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Consistent particle systems and duality
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Abstract

We consider consistent particle systems, which include independent random walkers,
the symmetric exclusion and inclusion processes, as well as the dual of the Kipnis-
Marchioro-Presutti model. Consistent systems are such that the distribution obtained
by first evolving n particles and then removing a particle at random is the same as the
one given by a random removal of a particle at the initial time followed by evolution of
the remaining n− 1 particles.

In this paper we discuss two main results. Firstly, we show that, for reversible
systems, the property of consistency is equivalent to self-duality, thus obtaining a
novel probabilistic interpretation of the self-duality property. Secondly, we show that
consistent particle systems satisfy a set of recursive equations. This recursions implies
that factorial moments of a system with n particles are linked to those of a system
with n− 1 particles, thus providing substantial information to study the dynamics. In
particular, for a consistent system with absorption, the particle absorption probabilities
satisfy universal recurrence relations.

Since particle systems with absorption are often dual to boundary-driven non-
equilibrium systems, the consistency property implies recurrence relations for expec-
tations of correlations in non-equilibrium steady states. We illustrate these relations
with several examples.
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1 Introduction

Non-equilibrium systems, i.e. systems carrying a current, such as systems coupled
to reservoirs or bulk-driven systems, are of great interest in non-equilibrium statistical
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Consistent particle systems and duality

mechanics. In particular one would like to understand the properties of their station-
ary distribution, that is often called in the mathematical physics literature the“non-
equilibrium steady state”, where “non-equilibrium” refers to the absence of reversibility,
often manifested through the presence of currents. However, detailed information such
as explicit closed form expression for correlation functions are rarely available. In
stochastic systems, there are a few integrable systems, such as the symmetric and
asymmetric exclusion process in dimension one, where one can obtain such closed form
formulas for all correlation functions in the non-equilibrium steady states via matrix
product ansatz solution [4]. Another powerful tool in the analysis of non-equilibrium
systems is duality, a technique which allows to connect correlation functions of order n in
the non-equilibrium steady state to a system of n dual particles. Duality is strictly weaker
than integrability, i.e., there are many systems which have useful dualities but are not
integrable. Duality also allows to study time-dependent expectations and time-dependent
correlation functions. For a correlation function of order n, one needs the law of n dual
particles.

In particle systems with duality [12, 1, 2, 15], whenever we couple the system to
appropriately chosen reservoirs, they are dual to particle systems where the driving
reservoirs are replaced by absorbing boundaries. As a consequence, the computation
of correlation functions of the non-equilibrium steady state can be reduced to the
computation of absorption probabilities of dual particles. These absorption probabilities
can usually be obtained explicitly (in closed form) for a single particle, and in some
exceptional cases, such as the symmetric simple exclusion process on a chain [5, 4], also
for many particles.

In this paper, we focus on the property of consistency of particle systems. Consistency
is a property of particle systems which generalizes duality and which has a simple
probabilistic interpretation. Intuitively, consistent particle systems are those where
the operation of randomly removing a particle commutes with the time-evolution. This
property implies that there are intertwining relations between the dynamics with n and
n− 1 particles, and as a consequence simplifying recursion relations for moments and
absorption probabilities.

More in detail, consistent particle systems are defined as a family of permutation
invariant particle systems, indexed by the total number of particles, that additionally
satisfy the following property: if we marginalize on the first n − 1 coordinates of the
process {X(n)(t), t ≥ 0} describing the positions of n particles, we obtain (in distribution)
the process {X(n−1)(t) :≥ 0} describing the positions of n − 1 particles. This property
holds trivially for independent particles, but here we are particularly interested in
proving and using this property for systems of interacting particles. The consistency
property has already been observed and used in the context of the Kipnis-Marchioro-
Presutti (KMP) model (see [12]), where local equilibrium is proved via consistency.

Another motivation to study consistency is to provide a more probabilistic interpreta-
tion of (self-) duality. Indeed, in many systems duality is understood from a probabilistic
construction such as the graphical construction for the symmetric exclusion process.
However, there is no general theorem that provides a probabilistic interpretation of
duality. In this paper we show that consistency implies self-duality, which provides a
more probabilistic understanding of self-duality. More precisely we show that a particle
system is consistent if and only if the process generator commutes with the so-called an-
nihilation operator. This commutation relation formalizes the property that for consistent
particle systems the two operations of “removing a particle at random” and “dynamical
evolution” yield the same result (in distribution) in whatever order they are performed.
The characterization of consistency as a symmetry property, i.e., an operator commuting
with the generator, allows us to establish a direct link between consistency and duality
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[8].
A second line of research of this paper is concerned with exploiting the consistency

property to obtain detailed information about the dynamics, especially in the context of
non-equilibrium systems, i.e., in the presence of boundary reservoirs where particles
can enter and leave the system. Indeed, such boundary driven systems are dual to
absorbing systems, where the reservoirs are replaced by absorbing boundaries. We show
that the addition of absorbing sites does not change the consistency property, and as a
consequence we obtain a set of recursive equations from the consistency property of
the absorbing dual. These recursions imply that factorial moments of a system with n
particles are linked to those of a system with n−1 particles. Although the set of recursive
equations is not enough to fully solve the dynamics, it yields substantial simplifications.
We apply these recursion relations to show universal properties of non-equilibrium
steady states of boundary-driven systems, such as (generalized) exclusion and inclusion
processes coupled to boundary reservoirs.

To conclude this introduction, we summarize the main results of the paper.

a) We characterize particle systems which have the consistency property. We show
the relation between consistency and duality, thus providing a probabilistic inter-
pretation of duality.

b) We show that consistency is conserved upon adding absorbing sites, which provides
consistency for duals of systems with boundary reservoirs.

c) We show that consistency of absorbing systems leads to universal recurrence
relations for the factorial moments of the particle occupation numbers. Via duality
this translates into universal recurrence relations for the factorial moments in the
non-equilibrium steady state.

The rest of our paper is organized as follows. In section 2 we give the basic definitions
yielding the distinction between the coordinate process, which specifies the positions
of all the particles, and the configuration process, which instead provides the number
of particles at each site. We also recall the definition of the annihilation operator
and its interpretation as a particle removal operator. In section 3 we introduce the
notion of consistent permutation-invariant particle systems and show that this property
is equivalent to a commutation property between the generator of the configuration
process and the annihilation operator. We also write the set of recursion relation implied
by consistency in the general setting. In section 4, we show the relation between
consistency and (self-)duality. In section 5 we show that consistency is preserved by
adding sites where particles can be absorbed (independently for different particles) and
specify the recursion relations in terms of the absorption probabilities. Sections 6 and
7 are dedicated to a special class of consistent particle systems, including the case of
an integrable systems (the open symmetric exclusion process that is solved by matrix
product ansatz) and a non-integrable case (the symmetric inclusion process). We show
in both cases the form taken by consistency equations.

2 Preliminary definitions

2.1 Coordinate process and configuration process

We consider a system of n particles moving on a countable set of vertices V , with
cardinality |V |. Their positions are denoted by (x1, . . . , xn) ∈ V n. The set of functions
g : V n → R is denoted by Cn. A configuration of n particles is the n-tuple of their
positions modulo permutations of labels. In the following configurations will be denoted
by η = (ηx)x∈V , where ηx will be an element of Λ ⊆ N to be interpreted as the number of
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particles at vertex x. For x = (x1, . . . , xn) ∈ V n the associated configuration is denoted
by

ϕ(x) :=

n∑
i=1

δxi (2.1)

where δz is the configuration having only one particle located at z ∈ V , i.e. for y ∈ V ,

(δz)y =

{
1 if y = z,

0 otherwise.

We view ϕ as a map from n-tuples with arbitrary n to configurations, i.e., ϕ : ∪∞n=1V
n →

NV . We then define Ωn as the set of configurations of n particles, i.e.

Ωn =
{
η ∈ ΛV : |η| = n

}
, with |η| :=

∑
x∈V

ηx

where Λ ⊆ N is the single-site state space, namely the set of possible occupation
numbers for each site. We denote by En the set of functions f : Ωn → R and define
Ω = {η ∈ ΛV : |η| <∞} the set of finite particle configurations, namely Ω = ∪n∈NΩn.

In this paper, we shall consider both examples with a finite state space, such as the
partial exclusion processes [11, 14] (with a restriction on the number of particles per
site, i.e. Λ = {0, . . . , α} where α ∈ N denotes the maximal number of particles per site),
as well as examples with Λ = N, such as the inclusion process [8] or the independent
random walk process (see Section 6 for a treatment of these processes).

In some cases not all elements of V n give rise to allowed configurations of Ω. For
instance, for the partial exclusion process, it is not guaranteed that x ∈ V n does not
contain more than α particles at any site, i.e. ϕ(x) ∈ {0, . . . , α}V . For this reason we
define the set Vn of n-tuples x ∈ V n such that the associated configuration ϕ(x) is an
element of Ωn. For the examples of independent random walkers and inclusion process
Vn = V n, whereas, in the case of the partial exclusion process, Vn 6= V n.

With these preliminaries we next specify the distinction between a coordinate process
and a configuration process.

Definition 2.1 (Coordinate process). We shall call a coordinate process with n particles,
denoted by {X(n)(t), t ≥ 0}, the stochastic process taking values in Vn that describes
the positions of particles in the course of time. Namely, for i = 1, . . . , n, the random
variable X

(n)
i (t) denotes the position of the ith particle at time t ≥ 0. We denote by

{X(t), t ≥ 0} a family of coordinate-processes
(
{X(n)(t), t ≥ 0}, n ∈ N

)
, labeled by the

number of particles n ∈ N.

Throughout this paper we shall restrict to coordinate processes that are Markov
processes.

Definition 2.2 (Configuration process). We shall call a configuration process, denoted by
{η(t), t ≥ 0}, the stochastic process, taking values in Ω that describes the joint occupancy
numbers of all the sites in the course of time. More precisely, for i ∈ V , the random
variable ηi(t) denotes the number of particles at site i at time t ≥ 0.

Throughout this paper we shall restrict to configuration processes that conserve the
number of particles, i.e. if the process {η(t), t ≥ 0} is started from η ∈ Ωn then η(t) ∈ Ωn
for all later times t > 0. A configuration process is naturally induced by a coordinate
process using the map ϕ defined in (2.1). There can be several coordinate processes
whose image under the map ϕ yields the same configuration process. This leads us to
the following definition.

Definition 2.3 (Compatibility). A family of coordinate processes {X(t), t ≥ 0} and a
configuration process {η(t), t ≥ 0} are compatible if for all n ∈ N the following holds:
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whenever ϕ(X1(0), . . . , Xn(0)) = η(0) then

{ϕ(X(n)(t)), t ≥ 0} = {η(t), t ≥ 0}

where the equality is in distribution.

