since k � n0, we obtain that
E

(3)
q

Eq(k)
= O

(
Ck

n0

)
. This finishes the proof of

Lemma 3.6.

3.1.3 Contribution of general admissible graphs

Lemma 3.7. The total contribution from admissible graphs to the spectral moment is

Eq(k) =

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj (1 + o(1)) . (3.11)

Remark 3.8. Lemma 3.7 is almost the statement of Theorem 3.5.

Proof of Lemma 3.7: We now suppose that there are Ii identifications between the
vertices indexed by i labels and Ij identifications between the vertices indexed by j
labels. Note that by our definition, such a graph is admissible if and only if it consists
of Ii + Ij + 1 cycles. See for example Figures 6a and 6b. As seen earlier in the case of
a simple cycle, the case of a cycle of size 2 has to be considered separately. Thus we
denote by b the number of cycles of size 2.

We can do a similar analysis in the case of general admissible graphs because we can
realize blue identifications inside each red cycle as they are well defined. Thus, recalling
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j1

i1

j3

i2=i3 j2

(a) Admissible graph with the
i-identification i2 = i3 for k = q = 3.

j1

i1

i2 i3

(b) Admissible graph with the
j-identification j1 = j2 = j3 for
k = q = 3.

i1=i3

j2=j3

j2

i2

(c) Non-admissible graph for
k = q = 3.

Figure 6: Examples of admissible and non-admissible graphs

A(q, Ii, Ij , b) from Definition 3.4, we can write the contribution from all admissible graphs
as

E′q(k) =
1 + o(1)

n1mqnkq0

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

n1!

(n1 − q + Ii)!

m!

(m− q + Ij)!
×

×A(k, q, Ii, Ij , b)θ
b
1(f)nkb0 θ

q−b
2 (f)n

(k−1)(q−b)+Ii+Ij+1−b
0 .

Thus we obtain (3.11) provided we show that the error terms are negligible.
Note that the same error terms arise as in cases a), b), c) or d) for each red cycle:

their contribution is then negligible as before as soon as matchings are still performed
inside each cycle.
Another possible contribution may come from cross-cycle blue identifications: we now
show this contribution is subleading. Consider the first case where such a cross-cycle
identification arises around an i-identification or a j-identification: see e.g. Figure 7.
These blue edges match entries of W to get a non-vanishing moments. However, in order
to match the corresponding X entries, some new identifications are needed. This either
implies that inside a niche, the matching is not a perfect matching. In this case the total
final contribution is in the order of (3.9). Either this implies that two blue cycles going
through two cycles bear the same vertex. Thus the total contribution of such cases is in
the order of n−10 Eq due to the fact that one loses a possible choice for the index of a blue
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cycle. There may also exist cross-cycle blue identifications which do not arise around an
i− or j− identification. It is not difficult to check in this case that the total contribution
is again at most of the order of n−10 Eq. This finishes the proof of Lemma 3.7.

i1

j1

jp1

jp3

jp2

Figure 7: Subleading blue identifications around an i-identification

3.1.4 Contribution from non-admissible graphs

Now we estimate the contribution of non-admissible graphs which we denote E(NA)
q . Our

aim is to show the following Lemma.

Lemma 3.9. One has that

E
(NA)
q

Eq(k)
= O

(
q5(1 + q2k)

n0

)
. (3.12)

Once Lemma 3.9 is proved, this finishes the proof of Theorem 3.5 in the case where
f is an odd monomial.

Proof of Lemma 3.9: Let us first come back to admissible graphs. Starting from the
origin i1 of an admissible graph G, there is a single way to run through the different
cycles and return to the origin. Note that all the cycles are oriented e.g. counter
clockwise. They are called the fundamental cycles: they correspond to the cycles where
we perform a matching on the blue vertices (otherwise the contribution is negligible).
An admissible graph G can then be (partially) encoded into a rooted tree T = (V,E)

as follows. A fundamental cycle is represented by an edge and adjacent cycles yield
adjacent edges. The tree inherits the orientation of the graph.

A non-admissible graph is a multigraph G = (V,E1, E2) where E1 denotes the set
of single edges and E2 is the set of multiple edges. There are first multiple ways to
determine the fundamental cycles. Thus, we have to count the number of non-admissible
graphs labeled by their fundamental cycles (see Figure 8 for an illustration). There may
be also multiple ways to go through the whole graph: we explain later how this can be
counted thanks to the associated admissible graph.

Our aim is to obtain all the non admissible graphs from the set of admissible ones by
adding i− and j- identifications. Consider an admissible graph G0 with C fundamental
cycles, we can then choose two cycles and glue them together in the sense of identifying
one vertex of one cycle to one of the other. This adds one identification to the initial
graph and encodes one non-admissible graph with identified fundamental cycles (by G0).
Now, one can repeat this identification process either for the same two cycles or for
some others. The number of possible ways to choose two cycles which are then identified
at r pairs of vertices is then at most:(

C
2

)
(2q)

r 6 (Cq)r+2, (3.13)

for some constant C, since we need to choose two edges and then two vertices. And the
number of possible ways to go through the whole graph is then multiplied by a factor at
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most (2r)!. Indeed one needs to discover the fundamental cycles in the order they are
initially numbered on the admissible graph. The moments of time where one can make a
choice when running through the graph correspond to the vertices of degree greater
than 2. And a vertex v of degree 2ri > 2 induces at most ri! possible ways to leave v after
discovering the fundamental cycles starting from v.
However, one loses a power of n1 (or m) for each additional identification as one loses a
possible choice of index. Denote by E(NA,r)

q the contribution of non admissible graphs
with no cross matchings (apart from the cycle inside each red cycle). Then one has that

E(NA,r)
q =

∑
r

(
q5

n0

)r
Eq(k)� Eq(k), (3.14)

as q5 � n0. Hereabove r denotes the total number of additionnal identifications.

Gluing r = 3

Figure 8: The left picture is an admissible graph with its encoding tree. The two dashed
lines correspond to the two edges we glue together. The second graph correspond to the
glued tree where there is now a cycle. Now the last step consists in choosing the number
of identifications: here we have three total identifications between the two cycles.

Now, once the fundamental cycles are identified, cross identifications between blue
edges from distinct niches (or fundamental cycles) are subleading unless in the following
case: there are multiple cycles of length 2. Consider a cycle of length 2, with multiplicity
p. First the number of ways to run through the graph is modifed as follows. Consider
a vertex v to which are attached p1 cycles and a cycle of length 2 with multiplicity p.
The number of possible ways to leave v is at most (p + p1)!/p!. This does not exceed
(2p1)! if p ≤ p1 or 22ppp if p > p1. Then pk blue vertices have to be matched. While the
leading order is given by performing a perfect matching between these vertices such
as in Figure 9, we can do any kind of matching and use the similar analysis we did
for (3.9). Suppose that we have an identification between a1, . . . , ab entries such that
a1 + · · ·+ ab = pk. For ease we suppose that a1 = · · · = ab1 = 2 and ab1+1, . . . , ab > 2 for
some b1 ∈ J1, b − 1K, then we can compare their contribution to that of the admissible
graph (used to encode it) by

q∑
p=2

m(e)k
2∑
b=1

pp

np−10

b∑
b1=1

∑
ab1+1,...,ab>2∑

ai=pk−2bi

(pk)!

