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Abstract

In this work we derive limit theorems for trawl processes. First, we study the
asymptotic behavior of the partial sums of the discretized trawl process (Xi∆n)

bntc−1
i=0 ,

under the assumption that as n ↑ ∞, ∆n ↓ 0 and n∆n → µ ∈ [0,+∞]. Second, we
prove a general result on functional convergence in distribution of trawl processes. As
an application of this result, we show that a trawl process whose Lévy measure tends
to infinity converges in distribution, under suitable rescaling, to a Gaussian moving
average process.
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1 Introduction

In this paper, we study probabilistic limit theorems for a class of stationary infinitely
divisible stochastic processes called trawl processes, which were introduced for the
first time in 2011 by Barndorff-Nielsen [2]. By construction, a trawl process allows
for both a very flexible autocorrelation structure and the possibility of generating any
kind of marginal distribution within the class of infinitely divisible distributions. Often
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Limit theorems for trawl processes

the marginal distribution is chosen among infinitely divisible distributions on positive
integers, with a view to applying the process as a model of serially correlated temporal
count data, although in general such an assumption is not necessary.

Barndorff-Nielsen et al. [5] provide the first systematic study of trawl processes,
investigating their probabilistic properties and analyzing volatility modulation within
this framework. A distinctive feature of the class of trawl processes is that it allows
to model independently its correlation structure from its marginal distribution. More
specifically, if L denotes a homogeneous Lévy basis on R2 (see Section 2), and A =

{(r, y) : r ≤ 0, 0 ≤ y ≤ a(−r)} where a : R+ → R+ is a non-increasing integrable function,
then Xt := L(At), t ∈ R, where At := A+ (t, 0), is termed as trawl process. Under this
framework, L determines the distribution of Xt while the autocorrelation function of X
is described by the so-called trawl function a via the relation

ρX(h) =

∫∞
h
a(s)ds∫∞

0
a(s)ds

, h ≥ 0.

This expression reveals that if high-frequency observations of X, say (X∆nk)k=0,1,...,n, are
available, then inference on a can be done through the sample autocovariance function
which, as it is well known, consists of a quadratic and a linear functional of X. Motivated
by this, during the first part of this paper we focus on the linear component of the sample
autocovariance function, i.e. we study the asymptotic behavior of the (centered) partial
sums

Sn =

( bntc−1∑
k=0

(X∆nk − E(X∆nk))

)
t≥0

,

where (∆n)n∈N is a sequence of non-negative constants such that ∆n ↓ 0 and n∆n →
µ ∈ [0,+∞] as n ↑ ∞. The limiting behavior of this functional depends on the value of µ.
Thus, we divide our analysis in three different scenarios, namely 0 < µ <∞, µ = 0, and
µ = +∞. When 0 < µ <∞ we obtain that the above functional becomes a Riemann sum
and thus we derive a functional convergence in probability to

∫ tµ
0

(Xs − E(Xs))ds. In the
case µ = 0, it turns out that the behavior of Sn depends on the increments of X around
0. Based on this, we show that Sn, after centering and properly rescaling, converges
stably to certain stochastic integral driven by a Lévy process. Lastly, when µ = +∞
the limit depends on whether the trawl process X has short or long memory. Under
short memory, we show that, when properly scaled, Sn converges to a Brownian motion.
In contrast, when X exhibits long memory we have to further distinguish whether the
Gaussian component of the trawl process is present or not. If the Gaussian component is
present, then Sn under proper scaling converges towards a fractional Brownian motion
with Hurst parameter H > 1/2. Interestingly, if the Gaussian component is absent,
the limit is no longer Gaussian and the rate of convergence of Sn is governed by the
Blumenthal-Getoor index of the trawl process. We note that these findings agree with
those obtained by Grahovac et al. [13] on superpositions of Ornstein-Uhlenbeck type
processes.

Our second main result is a general functional limit theorem for trawl processes in
terms of the characteristic triplets of their Lévy seeds. As an application of the general
result, we establish a link between trawl processes and stationary Gaussian processes. In
particular, we show that the sequence of scaled trawl processes converges in distribution,
as their Lévy measures tend to infinity, to a limiting process which admits a Gaussian
moving average representation. Note that this result gives an insight on the modeling
set-up introduced by Márquez and Schmiegel [18]. In this work the authors proposed
to use a (conditionally) Gaussian moving average to describe the main component of a
turbulent velocity field while assuming that the energy dissipation can be represented
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Limit theorems for trawl processes

by a trawl process. What is remarkable about this model, and very much in line with our
results, is that these two physical quantities are function of each other, i.e. the energy
dissipation is a function of the velocity field and vice versa.

Since article [5] appeared, there has been an increasing interest in trawl processes,
covering a wide range of issues ranging from applications to theoretical investigations,
and for the convenience of the reader we provide here a brief review of the recent
literature on these processes.

Prior to the present paper, several limit theorems for trawl processes have been de-
rived. Doukhan et al. [10] characterize a class of discrete time stationary trawl processes
and study the functional limits of their partial sums. Grahovac et al. [14] investigate the
intermittency property of trawl process, while Paulauskas [20] investigates trawl pro-
cesses (and general linear processes) with tapered innovations. Additionally, Talarczyk
and Treszczotko [28] study limit theorems for integrated trawl processes with symmetric
Lévy bases.

In a more applied realm, Noven et al. [19] develop a latent trawl process model for
extreme values and apply it to environmental time series. This work is extended by
Courgeau and Veraart [9], who derive an asymptotic theory for inference on the latent
trawl model for extreme values. Further work in the direction of extreme values has been
done by Bacro et al. [1], who propose hierarchical space-time modelling of asymptotically
independent exceedances based on a space-time extension of the trawl process and
apply their model to precipitation data. In finance, Shephard and Yang [27] and Veraart
[31] adapt the trawl process to provide a coherent statistical model of high-frequency
data, the latter considering multivariate trawl processes, while the suitability of trawl
processes for the modeling of high-frequency data is further corroborated by the results
of Rossi and Santucci de Magistris [23].

With regards to estimation methodology for trawl processes, in addition to the
aforementioned works [1, 5, 9, 19, 27], Doukhan [11] introduces spectral estimation for
non-linear long range dependent discrete time trawl processes, and Shephard and Yang
[26] develop likelihood inference for exponential-trawl processes.

The paper is structured as follows. Section 2 lays out the notation used throughout
the paper and discusses some essential preliminaries. In Sections 3 and 4 we formulate
the main results of the paper, concerning the asymptotics of partials sums of trawl
processes and the convergence of a sequence of trawl processes to a Gaussian moving
average, respectively. For the sake of ease of exposition, we defer the proofs of these
results to the end of the paper, namely to Section 5.

2 Preliminaries

In this section, we introduce the basic notations and recall several basic results and
concepts that will be used throughout this paper.

2.1 Functions of regular variation

A function g : R+ → R+ is said to be regularly varying at ∞ with index α ∈ R if as
t→∞

g(tx)

g(t)
→ x−α, ∀x > 0.

In this case we will write g ∈ RV∞α . If we replace t → ∞ by t → 0+ in the previous
equation, then g is called regularly varying at 0 and in this case we denote this as
g ∈ RV0

α. If, in the previous definitions, α = 0, then we will refer to g as slowly varying.
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It is well known that if g ∈ RV∞0 , then as x→∞

g(x)xε →

{
+∞ if ε > 0;

0 if ε < 0.

One of the key results for functions of regular variation is the Karamata’s Theorem
(KT for short) which states that, if g ∈ RV∞α and locally bounded in [x0,+∞), then the
following limit results hold:

1. If ρ ≥ α− 1, then

1

xρ+1g(x)

∫ x

x0

g(s)sρds→ 1

ρ− α+ 1
, x→∞,

2. For every ρ < α− 1, we have that

1

xρ+1g(x)

∫ ∞
x

g(s)sρds→ 1

α− 1− ρ
, x→∞.

For a complete exposition on the basic properties of functions of regular variation we
refer the reader to [7].