Of course it is not guaranteed that, starting from a Markov coordinate process,
the mapping ϕ defined in (2.1) induces a compatible configuration process that is also
Markov. To further discuss this point we need to introduce the notion of permutation
invariance. We denote by Σn the set of permutations of n elements. Moreover we define
the operator Uϕ mapping functions f : Ωn → R to functions Uϕf ∈ Cn via Uϕf = f ◦ ϕ.

Definition 2.4 (Permutation invariance).

a) A family of coordinate Markov processes {X(t), t ≥ 0} is said to be permutation-
invariant if, for every n ∈ N and permutation σ ∈ Σn, the processes:
{(X(n)

1 (t), . . . , X
(n)
n (t)), t ≥ 0} and {(X(n)

σ(1)(t), . . . , X
(n)
σ(n)(t)), t ≥ 0}

are equal in distribution.

b) A function g ∈ Cn is said to be permutation-invariant if

g(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for all σ ∈ Σn.

Equivalently, a function g ∈ Cn is permutation-invariant if there exists a function
f : Ωn → R such that g = Uϕf .

c) A probability measure µn on Vn is called permutation-invariant if, for all n ∈ N and
σ ∈ Σn, under µn, the random vectors (X1, . . . , Xn) and (Xσ(1), . . . , Xσ(n)) have the
same distribution.

We denote by Ln the infinitesimal generator of the n-particle coordinate process
{X(n)(t), t ≥ 0}, and by Sn(t) the related semigroup, i.e., for g ∈ Cn

Sn(t)g(x) := Ex[g(X(n)(t))]

where Ex denotes expectation when the coordinate process is started from x ∈ Vn.
The following lemma shows that to permutation-invariant coordinate processes one

can naturally associate a compatible configuration process enjoying the Markov property.

Lemma 2.5. Let {X(t), t ≥ 0} be a family of permutation-invariant coordinate Markov
processes with generators Ln, n ∈ N. Define the operator L acting on functions
f : Ω→ R as

L f(η) := Ln(Uϕf)(x) for all η ∈ Ωn and x ∈ Vn : ϕ(x) = η (2.2)

or, equivalently,

LnUϕ = UϕL on En. (2.3)

Then L is the infinitesimal generator of a Markov process {η(t), t ≥ 0} that is a configu-
ration process compatible with {X(t), t ≥ 0}.
PROOF. For a permutation σ ∈ Σn and a function g ∈ Cn we define the operator

Tσg(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)). (2.4)

From the permutation invariance of the family of coordinate Markov processes {X(t), t ≥
0} it follows that

[Ln, Tσ] = 0 for all n ∈ N and σ ∈ Σn (2.5)
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where [·, ·] denotes the commutator. Let f : Ω → R then, by definition, Uϕf is a
permutation-invariant function. Hence, from (2.5) it follows

TσLnUϕf = LnTσUϕf = LnUϕf for all f ∈ En. (2.6)

This means that LnUϕf is permutation-invariant, hence there exists a function f̃ : Ω→ R

such that

Ln(Uϕf)(x) = f̃(ϕ(x)) = Uϕf̃(x)

namely LnUϕf = Uϕf̃ . Then it is possible to define the operator L acting on functions
f : Ω→ R such that L f = f̃ , and then (2.3) is satisfied. From (2.6) we have that

TσSn(t)Uϕf = Sn(t)Uϕf for all f ∈ En (2.7)

and then also Sn(t)Uϕf is a permutation-invariant function at all times. Now, if we denote
by S (t) the semigroup associated to L , it follows that

S (t)f(η) = Sn(t)Uϕf(x) for all η ∈ Ωn and x ∈ Vn : ϕ(x) = η (2.8)

namely

UϕS (t) = Sn(t)Uϕ on En (2.9)

From this it follows that L is the generator of a Markov process that is a configuration
process compatible with {X(t), t ≥ 0}.

2.2 Annihilation operator

We continue by introducing the operators that remove particles either in the coordi-
nate process (see (2.10) below) or in the configuration process (see (2.13)).

Definition 2.6 (Particle removal operators). For n ∈ N, 1 ≤ i ≤ n we denote by π(n)
i :

Cn−1 → Cn the removal operator of the ith labeled particle, acting on functions g ∈ Cn−1

as follows:

(π
(n)
i g)(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn) for all xi ∈ V (2.10)

and we denote by Π(n) : Cn−1 → Cn the operator acting on g ∈ Cn−1 via

Π(n)g =

n∑
i=1

π
(n)
i g. (2.11)

We define the “single-site annihilation operator” a acting on functions f : N0 → R as

af(n) =

{
nf(n− 1) if n ≥ 1

0 if n = 0
(2.12)

and the “annihilation operator” working on functions f : Ω→ R as

A f(η) =
∑
x∈V

axf(η) with axf(η) =

{
ηxf(η − δx) if ηx ≥ 1

0 if ηx = 0
(2.13)

i.e. ax denotes the operator a working on the variable ηx.
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We remind the reader here that we are restricting to configurations η ∈ Ω, i.e. with a
finite number of particles and therefore the sum in (2.13) is a finite sum.

The annihilation operator is crucially important in the explanation of self-dualities
for several particle systems [6, 7]. In particular, as it will be shown later, the fact that
the generator L of the configuration process and the annihilation operator A commute,
i.e. [L ,A ] = 0, is enough to obtain a self-duality when the process has a reversible
measure. Such a commutation relation for the configuration process is equivalent to an
intertwining relation between the coordinate process with n particles and the coordinate
process with n− 1 particles. This equivalence is the object of the next theorem.

Theorem 2.7. Let {X(t), t ≥ 0} be a family of coordinate Markov processes with
generators Ln, n ∈ N and {η(t), t ≥ 0} a compatible Markov configuration process
with generator L defined in (2.2). Then the following statements are equivalent:

a) The generators of the coordinate process with n and n− 1 particles restricted to
permutation invariant functions are intertwined via Π(n), i.e., for every n ∈ N, and
for all g ∈ Cn−1 permutation-invariant

(LnΠ(n))(g) = (Π(n)Ln−1)(g) (2.14)

b) The generator of the configuration process commutes with the total annihilation
operator, i.e.

[L ,A ] = 0 (2.15)

PROOF. We first show that

Π(n)Uϕ = UϕA on En. (2.16)

This means that

(Π(n)(f ◦ ϕ))(x) = A f(η) for all η ∈ Ωn and x ∈ Vn : ϕ(x) = η (2.17)

Let x = (x1, . . . , xn) and η := ϕ(x) =
∑n
i=1 δxi , then we have

ϕ(x1, . . . , xl−1, xl+1, . . . , xn) =

(
n∑
i=1

δxi

)
− δxl = η − δxl

As a consequence:

(Π(n)(f ◦ ϕ))(x) =

n∑
l=1

f(η − δxl)

=
∑
x∈V

ηxf(η − δx) (2.18)

where the last step follows because every x ∈ V is counted exactly ηx times in the sum∑n
l=1 f(η − δxl). This proves (2.16). Suppose now that [L ,A ] = 0, then on En we have

Ln−1Π(n)Uϕ = Ln−1UϕA = UϕL A = UϕA L = Π(n)UϕL = Π(n)LnUϕ

where the equalities follow from (2.16), (2.3) and the commutation relation. Then (2.14)
follows since, for all g ∈ Cn permutation-invariant, g = Uϕf for some f ∈ En. The reverse
implication is proved analogously.
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Remark 2.8. The probabilistic interpretation of (2.14) is as follows: if we remove a
randomly chosen particle, evolve the process, evaluate a permutation-invariant function
at time t > 0 and finally take expectation, then we can as well first evolve the process,
remove a randomly chosen particle at time t > 0, evaluate the same permutation-
invariant function and take expectation. In other words, the operations “removing a
randomly chosen particle” and “time evolution in the process followed by expectation”
commute as long as we restrict to permutation-invariant functions. See also Proposition
3.6.

3 Consistency

In this section we first define the consistency property and give some characterization
of consistent particle systems. We then discuss the implication of consistency in the form
a set of recursive equations.

3.1 Definition of consistency and relation to annihilation operator

Based on Theorem 2.7 we define consistent particle systems as follows.

Definition 3.1 (Consistency).

a) A family of coordinate Markov processes {X(t), t ≥ 0} is said to be consistent if

the processes {(X(n)
1 (t), . . . , X

(n)
n−1(t)), t ≥ 0} and {(X(n−1)

1 (t), . . . , X
(n−1)
n−1 (t)), t ≥ 0}

are equal in distribution for every n ∈ N.

b) A configuration process {η(t), t ≥ 0} is said to be consistent if its generator L
commutes with the annihilation operator, i.e. [L ,A ] = 0.

c) A family of probability measures µn on Vn, indexed by n ∈ N, is called consistent if
for all n ≥ 2, under µn, the distribution of (x1, . . . , xn−1) equals µn−1.

Let {µn, n ∈ N} be a consistent collection of probability measures on Vn, n ∈ N. If
additionally {µn, n ∈ N} is permutation-invariant, then every m-dimensional marginal
of µn, m ≤ n, coincides with µm. A simple example of such a consistent permutation-
invariant family is

µn =
1

n!

∑
σ∈Σn

δ(xσ(1),...,xσ(n)) for some x ∈ Vn

Analogously, if {X(t), t ≥ 0} is a family of permutation-invariant coordinate processes,
consistency implies that, for all n ∈ N, any m-dimensional marginal of {X(n)(t), t ≥ 0},
m ≤ n, is equal in distribution to {X(m)(t), t ≥ 0}, i.e., for all 1 ≤ i1 < . . . < im ≤ n,

{X(n)
i1

(t), . . . , X
(n)
im

(t), t ≥ 0} = {X(m)
1 (t), . . . , X(m)

m (t), t ≥ 0} in distribution (3.1)

In the following theorem we show that, if a configuration process is consistent then a
compatible coordinate process is also consistent provided that its initial distribution at
time t = 0 is consistent and permutation invariant.

Theorem 3.2. Let {X(t), t ≥ 0} be a family of coordinate Markov processes with
generators Ln, n ∈ N, and let {η(t), t ≥ 0} be a compatible configuration process.
Assume that:

i) {η(t), t ≥ 0} is consistent;

ii) the probability measures {µn, n ∈ N} on Vn, n ∈ N, form a consistent family which
is also permutation-invariant.
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Then we have consistency of the family of coordinate processes starting from {µn, n ∈ N},
i.e., for all n ∈ N, g ∈ Cn−1 permutation-invariant,

E(n)
µn

[
g(X

(n)
1 (t), . . . , X

(n)
n−1(t))

]
= E(n−1)

µn−1

[
g(X

(n)
1 (t), . . . , X

(n)
n−1(t))

]
(3.2)

where Enµn denotes expectation w.r.t. the Markov process {X(n)(t), t ≥ 0}, started
initially with distribution µn.