((2k)!!)p/2b!
∏b
i=b1+1 ai!

nb0
∏b
i=b1+1E|W11|aiE|X11|ai

n
kp/2
0 (σ2

wσ
2
x)kp/2−b

(3.15)
The factor of n1−p0 comes from the additional identifications between i’s and j’s in

order to obtain a multiple edge. For instance in Figure 9 there are less identifications in
the admissible graph than in the corresponding non-admissible graph. The first term in
the summand compares the number of possible matchings of the pk edges to that of a
perfect matching in every single cycle. There exists a constant C > 0 such that

(pk)!

((2k)!!)p/2b!
∏b
i=b1+1 ai!

6 (Cp)kp.
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The second term now comes from the number of ` indices chosen and the ratio of
moments and we bound it in the same way as in (3.9),

∏b
b1+1E|W11|apE|X11|ap

n
kp/2−b
0 (σwσx)2(kp/2−b)

6
A2

∑
i>b1+1 ai

n
kp/2−b
0

∏
i>b1+1 σ

ai
w σ

ai
x

=

(
A4

n0σ2
wσ

2
x

) kp
2 −b

.

Also in the same way as in (3.9), we can bound the combinatorial factor coming from the
sums as

b∑
b1=1

∑
ab1+1,...,ab>2∑

ai=pk−2bi

6 (pk)2(
pk
2 −b).

Finally, putting all the contribution together we have

n0

q∑
p=2

(
Cpk+1

n0

)p pk/2∑
b=1

(
A4p2k2

n0σ2
wσ

2
x

) kp
2 −b

= O
(
q2k+1

n0

)
, (3.16)

where we used the fact that the leading order comes from the case where b = kp
2 .

Actually (3.16) can be improved to O( qkj

nj−1
0

) for any integer 1 < j < q.

Figure 9: Different behavior between an admissible graph and a multiple edge.

Thus, combining (3.14), (3.13) and (3.16) finishes the proof of Lemma 3.9.

3.2 Proof of Theorem 3.5 when f is a monomial of even degree:

In the case of an even monomial we center the function f , to do so we substract a
constant given by the corresponding expectation. We then consider centered monomial
of the form

f(x) =
xk − k!!

k!
, k = 2p so that θ1(f) =

(σwσx)2k

(k!)2
(
(2k)!!− (k!!)2

)
and θ2(f) = 0.

Here, the fact that θ2(f) vanishes means that all admissible graphs which have at
least one cycle of size greater than 2 are subleading so that we see admissible graphs
consisting only in cycles of size 2 such as Figure 6b for instance. Note that we have seen
earlier that we can write

E

[
1

k!

(
(WX)ij√

n0

)k]
=

1

n
k/2
0 k!

E

n0∑
`1,...,`k=1

k∏
p=1

Wi`pX`pj =
k!!

k!
(σwσx)

k

(
1 +O

(
1

n0

))
.
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Thus, by developing the tracial moments of M we obtain the following formula,

1

n1
E [TrMq] =

(
1 +O

(
1

n0

))
1

n1mq
E

n1∑
i1,...,iq

m∑
j1,...,jq


1

nkq0 (k!)2q

n0∑
`11,...`

1
k

...
`2q1 ...`2qk

k∏
p=1

Wi1`1p
X`1pj1

×

×
k∏
p=1

Wi2`2p
X`2pj1

· · ·
k∏
p=1

Wi1`
2q
p
X`2qp jq

− c2q0

]
. (3.17)

Now it is not difficult to check that

c2q0 =

(
1 +O

(
1

n0

))
E

n0∑
`11,...`

1
k...`

2q
1 ...`2qk ∗∗

k∏
p=1

Wi1`1p
X`1pj1

k∏
p=1

Wi2`2p
X`2pj1

· · ·
k∏
p=1

Wi1`
2q
p
X`2qp jq

,

where the ∗∗ means that the `-indices are matched according to a perfect matching
inside each niche. Thus the centering by c0 corresponds to the contribution of the
admissible graphs where blue vertices make a perfect matching inside each niche.

i1

j2

i2

j1

i1

j2

i2

j1

i1

j2

i2

j1

Figure 10: The left figure corresponds to the leading order before centering while the
two others illustrate leading order graphs after centering. The center figure involves
EW 4

11 while the right one involves EX4
11.

After centering, the typical graphs may be those which have additional identifications
between niches which have a common red vertex as in Figure 10. We first consider the
contribution of one red cycle to the moments and then deduce the contribution of all
admissible graphs. One can see that to maximize the number of possible choices of blue
indices, we can first perform a perfect matching into each niche as before the centering,
then we can choose either the i-vertices or the j-vertices and add identifications around
the corresponding niches. This prevents having a perfect matching inside any niche
(which is forbidden by the centering) but still the gives the maximal number of blue
indices. With such a matching, moments of order 4 arise in the contribution and we
obtain:

Eq,1(k)

=
1

n1(k!)2q
ψ−q

(
k

2
(k!!)

)2q (
σ2q(k−1)
w σ2kq

x (EW 4
11)q + σ2qk

w σ2q(k−1)
x (EX4

11)q
)

+ o

(
θ3(f)

n1

)
=

1

n1

[
θ3(f)

(
EW 4

11

σ4
w

+
EX4

11

σ4
x

)]q
ψ−q + o

(
θ3(f)

n1

)
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where we defined

θ3(f) =

(
(σwσx)2

2

∫
f ′′(σwσxx)

e−x
2/2

√
2π

dx

)2

.

Note that the contribution is of order n−11 and thus is negligible compared with the

contribution from odd polynomials. For the number of distinct indices we obtain n(k−1)q1 .
We could try to instead create cycles between niches as for the odd polynomial case, but
one can see that we would need to create two cycles instead of one and would obtain
(k − 2)q + 2 distinct indices which is of lower order. Now if we only create one cycle,
we need to perform at least identifications between three vertices in each niche since
we would have an odd number of blue vertices left and the number of distinct indices
becomes at most (k− 4)q+ 2q+ 1 which is also of lower order than Figure 10. If, instead
of identifying between different niches we would identify blue vertices inside the same
niche we can only obtain at most (k − 4)q + 2q distinct indices which is of lower order
than Figure 10.

Now, in the same way, the case of a simple cycle (i.e. with length 2) is slightly different
due to the centering. Indeed, at least one (thus two) vertices has to be connected to some
other niche. Note also that any perfect matching where the two niches are connected is
of the same order, thus we obtain for the leading order

E1(k) =
(σwσx)

2k

(k!)2
(
(2k)!!− (k!!)2

)
+O

(
(2k − 2)!!k2

(k!)2n0

)
= θ1(f) +O

(
(2k − 2)!!k2

(k!)2n0

)
.

The above formula is self explanatory.

i1 j1

Figure 11: Contribution in the case q = 1 for an even monomial.

For the general case of admissible graphs with possible identifications, we use the
fact that the contribution is just a product over the different cycles. For simplicity, we
suppose that we have EW 4

11σ
4
x = EX4

11σ
4
w. Since the contribution of the cycles of length

greater than 2 are O(n−11 ), the terms involving the 4-th moments of the entries of X and
W (which are not n1-dependent) are subleading. Thus, this condition does not impact
the overall order of the contribution but gives a simpler formula.

The leading order of a q-moment, corresponding to the total contribution of admissible
graphs with 2q edges can be written as

Eq(k) =
1 + o(1)

n1mqnkq0

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

n1!

(n− q + Ii)!

m!