2.2 Stable convergence

For the rest of this paper, (Ω,F ,P) will denote a complete probability space. The

notations
P→ and

d→ stand, respectively, for convergence in probability and distribution of

random vectors (r.v.’s for short). If Xn/Yn
P→0 when n→∞, we write Xn = oP(Yn). Given

a sub-σ-field G ⊆ F and a sequence of r.v.’s (ξn)n≥1 on (Ω,F ,P), by G-stably convergence

in distribution of ξn towards a random vector (r.v. for short) ξ (in symbols ξn
G-d−→ ξ),

we mean that, conditioned on any non-null event in G, ξn
d→ ξ. In this framework, if

(Xn
t )t∈R,n∈N is a family of stochastic processes, we will write Xn G-fd−→ X if the finite-

dimensional distributions (f.d.d. for short) of Xn converge G-stably toward the f.d.d. of

X. We further write Xn G-D[0,T ]
=⇒ X, if Xn converges to X in the Skorohod topology and

Xn G-fd−→ X. We refer the reader to [15] for a concise exposition of stable convergence.

2.3 Lévy bases and infinite divisibility

Let η be a measure on B(Rd), the Borel sets on Rd, and let Bηb (Rd) := {A ∈ B(Rd) :

η(A) < ∞}. The family L = {L (A) : A ∈ Bηb (Rd)} of real-valued r.v.’s will be called a
Lévy basis if it is an infinitely divisible (ID for short) independently scattered random
measure, that is, L is σ-additive almost surely and such that for any A,B ∈ Bηb (Rd), L(A)

and L(B) are ID r.v.’s that are independent whenever A∩B = ∅. The cumulant of a r.v. ξ,
in case it exists, will be denoted by C(z; ξ) := logE(eizξ). We will say that L is separable
with control measure η, if

C(z;L(A)) = η(A)ψ(z), A ∈ Bηb (Rd), z ∈ R,

where

ψ(z) := iγz − 1

2
b2z2 +

∫
R\{0}

(eizx − 1− izx1|x|≤1)ν(dx), z ∈ R, (2.1)

with γ ∈ R, b ≥ 0 and ν is a Lévy measure, i.e. ν({0}) = 0 and
∫
R\{0}(1 ∧ |x|

2
)ν(dx) <∞.

When η = Leb, in which Leb represents the Lebesgue measure on Rd, L is called
homogeneous. The ID r.v. associated to the characteristic triplet (γ, b, ν) is called
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the Lévy seed of L and will be denoted by L′. As usual, (γ, b, ν) will be called the
characteristic triplet of L and ψ its characteristic exponent. The Blumenthal-Getoor
index of an ID distribution with triplet (γ, b, ν), is defined and denoted as

βν := inf

{
β > 0 :

∫
|x|≤1

|x|β ν(dx) <∞

}
.

Within this framework, we will also refer to βν as the Bluementhal-Getoor index of a
homogeneous Lévy basis with characteristic triplet (γ, b, ν). In this paper, the sigma field
generated by L is denoted by FL.

For any Lévy measure ν, we associate the functions ν± : (0,∞) → R+, defined as
ν+(x) := ν(x,∞) and ν−(x) := ν(−∞,−x). Let K+ +K− > 0 and 0 < β < 2. A separable
Lévy basis is called strictly β-stable with parameters (β,K+,K−, γ) if its Lévy seed is
distributed according to a strictly β-stable distribution, that is, the characteristic triplet
of L′ has no Gaussian component (b = 0), its Lévy measure satisfies

ν(dx)

dx
= K+ |x|−1−β

1{x>0} +K− |x|−1−β
1{x<0},

and either γ = (K− −K+)/ |β − 1| when β 6= 1, or γ arbitrary with K+ = K− in the case
of β = 1. The characteristic exponent of a strictly β-stable with parameters (β,K+,K−, γ)

admits the representation for every z ∈ R

ψ(z;β,K+,K−, γ) :=

{
−σ |z|β (1− iρsign(z) tan(πβ/2)) if β 6= 1;

−K+π |z|+ iγz if β = 1,
(2.2)

where

σ := Γ(−β) cos(πβ/2)(K+ +K−), and ρ :=
K+ −K−
K+ +K−

.

2.4 Trawl processes

Let L be a homogeneous Lévy basis on R2 with characteristic triplet (γ, b, ν). In
addition, let a : R+ → R+ be a non-increasing integrable function and put

A = {(r, y) : r ≤ 0, 0 ≤ y ≤ a(−r)} .

The process defined by

Xt := L(At), t ∈ R, (2.3)

where At := A+ (t, 0), is termed as a trawl process. From now on, we will refer to A and
a, as the trawl set and the trawl function, respectively. It is well known that X is strictly
stationary and, in the case when L is square integrable, its auto-covariance function is
given by

ΓX(h) := V ar(L′)

∫ ∞
|h|

a(u)du, h ∈ R. (2.4)

Moreover, ΓX uniquely characterizes a. More precisely, if L is square integrable, and X
and X̃ are two trawls processes associated to Lwith trawls functions a and ã, respectively,
then a = ã a.e. if and only if

ΓX = ΓX̃ .

For a detailed exposition on the basic properties of trawl processes we refer to [5] and
[4].
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3 Limit theorems for partial sums of trawl processes

In this section, we focus on the limit theorems for the partial sums of (Xi∆n
)n−1
i=0

under the assumption that as n ↑ ∞, ∆n ↓ 0 and n∆n → µ ∈ [0,+∞]. More specifically,
we study the asymptotic behavior of the process Sn = (S∆n

[nt])t≥0, where

S∆
m :=

m−1∑
k=0

(X∆k − E(X∆k)), m ∈ N,∆ > 0,

with X as in (2.3). Note that we will always assume that the associated Lévy basis L
has characteristic triplet (γ, b, ν) with E(|L′|) < ∞, and that a is continuous in [0,∞).
Furthermore, for the sake of exposition all of our proofs are presented in Section 5.

3.1 Main results

In this section, we state our main results concerning Sn. As expected, the rate of
convergence will depend entirely on the sampling scheme, which is in turn represented
by µ. In what follows we will use the notation

X̃t := Xt − E(Xt), t ∈ R.

3.1.1 The case 0 < µ <∞

Let us start by assuming that n∆n → µ ∈ (0,∞). In this situation the points

ti = i∆n, i = 0, . . . , [nt]− 1,

form a partition of [0, tµ]. Consequently, ∆nS
n
t becomes a Riemann sum for the mapping

s 7→ X̃s. Based on this observation, the following result is not surprising.

Proposition 3.1. Suppose that E(|L′|2) < ∞ and ∆nn → µ ∈ (0,∞). Then for every
V > 0

sup
0≤t≤V

∣∣∣∣∆nS
n
t −

∫ tµ

0

X̃sds

∣∣∣∣ P→ 0.

3.1.2 The case µ = 0

Let us now turn our attention to the case when µ = 0. Intuitively, when this occurs, one
should expect that

X∆nn ≈ X∆ni ≈ X0, i = 0, 1, . . . , n− 1,

for n large, which suggests that
1

n
S∆n
n ≈ X̃0.

This turns out to be true as the following result shows.

Proposition 3.2. Suppose that E(|L′|) < ∞ and a is continuously differentiable in a
neighbourhood of 0. If ∆nn→ 0 as n→∞, then

1

n
Snt

P→ tX̃0, t ≥ 0.

Next, we proceed to derive second order asymptotics for Sn when µ = 0. Following
the previously discussed heuristic argument, one should expect that, for large n,

1

n
Snt − tX̃0 ≈ t(X∆nn −X0).

Therefore, in this case, the asymptotic result is determined by the behaviour of the
increments of X. Before presenting our results in this framework, we introduce our
working assumption, which reads as follows:
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Assumption 3.3. There exists a constant 0 < β < 2 such that (see Section 2) ν±(x) ∼
K̃±x

−β as x → 0+ with K̃+ + K̃− > 0. Furthermore, if β = 1 assume in addition that
K̃+ = K̃− and PV

∫ 1

−1
xν(dx), the Cauchy principal value, exists.