PROOF. Let g ∈ Cn−1 be a permutation-invariant function, then we have π(n)
l g = π

(n)
k g

for k, l ∈ {1, . . . , n}. Then, by consistency and permutation invariance of µn, we have∫
πlg(x1, . . . , xn)µn(dx1 . . . dxn) =

∫
g(x1, . . . , xn−1)µn−1(dx1 . . . dxn−1)

for all n ∈ N and all l ∈ {1, . . . , n}. Therefore, using (2.14), we have

E(n)
µn

[
g(X

(n)
1 (t), . . . , X

(n)
n−1(t))

]
= E(n)

µn

[
π(n)
n (g(X

(n)
1 (t), . . . , X

(n)
n−1(t), X(n)

n (t))
]

=

∫
Sn(t)(π(n)

n g)(x1, . . . , xn)µn(dx1 . . . dxn)

=
1

n

∫ (
Sn(t)

(
n∑
k=1

π
(n)
k g

))
(x1, . . . , xn)µn(dx1 . . . dxn)

=
1

n

∫
Sn(t)(Π(n)g)(x1, . . . , xn)µn(dx1 . . . dxn)

=
1

n

∫
(Π(n)Sn−1(t)g)(x1, . . . , xn)µn(dx1 . . . dxn)

=

∫
(Sn−1(t)g)(x1, . . . , xn−1)µn−1(dx1 . . . dxn)

= E(n−1)
µn−1

[
g(X

(n)
1 (t), . . . , X

(n)
n−1(t))

]
. (3.3)

This concludes the proof.

3.2 Characterization of consistent configuration processes

In this section we provide a class of configuration processes exhibiting the consistency
property. We restrict ourselves to models where only one particle jumps at a time. We
further assume the jump rate to depend only on the number of particles hosted by the
departure and arrival sites. We consider here generators of the form

L :=
∑
{i,j}∈E

Li,j (3.4)

where the summation is over the set E of (non-oriented) edges {i, j} of the complete
graph with vertices V and

Li,jf(η) = ci,j(ηi, ηj)[f(ηi,j)− f(η)] + cj,i(ηj , ηi)[f(ηj,i)− f(η)]. (3.5)

with ηi,j := η− δi + δj and ci,j : Λ×Λ→ R+ being the hopping rate for a particle to jump
from site i to site j.

We then call Li,j the single-edge generator corresponding to the (non-oriented) edge
{i, j}. We will characterize the processes such that the annihiliation operator commutes
with each single edge generator. These processes are then automatically consistent.
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Theorem 3.3. Let {η(t), t ≥ 0} be a configuration process with generator (3.4)-(3.5).
We have that [Li,j ,A ] = 0 for all {i, j} ∈ E if and only if the rates are of the form:

ci,j(κ,m) = κ ·
(
θ({i, j}) ·m+ α(i, j)

)
(3.6)

for some θ : E → R and α : V 2 → R+ such that θ({i, j}) ·m+ α(i, j) ≥ 0 for all possible
values of (κ,m) ∈ Λ × Λ. As a consequence the corresponding configuration process
with rates (3.6) is consistent.

Remark 3.4. By requiring that the r.h.s. of (3.6) are rates we have implicitly assumed
they are non-negative. This implies both restrictions on the functions θ and α and on the
set Λ, i.e the allowed values of the occupations (ηi)i∈V .

PROOF. We have have to characterize the generators L such that for all i, j ∈ V

[Li,j ,A ] = 0. (3.7)

Recalling that A =
∑
x∈V ax, using the assumption that the rates only depend on the

number of particles in the departure and arrival sites (3.5), we have that

[Li,j , ax] = 0 for all x 6= i, j (3.8)

Therefore we have that (3.7) is satified if and only if for all i, j

[Li,j , ai + aj ] = 0 (3.9)

We thus impose

Li,j(ai + aj)f = (ai + aj)Li,jf (3.10)

for all functions f : Λ× Λ→ R of two variables. One one hand we have that

Li,j(ai + aj)f(κ,m) = ci,j(κ,m) [(κ− 1)f(κ− 2,m+ 1)− κf(κ− 1,m)]

+ cj,i(m,κ) [(κ+ 1)f(κ,m− 1)− κf(κ− 1,m)]

+ ci,j(κ,m) [(m+ 1)f(κ− 1,m)−mf(κ,m− 1)]

+ cj,i(m,κ) [(m− 1)f(κ+ 1,m− 2)−mf(κ,m− 1)] ; (3.11)

on the other hand

(ai + aj)Li,jf(κ,m) = κci,j(κ− 1,m) [f(κ− 2,m+ 1)− f(κ− 1,m)]

+ κcj,i(m,κ− 1) [f(κ,m− 1)− f(κ− 1,m)]

+ mci,j(κ,m− 1) [f(κ− 1,m)− f(κ,m− 1)]

+ mcj,i(m− 1, κ) [f(κ+ 1,m− 2)− f(κ,m− 1)] . (3.12)

Imposing (3.10) for all f is equivalent to imposing the following conditions for all
m,κ ∈ Λ:

ci,j(κ,m)(κ− 1) = ci,j(κ− 1,m)κ (3.13)

cj,i(m,κ)(m− 1) = cj,i(m− 1, κ)m (3.14)

and

(m+ 1)ci,j(κ,m)− κcj,i(m,κ)− κci,j(κ,m) =

= mci,j(κ,m− 1)− κcj,i(m,κ− 1)− κci,j(κ− 1,m)

(κ+ 1)cj,i(m,κ)−mci,j(κ,m)−mcj,i(m,κ) =

= κcj,i(m,κ− 1)−mci,j(κ,m− 1)−mcj,i(m− 1, κ) (3.15)
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Iterating the conditions (3.13)-(3.14) produces

ci,j(κ,m) = κ · bi,j(m), bi,j(m) := ci,j(1,m) (3.16)

cj,i(m,κ) = m · bj,i(κ), bj,i(κ) := cj,i(1, κ) (3.17)

for some functions bi,j , bj,i : Λ→ R. Inserting (3.16) and (3.17) in the conditions (3.15)
we get

bi,j(m)− bi,j(m− 1) = bj,i(κ)− bj,i(κ− 1) for all κ,m ∈ Λ (3.18)

Since the conditions (3.18) must be satisfied for all values of κ and m, the only possibility
is that there exists a constant θ = θ({i, j}) such that

bi,j(m)− bi,j(m− 1) = θ({i, j}) = bj,i(κ)− bj,i(κ− 1) for all κ,m ∈ Λ. (3.19)

Hence, iterating both for bi,j and for bj,i we deduce that there exist two constants, αi,j
and αj,i such that

bi,j(m) = θ({i, j})m+ α(i, j), bj,i(κ) = θ({i, j})κ+ α(j, i) (3.20)

Then, substituting (3.20) in (3.16)-(3.17) we obtain

ci,j(κ,m) = κ ·
(
θ({i, j}) ·m+ α(i, j)

)
(3.21)

cj,i(m,κ) = m ·
(
θ({i, j}) · κ+ α(j, i)

)
(3.22)

that concludes the proof.

Remark 3.5. The class of models with rate of the form (3.6) contains some classical
models such as symmetric partial exclusion process, independent random walkers and
symmetric inclusion process, see section 6 and 7 below. Compared to the class of
models with factorized self-duality, described in [13], the class of consistent processes
introduced in Theorem 3.3 is larger and in particular contains models which do not have
product invariant measures (namely when α(i, j) 6= α(j, i)).

3.3 Recursion relations

In this section we analyze the consequences of consistency. More precisely we
prove recursive relations that give the transition probabilities of a system with m

particles in terms of the transition probabilities for the system with m− 1 particles. As
a consequence we obtain recursive relations for time dependent factorial moments of
consistent configuration processes. Specifically, in Theorem 3.8 below, we show that
time dependent factorial moments of order m in a system with n > m particles can be
expressed in terms of m-particle transition probabilities. These recursion relations will
be particularly useful when we deal with systems having absorbing sites (cf. sections 5.1
and 5.2). In the reversible setting they are equivalent with self-duality (cf. section 4).

To prove Theorem 3.8, we state two preparatory propositions.

Proposition 3.6. Let {η(t), t ≥ 0} a consistent configuration process on a finite lattice
V , then, for all f : Ω→ R we have∑

i∈V
Eη[ηi(t)f(η(t)− δi)] =

∑
i∈V

ηiEη−δi [f(η(t))] (3.23)
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PROOF. From the commutation of the generator of the configuration process L with
the annihilation operator A , we obtain the commutation of the semigroup of the con-
figuration process S (t) = etL with A . We then remark that (3.23) can be written
as

[S (t)(A f)] (η) = [A (S (t)f)] (η)

this concludes the proof.

We define now the function

F (ξ, η) :=
∏
j∈V

(
ηj
ξj

)
, ξ, η ∈ Ω (3.24)

and prove a recursive relation for its expectation.

Proposition 3.7. Let {η(t), t ≥ 0} a consistent configuration process on a finite lattice
V then, for all η, ξ ∈ Ω such that 1 ≤ |ξ| < |η|, we have

Eη [F (ξ, η(t))] =
1

(|η| − |ξ|)
·
∑
i∈V

ηiEη−δi [F (ξ, η(t))] , ∀ t ≥ 0 . (3.25)

PROOF. We fix η, ξ ∈ Ω such that |ξ| ∈ {1, . . . , |η| − 1} and use (3.23) for the function
f = F (ξ, ·). We get

∑
i∈V

ηiEη−δi [F (ξ, η(t))] =
∑
i∈V

Eη

ηi(t)(ηi(t)− 1

ξi

) ∏
j∈V
j 6=i

(
ηj(t)

ξj

) (3.26)

The right-hand side of (3.26) is equal to

∑
i∈V

Eη

(ηi(t)− ξi) ·
∏
j∈V

(
ηj(t)

ξj

) = (|η| − |ξ|) · Eη [F (ξ, η(t))] (3.27)

Combining together (3.26) and (3.27) we obtain (3.25).