(m− q + Ij)!
×

×A(q, k, Ii, Ij , b)θ1(f)bnkb0 2Ii+Ij+1−bθ3(f)q−b
(
EW 4

11

σ4
w

)q−b
n
k−1
2 (2q−2b)

0
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which gives asymptotically,

Eq(k) = (1 + o(1))

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

(
2

n0

)(Ii+Ij+1)−b

A(q, Ii, Ij , b)θ1(f)b
[
θ3(f)

EW 4
11

σ4
w

]q−b
φIjψIi+1−q

= (1 + o(1))
∑

Ii,Ij=0
Ii+Ij+1=q

A(q, Ii, Ij , Ii + Ij + 1)θ1(f)Ii+Ij+1φIjψIi+1−q

= (1 + o(1))

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj

where we used in the last equality the fact that θ2(f) = 0 in order to prove the expres-
sion (3.2). Note again that we did not give here all the errors since we have computed
them in the previous subsection, the case of even monomials can be done similarly. Thus
we can see that only the graphs which correspond to a tree of simple cycles contribute
to the moments.

We can lead the analysis of the contribution from non-admissible graphs as in the
previous section, as the non admissible structure only concerns the red graph while the
(centered) polynomial involves only the matching on blue vertices. We leave the detail to
the reader.

3.3 Proof of Theorem 3.5 when f is a polynomial:

We now suppose that we can write

f(x) =

K∑
k=1

akfk(x) with fk(x) =
xk − k!!1k even

k!
and sup

k∈J1,KK
|ak| 6 Ck for some C.

In particular, the parameters are in this case

θ1(f) =

K∑
k1,k2=1

k1+k2=:k0 even

ak1ak2(σwσx)k0 (k0!!− k1!!k2!!1k1 even)

k1!k2!
,

θ2(f) =

 K∑
k=1
k odd

ak(σwσx)kk(k − 1)!!

k!


2

.

Note that for any polynomial, by expanding the moment as in (3.5), we have to compute
the following quantity, for any k1, . . . , k2q integers,

1

n1
E [TrMq] =

K∑
k1,...,k2q=1

ak1 . . . ak2q

n1mq
∏2q
i=1 ki!

×

× E
n1∑

i1,...,iq

m∑
j1,...,jq

n0∑
`11,...`

1
k

...
`2q1 ...`2qk

fk1

(
WX
√
n0

)
i1j1

fk2

(
WX
√
n0

)
i2j1

. . . fk2q

(
WX
√
n0

)
i1jq

(3.18)

To compute the leading term of this moment, first note that the centering creates
disparity between even and odd monomials. Indeed let q > 1, if we consider one red
cycle of length 2q, there are now 2q niches of different sizes, namely k1, . . . , k2q. We first
bound these moments in order to see that, in each cycle, the niches with an even number
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i1

j2

i2

j1

Figure 12: Admissible graph in the case of a polynomial with (k1, k2, k3, k4) = (4, 3, 2, 5).

of vertices are subleading so that the dominant term in the asymptotic expansion of the
moment corresponds to admissible graphs with only odd niches when expanding the
polynomial. The behavior in a fundamental cycle can be understood as follows: there has
to be at least one cycle connecting each niche for the odd or the centered even niches.
Now, in each odd niche of length ki, the leading term corresponds to a perfect matching
of the ki − 1 remaining vertices from (3.9). The number of pairwise distinct l indices in
the niche is then (ki − 1)/2, apart from the cycle. However, in the even niches, since
there is already a cycle, there remains an odd number of vertices to be matched. The
leading order is to disgard 2 vertices and then to perform a perfect matching of the ki−2

remaining vertices. The remaining vertices are matched to a blue cycle or to an existing
matching. Then, the number of distinct l indices inside one niche is at most (ki − 2)/2

(apart from cycles). Denote the number of choices of indices for red and blue vertices
for a configuration of niches k1, . . . , k2q by C(k1, . . . , k2q). Then we obtain

n
−

∑2q
i=1

ki
2

0

n1mq
C(k1, . . . , k2q) =

n
−

∑2q
i=1

ki
2

0

n1mq
nq1m

qn
1+

∑
ki odd

ki−1

2 +
∑
ki even

ki−2

2

0 (1 + o(1))

=
ψ1−q

n
#ki even

2
0

(1 + o(1)).

This contribution can be understood in the following way: apart from the normalization,
we have to choose the q i-indices, the q j-indices, the `-indices. Thus, if we consider the
contribution of cycles of size q > 1 for the polynomial P =

∑ ak
k! (Xk − k!!1k even), we get

the following asymptotic expansion for the moments

(3.18)

=
1 +O

(
1√
n0

)
n1mq

∑
k1,...,k2q
ki odd

[
2q∏
i=1

aki
ki!

]
nq1m

qn
1+

∑
i,ki odd

ki−1

2

0

n

∑
i,ki odd

ki
2

0

∏
i,ki odd

(σwσx)kiki(ki − 1)!!

= ψ1−q

(∑
k odd

ak(σwσx)kk(k − 1)!!

)2q (
1 +O

(
1
√
n0

))
= ψ1−qθq2(f) +O

(
θq2(f)
√
n0

)
.

As we now explain, in the case of a cycle consisting of two edges decorated by k1 and
k2 blue vertices, there are three different possibilities: i) if k1 and k2 are odd: the
contribution to the moment is (σxσw)k1+k2(k1 + k2)!!.; ii) if k1 and k2 are even: the
contribution is (σwσx)k1+k2((k1 + k2)!!− k1!!k2!!); iii) while if k1 is even and k2 is odd: the

leading term in the asymptotic expansion is of order n−1/20 due to the discrepancy. Thus,
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the 1-moment for a polynomial f is

K∑
k1,k2=1

k1+k2 even

(
ak1ak2
k1!k2!

(σwσx)k1+k2 ((k1 + k2)!!− k1!!k2!!1k1 even) +

O
(

(k1 + k2)(k1 + k2 − 1)!!
√
n0k1!k2!

))
= θ1(f) +O

(
K
√
n0

)
where we used the fact that for any k1 and k2, (k1 +k2)!!/(k1!k2!) is bounded. While these
analysis work in the case of a single cycle, we can do the same generalization to any
(non) admissible graphs as before. Thus we get the following q-moment in the case of a
polynomial

mq :=
1

n1
E [TrMq] = (1 + o(1))

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ
b
1(f)θq−b2 (f)ψIi+1−qφIj .

This finishes the proof of Theorem 3.5 when f is a polynomial.

3.4 Convergence of moments in probability

In the previous subsection, we have proved convergence of the expected moments
of the empirical eigenvalue distribution. We turn to the proof of the convergence in
probability of these moments.

Lemma 3.10. Let f(x) =
∑K
k akx

k be a polynomial activation function and consider
the associated matrix M with enpirical eigenvalue distribution µn1

. Denote by mq th
moments mq = 1

n1

∑n1

i=1 λ
q
i = 1

n1
TrMq and mq = E [mq] we then have, for any ε > 0,

P (|mq −mq| > ε) −−−−→
n1→∞

0. (3.19)

In addition there exists a constant C such that

Varmq = O
(

(q2K2 + q4)Cq

n21

)
Proof. We can write the variance of the moments in the following way

Varmq = E

[(
1

n1
TrMq

)2
]
−m2

q

=
1

n21

∑
G1,G2

∑
`1,`2

E [MG1(`1)MG2(`2)]− E [MG1(`1)]E [MG2(`2)]

with Gp = (Gp, ip, jp) are labeled graphs with the i-labels and j-labels given respectively
by ip, jp. For a given labeled graph G = (G, i, j) and a matching `, the notation MG(`)

corresponds to the following product after expansion

MG(`) =

K∑
k1,...,k2q=1

ak1 . . . ak2q

mqn
∑
ki/2

0

k1∏
p=1

Wi1`1p
X`1pj1

k2∏
p=1

Wi2`2p
X`2pj1

· · ·
k2q∏
p=1

Wi1`
2q
p
X`2qp jq

.