Theorem 3.4. Let the assumptions of Proposition 3.2 hold and set Znt :=
(

[nt]
n X0 − 1

nS
n
t

)
.

Then the following holds.

i. If b > 0, then
1√
n∆n

Znt
F -fd−→ σ

∫ t

0

(t− s)dBs, t ≥ 0,

where B is a Brownian motion which can be chosen independent of L, and σ2 =

2b2a(0).

iii. Suppose that b = 0 and Assumption 3.3 holds. Then, as n→∞,

1

(n∆n)1/β
Znt
F -fd−→

∫ t

0

(t− s)dYs, t ≥ 0,

where Y is a symmetric β-stable Lévy processes with K+ = βa(0)(K̃+ + K̃−), which
is in addition independent of L.

3.1.3 The case µ = +∞

Suppose now that n∆n → µ = +∞ as n ↑ ∞ and ∆n ↓ 0. In order to get some
intuition of what one should expect in this situation, firstly let ∆n = ∆, i.e. the space
between observations if fixed. Obviously, ∆nn → +∞ and the process (X∆n)n≥1 is
strictly stationary. In this situation Sn becomes the partial sums of a discrete-time
stationary process. In view of this, when properly scaled, Sn typically converges to
either a Brownian motion or a fractional Brownian motion (fBm for short), depending
whether (X∆n)n≥1 has short memory or long memory, respectively. It turned out that in
our general setup, the former result still holds, while in the latter Sn will converge to
a fBm only when L has a Gaussian component. Before presenting our results for this
sampling scheme, we introduce our working assumptions.

Assumption 3.5 (SM). There is p0 > 2 such that E(|L′|p0) < ∞ and a(s) = O(s−p0) as
s ↑ +∞.

Assumption 3.6 (LM). Assume that E(|L′|2) < ∞, and that there is a strictly positive
continuous function a′ ∈ RV∞α+1, with 1 < α < 2, such that

a(s) =

∫ ∞
s

a′(y)dy, s ≥ 0.

Assumption 3.7 (LM’). Assumption 3.6 holds and for some ca > 0, a′(y) ∼ cay
−α−1 as

y →∞.

Our first result concerns the short memory case:

Theorem 3.8. Suppose that µ = +∞, and that Assumption 3.5 is fulfilled. Put

GX = σ

( ⋃
k≥1

⋂
N≥k

σ(X0, X∆N
, . . . , Xk∆N

)

)
.

Then, as n ↑ ∞ √
∆n

n
Sn
GX−D[0,1]

=⇒ σaB,

where σ2
a = V ar(L′)

∫
R
a(s)ds and B is a Brownian motion independent of GX .
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Remark 3.9. By the independent scatteredness property of L, the limiting process
appearing in Theorem 3.8 is not only independent of GX , but also of

σ

(
L(D) : D ∩

⋃
t≥0

At = ∅
)
.

Furthermore, in view that the array of σ-fields

FXj,n := σ(X0, X∆n , . . . , Xj∆n), j = 0, 1, . . . , n− 1,

is “almost nested”, we conjecture that

GX = σ(Xt, t ≥ 0).

The asymptotic behaviour drastically changes when X has long memory. We will now
present two theorems distinguishing the cases of presence and absence of the Gaussian
component in L.

Theorem 3.10. Let Assumption 3.6 hold. Suppose that b > 0, E(|L′|2) <∞, and µ = +∞.
Then as n ↑ ∞

1

n
√
a(n∆n)n∆n

Sn
D[0,1]
=⇒ σαB

H , n→∞,

where σ2
α = 2b2

(α−1)(2−α)(3−α) , BH is a fBm of index H = 3−α
2 > 1/2.

In the absence of the Gaussian component, the limit is no longer Gaussian and the rate
of convergence for Sn varies according to the behaviour of βν , the Blumenthal-Getoor
index of L. More precisely, we have the following theorem.

Theorem 3.11. Let Assumption 3.6 hold. Suppose that b = 0, E
(
|L′|2

)
<∞, and that

µ = +∞. The following holds:

i. If βν < α, let Assumption 3.7 hold. Then, as n ↑ ∞

∆n

(can∆n)
1
α

Sn
fd→ Y,

where Y is a strictly α-stable Lévy process satisfying that (see (2.2))

C(z;Y1) = ψ(z;α,K+,α,K+,α, γ̃),

with K+,α =
∫∞

0
xαν(dx) and K−,α =

∫ 0

−∞ |x|
α
ν(dx).

ii. When 2 > βν > α > 1, further assume that for some K̃+ + K̃− > 0, ν±(x) ∼ K̃±x−βν
as x→ 0+. Then, as n→∞,

1

n (a(n∆n)n∆n)
1/βν

Sn1
d→ ξ,

where ξ is strictly βν -stable, such that

C(z; ξ) = ψ(z;βν ,K+,α,βν ,K−,α,βν , γ̃),

in which K±,α,βν = %αβνK̃± and

%α =
1

α− 1
+ α

∫ 1

0

(1− s)sβν−(α+1)ds+ 2

∫ 1

0

sβν−αds.
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Remark 3.12. Here, the notation ν±(x) ∼ K̃±x
−β means that xβν±(x) → K̃± when

x ↓ 0. Moreover, this property only concerns the behaviour of the Lévy measure of L
around zero. Hence, one can simultaneously have that this condition is satisfied and that
the second moment of L is finite. An example of such an infinitely divisible distribution
is the normal inverse Gaussian distribution (see [25]).

Before presenting our last result for this section we would like to comment why, to
the best of our knowledge, Theorems 3.8–3.11 cannot (in general) be deduced from
existing results in the literature. First, (fractional) Donsker-type theorems are typically
stated for a fixed discrete-time stationary process, while in our case, (X∆nn)n≥0 is a
sequence of processes. Another alternative, which is more specific to our framework
(infill and long span asymptotics), would be to apply the results obtained in [12] for
sequences of discrete-time moving average processes. However, as pointed out in [10],
in general trawl processes cannot be represented as a moving average process (see also
[2] and references therein). Finally, in the Gaussian case, i.e. when ν = 0, one could
try to use the continuous version of the Breuer-Major theorem (see for instance [8] and
references therein) to derive limit theorems of the non-linear functional

SnG(t) =

bntc−1∑
k=0

(G(X∆nk)− E(G(X∆nk)), t ≥ 0,

via the sequence

Znt =

∫ n∆nt

0

[G(Xs)− E(G(Xs))]ds, t ≥ 0,

in which G is a measurable function. Since for G(x) = x, it holds that

1√
∆nn

E (|Znt −∆nS
n
G(t)|) ≤ O(∆n

√
n) + o(1).

We conclude that Znt is asymptotically equivalent to SnG(t) whenever ∆n
√
n → 0. The

latter condition is clearly stronger than the one imposed in our main results. We
would like to emphasize that it is not clear whether the previous bound is optimal or
not. Therefore, future research should examine the situations in which the asymptotic
behaviour of SnG can be described by Zn.

Most of the estimates used in our proofs rely heavily on the square integrability of L.
Thus, it is natural to consider the situation in which this condition does not hold anymore.
The following result gives a partial answer to this question.

Theorem 3.13. Let Assumption 3.6 hold. Suppose that L is strictly β-stable with
parameters (K+,K−, β, γ̂) and that µ = +∞. Then the following holds:

i. If 1 < β < α, then

∆n

(n∆n)
1/β

Sn
fd→ Y, n→∞,

where Y is a strictly β-stable Lévy process satisfying that (see (2.2))

C(z;Y1) = C(z;Y1) = ψ(z;β, %aK+,a, %aK, γ̂),

where %a =
∫∞

0
sβa′(s)ds.

ii. If 2 > β > α, then the conclusion in Theorem 3.11 ii. remains valid.
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4 Functional convergence of trawl processes

4.1 General limit theorem

In this section, we study the convergence in distribution of a sequence of trawl
processes to an infinitely divisible process in the Skorohod space D[0,∞). Note that the
convergence of the finite-dimensional distributions of trawl processes in general can
be characterized using existing limit theorems for infinitely divisible distributions, e.g.,
Lemma 15.15 in [17], so our focus is primarily on tightness.