The function F (ξ, η) defined in (3.24) has a precise combinatorial meaning that
is useful to understand with the help of the coordinate notation. Let us first give
some preliminary notations. We denote by [n] the set of the first n natural numbers:
[n] := {1, . . . , n}, for n ∈ N. Then, for m ≤ n we define the set Cm,n of combinations of m
elements chosen in [n]:

Cm,n := {(i1, . . . , im) : ij ∈ [n], ∀ j ∈ [m] s.t. i1 < i2 < . . . < im} ⊂ [n]m. (3.28)

Let now I := (i1, . . . , im) be an element of [n]m, and let x ∈ Vn the vector of the positions
of n particles in V , then we denote by xI the m-uple:

xI := (xi1 , . . . , xim) ∈ Vm (3.29)

i.e. the vector of the positions of the particles with labels in I. We define, moreover the
following ordering between elements of the coordinates state spaces. For x,y ∈ ∪n∈NVn,
we say that

y ≤ x if and only if |y| ≤ |x| and ∃ I ∈ C|y|,|x| s.t. y = xI . (3.30)

For what concerns the combinatoric interpretation of F , we have that the value F (ξ, η)

is equal to the number of ways to choose, for each site i ∈ V , ξi particles out of ηi. Then,
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for any fixed particles labelling of the configuration η, i.e. for any x ∈ V|η| such that
ϕ(x) = η, we can write

F (ξ, η) =
∣∣{I ∈ C|ξ|,|η| : ϕ(xI) = ξ}

∣∣ · 1ξ≤η. (3.31)

In other words, for any fixed labelling x of particles in the configuration η, it is the
number of ways to select |ξ| particles out of |η| in such a way that the corresponding
configuration in Ω is ξ. In view of the ordering (3.30), we can also rewrite (3.31) as
follows:

F (ξ, η) =
∣∣{y ∈ V|ξ| : y ≤ x, ϕ(y) = ξ}

∣∣ · 1ξ≤η, ∀x : ϕ(x) = η (3.32)

This suggests that the term F disappears when switching from the configurations to
coordinate variables in the summations of the following type:∑

ξ∈Ωm

F (ξ, η)f(ξ) (3.33)

indeed, for any x ∈ V|η| such that ϕ(x) = η we have that (3.33) is equal to∑
ξ∈Ωm

F (ξ, ϕ(x))f(ξ) =
∑
ξ∈Ωm
ξ≤ϕ(x)

∣∣{I ∈ Cm,n : ϕ(xI) = ξ}
∣∣ · f(ξ)

=
∑
ξ∈Ωm
ξ≤ϕ(x)

∑
I∈Cm,n:
ϕ(xI)=ξ

f(ϕ(xI)) =
∑

I∈Cm,n

f(ϕ(xI)) =
∑

y∈Vm
y≤x

f(ϕ(y)). (3.34)

Theorem 3.8. Let {η(t), t ≥ 0} be a consistent configuration process on a finite lattice
V . Let x = (x1, . . . , xn) ∈ Vn, then, for all ξ ∈ Ωm with m ∈ {1, . . . , n− 1},

Eϕ(x) [F (ξ, η(t))] =
∑

I∈Cm,n

Pϕ(xI) (η(t) = ξ) . (3.35)

PROOF. Let η := ϕ(x) ∈ Ωn and ξ as in the hypothesis and define κ := n − |ξ| = n −m.
From Lemma 3.7 we have that, if κ ∈ {1, . . . , n− 1},

Eη [F (ξ, η(t))] =
1

n−m
∑
i∈V

ηiEη−δi [F (ξ, η(t))]

=
1

κ

n∑
j1=1

Eη−ϕ(xj1 ) [F (ξ, η(t))] (3.36)

Now, if n− 1 = |η − ϕ(xj1)| > m = n− κ, namely, if κ ≥ 2 this can be iterated since

Eη−ϕ(xj1 ) [F (ξ, η(t))] =
1

κ− 1

n∑
j2=1
j2 6=j1

Eη−ϕ(xj1 ,xj2 ) [F (ξ, η(t))] (3.37)

We denote by J = (j1, . . . , jκ) an element of the set Cκ,n defined in (3.28), hence, iterating
the argument used in (3.36) κ times we get:

Eη [F (ξ, η(t))] =
1

κ!

n∑
j1=1

n∑
j2=1
j2 6=j1

. . .

n∑
jκ=1

jκ /∈{j1,...,jκ−1}

Eη−ϕ(xj1 ,...,xjκ ) [F (ξ, η(t))]

=
∑

J∈Cκ,n

Eη−ϕ(xj1 ,...,xjκ ) [F (ξ, η(t))]

=
∑

J∈Cn−κ,n

Eϕ(xj1 ,...,xjn−κ ) [F (ξ, η(t))]

=
∑

J∈Cm,n

Eϕ(xJ ) [F (ξ, η(t))] (3.38)
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The theorem follows from the fact that now, for I ∈ Cm,n, |ϕ(xI)| = m = |ξ| and from the
observation that

F (ξ, η) = 1η=ξ, for |η| = |ξ| (3.39)

so that Eϕ(y) [F (ξ, η(t))] = Pϕ(y) (η(t) = ξ). This concludes the proof.

Remark 3.9. The message of Theorem 3.8 is the following. Suppose we initialize the
configuration-process {η(t), t ≥ 0} from a configuration η with |η| = n particles. Now
fix 1 ≤ m ≤ n − 1. Then (3.35) allows to compute all the factorial moments (of the
occupation numbers) of order m in terms of the transition probabilities of the process
initialized with m particles. In other words, it is possible to gain information about the
system with n particles in terms of the dynamics of m < n particles. Unfortunately the
information provided by Theorem 3.8 is not complete, in the sense that (3.35) does not
give the full distribution of the system with n particles. This is due to the fact that the
factorial-moments of order n are still missing.

We close this section with a specialization of Theorem 3.8 that will be useful later.

Definition 3.10. For a configuration process {η(t), t ≥ 0} we define an associated
random walk process {Xrw(t), t ≥ 0} which is such that when η(0) = δu then η(t) =

δXrw(t), with Xrw(0) = u.

Remark 3.11. Notice that the random walk Xrw is only associated to the configuration
process started with a single particle at time 0. Later on, in section 5 below, we will then
consider independent copies of these walks and a configuration process {ηirw(t); t ≥ 0}
associated to them via the map ϕ.

Corollary 3.12. Let {η(t), t ≥ 0} a consistent configuration process on a finite lattice V
and let x = (x1, . . . , xn) ∈ Vn, then, for all u ∈ V we have

Eϕ(x) [ηv(t)] =

n∑
j=1

Pxj (X
rw(t) = v) (3.40)

where Pu, is the path space measure of the random walk {Xrw(t), t ≥ 0} on V starting
from u ∈ V associated to the configuration process {η(t), t ≥ 0} as defined above in
Definition 3.10.

PROOF. The result immediately follows by applying Theorem 3.8 to the case ξ = δv.

4 Consistency and self-duality

In this section we show that consistency implies a form of self-duality whenever a
process admits a strictly-positive reversible measure. We start by recalling the definition
of duality (we refer to [11] for more background on duality, see also [1, 10]).

Definition 4.1. Let {Yt}t≥0, {Ŷt}t≥0 be two Markov processes with state spaces Ω and
Ω̂ and D : Ω × Ω̂ → R a bounded measurable function. The processes {Yt}t≥0, {Ŷt}t≥0

are said to be dual with respect to D if

Ey
[
D(Yt, ŷ)

]
= Êŷ

[
D(y, Ŷt)

]
(4.1)

for all y ∈ Ω, ŷ ∈ Ω̂ and t > 0. In (4.1) Ey is the expectation with respect to the law of the

process {Yt}t≥0 started at y, while Êŷ denotes expectation with respect to the law of the

process {Ŷt}t≥0 initialized at ŷ.
We say that a process is self-dual when the dual process coincides with the original

process.
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It is useful to express the duality property in terms of generators of the two processes.
If L denotes the generator of {Yt}t≥0 and L̂ denotes the generator of {Ŷt}t≥0, then
(assuming that the duality functions are in the domain of the generators), the above
definition is equivalent to LD(·, ŷ)(y) = L̂D(y, ·)(ŷ) where L acts on the first variable and
L̂ acts on the second variable. The conditions to have the equality between semigroup
duality and generator duality are further discussed in [10].

In order to prove our theorem on the relation between consistency and self-duality
we recall two general results on self-duality from [7].

a) Trivial duality function from a reversible measure.

If a Markov process {Yt : t ≥ 0} with countable state-space Ω has a strictly-positive
reversible measure ν, then the function D : Ω× Ω→ R given by

D(y, ŷ) =
δy,ŷ
ν(y)

(4.2)

is a self-duality function.

b) New duality functions via symmetries.

If D : Ω × Ω → R is a self-duality function and S is a symmetry of L (namely an
operator acting on functions f : Ω→ R commuting with L , [S,L ] = 0) then SD is
a self-duality function, where SD(y, ỹ) := SD(y, ·)(ỹ).

Lemma 4.2. Let A denote the annihilation operator defined in (2.13). For ξ, η ∈ Ω

denote by hξ(η) = δξ,η the Kronecker delta. Then we have

(eA hξ)(η) = F (ξ, η) (4.3)

with F as in (3.24).

PROOF. Recalling the definition of A =
∑
x∈V ax where ax denotes the operator a

working on the variable ηx (see (2.12)-(2.13)), in order to prove (4.3) it is sufficient to
show that for all n, k ∈ N0

eahk(n) =

(
n

k

)
(4.4)

with hk(n) = δk,n. For a function f : N0 → R we have

eaf(n) =

n∑
r=0

(
n

r

)
f(n− r).

Inserting f = hk gives (4.4).

We then obtain the following result.

Theorem 4.3. Let {η(t), t ≥ 0} be a reversible configuration process with reversible
measure ν that is strictly-positive. Then the process is consistent if and only if it is
self-dual with self-duality function

D(ξ, η) =
1

ν(ξ)
· F (ξ, η) (4.5)

with F (·, ·) as in (3.24).

PROOF. We first prove that reversibility and consistency implies that (4.5) is a self-duality
function. From reversibility we know that the function

Drev(ξ, η) =
δξ,η
ν(ξ)
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is a self-duality function. If we now act with eA on Drev in the η-variable we produce
(4.5) via Lemma 4.2. This produces a new self-duality function because, by assumption,
A is a symmetry of L .

Now we prove that reversibility and self-duality with duality function (4.5) implies
consistency. Fix η ∈ Ωn and let ξ = η − δx for some x ∈ V , then ξ ∈ Ωn−1. Then,

ν(ξ) ·D(ξ, η) = F (ξ, η) = ηx. (4.6)

Let Ln be the operators implicitly defined by (2.3). Because D is a self-duality function
and ν is a strictly-positive function on Ω, satisfying detailed balance w.r.t. L , the operator
K : En−1 → En

Kf(η) :=
∑

ξ∈Ωn−1

ν(ξ)D(ξ, η)f(ξ) =
∑

ξ∈Ωn−1

F (ξ, η)f(ξ)

intertwines between Ln and Ln−1, i.e., K(Ln−1f) = LnKf for f ∈ En−1 (see [9] for the
connection between duality functions and corresponding intertwining kernel operators).
Now, via (4.6) we obtain

Kf(η) =
∑
x

ηxf(η − δx) = A f(η)

and conclude that A (Ln−1f) = LnA f for f ∈ En−1, which is exactly the commutation
property [L ,A ] = 0. The process is thus consistent.