Now, note that the shape of the graph and the possible expansion of the polynomial
f does not depend on n0, n1 or m. By independence, the two graphs G1 and G2 have
to share an edge otherwise the contribution to the variance is null. In particular, the
concatenated graph G cannot be admissible. Thus we only need to consider graphs G1,
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G2 which share a common edge: either a red one or some X`j or Wi` for some i, j, and `.
In other words the concatinated graph G cannot be admissible. We here assume for ease
that G1 and G2 have 2q edges. The case where the number of edges is different in each
cycle can be similarly handled.
To simplify the exposition of the argument further, we suppose that G1 and G2 are both a
cycle and f is an odd monomial xk. Note that the generalization comes from the fact that
admissible graphs are a tree of cycles and non-admissible graphs yield a lower order
contribution from (3.12). If we suppose that the coincidence between the two graphs
comes from an i-label and a `-label, in other words an entry Wi`, we have different
possibilities that we now develop.

The first case consists in taking the two red cycles and attaching them at a fixed
vertex i0. We then perform a cross-cycle identification as in Figure 7 in order to match
two entries Wi0`0 together from G1 and G2. Once these W entries are matched, note
that the corresponding X entries have not been matched yet. We then need to identify
this l-vertex with another vertex from an adjacent niche (and then creating a blue cycle
going over the whole red cycle) or to another vertex in the same niche. Finally, it can
be seen as simply performing the dominant matching into each graph, identifying two i
indices and then identifying two blue edges from niches adjacent to i. Finally we can
compute the contribution of these graphs in the covariance as

∑
`1,`2

Cov(1)(MG1(`1),MG2(`2)) = O
(
q2k2ψ1−2qθ2(f)2q

(
EW 4

11

σ4
w

− 1

))
.

Indeed, in each graph we perform the typical matching corresponding to a blue cycle
going over every niche and perfect matchings between the remaining indices in each
niche. Now the fact that we identify two Wi0`0 entries create a moment of order 4 when
we compute E [MG1MG2 ]. We then have to count the number of possible choices for
indices: we have n2q−11 choices for the i indices as we identify two from G1 and G2, m2q

for the j indices, n2+4q(k−1)/2−1
0 choices for the ` indices (2 cycles, 4q niches and an

identification between the two graphs). Taking into account the normalizationm−2qn−2kq0 ,
this yields a factor ψ1−2q asymptotically. In the same way, for general polynomial and
admissible graphs, for such an identification we would obtain that

1

n21

∑
G1,G2

∑
`1,`2

Cov(1)(MG1(`1),MG1(`1))

= O
(
q2k2

n21ψ

(
1− φ

ψ

)
m2
q

(
EW 4

11

σ4
w

− 1

))
= O

(
q2k2Cq

n21

)
,

for some C > 0. Indeed, we get the q2k2 from the choices for the edge we want to
identify between the two graphs, the constant factor in φ and ψ consists in the choice
of choosing a {i, `} edge or a {j, `} edge. Then the previous computation in the case of
a cycle can be generalized to all graphs as the construction only involves one cycle in
each graph. For the second equality we use the fact that mq ≤ Cq as proved in the next
subsection.

The second case consists in identifying a pair of red vertices in each graph. Such a
pair is chosen in one fundmaental cycle in both G1 and G2. Then we identify the pair
from one graph to the other pair. This allows the existence of edges belonging to the two
graphs G1 and G2. The whole graph G created by this construction is non admissible as
we have two identifications and two fundamental cycles. We thus need to choose the
fundamental cycles in G. The fundamental cycles we choose for this red graph are given
by the cycles between the two vertices with edges belonging to both graphs in each cycle.
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Since we need to choose a pair of vertices in each graph we have q4 choices. In each
fundamental cycles, we perform the typical blue matching and we have an edge between
a niche from G1 and a niche from G2 (corresponding to the cycle going over every niche
for instance). Thus we have a common W or X entry between the two graphs and the
contribution to the covariance does not vanish. Considering the q4 choices for the red
vertices, we can see that we have

1

n21

∑
G1,G2

∑
`1,`2

Cov(1)(MG1(`1),MG2(`2)) = O
(
q4Cq

n21

)
.

Regarding the number of possible choices for the vertices, the number of l-indices is
unchanged while that of i− or j-indices decreases of 2 if we compare to the computation
of the expected moment. Finally, we obtain that

Varmq = O
(

(q2k2 + q4)Cq

n21

)
.

Using Bienaymé-Chebyshev inequality, one easily deduces (3.19).

G1 i0 G2

(a) In this figure, the two highlighted cycles cor-
respond to the graph G1 and G2 which are at-
tached at i0. We perform a typical blue matching
in each graph and then add an identification be-
tween the two graphs. The highlighted orange
edges correspond to the edges common to the
two graphs, which yields a moment of order 4.

i′0

i0

G1 G2

(b) In this figure, the two highlighted cycles cor-
respond to the graph G1 and G2 which are at-
tached at two vertices i0 and i′0. The graph is
non-admissible and we choose the fundamental
cycles so that neither G1 or G2 are fundamental
cycles. The typical matching in the chosen cycles
create common edges between the two graphs
highlighted in orange on the figure.

3.5 From bounded to sub-Gaussian random variables

We have computed the limiting expected moments in the case of bounded random
variables. However, note that while high moments of W or X can appear in the error
terms, as in (3.8), (3.10) and (3.15), one may use for such sub-Gaussian random variables
the following bound

E
[
|X11|k

]
6 Ckkk/α, E

[
|W11|k

]
6 Ckkk/α,

for some constant C. Thus one may simply replace in all the error terms A by k1/α. Since
k is of order logn1

log logn1
all the errors are still o(1).

3.6 Weak convergence of the empirical spectral measure

In this section we briefly finish the proof of Theorems 2.2 and 2.3 for a polynomial
activation function. The fact that the sequence of moments

mq :=

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj (3.20)
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uniquely defines a probability measure µ so that
∫
xqdµ(x) = mq follows from Carleman’s

condition. Indeed, denote by Θ(q) the number of unlabeled cactus graphs with q vertices.
It has been shown in [16] that, regardless of the number of identifications or simple

cycles, there exists numerical constants δ > 0 and ξ > 1 such that Θ(q) ∼ 3δ
4
√
π
ξq+3/2

q5 .
Thus there exists a constant C such that mq 6 Cq. This can also been used to show that
the measure has compact support.

3.7 Derivation of the self-consistent equation for the Stieltjes transform

Consider the Stieltjes transform of the limiting empirical eigenvalue distribution of
M ,

G(z) =

∫
dµ(x)

x− z
.

One can also write it as the following generating function of moments, since the following
equality makes sense at least on a neighborhood of infinity,

−G(z) =
1

z
+

∞∑
q=1

mq
zq+1

.