To ensure the tightness of the sequence of trawl processes with a fixed trawl set A,
we need a technical assumption that is formulated in terms of the set B̃t,s,r := As\At\Ar,
for r ≤ s ≤ t. An illustration of the set B̃t,s,r, among some other relevant sets, is given in
Fig. 1 in Section 4.7.

Assumption 4.1 (Behaviour of trawl sets). We assume that a is monotone, and that
given any r, s, t ∈ R such that r ≤ s ≤ t we have Leb(At \ As) ≤ C(t − s)

1
2 + ε

2 and
Leb(B̃t,s,r) ≤ C ′(t− r)1+ε, where C,C ′ ∈ (0,∞) and ε > 0.

Remark 4.2. When a is monotone, we can write

Leb(B̃t,s,r) =

∫ s

r

(a(s− p)− a(t− p))dp.

Remark 4.3. We stress that Assumption 4.1 is indeed only needed for tightness in the
proof of Theorem 4.7 below, and the convergence of the finite-dimensional distributions
does not rely on it.

We will now look at two examples of a that satisfy Assumption 4.1 and one that does
not.

Example 4.4 (Exponential). For p ≥ 0 consider a(p) := Ce−p with C > 0, then by the
mean value theorem we have that

Leb(B̃t,s,r) = C

∫ s

r

(ep−s − ep−t)dp ≤ C
∫ s

r

(t− s)ep−sdp ≤ C(s− r)(t− s) ≤ C(t− r)2,

and

Leb(At \As) = C

∫ t

s

ep−tdp ≤ C(t− s).

Example 4.5 (Lipschitz functions). Let f : R+ → R+ be a Lipschitz monotone function
with Lipschitz constant M > 0. Consider a(p) := Cf(p) with C > 0, then by the Lipschitz
condition we obtain that

Leb(B̃t,s,r) = C

∫ s

r

(f(s− p)− f(t− p))dp

≤ CM
∫ s

r

(t− s)dp ≤ CM(t− r)2.

and

Leb(At \As) = C

∫ t

s

f(t− p)dp ≤ f(0)C(t− s).

Example 4.6 (Unbounded trawl). Suppose that a(p) = p−
1
2 + ε

2 ,p ∈ (0, p0), for some p0 > 0

and ε ∈ (0, 1
2 ). Then for r, s, t ∈ (0, p0) such that r ≤ s ≤ t,

Leb(B̃t,s,r) =

∫ s

r

[
(s− p)− 1

2 + ε
2 − (t− p)− 1

2 + ε
2

]
dp

= C
[
(s− r) 1

2 + ε
2 − (t− r) 1

2 + ε
2 + (t− s) 1

2 + ε
2

]
,
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and notice that when s = (t+ r)/2 (namely t− s = s− r), we have, by denoting x := t− s,

x
1
2 + ε

2 − (2x)
1
2 + ε

2 + x
1
2 + ε

2 =
(

2− 2
1
2 + ε

2

)
x

1
2 + ε

2 = C ′x
1
2 + ε

2 ,

which does not satisfies the desired condition of Assumption 4.1.

Let us now rewrite (2.1) as follows:

ψ(z) = iκz +

∫
R

(
eizx − 1− izx

1 + x2

)1 + x2

x2
ν̃(dx), z ∈ R,

where

ν̃(dx) := b2δ0(dx) +
x2

1 + x2
ν(dx), and κ := γ +

∫
R\{0}

( x

1 + x2
− x1|x|≤1

)
ν(dx), (4.1)

and where the integrand in (4.1) is defined as − z
2

2 when x = 0 to attain continuity (see
page 295 in [17]). In the general limit theorem we use the following notation: For any
c ∈ R let

ν̃(c)(dx) := (b(c))2δ0(dx) +
x2

1 + x2
ν(c)(dx), and

κ(c) := cγ(c) +

∫
R\{0}

( x

1 + x2
− x1|x|≤1

)
ν(c)(dx),

where γ(c) := cγ +
∫
R
cx(1|cx|≤1 − 1|x|≤1)ν(dx), b(c) := cb, and ν(c)(B) = ν(c−1B) = ν({x :

cx ∈ B}). In particular, if (ν̃, κ) is the characteristic couple (resp. (γ(c), b(c), ν(c)) is the
characteristic triplet) of an ID random variable X then (ν̃(c), κ(c)) is the characteristic
couple (resp. (γ(c), b(c), ν(c)) is the characteristic triplet) of cX.

Theorem 4.7. Let (X
(n)
t )n∈N be a sequence of trawl process with characteristics

(γn, bn, νn) or equivalently (ν̃n, κn), n ∈ N. Let Yt be a trawl process with trawl seed
having characteristics (γ, b, ν) or equivalently (ν̃, κ). Let (rn)n∈N be a sequence of real
valued constants. Assume that Assumption 4.1 holds. Then,{

rnX
(n)
t

}
t∈[0,∞)

D[0,∞)
=⇒ {Yt}t∈[0,∞) , as n→∞,

holds if and only if ν̃(rn)
n

weak→ ν̃ and κ(rn)
n → κ as n→∞.

4.2 Convergence to a Gaussian moving average

As the limit Y in Theorem 4.7 is a stationary, infinitely divisible process, it may be
possible to express it in simpler form as a causal moving average

Yt =

∫ t

−∞
g(t− s)dLs, t ∈ R, (4.2)

with some kernel function g : R → R and a Lévy process Lt. If this is possible, it is
subsequently interesting to study how g relates to the trawl function a, for example
from a modelling point of view. Imagine that we would like to approximate a moving
average with a particular kernel by a sequence of trawl processes. How can we choose
the right a?. In other words, how do we choose the right sequence of trawl processes?.
We restrict ourselves here to the Gaussian case where Lt reduces to a Brownian motion,
as in this situation we are able to give a rather complete result. In the non-Gaussian
case, difficulties may arise with the existence of representation (4.2), especially if Y is
not square integrable (see Section 5 in [2] for further discussion).
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Theorem 4.8. Let a(h) = − d
dh

∫∞
0
g(s)g(h+ s)ds for every h ≥ 0, where g ∈ L2(R), and

let X(n)
t be the associated trawl process with characteristics (γn, bn, νn) for any n ∈ N.

Assume further that Assumption 4.1 holds. Then the convergence{
rnX

(n)
t

}
t∈[0,∞)

D[0,∞)
=⇒

{∫ t

−∞
g(t− s)dBs

}
t∈[0,∞)

, as n→∞,

where B is a one-dimensional Brownian motion, holds if and only if ν̃(rn)
n

weak→ δ0 and
κ

(rn)
n → 0 as n→∞.

Remark 4.9. Observe that, in the case when g is differentiable and positive monotone
(resp. bounded), then, by the monotone (resp. bounded) convergence theorem, we have
d

dh

∫∞
0
g(s)g(h+ s)ds =

∫∞
0
g(s)g′(h+ s)ds.

It is worth stressing that Theorems 4.7 and 4.8 apply to the centered process
rn(X

(n)
t − E[X

(n)
t ]) as well. In the following remark we present some conditions on

the characteristic triplet of the converging centered trawl process. These conditions are
stronger than those in Theorem 4.8, but they are useful in practice (as we show in the
subsequent example).

Remark 4.10. Consider the following conditions:
∫
R
r2
nx

2νn(dx)→ 1,
∫
R
r3
n|x3|νn(dx)→

0, and r2
nb

2
n → 0 as n→∞. Then, we have that

logE

(
exp

(
i

k∑
j=1

zjrn

(
X

(n)
tj − E[X

(n)
tj ]
)))

=

∫
R

∫
R

[
− 1

2
r2
nb

2
n

( k∑
j=1

zjIAtj (y, s)

)2

+

∫
R

(
e
irnx

∑k
j=1 zjIAtj

(y,s) − 1− iI[−1,1](x)rnx

k∑
j=1

zjIAtj (y, s)

)
νn(dx)

− i
∫
|x|>1

xrn

k∑
j=1

zjIAtj (y, s)νn(dx)

]
dsdy

= −
∫
R

∫
R

1

2
r2
nb

2
n

( k∑
j=1

zjIAtj (y, s)

)2

dsdy

−
∫
R

∫
R

∫
R

1

2
r2
nx

2

( k∑
j=1

zjIAtj (y, s)

)2

νn(dx)dsdy

+

∫
R

∫
R

∫
R

(
e
irnx

∑k
j=1 zjIAtj

(y,s) − 1− irnx
k∑
j=1

zjIAtj (y, s)

+
1

2
r2
nx

2

( k∑
j=1

zjIAtj (y, s)

)2)
νn(dx)dsdy.