5 Consistency for systems with absorbing sites

In this section we study consistency for systems of interacting particles with absorbing
sites. These systems are important as they emerge as dual processes of boundary-driven
non-equilibrium systems connected to reservoirs. In Section 7 we will analyze the
consequences of consistency in the context of non-equilibrium systems.

Let {η(t), t ≥ 0} denote a configuration process with generator L . Let V ∗ ⊃ V be a
countable set of sites containing V , and call V abs := V ∗\V . We will define a configuration
process on NV

∗
as follows: inside V particles move according to the generator L , and

additionally every particle at site i moves with rate r(i, j) to a site j ∈ V abs, independently
from each other. Particles arriving at sites j ∈ V abs are absorbed and, after absorption,
do not move anymore. We thus obtain what we call the process with absorbing sites V abs

and absorption rates r(i, j). The generator of this process is given by

L absf(η) = L f(η) + H f(η) for f : NV
∗
→ R (5.1)

where L only works on the variables {ηi, i ∈ V } and where H denotes the absorption
part of the generator, i.e.,

H f(η) =
∑

i∈V,j∈V abs

r(i, j)ηi
[
f(ηi,j)− f(η)

]
with ηi,j := η − δi + δj (5.2)

We can rewrite H as follows

H =
∑

i∈V,j∈V abs

r(i, j)[aia
†
j − aia

†
i ] (5.3)

where ai is the annihilation operator at site i defined in (2.13) and a†i is the creation
operator defined via

a†if(η) = f(η + δi).

A process with generator (5.1) is called an absorbing extension of the generator L .
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Definition 5.1. Let {X(t), t ≥ 0} be a family of coordinate Markov processes on the
lattice V . Then we define its absorbing extension {Xabs(t), t ≥ 0} to the lattice V ∗ as
the family of coordinate Markov processes {Xabs,(n)(t), t ≥ 0}, n ∈ N, on (V ∗)n defined
by adding to the jumps of {X(n)(t), t ≥ 0}, n ∈ N, the additional jumps from i ∈ V to
j ∈ V abs at rate r(i, j), that particles perform independently from each other.

Define the set Ωabs of configurations on absorbing sites:

Ωabs := {ζ ∈ NV
abs

0 : ‖ζ‖ <∞}. (5.4)

We have the following lemma.

Lemma 5.2. Let {X(t), t ≥ 0} be a family of coordinate Markov processes on the
lattice V compatible with the configuration process on Ω having generator L . Then its
absorbing extension {Xabs(t), t ≥ 0} to the lattice V ∗ is compatible with the configuration
process on Ω∗ := Ω× Ωabs with generator L abs in (5.1).

PROOF. It follows immediately from the definition of absorbing extensions.
We then have the following results.

Lemma 5.3. Let {η(t), t ≥ 0} be a consistent configuration process on a lattice V , then
every absorbing extension to a lattice V ∗ ⊃ V is a consistent process.

PROOF. Let A denote the annihilation operator (2.13). We want to prove that

[L abs,A abs] = 0 for A absf(η) :=
∑
i∈V ∗

ai (5.5)

with ai as defined in (2.13). Since [L ,A ] = 0 by assumption, and as a consequence
[L ,A abs] = 0, we only have to prove that

[H ,A abs] = 0.

Using (5.3) and the fact that operators working on variables at different sites commute,
we have to show that for all i, j ∈ V ∗

[aia
†
j − aia

†
i , ai + aj ] = 0

This in turn follows from the commutation relations [ai, aj ] = 0, [ai, a
†
j ] = δi,j .

Theorem 5.4. Let {η(t), t ≥ 0} be a consistent configuration process on the lattice V ,
and let {X(t), t ≥ 0} be a family of coordinate Markov processes compatible with it.
Then its absorbing extension {Xabs(t), t ≥ 0} to V ∗ ⊃ V is consistent if started from a
consistent family {µn, n ∈ N} of probability measures on (V ∗)n, n ∈ N, which is also
permutation-invariant. Namely for all n ∈ N, g : (V ∗)n → R permutation-invariant,

E(n)
µn

[
g(X

abs,(n)
1 (t), . . . , X

abs,(n)
n−1 (t))

]
= E(n−1)

µn−1

[
g(X

abs,(n)
1 (t), . . . , X

abs,(n)
n−1 (t))

]
(5.6)

where Enµn denotes expectation w.r.t. the Markov process {Xabs,(n)(t), t ≥ 0}, started
initially with distribution µn.

PROOF. It follows from Lemma 5.2, Lemma 5.3 and Theorem 3.2.

5.1 Recursion relations for absorption probabilities

In what follows we denote by Pη(η(∞) = ζ) the probability that eventually η(t) settles
in the absorbing configuration ζ ∈ Ωabs starting from the initial configuration η ∈ Ω∗, i.e.,

Pη(η(∞) = ζ) := lim
t→∞

Pη(η(t) = ζ). (5.7)
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Similarly,
Eη[f(η(∞))] = lim

t→∞
Eη[f(η(t))]. (5.8)

Then, as a consequence of Lemma 5.3 and Theorem 3.8 we have the following
recursion relations for the absorption probabilities.

Theorem 5.5. Let {η(t), t ≥ 0} be a consistent configuration process on a finite lattice
V ∗ with generator L abs = L + H . Let x = (x1, . . . , xn) ∈ (V ∗)n, then, for all ζ ∈ Ωabs

m

with m ∈ {1, . . . , n− 1}, we have

Eϕ(x) [F (ζ, η(∞))] =
∑

I∈Cm,n

Pϕ(xI) (η(∞) = ζ) . (5.9)

The relations (5.9) express combinations of absorption probabilities from the initial
configuration ϕ(x) in terms of combinations of absorption probabilities from an initial
configuration η′ with less particles. Although these equations are not sufficient to deter-
mine the absorption probabilities in closed form, they are still considerably simplifying
the problem of computing them as they imply severe restrictions.

The following Corollary immediately follows by specializing (5.9) to the case ζ = δv
for some v ∈ V abs.

Corollary 5.6. Let {η(t), t ≥ 0} be a consistent configuration process on a finite lattice
V ∗ with generator L abs = L + H . Let x = (x1, . . . , xn) ∈ (V ∗)n, then, for all v ∈ V abs

we have

Eϕ(x) [ηv(∞)] =

n∑
j=1

Pxj (X
rw(∞) = v) (5.10)

where Pu is the path-space measure of the random walk {Xrw(t), t ≥ 0} on V ∗ starting
from u ∈ V ∗ associated to the configuration process {η(t), t ≥ 0} as in Definition 3.10.

5.2 Systems with two absorbing states

We now consider the situation in which the system contains only two absorbing
states, |V abs| = 2, say V = {1, . . . , N} and V abs = {0, N + 1}. In this case, due to the
conservation of particle number, it is sufficient to know the absorption probability in one
of the two states, say state 0. The following proposition is an immediate consequence of
Theorem 5.5.

Proposition 5.7. Let {η(t), t ≥ 0} be a consistent configuration process on the lattice
V ∗ = V ∪ V abs, V = {1, . . . , N}, V abs = {0, N + 1}, with generator L abs = L + H . Let
x = (x1, . . . , xn) ∈ (V ∗)n, then, for all m ∈ {1, . . . , n− 1}, we have

Eϕ(x)

[(
η0(∞)

m

)]
=

∑
I∈Cm,n

Pϕ(xI) (η0(∞) = m) . (5.11)

PROOF. This follows by applying Theorem 5.5 to the case ζ=mδ0, for 1≤m≤n− 1.

Remark 5.8. Notice that (5.11) can be viewed as a linear system of n− 1 independent
equations in the n + 1 variables {Pη (η0(∞) = m) , m = 0, . . . , n}. Indeed we consider
inductively the r.h.s. of (5.11) as a “known quantity” because it concerns an absorption
probability of less than n particles. For instance if n = 2 and m = 1 the r.h.s. of (5.11)
contains only the absorption probability of one particle. Complementing these with the
normalization condition

∑n
m=0Pη (η0(∞) = m) = 1 we obtain n independent equations.

This is still not sufficient to get a closed form expression for the absorption probability
(which represent n+ 1 unknowns), since one independent equation is still missing.
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Generating function method

Let {η(t), t ≥ 0} be a consistent process on the lattice V ∗ = V ∪ V abs, V = {1, . . . , N},
V abs = {0, N + 1}, with generator L abs = L + H . We define the function

G(η, z) := Eη

[
zη0(∞)

]
, η ∈ Ω∗, z ≥ 0 (5.12)

The function G(η, ·) is the probability generating function of the number of absorbed
particles at 0 starting from the configuration η. Here we define as usual G(η, 0) by
continuous extension, i.e.,

G(η, 0) := lim
z→0

G(η, z) = Pη(η0(∞) = 0)

which is equal to the probability that all the particles in η are eventually absorbed at
N + 1. We then have the following recursion relation.

Proposition 5.9. Let {η(t), t ≥ 0} be a consistent configuration process on the lattice
V ∗ = V ∪ V abs, V = {1, . . . , N}, V abs = {0, N + 1}, with generator L abs = L + H . For
all η ∈ Ω∗n we have

(1− z)G′(η, z) + nG(η, z) =
∑
i∈V ∗

ηiG(η − δi, z) (5.13)

and, as a consequence,

G(η, z) = (1− z)nG(η, 0) + (1− z)n
∑
i∈V ∗

ηi

∫ z

0

1

(1− u)n+1
G(η − δi, u)du (5.14)

PROOF. Because of commutation of the generator of the absorbing system with the
annihilation operator (2.13) we can write

lim
t→∞

Eη[(A zη0)(t)] =
∑
i∈V ∗

ηiG(η − δi, z)

which leads to

Eη[η0(∞)zη0(∞)−1] + Eη

[
(n− η0(∞))zη0(∞)

]
=
∑
i∈V ∗

ηiG(η − δi, z)

which gives (5.13). We can now “integrate” the recursion (5.13) as follows. Putting
G(η, z) = (1− z)nH(η, z) and substituting in (5.13) we find,

(1− z)n+1H ′(η, z) =
∑
i∈V ∗

ηiG(η − δi, z).

Noticing that H(η, 0) = G(η, 0), by integrating we obtain (5.14).