Using that

mq = ψ1−q
q∑

Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ
b
1(f)θq−b2 (f)ψIiφIj ,

one can write the Stieltjes transform as

−G(z) =
1− ψ
z

+
ψ

z
H(z)

with

H(z) =

∞∑
q=0

1

(ψz)q

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ
b
1(f)θq−b2 (f)ψIiφIj .

Fix a vertex v and denote q0 the length of one of the fundamental cycles containing v.
Suppose first that we have q0 > 1, this cycle contains 2q0 edges with q0 vertices labeled
with i and q0 vertices labeled with j. On each vertex labeled with i, either a graph is
attached and we have a i-identification on this vertex, or nothing is attached. Thus,
considering the formula above, we have that the contributions for identifications for
each vertex is

Hψ(z) := 1− ψ + ψH(z) for i-labels and Hφ(z) := 1− φ+ φH(z) for j-labels.

Also, one can see in the leading order of the moment that a cycle of length q0 give a

contribution of
(
θ2(f)
ψz

)q0
. Now, if the cycle is of length 1, in the same way, there is a

single i-labeled vertex and a single j-labeled vertex which can give a contribution of Hψ

and Hφ but the contribution of a simple cycle is not given in terms of θ2(f) but by θ1(f)
ψz .

This is illustrated in Figure 14. Thus, we have the following recursion relation for H,

H(z) = 1 +
Hφ(z)Hψ(z)θ1

ψz
+

∞∑
q0=2

(
Hφ(z)Hψ(z)θ2

ψz

)q0
= 1 +

Hφ(z)Hψ(z)(θ1 − θ2)

ψz
+

Hφ(z)Hψ(z)θ2
ψz −Hφ(z)Hψ(z)θ2

.

Note that we obtain the final equation from Theorem 2.3 by noting that Hψ(z) = −zG(z)

and Hφ(z) = −zG̃(z).
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i1

j3

i3

j2

i2

j1(
θ2
ψz

)q0
Hψ

Hψ Hψ

Hφ

Hφ

Hφ

(a) Case of a large cycle (q0 = 3)

i1 j1

θ1
ψz

HφHψ

(b) Case of a simple cycle.

Figure 14: Illustration of the recursion for the derivation of the self-consistent equation.

4 Proof of Theorem 2.2 for general activation function

In this section, we now allow the activation function to belong to a wider class, thus
proving Theorem 2.2. For ease, we assume that σw = σx = 1, which can be achieved by
scaling.

Proof of Theorem 2.2. We begin by defining the following polynomial which approxi-
mates f up to a constant, for x ∈ R we define

Pk(x) :=

k∑
j=1

f (j)(0)
xj − j!!
j!

=

k∑
j=0

f (j)(0)
xj

j!
− an with an =

k∑
j=0

f (j)(0)
j!!

j!
(4.1)

with the convention that j!! = 0 for j odd and 0!! = 1. This choice ensures that the
polynomial is centered with respect to the Gaussian distribution. Thus, using Taylor’s
theorem, we obtain the following approximation for any A > 0

sup
x∈[−A,A]

|(f(x)− ak−1)(x)− Pk−1(x)| 6 Cf
A(1+cf )k

k!
. (4.2)

Now, we compare the Hermitized version of the matrix M (up to finite rank modification),
and define

Y (ak) = f

(
WX
√
n0

)
− ak, Yk = Pk

(
WX
√
n0

)
,

E =
1√
m

(
0 Y (ak−1) − Yk(

Y (ak−1) − Yk
)∗

0

)
. (4.3)

We want to control the spectral radius of the (m+ n1)× (m+ n1) symmetric matrix E .
Now consider the event, for δ1 ∈ (0, 12 ),

An1
(δ1) =

⋂
16i6n1

⋂
16j6m

{∣∣∣∣∣
(
WX
√
n0

)
ij

∣∣∣∣∣ 6 (log n1)1/2+δ1

}
. (4.4)

On this event, we have, considering the approximation (4.2),

ρ(E) 6 Cf
√
m

(log n1)k(1/2+δ1)(1+cf )

k!
.
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We then choose

k > c0
log n1

log log n1
with c0 >

1

2(1− (1 + cf )( 1
2 + δ1))

. (4.5)

We obtain, by using Stirling formula, that there exists a δ2 > 0 such that for any ε > 0 we
have

ρ(E) = O

(
nε1
nδ21

)
.

By taking ε small enough we then see that, on the event An1
(δ1) and with k as in (4.5),

ρ(E)→ 0 as n1 →∞. It remains to see that the eventAn1
(δ1) occurs with high probability

which comes from the assumption on the entries Wij and Xij . Indeed,

P (An1
(δ1)c) = P

(
∃ i, j such that

∣∣∣∣∣
(
WX
√
n0

)
ij

∣∣∣∣∣ > (log n1)1/2+δ1

)
6 Cn1me

− (logn1)1+2δ1

2

(4.6)
which goes to zero faster than any polynomial in n1. Now we know the limiting e.e.d.
of the matrix MPk constructed with the centered polynomial Pk as activation function.
The above argument yields it is the same for Mf−ak constructed with f − ak instead.
Now Y (ak) is just a rank one deformation of Y and by the rank inequalities (see [4]
for instance), M and Mf−ak have the same limiting e.e.d.. This finishes the proof of
Theorem 2.2.

5 Propagation of eigenvalue distribution through multiple layers

In this section, we study the eigenvalue distribution of a nonlinear matrix model
when the data passes through several layers of the neural network. The case of a single
layer has been considered in Theorems 2.2 and 2.3 where we describe the asymptotic
e.e.d. in the one layer case. It has been conjectured in [32] that the limiting e.e.d. is
stable through the layers in the case where θ2(f) = 0. We give here a positive answer to
this conjecture (with the appropriate normalization).

We first develop the combinatorial arguments for an odd monomial of the form

f(x) =
xk

k!
. (5.1)

for several layers. It can be shown as in Subsection 3.2 that the even monomial are
subleading. Thus the leading order for moments is given by the contribution of odd
monomial only. From now on, we assume (5.1) holds true. We can write the entries of
the two layers data matrix Y (2) as

Y
(2)
ij =

1

k!

(
σx√
θ1(f)

W (1)Y (1)

√
n1

)k
=

σkx

n
k/2
1 k!θ1(f)k/2

n1∑
`1,...,`k=1

k∏
p=1

W
(1)
i`p
Y

(1)
`pj
. (5.2)

Then, developing the expected moment of the e.e.d. and using (5.2), we obtain the
following

1

n2
E
[
Tr
(
M (2)

)q]
=

=
σ2kq
x

n2mqnkq1 (k!)2qθ1(f)kq
E

n2∑
i1,...,iq

m∑
j1,...,jq

n1∑
`11,...`

1
k

...
`2q1 ...`2qk

k∏
p=1

W
(1)
i1`1p

Y
(1)
`1pj1
· · ·

k∏
p=1

W
(1)

i1`
2q
p
Y

(1)

`2qp jq
. (5.3)
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We call the terms contributing in a non negligible way typical. Now, we can give a
graphical representation of these terms as in the previous sections.We will see that
the contributing graphs are actually the same admissible graphs from Definition 3.1.
However, there are less constraints in the choices of the blue edges. Indeed, the entries
of the matrix Y (1) are not independent: we do not need each entry to be matched with at
least another. This constraint however holds for the entries of the matrix W (1).