It is possible to see that the last term is bounded by C
∫
R
r3
n|x|3νn(dx), where C > 0.

Moreover, we have that∫
R

∫
R

∫
R

1

2

( k∑
j=1

zjIAtj (y, s)

)2

r2
nx

2νn(dx)dsdy =
1

2

k∑
j,l=1

zjzlLeb(Atj ∩Atl)
∫
R

r2
nx

2νn(dx)

→ 1

2

k∑
j,l=1

zjzlLeb(Atj ∩Atl), as n→∞.
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This implies the convergence of the finite-dimensional distributions. For tightness, the
same arguments as the ones used in the proof of Theorem 4.7 apply.

Example 4.11 (The Poisson case). In this example we show that the assumptions on
the characteristics of Theorem 4.8 (see in particular Remark 4.10) are satisfied in the
case X(n)

t = L(n)(At) ∼ Poisson(λ(n)Leb(A)) for all t ∈ [0,∞), where λ(n) is the intensity
parameter (or equivalently, L′(n) ∼ Poisson(λ(n))). In particular, we have that

C(z;L′(n)) = λ(n)
(
eiz − 1

)
.

Let rn = 1√
n

. In order to satisfies the assumptions we have to impose that λ(n) = n+ o(n)

(e.g. λ(n) = n+ bnγ for b ∈ R and γ < 1). Indeed,∫
R

x2

n
ν(n)(dx)→ 1⇔ λ(n)

n
→ 1, and

∫
R

|x3|
n
√
n
ν(n)(dx)→ 0⇔ λ(n)

n
√
n
→ 0, as n→∞.

Concerning the trawl function, we can take a(p) = Ce−p, which satisfies Assumption 4.1
(see Example 4.4).

Example 4.12 (A kernel g that satisfies Assumption 4.1). Let g : R+ → R+ be integrable,
monotonically decreasing and second order differentiable with g′′(x) > 0, ∀x ∈ R+, and
let C > 0. Then a(h) = −C

∫∞
0
g(s)g′(h + s)ds satisfies the assumptions of Theorem

4.8. Indeed, it is possible to see that a is positive (since g′ is negative), monotonically
decreasing (since g′ is monotonically increasing), and satisfies Assumption 4.1 thanks to
Example 4.5; indeed

sup
p≥0

1

C
|a′(p)| = 1

C
sup
p≥0

∫ ∞
0

g(s)g′′(p+ s)ds ≤ g′′(0)

C

∫ ∞
0

g(s)ds <∞,

where we further used that g′′ is monotonically decreasing.

5 Proofs

Throughout all our proofs, the non-random positive constants will be denoted by the
generic symbol C > 0, and they may change from line to line. Additionally, for simplicity
and without loss of generality, we may and do assume that E(L′) = 0 and V ar(L′) = 1

in such a way that ΓX(h) =
∫∞
h
a(s)ds, for h ≥ 0. We note that below we will use the

notation Tn = n∆n.

5.1 Technical lemmas

We start by analysing the variance of S∆
m.

Lemma 5.1. Suppose that E(|L′|2) <∞. Then

V ar(S∆
m) =

2

∆2

∫ m∆

0

∫ r

0

ΓX(s)dsdr + O(m), m ∈ N,∆ > 0. (5.1)

Furthermore, if ∆m → µ ∈ [0,+∞] as ∆ ↓ 0 and m ↑ ∞, then we have the following
result.

i. If µ = 0, then
1

m2
V ar(S∆

m)→ ΓX(0).

ii. If 0 < µ <∞, then

∆2V ar(S∆
m)→ 2

∫ β

0

∫ r

0

ΓX(s)dsdr.
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iii. If µ = +∞, then

a) If
∫∞

0

∫∞
r
a(s)dsdr <∞, then V ar(S∆

m) ∼
∫
R
ΓX(s)dsm∆ , as ∆ ↓ 0 and m ↑ ∞.

b) If
∫∞

0

∫∞
r
a(s)dsdr = +∞ assume in addition that a ∈ RV∞α with 1 < α < 2.

Then, V ar(S∆
m) ∼ cαV ar(L′)a(m∆)m3∆, cα = 2

(α−1)(2−α)(3−α) .

Proof. We have that

V ar(S∆
m) = mΓX(0) + 2

m−1∑
i=1

i∑
j=1

ΓX(j∆). (5.2)

Now,

R(m,∆) :=
1

∆2

∆2
m−1∑
i=1

i∑
j=1

ΓX(j∆)−
∫ m∆

0

∫ r

0

ΓX(s)dsdr


= R1(m,∆) +R2(m,∆) +R3(m,∆) +R4(m,∆),

where

R1(m,∆) :=
1

∆2

m−1∑
i=1

i∑
j=1

∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

[ΓX(j∆)− ΓX(s)] dsdr;

R2(m,∆) := − 1

∆2

∫ ∆

0

∫ r

0

ΓX(s)dsdr;

R3(m,∆) :=
1

∆2

m−1∑
i=1

∫ (i+1)∆

i∆

∫ (i+1)∆

r

ΓX(s)dsdr;

R4(m,∆) := − (m− 1)

∆

∫ ∆

0

ΓX(s)ds.

From (2.4), ΓX is non-increasing on R+, with derivative −V ar(L′)a. Therefore

|R1(m,∆)| ≤ C 1

∆

m−1∑
i=1

i∑
j=1

∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

a(j∆)dsdr

= C
1

∆

m−1∑
i=1

i∑
j=1

∫ (i+1)∆

i∆

∫ j∆

(j−1)∆

a(j∆)dsdr

≤ C 1

∆

m−1∑
i=1

i∑
j=1

∫ (i+1)∆

i∆

∫ j∆

(j−1)∆

a(s)dsdr

≤ C 1

∆

∫ m∆

0

∫ r

0

a(s)dsdr.

In a similar way, we obtain that

|R2(m,∆)|+ |R3(m,∆)| ≤ 1

∆

∫ ∆m

0

ΓX(r)dr.

The results above imply that

R(m,∆) ≤ CmΓX(0).
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This estimate together with (5.2) give (5.1).
Now assume that ∆m→ β ∈ [0,+∞]. i., ii. and part a) of iii. follow immediately by

(5.1) and the Dominated Convergence Theorem. Therefore, for the rest of the proof, we
will assume that ∆m→ +∞ and that a ∈ RV∞α in which 1 < α < 2. By KT we get that

2

∆2

∫ m∆

0

∫ r

0

ΓX(s)dsdr ∼ cαa(m∆)m3∆, as ∆m→ +∞.

Since a ∈ RV∞α , it admits the representation a(x) = x−αl(x), with l a slowly varying
function at∞. Thus,

a(m∆)m2∆ = (m∆)2−αl(m∆)∆−1 → +∞,

where we have used that, for any slowly varying function, l(x)xρ → +∞ as x ↑ ∞
whenever ρ > 0. Consequently, by (5.1), we deduce that

1

a(m∆)m3∆

∣∣∣∣∣V ar(S∆
m)− 2

∆

∫ m∆

0

∫ r

0

ΓX(s)dsdr

∣∣∣∣∣→ 0, as n→∞,

which completes the proof.