The recursion (5.14) can be iterated until we are left with one particle configurations
for which, in ideal situations, the generating function can be computed, as we will see in
the last section. It is crucial then to obtain a formula for the function

G (η, z) := G(η, z)−Girw(η, z) (5.15)

that is the difference between the generating function of our process {η(t), t ≥ 0} and
the generating function Girw(η, z) of the auxiliary process {ηirw(t), t ≥ 0} of independent
random walkers defined as follows. Let {Xrw(t), t ≥ 0} be the random walker on V ∗

associated to the configuration process {η(t), t ≥ 0} as in Definition 3.10. Now let
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{X irw(t), t ≥ 0} be the family of coordinate processes {X irw,(n)(t), t ≥ 0}, n ≥ 1 on (V ∗)n

whose coordinates are n independent copies of Xrw(t):

X irw,(n)(t) = (Xrw
1 (t), . . . , Xrw

n (t)), t ≥ 0.

Then we define {ηirw(t), t ≥ 0} as the configuration process compatible with {X irw(t), t ≥
0} and we denote by Pirw

η the related path-space measure conditioned to ηirw(0) = η.
It is clear that for |η| = 1, G (η, z) = 0. In the next theorem we obtain a formula for

the difference function G (η, ·) when |η| ≥ 2.

Theorem 5.10. Let {η(t), t ≥ 0} be a consistent configuration process on the lattice
V ∗ = V ∪ V abs, V = {1, . . . , N}, V abs = {0, N + 1}, with generator L abs = L + H . For
all x ∈ (V ∗)n we have

G (ϕ(x), z) =

n∑
κ=2

zn−κ(1− z)κ
∑

I∈Cκ,n

G (ϕ(xI), 0), (5.16)

with

G (η, 0) = Pη(η0(∞) = 0)− Pirw
η (η0(∞) = 0). (5.17)

PROOF. We proceed by induction on n. We first consider the case n = 2. In this case∑
i∈V ∗

ηiG(η − δi, z) =
∑
i∈V ∗

ηiG
irw(η − δi, z) (5.18)

because G(ζ, z) and Girw(ζ, z) coincide on configuration ζ with one particle. Therefore,∑
i∈V ∗

ηiG (η − δi, z) = 0 (5.19)

and we obtain from Proposition 5.9,

G (ϕ(x), z) = (1− z)2G (ϕ(x), 0) (5.20)

which is (5.16) for n = 2. Now we assume that (5.16) is true for n − 1 and prove the
induction step. First of all we notice that we can rewrite

∑
i∈V ∗

(ϕ(x))iG(ϕ(x)− δi, z) =

n∑
j=1

G(ϕ(x)− δxj , z). (5.21)

where we used that for η = ϕ(x) we have ηi =
∑n
j=1 δxj ,i and we then exchanged the

sums. Using (5.14) and the induction hypothesis we have that

1

(1− z)n
· G (ϕ(x), z)− G (ϕ(x), 0) =

n∑
j=1

∫ z

0

1

(1− u)n+1
G (ϕ(x)− δxj , u) du

=

n∑
j=1

n−1∑
κ=2

∑
J∈Cκ,n:
j /∈J

G (ϕ(xJ), 0)

∫ z

0

un−κ−1

(1− u)n−κ+1
du

Calling m = n− κ− 1, we have∫ z

0

um

(1− u)m+2
du =

∫ z

0

d

du

[ 1

m+ 1

( u

1− u

)m+1]
du

=
1

m+ 1

(
z

1− z

)m+1

(5.22)
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Hence

1

(1− z)n
· G (ϕ(x), z)− G (ϕ(x), 0)

=

n−1∑
κ=2

(
z

1− z

)n−κ
1

n− κ

n∑
j=1

∑
J∈Cκ,n:
j /∈J

G (ϕ(xJ), 0) (5.23)

Consider now

n∑
j0=1

∑
J∈Cκ,n:
j0 /∈J

G (ϕ(xJ), 0) =
1

κ!

n∑
j0=1

n∑
j1=1
j1 6=j0

. . .

n∑
jκ=1

jκ 6=j0,...jκ−1

G (ϕ(xj1 , . . . , xjκ), 0)

=
1

κ!

n∑
j1=1

n∑
j2=1
j2 6=j1

. . .

n∑
jκ=1

jκ 6=j1,...jκ−1

n∑
j0=1

j0 6=j1,...jκ

G (ϕ(xj1 , . . . , xjκ), 0)

=
n− κ
κ!

n∑
j1=1

n∑
j2=1
j2 6=j1

. . .

n∑
jκ=1

jκ 6=j1,...jκ−1

G (ϕ(xj1 , . . . , xjκ), 0)

= (n− κ)
∑

J∈Cκ,n

G (ϕ(xJ), 0)

Thus, from (5.23) we get

1

(1− z)n
· G (ϕ(x), z)− G (ϕ(x), 0) =

n−1∑
κ=2

(
z

1− z

)n−κ ∑
J∈Cκ,n

G (ϕ(xJ), 0) (5.24)

that concludes the proof.

6 A class of consistent processes

In this section we consider a natural class of consistent configuration processes
{η(t), t ≥ 0}. These can be obtained, with a certain choice of the parameters, as
particular cases of the more general class of processes produced in the characterization
Theorem 3.3. These processes do not constitute the entire class of processes exibithing
the consistency property. Nevertheless they are paradigmatic examples within this class,
as they are well known in the literature. The processes we consider are of three types:
partial exclusion processes, inclusion processes and independent random walkers. For
the sake of synthesis we formally define a unique generator and let this be parametrized
by a constant θ ∈ R tuning the attractive or repulsive nature of particle-interaction. The
generator is given by

Lθf(η) :=
∑
i,j∈V

p(i, j) ηi(1 + θηj)[f(ηi,j)− f(η)] (6.1)

acting on functions f : Ωθ → R, with Ωθ to be defined. Here V is a finite set, p : V ×V → R

is a symmetric function: p(i, j) = p(j, i) and ηi,j := η − δi + δj .
Remark that if the configuration contains only one particle then this particle moves

according to a continuous-time random walk jumping from i to j at rate p(i, j), which is
not depending on the interaction parameter θ. The parameter θ ∈ R can also be negative,
under the condition that 1

|θ| is integer: θ ∈ R+∪{α < 0 : −1/α ∈ N} and, according to its

sign we recover one of three cases: the partial symmetric exclusion-process SEP(1/|θ|),
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the symmetric inclusion process SIP(1/θ), and the independent-random-walkers process
IRW:

Lθ =


L irw for θ = 0

θL SIP(1/θ) for θ > 0

|θ|L SEP(1/|θ|) for θ < 0, 1
|θ| ∈ N

(6.2)

Also the state space Ωθ where configurations η live changes according to the choice of θ,
we have:

Ωθ = ΛVθ , with Λθ =

{
N for θ ≥ 0

{1, 2, . . . , 1
|θ|} for θ < 0, 1

|θ| ∈ N
(6.3)

These processes have been introduced in [7] and broadly studied due to their algebraic
properties. In [7] it has been proved that [L ,A ] = 0 where A is the annihilation
operator defined in (2.13). Notice that it is possible to rewrite the generator as

Lθf(η) :=
∑
{i,j}∈E

p({i, j}) Lθ,i,jf(η) (6.4)

where now the summation is over the edges {i, j} ∈ E of the complete graph with
vertices V and

Lθ,i,jf(η) = ηi(1 + θηj)[f(ηi,j)− f(η)] + ηj(1 + θηi)[f(ηj,i)− f(η)]. (6.5)

It is possible to verify that the commutation relation with the annihilation operator holds
true at the level of each bond, namely [Lθ,i,j ,A ] = 0 for all i, j ∈ V .

In [7, 1] the reversible measures of these processes have been identified, together
with their duality properties. The processes admit an infinite family of reversible
homogeneous product measures νρ,θ on Ωθ labelled by the density parameter ρ :=

〈ηi〉νρ,θ > 0, i ∈ V , with marginals

νρ,θ(ηi = n) =
ρn

n!
·



e−ρ for θ = 0

(1 + θρ)−n−
1
θ · θn · (1/θ)(n) for θ > 0

(1 + θρ)−n−
1
θ · |θ|n · (1/|θ|)n for θ < 0 and − 1/θ ∈ N

(6.6)

where (a)(n) and (a)n are the Pochhammer symbols for rising and falling factorials:

(a)(n) :=
Γ(a+ n)

Γ(a)
and (a)n :=

Γ(a+ 1)

Γ(a+ 1− n)
(6.7)

In other words, the reversible homogeneous measures is a product of Poisson distribu-
tions if θ = 0, a product of Negative-Binomial distributions if θ > 0 and a product of
Binomial distributions if θ < 0 and − 1/θ ∈ N. Hence, from Theorem 4.3, the processes
are self-dual with duality functions of the form D(ξ, η) = F (ξ, η)/νρ(ξ) with F as in
(3.24) (modulo a factor that depends on the total number of dual particles |ξ| which is a
conserved quantity for the dual dynamics). More precisely, the self-duality functions are
given by [7]

Dθ(ξ, η) =
∏
i∈V

dθ(ξi, ηi), with dθ(k, n) =
n!

(n− k)!
·



1 for θ = 0

1
(1/θ)(k)

for θ > 0

1
(1/|θ|)k

for θ < 0, 1
|θ| ∈ N

(6.8)
From consistency we know that for the processes with generator (6.1) Theorem 3.8

holds true.
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6.1 Adding absorbing sites

Let now V ∗ = V ∪ V abs ⊆ Zd with V abs a finite set of absorbing sites. Define
L abs
θ := Lθ + H with Lθ as in (6.1) and H as in (5.2):

L abs
θ f(η) :=

∑
i,j∈V

p(i, j) ηi(1 + θηj)[f(ηi,j)− f(η)] +
∑

i∈V,j∈V abs

r(i, j) ηi
[
f(ηi,j)− f(η)

]
.

(6.9)
From Lemma 5.3 we know that [L abs

θ ,A abs] = 0, and as a consequence for these
processes we can apply Theorem 5.5 when studying their absorption probabilities.