5.1 The simpler case of the simple cycle

In this subsubsection, we explain the combinatorics in the case where the i-labels
and j-labels are pairwise distinct. We first perform a matching on the entries of W (1).
This matching on the W (1) entries induces one on the entries of Y (1). This matching thus
induces another graph between j-labeled and `-labeled vertices. The i-labeled vertices
do not appear in the graph (as they correspond to entries of W (1)). This graph can be
constructed from the initial graph by seeing which niches are connected by a blue edge.
Figure 15 explains this construction: `2 links the same niche adjacent to j2 while `1 links
the niches adjacent to j1 and j2.

i1

j2

i2

j1

`1

`2

`3

`4

`5

`6

Corresponding moment:

Y`1j1Y
2
`6j1Y

2
`5j1Y`4j1Y`4j2Y

2
`3j2Y

2
`2j2Y`1j2

`1

j1

`4

j2

`2

`3

`6

`5

Figure 15: Graph obtained after a blue matching in the initial graph. The green
edges, corresponding to bridges between niches, induce a cycle in the final graph. The
remaining edges coming from matched pairs inside a niche create simple cycles attached
to j labeled indices.

We start with general observations. The largest number of possible distinct ` indices
is kq, which is obtained as follows: One matches at least two indices from different
adjacent niches of an i-label index and perform a perfect matching between the 2k − 2

remaining indices. Such a matching gives kq different ` indices and matches every W (1)

entry with another. This is illustrated in the leftmost graph in Figure 15. Note that this
type of matching gives kq distinct ` indices but is actually not necessarily typical (see
Figure 16 for an illustration) and is not the sole typical configuration.

As in Figure 15, we see that the matching on the initial graph induces another admissible
graph. Note that it does not consist in one cycle but in a cycle (in green on the figure)
where k − 1 cycles of length 2 are attached to each j-labeled vertex. Also one has to
note that it is possible to perform identifications between the blue edges and obtain a
graph contributing in a non negligible way to the asymptotic expansion (see Figure 17
for an illustration). This behavior is explained in the second step when we develop the
entries of Y (1). Let us briefly indicate, as in Figure 16, a blue matching on the initial
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cycle which maximizes the number of distinct indices may give rise to a non-admissible
induced graph. This comes from the fact that too many edges link two distinct niches.

j2 j1 j2 j1

Figure 16: Non-admissible graph obtained after a blue matching which induces a
maximum number of distinct indices in the initial cycle. We can see that several green
bridges between the same niches create a non-admissible graph and is thus subleading
via the analysis from the previous section.

The main tool to understand the combinatorial arguments for the multilayer case is
the following Lemma. It states that the leading order is actually given by the matchings
as in Figure 15.

Lemma 5.1. Consider a cycle of length q > 2, then the typical matchings on the blue
vertices consist in the following:

i) Two niches adjacent to the same i-labeled vertex are linked by a single edge called a
bridge.

ii) Remaining edges inside a niche are matched according to a perfect matching.

iii) We can add identifications between bridges only.

If the cycle is of length 2 then we perform a perfect matching between the 2k blue
vertices in the cycle.

Proof. The proof is based on the construction of the second graph and the fact that
the typical graphs are admissible. We first show that any other matching gives a non-
admissible second layer graph. Firstly, more than one bridge between two distinct
niches breaks the tree structure and thus yields a non admissible graph. The same
reasoning holds for possible identifications between bridges and a matched pair inside a
niche. If we identify two matched pairs inside a niche, we can see via the construction
of the graph that it creates double edges and we would obtain an entry of Y (1) to the
power of 4. However, note that in the initial cycle of size q, we can add identifications
between the q bridges and still keep the second graph admissible. This behavior is
illustrated in Figure 17 where we perform identifications between bridges and still
obtain an admissible graph.

We now need to show that the contribution of the matchings leading to a non
admissible graph is subleading. As in Subsection 3.1.4, we have additional identifications
between the vertices and we need to choose the fundamental cycles as well as the way
one runs through the graph. Suppose we have I` identifications between the ` vertices.
Then if the graph was admissible we would have I` + q(k − 1) + 1 fundamental cycles
in the induced graph on (j, `) vertices. Thus, if the graph is non-admissible, we have at
most I` + q(k − 1) fundamental cycles.

Let m 6 I` + q(k − 1) be the number of fundamental cycles of the induced graph. We
denote by C1, . . . ,Cb,Cb+1, . . . ,Cm its cycles such that if `(Ci) denotes the length of the
cycle Ci we have: `(C1) = . . . = `(Cb) = 2 and `(Cb+1), . . . , `(Cm) > 2. One then has that∑m
i=1 `(Ci) = 2kq. Now, the contribution of such graphs (initial and induced), taking into
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account the normalization and the number of ways to run through the graph, is at most

(1 + o(1))CIl−m+Ij

n1mqnkq+k
2q

o

nq1m
qnkq−I`0 nkb0 n

m−b+ k−1
2

∑m
i=b+1 `(Ci)

0 = O

((
C

n0

)(I`+(k−1)q+1)−m
)
,

for some constant C. Indeed one has to choose the i- and j-labels of vertices in the
initial cycle, the ` vertices in the initial graph with the constraint that there are I`
identifications. Then, in the induced graph, there are at most k indices in each cycle of
length 2 and 1 + (k − 1)/2`(Ci) indices in the cycle Ci for i > b. Thus the contribution is
negligible due the constraint that m 6 I` + q(k − 1).

Some (negligible) contribution depending on k comes from the possible multiple
cycles of length 2 attached together as in Figure 9. Here the error is slightly bigger
since the induced graph has 2kq edges instead of simply 2q. Fix a vertex j0, if we match
together 2p `-indices together in the niche adjacent to j0, using (3.16), the corresponding
error is given by O(n0(k(2p)k/n0)p). However, up to 2k indices can be matched together
so that the contribution of non admissible graphs in this case is given by

k∑
p=2

n0

(
k(2p)k

n0

)p
= o(1) for k 6

log n

log log n
.

It actually decays faster than any polynomial for such k. This finishes the proof of the
Lemma.

i1

j2

i2

j1

j2 j1

Figure 17: Admissible graph after a matching with an identification between two bridges.
While two ` vertices are identified, the matching is of leading order as one more cycle is
in the induced graph.

Lemma 5.1 has been proved for the two layers case. It can readily be extended to
the case of L ≥ 2 layers: the number of possible distinct l-indices is multiplied by k at
each layer and the final graph after performing matchings has to be admissible so that it
contributes in the limit. The proof is similar to that of Lemma 5.1. The detail is left to
the reader.

5.2 Invariance of the distribution in the case when θ2(f) vanishes.

In light of the previous combinatorial arguments, it is interesting to consider the
special case where θ2(f) = 0. Indeed, for the one layer case, by Theorem 2.2, the limiting
e.e.d. is the Marčenko-Pastur distribution with shape φ

ψ , denoted by µφ/ψ, as proved also
by the following lemma.
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Lemma 5.2. Let q be a positive integer we have the following equality

q−1∑
Ij ,Ii=0

Ii+Ij+1=q

A(q, Ii, Ij , q)ψ
1−q+IiφIjθq1(f)

= θq1(f)

q−1∑
k=0

(
φ

ψ

)k
1

k + 1

(
q

k

)(
q − 1

k

)
= θq1(f)〈xq, µφ/ψ〉.