Next, we find a very useful decomposition for S∆
m. For any ∆ > 0, let

P∆
A (i, j) := {(r, s) : a(tj+1 − s) < r ≤ a(tj − s), ti−1 < s ≤ ti},

where ti = ti(∆) = i∆ with the convention that t−1 = −∞. It is clear that P∆
A (i, j) ∩

P∆
A (i′, j′) = ∅ whenever either i 6= i′ or j 6= j′ for i = 0, . . . ,m− 1 and j ≥ i. Moreover,

Leb

Ak∆ \
k⋃
i=0

∞⋃
j=k

P∆
A (i, j)

 = 0, (5.3)

and

Leb(P∆
A (i, i+ j)) =

{∫ tj+1

tj
a(s)ds if i = 0, j ≥ 0;∫ tj+1

tj
[a(s)− a(s+ ∆)]ds if i = 1, . . . ,m− 1, j < m− i.

(5.4)

Based on these observations, the following result is obvious.

Lemma 5.2. Let χ∆
i,j := L(P∆

A (i, j))− E(L(P∆
A (i, j))). Then, almost surely

S∆
m =

1

∆

m−1∑
i=0

m−1∑
j=i

tj−i+1χ
∆
i,j +

1

∆

m∑
i=0

(tm − ti)ζ∆
i,m (5.5)

= S∆,1
m + S∆,2

m + S∆,3
m + S∆,4

m , (5.6)

where ζ∆
i,m :=

∑∞
j=m χ

∆
i,j and

S∆,1
m :=

1

∆

m−1∑
i=1

m−i∑
j=1

tjχ
∆
i,j+i−1; S∆,2

m :=
1

∆

m∑
i=1

(tm − ti)ζ∆
i,m;

S∆,3
m :=

1

∆

m−1∑
j=0

tj+1χ
∆
0,j ; S∆,4

m :=
tm
∆
ζ∆
0,m.

When β = +∞, it turns out that in the short memory case S∆,1
m dominates the

asymptotic behaviour.
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Lemma 5.3. Let mn ∈ N be such that mn ↑ ∞, ∆nmn → ∞ and ∆n ↓ 0, as n → ∞.
Suppose that E(|L′|2) <∞ and that

∫∞
0

∫∞
r
a(s)dsdr <∞. Then

S∆n
mn = S∆n,1

mn + oP

(√
mn

∆n

)
.

The proof of Lemma 5.3 heavily relies on the next property.

Lemma 5.4. Let f ≥ 0 be an integrable continuous function such that
∫∞

0

∫∞
x
f(s)dsdx <

∞. Then, as x→ +∞

x

∫ ∞
x

f(s)ds→ 0, and
1

x

∫ x

0

s2f(s)ds→ 0.

Proof. If f ≡ 0 a.e. the result is trivial, so assume that f > 0. For x ≥ 0, put F (x) :=∫∞
x
f(s)ds. Integration by parts gives that∫ x

0

F (s)ds = xF (x) +

∫ x

0

sf(s)ds.

In view that f > 0 and
∫∞

0
F (s)ds <∞, the Dominated Convergence Theorem guarantees

that

0 ≤ lim
x→∞

∫ x

0

sf(s)ds =

∫ ∞
0

sf(s)ds ≤
∫ ∞

0

F (s)ds <∞.

This shows in particular that the following limit exists

∞ > ` = lim
x→∞

xF (x) =

∫ ∞
0

F (s)ds−
∫ ∞

0

sf(s)ds ≥ 0.

Observe that if ` > 0, then, as x→ +∞, 1/
(
x
∫∞
x
f(s)ds

)
→ 1/`. Thus, if ` > 0, we could

find x0 > 0 such that for all x > x0

1

x
< C

∫ ∞
x

f(s)ds,

which contradicts that
∫∞

0

∫∞
x
f(s)dsdx <∞. Hence, ` = 0 as required.

To show the last part, observe first that when
∫∞

0

∫∞
y

∫∞
x
f(s)dsdxdy <∞, an analo-

gous argument as above shows that

0 ≤
∫ ∞

0

sF (s)ds ≤
∫ ∞

0

∫ ∞
s

F (x)dxds <∞.

Therefore, from the first part of the proof, as x→ +∞

1

x

∫ x

0

s2f(s)ds = −xF (x) +
2

x

∫ x

0

F (s)sds→ 0.

Now suppose that
∫∞

0

∫∞
y

∫∞
x
f(s)dsdxdy = +∞ and put F̄ (x) :=

∫ x
0
F (s)ds. Clearly∫ x

0
F̄ (s)ds→ +∞ as x→ +∞, and, for all x ≥ 0,

1

x

∫ x

0

s2f(s)ds = −xF (x) + 2

[
F̄ (x)− 1

x

∫ x

0

F̄ (s)ds

]
. (5.7)

Moreover, by L’Hospital’s Rule and the continuity of f we have that

1

x

∫ x

0

F̄ (s)ds→
∫ ∞

0

F (s)ds,

which applied to (5.7) concludes the proof.
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Proof of Lemma 5.3. Since L is independently scattered, we get by (5.4) that, for any
m ∈ N and ∆ > 0,

V ar(S∆,2
m ) =

1

∆2

m∑
i=1

∫ ti

ti−1

(tm − ti)2a(tm − s)ds;

V ar(S∆,3
m ) =

1

∆2

∫ ∆m

0

s2a(s)ds+
2

∆2

m−1∑
j=0

∫ tj+1

tj

∫ tj+1

s

rdra(s)ds;

V ar(S∆,4
m ) = m2

∫ ∞
∆m

a(s)ds.

Moreover, in view that the trawl function is non-negative, continuous and such that∫∞
0

∫∞
x
a(s)dsdx <∞, Lemma 5.4 can be applied in order to obtain that

∆n

mn
V ar(S∆n,4

mn ) = ∆nmn

∫ ∞
∆nmn

a(s)ds→ 0.

We proceed now to show that for every m ∈ N and ∆ > 0

∣∣∣∣∣V ar(S∆,2
m )− 1

∆2

∫ ∆m

0

s2a(s)ds

∣∣∣∣∣ ≤ C 1

∆

∫ ∆m

0

sa(s)ds+ O(1); (5.8)∣∣∣∣∣V ar(S∆,3
m )− 1

∆2

∫ ∆m

0

s2a(s)ds

∣∣∣∣∣ ≤ C 1

∆

∫ ∆m

0

sa(s)ds+ O(1). (5.9)

Let R(m,∆) =
∑m
i=1

∫ ti
ti−1

(tm−ti)2a(tm−s)ds and R′(m,∆) =
∑m−1
j=0

∫ tj+1

tj

∫ tj+1

s
rdra(s)ds.

Then,∣∣∣∣∣R(m,∆)−
∫ ∆m

0

(tm − s)2a(tm−1 − s)ds

∣∣∣∣∣ ≤ C∆

m∑
i=1

∫ ti

ti−1

(tm − ti)a(tm − s)ds

≤ C∆

∫ ∆m

0

sa(s)ds+ C∆2

∫ ∆m

0

a(s)ds,

which is exactly (5.8). In a similar way, we see that

|R′(m,∆)| ≤ 2∆

m−1∑
j=0

∫ tj+1

tj

tj+1a(s)ds

≤ 2∆

∫ ∆m

0

sa(s)ds+ 2∆2

∫ ∆m

0

a(s)ds.

Relation (5.9) is obtained easily from this. Finally, note that from (5.8), (5.9) and Lemma
5.4, it follows that for l = 2, 3

∆n

mn
V ar(S∆n,l

mn ) =
1

mn∆n

∫ ∆nmn

0

s2a(s)ds+ o(1)→ 0, n→∞,

completing the proof.

We proceed now to find some estimates for the characteristic function of S∆,l
m , for

l = 1, 2, 3. For doing this, the following result is essential and its proof follows the lines
of the proof of Proposition 3.6 in [22] as well as the well-known inequality∣∣eizx − 1

∣∣ ≤ 2
(
|zx|1|zx|≤1 + 1|zx|>1

)
.
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Lemma 5.5. Let ψ be the characteristic exponent of an ID distribution with mean 0.
Then ψ is continuously differentiable and there is a constant C > 0 depending only on
(γ, b, ν) such that

|ψ(z)| ≤ b2 |z|2 + C

∫
R

(1 ∧ |xz|2)ν(dx), z ∈ R; (5.10)

|ψ′(z)| ≤ b2 |z|+ C

∫
R

(1 ∧ |xz|) |x| ν(dx), z ∈ R. (5.11)

Lemma 5.6. Suppose that E
(
|L′|2

)
<∞ and let

I∆,1
m (z) :=

∫ ∆m

0

(∆m− s)ψ
( s

∆
z
)[a(s)− a(s+ ∆)

∆

]
ds;

I∆,2
m (z) :=

∫ ∆m

0

ψ
( s

∆
z
)
a(s)ds.