6.2 Adding reservoirs

We now add to the bulk generator (6.1) additional terms describing the action of
external reservoirs, each acting on one of the sites of a subset V ext ⊆ V . The generator
has the following form:

L res
θ f(η) =

∑
i,j∈V

p(i, j) ηi(1 + θηj)[f(ηi,j)− f(η)] (6.10)

+
∑
i∈V ext

c(i) {ρi(1 + θηi)[f(η + δi)− f(η)] + (1 + θρi)ηi[f(η − δi)− f(η)]} .

for some ρ, c : V ext → [0,+∞). Particles are injected and removed from the system
through the sites i ∈ V ext (which we call the sites coupled to reservoirs) via additional
birth-and-death processes. Here c(i) is the global rate at which the external reservoirs
acts on the site i and ρi is the density imposed by the reservoir on that site. This means
that the birth-and-death process at site i ∈ V ext has νρi,θ as stationary measure, where
we recall that the single-site measure νρ,θ was defined in (6.6). In particular if the
densities of all reservoirs are equal, i.e. ρi = ρ for all i ∈ V ext, then the process with
generator (6.10) is reversible with respect to the product measure ⊗i∈V νρ,θ, which is
called the “equilibrium state” in statistical physics. In all other cases, we have that the
system has a stationary state which is called the “non-equilibrium steady state”, with
non-trivial correlations as soon as θ 6= 0. In order to avoid uninteresting degenerate
cases, we will always choose p(i, j) and c(i) in such a way that there exists a unique
stationary measure, which we denote by µst

θ .
The rates of the birth-and-death processes modeling the reservoirs preserve the

duality property. Indeed, in [1] we proved that the process with generator (6.10) is dual
to a system with absorbing sites, i.e. generated by (6.9). Here the set of absorbing site
V abs is a “copy” of V ext, i.e., such that |V abs| = |V ext| and the rates r(·, ·) of the absorbing
part of the generator (6.9) are given by:

r(i, j) = 1i∈V ext,j=i∗ · c(i)

where ∗ is a bijection ∗ : V ext → V abs that assigns to each site i ∈ V ext a corresponding
absorbing site i∗ ∈ V abs. From now on we will denote by {η(t), t ≥ 0} the process with
reservoirs with generator (6.10) and state space Ωθ = ΛVθ (as in (6.3)) and by {ξ(t), t ≥ 0}
the dual process with absorbing sites and with generator:

L Dual
θ f(ξ) :=

∑
i,j∈V

p(i, j) ξi(1 + θξj)[f(ξi,j)− f(ξ)] +
∑
i∈V ext

c(i) ξi

[
f(ξi,i

∗
)− f(ξ)

]
(6.11)

and state space Ω∗θ = ΛV
∗

θ , V ∗ = V ∪ V abs. The duality function D̂θ : Ω∗θ × Ωθ → R

between the two processes is the following:

D̂θ(ξ, η) =
∏
i∈V

dθ(ξi, ηi) ·
∏

i∈V abs

ρξii = Dθ(ξ, η) ·
∏

i∈V abs

ρξii (6.12)
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with d as in (6.8) and where we extend the definition of density function ρ to the absorbing
sites, ρ : V ext ∪ V abs, by identifying: ρi = ρi∗ . See [1] for a proof of the duality relation.

An important consequence of the duality property is the information that it gives
about the non-equilibrium stationary measure µst

θ of the process generated by (6.10).
Indeed, the expectations of duality functions under µst

θ can be expressed in terms of the
absorption probabilities of the dual process. The key relation is∫

D̂θ(ξ, η)µst
θ (dη) = Eξ

[ ∏
i∈V abs

ρ
ξi(∞)
i

]
(6.13)

which is obtained from the duality relation by taking the limit as time goes to infinity,
and using that asymptotically the dual process voids all the sites i ∈ V implying that
Dθ(ξ(∞), η) = 1. Notice that now, thanks to the consistency property of the dual process
{ξ(t), t ≥ 0}, we can apply Theorem 5.5 to get information about the moments in (6.13).
In the next section we specialize to the case of two reservoirs (and then two dual
absorbing sites) for which we can use the generating-function method developed in
Section 5.2.

We remark that independently of the value of the parameter θ, if the dual configuration
ξ =

∑n
i=1 δxi where all xi are mutually different elements of V , then

D̂θ(ξ, η) =

n∏
i=1

ηxi (6.14)

In particular, when the dual process is initialized with only one particle, then this particle
will move as a symmetric random walk. As a consequence we have for all x ∈ V

Eµst
θ
(ηx) =

∫
D̂θ(δx, η)µst

θ (dη) =
∑

y∈V abs

ρyq(x, y) (6.15)

where q(x, y) is the probability for the walker starting at x to be absorbed at y eventually:

q(x, y) := Px(Xrw(∞) = y) (6.16)

In the case θ = 0 the process with generator (6.10) is made of independent walkers
with reservoirs, and the dual process is made of independent walkers absorbed at the
absorbing sites. In such a case one can show by duality that the non-equilibrium steady
state is an inhomogeneous product of Poisson measures with parameters given by the
local density (6.15). See [1] for a proof in the case with two reservoirs.

6.3 Instantaneous thermalization models

Another class of models sharing the consistency property is the class of processes
obtained as the “instantaneous thermalization limit” of the processes defined in (6.1)
which we now briefly recall. An important example in this class is the dual KMP model,
see [1, 12]. An instantaneous thermalization process gives rise, for each couple of
nearest neighbouring sites, to an instantaneous redistribution of the total number of
particles. For each bond, the total number of particles in that bond ηi+ηj is redistributed
according to the stationary measure of the original process at equilibrium on that
bond, conditioned to the conservation of ηi + ηj . The generators of the instantaneous
thermalization processes can thus be defined by

L th
θ f(η) :=

∑
{i,j}∈E

p(i, j)L th
θ,i,jf(η) with L th

θ,i,j := lim
t→∞

(
etLθ,i,j − 1

)
f (6.17)
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with Lθ,i,j as in (6.5). Since we have that the commutation [Lθ,i,j ,A ] = 0 for all i, j ∈ V ,
it follows that also L th

θ,i,j commutes with A and then the thermalized models (6.17) are

also consistent, namely [L th
θ ,A ] = 0. A more explicit expression of the generator is

given by:

L th
θ,i,j :=

ηi+ηj∑
m=0

[f(ηi,j,m)− f(η)] · ν̄θ(m | ηi + ηj) (6.18)

where

ηi,j,mk :=


ηk for k 6= i, j

m for k = i

ηi + ηj −m for k = j

(6.19)

and ν̄θ(m |M) := νθ,ρ(ηi = m | ηi + ηj = M) with νθ,ρ the reversible measure defined in
(6.6). The process (6.18) is self-dual with duality function (6.8) (see Section 5 of [1]).

Also for the instantaneous thermalization models it is possible to add absorbing
boundaries in such a way to preserve the consistency property, and also in this case
there is duality with the system with absorbing boundaries and a system with reservoirs
(if the action of reservoirs is properly chosen, see [1]).

In the next section we use consistency to obtain an expression for the n-points
stationary correlation function for the system with reservoirs (6.10) in a specific setting.
This result can be easily extended to the thermalized models with reservoirs, since, as
we have seen here, they share the same commutation property and as a consequence
consistency property.

7 Correlation functions in non-equilibrium steady states

Here we consider processes in the class of models introduced in the previous section,
and, as in Section 5.2, we restrict to the case where V = {1, . . . , N}, with V ext = {1, N}
and V abs = {0, N + 1}. In the spirit of the previous section we assign to each site coupled
to a reservoir an absorbing site, namely we say that 1∗ = 0 and N∗ = N + 1. Then we
denote by {η(t), t ≥ 0} on Ωθ the process with generator:

L res
θ f(η) =

∑
i,j∈V

p(i, j) ηi(1 + θηj)[f(ηi,j)− f(η)] (7.1)

+ c` {ρ`(1 + θη1)[f(η + δ1)− f(η)] + (1 + θρ`)η1[f(η − δ1)− f(η)]} .
+ cr {ρr(1 + θηN )[f(η + δN )− f(η)] + (1 + θρr)ηN [f(η − δN )− f(η)]} .

for some c`, cr, ρ`, ρr ≥ 0, and by {ξ(t), t ≥ 0} its dual process with state space Ω∗θ and
generator:

L Dual
θ f(ξ) :=

∑
i,j∈V

p(i, j) ξi(1 + θξj)[f(ξi,j)− f(ξ)]

+ c` ξ1
[
f(ξ1,0)− f(ξ)

]
+ cr ξN

[
f(ξN,N+1)− f(ξ)

]
(7.2)

with duality function given by

D̂θ(ξ, η) = ρξ0` ·Dθ(ξ, η) · ρξN+1
r . (7.3)

Hence, the formula for the non-equilibrium stationary state (6.13) becomes:∫
D̂θ(ξ, η)µst

θ (dη) = ρ|ξ|r · Eξ

[(
ρ`
ρr

)ξ0(∞)
]

= ρ|ξ|r ·G
(
ξ,
ρ`
ρr

)
(7.4)
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where G(ξ, ·) is the generating-function defined in Section 5.2, equation (5.12). The
following theorem then follows by combining (7.4) with Theorem 5.10 and expresses
the difference between the expectations of the duality functions in the non-equilibrium
stationary measure and their non-interacting counterparts in terms of the probabilities
of κ dual particles being all absorbed at one end.

Theorem 7.1. Let x ∈ Vn, with n ≥ 2, then∫
D̂θ(ϕ(x), η)µst

θ (dη)−
∫
D̂0(ϕ(x), η)µst

0 (dη) =

n∑
κ=2

γκ(x) · (ρr − ρ`)κ ρn−κ` (7.5)

with

γκ(x) :=
∑

y∈Cκ(x)

G (ϕ(y), 0)

G (ξ, 0) = Pξ(ξ0(∞) = 0)− Pirw
ξ (ξ0(∞) = 0) (7.6)

and
Cκ(x) = {(xi1 , . . . , xiκ) : (i1, . . . , iκ) ∈ Cκ,n} (7.7)

The following corollary of Theorem 7.1 specializes to expectations of products of
occupation numbers at different sites in the non-equilibrium steady state.

Corollary 7.2. For every x = (x1, . . . , xn) ∈ Vn such that xi 6= xj for all i, j ∈ {1, . . . , n},
i 6= j, we have

Eµst
θ

[ n∏
i=1

ηxi

]
−

n∏
i=1

Eµst
θ

[ηxi ] =

n∑
κ=2

γκ(x) · (ρr − ρ`)κ ρn−κ` (7.8)

where Eµst
θ

[ηx] =
∑
y∈ ρy q(x, y) with q(·, ·) as in (6.16) and γκ(x) as in (7.6).

PROOF. Using (6.15), (6.14) and Theorem 7.1, we have for all θ∫
D̂θ(ϕ(x), η)µst

θ (dη) = Eµst
θ

[ n∏
i=1

ηxi

]
(7.9)

and then, in particular, for θ = 0, from the product-nature of µst
0 we have∫

D̂0(ϕ(x), η)µst
0 (dη) =

n∏
i=1

Eµst
0

[ηxi ] (7.10)

This concludes the proof.