Proof. Firstly, we can slightly rewrite the left hand side as

q−1∑
Ij ,Ii=0

Ii+Ij+1=q

A(q, Ii, Ij , q)ψ
1−q+IiφIjθq1(f) = θq1(f)

q−1∑
k=0

(
φ

ψ

)k
A(q, q − k − 1, k, q).

Now there only remains to see that

A(q, q − k − 1, k, q) =
1

k + 1

(
q

k

)(
q − 1

k

)
. (5.4)

This fact comes from another representation of admissible graphs. Consider admissible
graphs with 2q edges, q cycles of length 2, k j-identifications and q−k−1 i-identifications.
Thus we can count this as double trees, in the sense that one of every two vertices are
i-labeled and the others are j-labeled, with the appropriate number of each type of
vertex (q − k j-labeled vertices and k + 1 i-labeled vertices). This number is known as a
Narayana number [7] and given by (5.4).

This fact then means that if we consider a function f such that θ2(f) = 0, the e.e.d.
(up to a change in variance and shape) is “stable” after going through one layer of the
network. Indeed, if one considers the matrix 1

mσ2
x
XX∗, the asymptotic e.e.d. is given by

µφ the Marčenko-Pastur distribution with shape parameter φ. Now, after a layer of the
network, we see that for 1

mθ1(f)
Y Y ∗ it is given by µφ/ψ.

We now consider the case of an arbitrary but fixed number of layers, mostly interested
in the case where θ2(f) = 0. Let Y (L+1) be as in (2.9), and consider the matrices

M (L+1) =
1

mθ1(f)
Y (L+1)Y (L+1)∗. (5.5)

Theorem 5.3. Let L be a given integer. Let f =
∑K
k=1

ak
k! (xk−k!!1k even) be a polynomial

such that (2.4) holds and θ2(f) = 0. The degree of f , K, can grow with n1 but suppose

that K 6 1
L−1

logn1

log logn1
. Denote the e.e.d. of M (L) constructed as in (5.5) by µ

(L)
nL =

1
nL

∑nL
i=1 δλ(`)

i
and its expected moments by m(L)

q := E
[
〈µ(L)
nL , x

q〉
]
, then

m(L)
q =

q−1∑
k=1

(
φ∏L−1

i=0 ψi

)k
1

k + 1

(
q

k

)(
q − 1

k

) (1 + o(1)) . (5.6)

Proof. We again first develop the arguments in the case of a monomial of odd degree
f(x) = xk since the case of an even monomial is completely similar (we only consider
graphs with simple cycles).We study and count the admissible graphs along each layer.
It is enough to identify in the asymptotic expansion of the moment those terms where no
θ2 arises. Thus one can consider only admissible graphs made of cycles of length 2. For
the error terms one has to consider also admissible graphs with longer cycles but where
the matching in each niche does not yield an occurence of θ2.
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We begin with the case where q = 1 for two layers. Then the cycle has length 2 as
in Figure 4a. The dominant term in the asymptotic expansion consists in performing a
perfect matching between all edges from Lemma 5.1. The contribution coming from this
first construction (in Lemma 5.1) is given by

σ2k
x

n2mnk1
n2mn

k
1

(
σ2k
w (2k)!!

)
= θ1(f)(1 + o(1)).

This follows from the choices for the i index, the j index and the ` indices. Now, this
construction on the initial graph induces a second graph as in Figure 18. This induced
graph is an admissible graph where all j’s are identified to a single vertex and k cycles
of length 2 are attached to it (corresponding to the k blue edges in the initial cycle). We
use the same reasoning as before and develop the entries Y (1) as a product of entries
of W (0) and X. Since the graph is admissible, the dominant term in the asymptotic
expansion corresponds to performing a perfect matching in all cycles of length 2 as in
Section 3 (illustrated in Figure 18). Thus this adds a contribution of

1

nk
2

0 θ1(f)k
nk

2

0

(
σ2k
w σ

2k
x (2k)!!

)k
= 1 + o(1).

Here, the normalization in n−k
2

0 comes from the fact there are 2k entries with a normal-

ization of n−k/20 . We then have to choose nk
2

0 indices in the second graph. Finally, we
obtain for the final contribution for a cycle of length 2 that E1(f) = θ1 (f) (1 + o(1)).

i1 j1

j1

Figure 18: Construction/matching on the second layer graphs from a matching on the
initial graph. The first graph gives a combinatorial factor of (2k)!! while the second
graph gives a factor of (2k)!!k.

For the general case we saw that the first step of the procedure (by the construction
explained before) yields a forest of star admissible graph where each graph is given by a
certain number of cycles of length 2 attached to a unique j-labeled vertex. Consider now
a connected component (of the induced forest) which corresponds to a unique j vertex.
The number of cycles of length 2 attached to j is then k times the total number of cycles
adjacent to j in the previous steps (since we have k blue edges in each cycle of length 2).
From this first process we then get the following contribution for this first two steps

σ2kq+2k2q
x (1 + o(1))

nLmqθ1(f)q+kq+k2q

∑
Ii,Ij

Ii+Ij+1=q

A(q, Ij , Ij , q)n
q−Ii
L

mq−Ij

nkqL−1
nkqL−1

(
σ2k
w (2k)!!

)q ×
× 1

nk
2q
L−2

nk
2q
L−2

(
σ2k
w (2k)!!

)kq
= (1 + o(1))

q−1∑
k=0

A(q, q − k − 1, k, q)
(nL
m

)k
.

Let us explain the above formula: there are nq−IiL choices needed to label the i-labeled
vertices and mq−Ij for the j-labeled vertices. For the powers of nL−1 we take into
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account the normalization and the corresponding number of ` indices to choose. Finally
in each cycle of length 2 we perform a perfect matching between the two niches: there
are q cycles of length 2 in the initial graph and kq such cycles in the forest obtained. See
Figure 19 for an illustration.

Now, we can perform one more step of the procedure, we now have a forest of these
star admissible graphs where each graph has only one j vertex. To the j vertex are now
attached k times more cycles than in the previous step. Thus, for the 3 step procedure,
the total number of cycles of length 2 in the forest is given by k3q. We can perform this
for each layer the data goes through as the only parameter to be changed is the number
of cycles of length 2 attached to each j vertex.

i1 j1 i2 j2

j1

j2

Figure 19: Effect on going through several layers for admissible graphs with only cycles
of length 2. The first step consists of separating each j-labeled vertex into his own graph
where it is attached to cycles of length 2. At each layer after the first one, we multiply
by k the number of cycles attached.

In the whole, adding the layer L0 multiplies the contribution with no θ2 by a factor

1

nk
L−L0q
L0

θk
L−L0q

1

nk
L−L0q
L0

θk
L−L0q

1 (f).

Thus the whole contribution can be written in the following way:

(1 + o(1))

q−1∑
k=0

(nL
m

)k
A(q, q − k − 1, k, q).

And we obtain the final result by using that nL
m →

φ
ψ0ψ1...ψL−1

and A(q, q − k − 1, k, q) =
1
k+1

(
r
k

)(
r−1
k

)
.