Then the following estimates hold∣∣C (z;S∆,1
m

)
− I∆,1

m (z)
∣∣ ≤C |z|2

∆

∫ ∆m

0

(∆m− s)(s+ ∆)d |a| (s)

+ C∆

∫ ∆m

0

∣∣∣ψ ( s
∆
z
)∣∣∣d |a| (s)

+ C |z|2
∫ ∆m

0

(s+ ∆)d |a| (s);

∣∣C (z;S∆,2
m

)
− I∆,2

m (z)
∣∣+
∣∣C (z;S∆,3

m

)
− I∆,2

m (z)
∣∣ ≤ C |z|2

∆

∫ ∆m

0

(s+ ∆)a(s)ds.

Proof. Recall that we are assuming that L is centered. By the independent scatteredness
property of L, we have

C
(
z;S∆,1

m

)
=

m−1∑
j=1

∫ tj

tj−1

(tm − s)ψ
(
tj
∆
z

)[
a(s)− a(s+ ∆)

∆

]
ds (5.12)

+

m−1∑
j=1

∫ tj

tj−1

(s− tj)ψ
(
tj
∆
z

)[
a(s)− a(s+ ∆)

∆

]
ds;

C
(
z;S∆,2

m

)
=

m∑
i=1

∫ ti

ti−1

ψ

(
tm − ti

∆
z

)
a(tm − s)ds; (5.13)

C
(
z;S∆,3

m

)
=

m−1∑
j=1

∫ tj+1

tj

ψ

(
tj+1

∆
z

)
a(s)ds. (5.14)

Since∫ tj

tj−1

[a(s)− a(s+ ∆)] ds =

∫ tj

tj−1

(s− tj−1)d |a| (s) +

∫ tj+1

tj

(tj+1 − s)d |a| (s), j ≥ 0,

the claimed estimates are easily obtained by noting that from Lemma 5.5 and the Mean
Value Theorem ∣∣∣∣ψ( tj∆z

)
− ψ

( s
∆
z
)∣∣∣∣ ≤ C |z|2∆

(s+ ∆), tj−1 ≤ s ≤ tj ,

while, for ti−1 ≤ s ≤ ti,∣∣∣∣ψ( tm − ti∆
z

)
− ψ

(
tm − s

∆
z

)∣∣∣∣ ≤ C |z|2∆
(tm − s).
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5.2 Proof of Propositions 3.1 and 3.2

Proof of Proposition 3.1. For simplicity, we will assume that µ = 1. Following the rea-
soning in Section 3 in [3], we can always find a measurable modification of X, so
without loss of generality we may and do assume that X is measurable and almost surely∫ t

0
X2
sds <∞, for all t ≥ 0. Thus, using the well-known bound

(∑d
i=1 |xi|

)2

≤ d
∑d
i=1 |xi|

2

and Jensen’s inequality, we see that for any V > 0 and t ≤ V∣∣∣∣∣∆nS
n
t −

∫ [nt]∆n

0

Xsds

∣∣∣∣∣
2

≤ V n∆n

[nt]−1∑
i=0

∫ ti+1

ti

|Xti −Xs|2 ds

≤ C
[nV ]−1∑
i=0

∫ ti+1

ti

|Xti −Xs|2 ds,

where we have used that n∆n is bounded. From this estimate we deduce that as n→∞

E

 sup
0≤t≤T

∣∣∣∣∣∆nS
n
t −

∫ [nt]∆n

0

Xsds

∣∣∣∣∣
2
 ≤ C [nV ]−1∑

i=0

∫ ti+1

ti

∫ s−ti

0

a(r)drds

≤ Ca(0)([nV ] ∆n)∆n → 0.

The result now follows by observing that∣∣∣∣∣
∫ t

0

Xsds−
∫ [nt]∆n

0

Xsds

∣∣∣∣∣
2

≤ |t− [nt] ∆n|
∫ V

0

X2
sds,

and using the fact that |t− [nt] ∆n| ≤ ∆n + V |1−∆nn|.

Proof of Proposition 3.2. Plainly, from (5.3)

[nt]

n
X0 −

1

n
S∆n,4

[nt] =
[nt]

n

[nt]−1∑
j=0

χ∆n
0,j , (5.15)

which in view of (5.4) implies that

C
(
z;

(
1

n
S∆n,4

[nt] −
[nt]

n
X0

))
= ψ

(
[nt]

n
z

)∫ [nt]∆n

0

a(s)ds→ 0.

Therefore, thanks to (5.5), we only need to check that, for l = 1, 2, 3, 1
nS

∆n,l
n

P→ 0. To see
this, observe that from equations (5.12)-(5.14) and the continuity of ψ∣∣∣∣C (z; 1

n
S∆n,1
n

)∣∣∣∣ ≤ Ctn ∫ tn

0

∣∣∣∣a(s)− a(s+ ∆n)

∆n

∣∣∣∣ds ≤ Ct2n → 0,

and ∣∣∣∣C (z; 1

n
S∆n,2
n

)
+ C

(
z;

1

n
S∆n,3
n

)∣∣∣∣ ≤ C ∫ tn

0

a(s)ds→ 0,

where we have further used that a is continuously differentiable in a neighborhood of 0.
This completes the proof.
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5.3 Proof of Theorem 3.4

Our proof in this case relies heavily on the asymptotic behaviour of the Lévy measure
of L around 0. It is worth noting that, if L is deterministic, then almost surely Znt ≡ 0,
so by the Lévy-Itô decomposition of Lévy bases (see [21]), in our proof we will always
assume that γ =

∫
|x|≤1

xν(dx) or γ = 0, depending whether
∫
R

(1 ∧ |x|)ν(dx) <∞ or not.
In this situation, under Assumption 3.3, Theorem 2 in [16] establishes that as ε→ 0

εψ(ε−1/βz)→ ψβ(z) =

{
− 1

2b
2z2 if b > 0 and β = 2,

ψ(z;β, K̃+β, K̃−β, γ̃) under iii. and 0 < β < 2,
(5.16)

where ψ(·;β,K+β,K−β, γ̃) as in (2.2). Note that the convergence takes place uniformly
on compacts. The proof is divided into several steps: In the first step, we show that
S∆n,1
n = oP(nTn

1/β). In the second step, we argue that L can be assumed to be strictly
β-stable. Finally, we show that i. and ii. hold.

Step 1: S∆n,1
n = oP(n(n∆n)1/β). Assume that (5.16) holds and set

A′n(z) :=

n∑
j=1

∫ tj

tj−1

(Tn − s)ψβ
(

tj
Tn1+1/β

z

)[
a(s)− a(s+ ∆n)

∆n

]
ds

+

n∑
j=1

∫ tj

tj−1

(s− tj)ψβ
(

tj
Tn1+1/β

z

)[
a(s)− a(s+ ∆n)

∆n

]
ds.

The C1-property of a and the fact that 0 ≤ tj/Tn ≤ 1 lead us to∣∣∣∣C (z; 1

nT
1/β
n

S∆n,2
n

)
−A′n(z)

∣∣∣∣
≤ C

(
sup
|u|≤|z|

Tn

∣∣∣∣ψβ ( u

Tn1/β

)
− ψ

(
u

Tn1/β

)∣∣∣∣
)

(Tn + ∆n)→ 0.

Now, the strict stability and the continuity of ψβ give us that

|A′n(z)| ≤ C(Tn + ∆n)→ 0, n→∞,

where we once again used the fact that a is continuously differentiable in a neighbour-
hood of 0. This is enough for the negligibility of 1

n(n∆n)1/β S
∆n,1
n .