Remark 7.3. Specializing the corollary to n = 2 we obtain information on the covariance.
We see that the explicit dependence on the boundary densities ρ` and ρr that turns out
to be a quadratic function of their difference: for x 6= y,

covµst
θ
(ηx, ηy) := Eµst

θ
[ηxηy]− Eµst

θ
[ηx] · Eµst

θ
[ηy]

= (ρr − ρ`)2 · G (δx + δy, 0)

= (ρr − ρ`)2 ·
(
Pδx+δy (ξ0(∞) = 0)− Pirw

δx+δy (ξ0(∞) = 0)
)
. (7.11)

The covariance is exactly quadratic in (ρ` − ρr) with a multiplying factor (i.e. the
difference of the two absorption probabilities above) not depending on ρ` and ρr. This
multiplying factor is non-positive for exclusion particles, θ < 0 (by Liggett’s inequality
[11], chapter 8) and non-negative for inclusion particles, θ > 0 (by the analogue of
Ligget’s inequality from [8]).
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7.1 Examples

In this section we consider three concrete examples where the non-equilibrium steady
state expectations are known in closed form, and we explicitly verify the recursion (5.14).

We restrict to the situation where V = {1, . . . , N} is a a one-dimensional chain and
particles jump only to nearest neigbors, and interact (in a symmetric way) only if sitting
in neighboring sites. More precisely we choose the function p(·, ·) in (7.1) and (7.2) as

p(i, j) = 1j=i±1 (7.12)

Moreover we choose the reservoirs clocks to have rates 1:

c` = cr = 1 (7.13)

Independent walkers (case θ = 0)

In this case the absorption probabilities of the dual-process:

L Dual
0 f(ξ) :=

N∑
i=1

ξi[f(ξi,i+1)− 2f(ξ) + f(ξi,i−1)]

can be explicitly computed and are determined by the single-walker absorption probabil-
ities which are given by:

q+
x := q(x,N + 1) = Px(Xrw(∞) = N + 1) =

x

N + 1
, x ∈ {0, 1, . . . , N + 1}. (7.14)

Here Px is the probability law of the random walker {Xrw(t), t ≥ 0} on V ∗ = {0, 1, . . . , N+

1}, starting from x ∈ V ∗, with rate-one nearest-neighbour jumps and with {0, N + 1}
absorbing states.

If we now consider the corresponding system with reservoirs:

L res
0 f(η) =

N−1∑
i=1

ηi[f(ηi,i+1)− f(η)] +

N∑
i=2

ηi[f(ηi,i−1)− f(η)] (7.15)

+ {ρ`[f(η + δ1)− f(η)] + η1[f(η − δ1)− f(η)]}
+ {ρr[f(η + δN )− f(η)] + ηN [f(η − δN )− f(η)]}

we have that the stationary measure µst
0 is a non-homogeneous product measure with

Poisson-distributed marginals:

µst
0 ∼ ⊗Nx=1Pois

(
ρ` + (ρr − ρ`)q+

x

)
(7.16)

with q+
x as in (7.14).

Notice that in this case, since we can easily compute the generating function Girw(·, ·),
it is possible to directly verify the recursion relation (5.13). For ξ ∈ Ω∗ we have

Girw(ξ, z) =

N+1∏
i=0

(
z
(
1− q+

i

)
+ q+

i

)ξi
.
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As a consequence,

(1− z) d

dz
Girw(ξ, z) =

= (1− z)
N+1∑
j=0

{
ξj(1− q+

j )
(
z(1− q+

j ) + q+
j

)ξj−1
N+1∏
i=0
i 6=j

(
z(1− q+

i ) + q+
i

)ξi}

=

N∑
j=1

{
ξj
(
−z
(
1− q+

j

)
− q+

j + 1
) (
z
(
1− q+

j

)
+ q+

j

)ξj−1
N∏
i=1
i 6=j

(
z(1− q+

i ) + q+
i

)ξi
)

}

= −|ξ|Girw(ξ, z) +

N+1∑
j=0

ξjG
irw(ξ − δj , z)

and then (5.13) is satisfied. Since we explicitly know both the generating function
Girw(·, ·) and the stationary measure (7.16), it is possible to verify a posteriory the duality
relation (7.4). It is also possible to verify that, by iterating the recursion relation in its
integrated form (5.14) one can recover the generating function Girw(ξ, z) starting from
the knowledge of Girw(ξ, 0).

Remark 7.4. As a further application of the recursion (5.13) in the same spirit, one can
easily show by induction that if the probabilities for all the particles to be absorbed
at zero factorize, i.e., if G(ξ, 0) =

∏
iG(δi, 0)ξi for all ξ, then the generating function

factorizes, i.e., G(ξ, z) =
∏
iG(δi, z)

ξi and as a consequence the system has a product
invariant non-equilibrium stationary measure µst

0 .

Interacting walkers (case θ 6= 0)

For the interacting case, we consider two special cases. The first example is the simple
exclusion process. This is the only interacting model in the class for which there is a full
knowledge of the n-points correlation functions. The second example is a special case of
the inclusion process for which an exact formula is known for the two-point correlations
[6].

For the interacting case, specialized to nearest neighbor jumps and rate 1 reservoirs,
the process has generator

L res
θ f(η) =

N−1∑
i=1

ηi(1 + θηi+1)[f(ηi,i+1)− f(η)] +

N∑
i=2

ηi(1 + θηi−1)[f(ηi,i−1)− f(η)]

+ {ρ`(1 + θη1)[f(η + δ1)− f(η)] + (1 + θρ`)η1[f(η − δ1)− f(η)]}
+ {ρr(1 + θηN )[f(η + δN )− f(η)] + (1 + θρr)ηN [f(η − δN )− f(η)]}

Simple exclusion process (case θ = −1)

For exclusion process the matrix product ansatz gives an algebraic procedure to calculate
all correlation functions. This provides a recursion relation for the correlation functions
(formula (A.7) in [3]) that reads

EN

µst [ηx1
ηx2

. . . ηxm ] = (ρ` − ρr)
(

1− xm
N + 1

)
EN−1

µst [ηx1
ηx2

. . . ηxm−1
]

+ ρr E
N

µst [ηx1
ηx2

. . . ηxm−1
] (7.17)

where EN

µst denotes expectation in the non-equilibrium steady states of a system of size
N and µst = µst

−1. In this section we fix ξ ∈ Ωm, with ξ = ϕ(x), and x = (x1, . . . , xm) with
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1 ≤ x1 < x2 < . . . < xm ≤ N and denote by q(N)

ξ (k) the absorption probabilities:

q(N)

ξ (k) := Pξ(ξ0(∞) = k), k ∈ {0, 1, . . . ,m} (7.18)

in a system of size N . Duality yields

EN

µst [ηx1
ηx2

. . . ηxm ] = ρmr

m∑
k=0

(
ρ`
ρr

)k
q(N)

ξ (k) (7.19)

Inserting (7.19) in (7.17) the principle of identity of polynomials turns the recurrence
relation for the correlation functions into a recurrence relation for the absorption
probabilities:

q(N)

ξ (k) = 1k 6=0 · q(N−1)

ξ−δxm
(k − 1) · q(N)

δxm
(1) + 1k 6=m ·

[
q(N)

ξ−δxm
(k)− q(N−1)

ξ−δxm
(k) · q(N)

δxm
(1)
]

(7.20)

where k ∈ {0, 1, 2, . . . ,m}. Introducing the generating function

G(N)(ξ, z) =

m∑
k=0

zk q(N)

ξ (k) (7.21)

the recursion relation of the absorption probabilities (7.20) implies the recursion relation
for the generating function

G(N)(ξ, z) = (z − 1) q(N)

δxm
(1) ·G(N−1)(ξ − ϕ(xm), z) +G(N)(ξ − ϕ(xm), z) (7.22)

Clearly, if m = 1, namely ξ = δx = ϕ(x) for some x ∈ V we have

G(N)(ϕ(x), z) =
x

N + 1
+
(

1− x

N + 1

)
z (7.23)

Thus for the exclusion process the probability generating function for the number of
particles absorbed at zero can be computed by iterating (7.22).

For m = 2 and x < y the recurrence (7.22) gives

G(N)(ϕ(x, y), z) = (z − 1) q(N)

δy
(1) ·G(N−1)(ϕ(x), z) +G(N)(ϕ(x), z) (7.24)

Using (7.23) we get

G(N)(ϕ(x, y), z) = (z − 1)
(

1− y

N + 1

)[ x
N

+
(

1− x

N

)
z
]

+
x

N + 1
+
(

1− x

N + 1

)
z (7.25)

and one can check that this expression satisfies (5.13) with m = 2, i.e.

(1− z) d
dz
G(N)(ϕ(x, y), z) + 2G(N)(ϕ(x, y), z) = G(N)(ϕ(x), z) +G(N)(ϕ(y), z) (7.26)

For m = 3 and x < y < u the recurrence (7.22) gives

G(N)(ϕ(x, y, u), z) = (z − 1) q(N)

δu
(1) ·G(N−1)(ϕ(x, y), z) +G(N)(ϕ(x, y), z)

Using (7.25) we get

G(N)(ϕ(x, y, u), z) = (z − 1)2
(

1− u

N + 1

)(
1− y

N

)[ x

N − 1
+
(

1− x

N − 1

)
z
]

+ (z − 1)
(

2− u+ y

N + 1

)[ x
N

+
(

1− x

N

)
z
]

+
x

N + 1
+
(

1− x

N + 1

)
z (7.27)

One can check that this expression satisfies (5.13) with m = 3, i.e.

(1− z) d

dz
G(N)(ϕ(x, y, u), z) + 3G(N)(ϕ(x, y, u), z)

= G(N)(ϕ(x, y), z) +G(N)(ϕ(y, u), z) +G(N)(ϕ(u, y), z) (7.28)
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Inclusion process with θ = 2

For the inclusion process SIP(2) we can verify (5.13) for the case m = 2 using the results
in Section 5 of [6]. Writing out

G(ϕ(x, y), z) = qϕ(x,y)(0) + zqϕ(x,y)(1) + z2qϕ(x,y)(2) (7.29)

we see that (5.13) is equivalent to

2qϕ(x,y)(0) + qϕ(x,y)(1) =
x+ y

N + 1
(7.30)

From Eq. (5.6) in [6] giving the two-point correlation function for the Brownian Energy
process with reservoirs, and using the fact that the inclusion process with absorbing
boundaries (see eq. (3.2) in [6]) is dual to it, we can read off the absorption probabilities
as:

qϕ(x,y)(0) =
x(2 + y)

(N + 1)(N + 3)
(7.31)

and

qϕ(x,y)(1) = 1−
(

1− x

N + 3

)(
1− y

N + 1

)
− x(2 + y)

(N + 1)(N + 3)
(7.32)

Thus equation (7.30) is verified.
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