Now, in the statement of the theorem we do not explicit the leading contribution
of admissible graphs with at least one cycle of length greater than 2. We only need
now to get an estimate on the other possible errors and show that they are negligible.
Using Subsection 3.6, the total number of cactus trees with q edges does not exceed Cξq

for some constant C. As we are interested in the case where θ2 vanishes, it is enough
to show that the error terms cannot grow faster than the Marcenko-Pastur moment.
Actually using the arguments of Section 3, the whole analysis of errors remains true.
The errors can only come from subleading matchings on the graph at each possible step.
However, the main difference comes from the number of vertices at each step which
is kL0q instead of just kq. Note that it still only consists of a power of k which grows
slower than any power of n1. Again, the leading contribution of the errors comes from
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possible multiple edges arising in the graph. Say that a given j vertex is first connected
to r cycles of length 2 in the initial graph. At the step L0, it is now connected to kL0−1r

cycles of length 2. Thus if at this stage we connect blue indices together, say p of them
we obtain at the next step a multiple edge of multiplicity 2p. We have a total of 2kL0r

blue indices to match at this stage since we have 2k vertices per cycle of length 2. Thus,
by comparing the contribution of such matchings with the typical matching we obtain,
similarly to (3.16),

kL0r∑
p=2

n0

(
Ckpk

n0

)p
= o(1) for k 6

1

L0

log n1
log log n1

.

Now L0 ranges from 1 to L−1 so that we obtain the needed bound if k 6 1
L−1

logn1

log logn1
.

We now finish the proof of Theorem 2.5.

Proof of Theorem 2.5. We have shown that for a polynomial of degree up to 1
L−1

logn1

log log(n1)
,

the expected moments of the e.e.d. are those of the Marčenko-Pastur distribution with
the appropriate shape parameter. We first see that the variance of the moments is of
order kL/n21 in order to show convergence of the actual moments. The principle is similar
to that of Lemma 3.10 as we count the corresponding graphs such that their covariance
is non zero.

We can perform the same expansion as in Lemma 3.10 and see that we have for the
first layer

Varm(L)
q =

1

n21

∑
G1,G2

∑
`1,`2

E
[
M

(L)
G1 (`1)M

(L)
G2 (`2)

]
− E

[
M

(L)
G1 (`1)

]
E
[
M

(L)
G2 (`2)

]
(5.7)

with

M
(L)
G (`) =

K∑
k1,...,k2q=1

ak1 . . . ak2q

mqn
∑
ki/2

0

k1∏
p=1

W
(L)
i1`1p

Y
(L)
`1pj1

k2∏
p=1

W
(L)
i2`2p

Y
(L)
`2pj1
· · ·

k2q∏
p=1

W
(L)

i1`
2q
p
Y

(L)

`2qp jq
.

Now, in order to have a non vanishing contribution to the variance (5.7), we need to have
additional identifications between the two graphs. Indeed, either at a given layer L0 an
entry of W (L0) is matched between G1 and G2 or at the last layer there are identifications
between the X entries. In the case where there are identifications of Y (L0) entries we
see, by expanding the expansion with respect to the entries of W (L0−1), that this implies
that there are further identifications in the layers beyond L0. Since at each step we
would lose an order O(q2(k)2L0)/n0) (from the choice of which vertices to identify and
the fact that we have one less choice for possible indices), we see that the leading order
comes from identifying X entries in the two last layers.

Thus, since the main contribution to moments are still given by admissible graphs, a
similar analysis can be done as in Lemma 3.10: we can, right at the first layer, identify i
and j vertices to obtain an identification on the W (L) entries. Or one can choose two
W (L0) entries to be identified at a given layer L0 (or X entries at the last layers L0 = 1)
and thus we obtain

Varm(L)
q = O

(
q4 + q2

∑L
L0=1 k

2L0 +
∑L
L0=1 k

4L0

n20
Cq

)
= O

(
k4L+4

n20

)
,

since q is fixed here.
Let us now extend the result to a bounded function f . As in Section 4, we consider a

polynomial Pk such that, for some A > 0, supx∈[−A,A] |(f(x)− ak)− Pk(x)| 6 Cf
A(1+cf )k

(n+1)! .
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Now, we can consider Y (L,ak) the matrix constructed as (2.9) with f − ak as an activation
function and Y (L,Pk) the same matrix constructed with Pk. Note that we consider the
same sampling of W and X for the construction of this model. We describe the case of
L = 2 as we can recursively do the same reasoning for a higher number of layers, for
simplicity we also forget the change of variance σx/

√
θ1(f) at each layer. As we saw in

Section 4, we simply need to bound

1√
m

max
16i6n2

m∑
j=1

∣∣∣Y (2,ak)
ij − Y (2,Pk)

ij

∣∣∣
=

1√
m

max
16i6n2

m∑
j=1

∣∣∣∣∣f
(
W (1)Y (1,ak)

√
n1

)
ij

− ak − Pk
(
W (1)Y (1,Pk)

√
n1

)
ij

∣∣∣∣∣ .
We split the right hand side into two parts and write∣∣∣Y (2,ak)

ij − Y (2,Pk)
ij

∣∣∣ 6 ∣∣∣∣∣f
(
W (1)Y (1,ak)

√
n1

)
ij

− f
(
W (1)Y (1,Pk)

√
n1

)
ij

∣∣∣∣∣ (5.8)

+

∣∣∣∣∣f
(
W (1)Y (1,Pk)

√
n1

)
ij

− ak − Pn
(
W (1)Y (1,Pk)

√
n1

)
ij

∣∣∣∣∣ . (5.9)

For the first term on the right hand side of the previous equation, we bound it from the
polynomial approximation. Indeed, we consider the following event

A1(δ1) =

n1⋂
i=1

m⋂
j=1

{∣∣∣∣∣
(
W (0)X
√
n0

)
ij

∣∣∣∣∣ 6 (log n1)1/2+δ1

}⋂{∣∣∣W (1)
ij

∣∣∣ 6 (log n)1/α+δ1
}
.

This event occurs with overwhelming probability for any δ1 > 0 in the sense that its
probability decays faster than any polynomial. Now, on this event we can bound∣∣∣∣∣

(
W (1)Y (1,ak)

√
n1

)
ij

−
(
W (1)Y (1,Pn)

√
n1

)
ij

∣∣∣∣∣ 6 Cn
√
n1(log n1)1/α+δ1

(log n1)(1/2+δ1)n

n!
,

where we expand the entries and use the polynomial approximation. This also decays
faster than any polynomial for n = O( logn1

log logn1
). Finally, using the fact that f has a

bounded derivative on the event A2(δ2) defined in (5.10), the first term in (5.8) goes to
zero providing that A2 occurs with high probability.

For the second term in (5.8), by the previous analysis and as in Section 4 we only
need to prove that the following event occurs with probability tending to one:

A2(δ2) =

n2⋂
i=1

m⋂
j=1

{
1
√
n1

n1∑
`1=1

W
(1)
i`1
Pn

(
1
√
n0

n0∑
`0=1

W
(0)
`1`0

X`0j

)
6 (log n1)1/2+δ1

}
. (5.10)

Since we suppose that f is bounded we know that on the event A1(δ1) (which occurs

with very high probability) we have that supij |Y
(1,Pk)
ij | 6 C. Besides, since W (1)

i`1
has zero

expectation, has a sub-Gaussian tail and is independent of the entries of W (0) and X, the
random variable (W (1)Y (1))ij is sub-Gaussian as well. So that we obtain that there exists
a C > 0 such that

P

(
n1∑
`1=1

W
(1)
i`1
Pn

(
1
√
n0

n0∑
`0=1

W
(0)
`1`0

X`0j

)
>
√
n1(log n1)1/2+δ1

)
6 Ce−c(logn1)

1+2δ1
.

And finally P(A2(δ2)) > 1− n−D1 for any D > 0.
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