Step 2: An approximation. In this step we assume that (5.16) holds for some 0 < β ≤ 2.
From (5.5), (5.15) and the previous step, we have that

Znt = Unt − Ûnt + oP(T 1/β
n ), t ≥ 0, (5.17)

where Unt :=
∑[nt]−1
j=0

(
[nt]
n −

j+1
n

)
χ∆n

0,j and Ûnt := 1
nS

∆n,2
[nt] . Furthermore, (Un,βt , Ût

n,β
)t≥0

are defined as (Unt , Ût
n
)t≥0 when we replace L by a homogeneous strictly β-stable

distribution whose seed has characteristic exponent given by ψβ. Note that Un and Ûn

(Un,β and Ûn,β) are independent. We are going to show that the f.d.d. of (Un, Ûn) are
asymptotically equivalent to those of (Un,β , Ûn,β). Indeed, fix q ∈ N, λ1, . . . , λq ∈ R and
0 = u0 < u1 < · · · < uq and note that

q∑
l=1

λlU
n
ul

=

[nuq ]−1∑
j=0

θj,nχ
∆n
0,j ,

q∑
l=1

λlÛ
n
ul

=

[nuq ]−1∑
j=0

q∑
k=1

(
ζ∆n

i,[nuk] − ζ
∆n

i,[nuk+1]

)
θ̂i,k,n,
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where ζ∆n

i,[nuq+1] := 0, and

θj,n :=

q∑
l=1

q∑
m=l

λm1[nul−1]≤j<[nul]

(
[num]

n
− j + 1

n

)
,

θ̂i,k,n :=

k∑
m=1

k∑
l=m

λl1[num−1]≤i<[num]

(
[nul]

n
− i

n

)
.

Whence, from (5.4) and (5.16), as n→∞,∣∣∣∣∣C
(
z;

1

T
1/β
n

q∑
l=1

λlU
n
ul

)
− C

(
z;

1

T
1/β
n

q∑
l=1

λlU
n,β
ul

)∣∣∣∣∣
≤ C sup

|u|≤|Cλz|
Tn

∣∣∣∣ψβ ( u

Tn1/β

)
− ψ

(
u

Tn1/β

)∣∣∣∣→ 0,

∣∣∣∣∣C
(
z;

1

T
1/β
n

q∑
l=1

λlÛ
n
ul

)
− C

(
z;

1

T
1/β
n

q∑
l=1

λlÛ
n,β
ul

)∣∣∣∣∣
≤ C sup

|u|≤|Cλz|
Tn

∣∣∣∣ψβ ( u

Tn1/β

)
− ψ

(
u

Tn1/β

)∣∣∣∣→ 0,

where Cλ := 2uq
∑q
l=1

∑q
m=l |λm| ≥ |θj,n|+

∣∣∣θ̂i,k,n∣∣∣, as claimed.

Step 3: Proof of i. and ii. We start by showing that the f.d.d. distributions of 1√
n∆n

Zn

converge to those stated in the theorem. In the last part we show that the convergence
in distribution can be strengthened to stable convergence.

Assume that b > 0. In this case, by virtue of Step 2, we may and do assume that γ = 0

and ν ≡ 0. Accordingly, Un and Ûn are two independent centered Gaussian processes
satisfying (5.17). Therefore, the convergence in i. is achieved whenever

1

Tn
E(Unt U

n
u )→ σ2

∫ t∧u

0

(t− r)(u− r)dr; 1

Tn
E(Ûnt Û

n
u )→ σ2

∫ t∧u

0

(t− r)(u− r)dr. (5.18)

To see that this is the case, take t ≥ u ≥ 0. Then

1

Tn
E (Unt U

n
u ) = b2

[nu]−1∑
j=0

∫ (j+1)/n

j/n

(
[nt]

n
− j + 1

n

)(
[nu]

n
− j + 1

n

)
a(Tns)ds,

1

Tn
E(Ûnt Û

n
u ) = b2

[nu]−1∑
i=1

∫ i/n

(i−1)/n

(
[nt]

n
− i

n

)(
[nu]

n
− i

n

)
a

[
Tn

(
[nt]

n
− s
)]

ds.

The results in (5.18) follow from the Dominated Convergence Theorem.
Suppose now that b = 0 and Assumption 3.3 holds. Therefore, by the previous step,

we may and do assume that L is strictly stable with characteristic exponent ψβ, with
0 < β < 2. Therefore, using the notation of Step 2, the strict stability of ψβ results in

C

(
z;

1

T
1/β
n

q∑
l=1

λlU
n
ul

)
=

q∑
l=1

[nul]−1∑
j=[nul−1]

∫ (j+1)/n

j/n

ψβ

(
q∑

m=l

λm

(
[num]

n
− j + 1

n

)
z

)
a(Tns)ds

=

q∑
l=1

∫ [nul]/n

[nul−1]/n

ψβ

(
q∑

m=l

λm

(
[num]

n
− [sn] + 1

n

)
z

)
a(Tns)ds

→ a(0)

q∑
l=1

∫ ul

ul−1

ψβ

(
q∑

m=l

λm (um − s) z

)
ds, n→∞.
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Similarly, as n→∞

C

(
z;

1

T
1/β
n

q∑
l=1

λlÛ
n
ul

)

=

q∑
x=1

[nux]−1∑
i=1∨[nux−1]

∫ i/n

(i−1)/n

ψβ

(
q∑
l=x

λm

(
[nul]

n
− i

n

)
z

)
a

[
Tn

(
[nuq]

n
− s
)]

ds

+

q∑
x=1

[nux]−1∑
i=1∨[nux−1]

q−1∑
k=x

∫ i/n

(i−1)/n

ψβ

(
k∑
l=x

λm

(
[nul]

n
− i

n

)
z

)

×
(
a

[
Tn

(
[nuk]

n
− s
)]
− a

[
Tn

(
[nuk+1]

n
− s
)])

ds

→ a(0)

q∑
x=1

∫ ux

ux−1

ψβ

(
q∑
l=x

λm (ul − s) z

)
ds.

Since Un and Ûn are independent, the previous relations show the desired weak con-
vergence of 1

(n∆n)1/βZ
n. Therefore, in order to conclude the proof, it remains to verify

that the convergence also takes place stably and the limit is independent of L. Let B be
a bounded Borel set and H the limiting process stated in the theorem. Since for every
n ∈ N, Zn is FL-measurable, thanks to Theorem 3.2 in [15], it is sufficient to show that

({(n∆n)
−1/β

Zul}
q
l=1, L(B))→ ({Hul}

q
l=1, L(B)) , (5.19)

and that for all z1, . . . , zq+1 ∈ R.

C ((z1, . . . , zq+1); ({Hul}
q
l=1, L(B))) = C ((z1, . . . , zq); {Hul}

q
l=1) + C (zq+1;L(B)) . (5.20)

Set

Bn =

[uqn]⋃
j=0

P∆n

A (0, j) ∪
[uqn]⋃
i=1

⋃
j≥i

P∆n

A (i, j).

Then by (5.4), Leb(B ∩Bn) ≤ 2a(0)[uqn]∆n → 0, meaning that L(B ∩Bn)
P→ 0. Relations

(5.19) and (5.20) are easily obtained by decomposing L(B) = L(B ∩Bn) + L(B\Bn), the
preceeding observation, and an application of Slutsky’s Theorem.

5.4 Proof of Theorem 3.8

Here we show the validity of Theorem 3.8. The proof will be divided into three steps.
We first show the convergence of the finite-dimensional distributions. Secondly, we verify
that our sequence is tight. We conclude by proving that the convergence is also stable.
Therefore, for the rest of this subsection we assume that Assumption 3.5 holds. We
finally emphasize that thanks to the Lévy-Itô decomposition of Lévy bases (see [21]) and
Lemma 5.1, we may and do assume that L has no Gaussian component, i.e. b = 0.

Step 1: Convergence of the f.d.d. Fix r ∈ N, λ1, . . . , λr ∈ R and 0 = u0 < u1 < · · · < ur.
We start by noting that from Lemma 5.1, we have that√

∆n

n

r∑
q=1

λqS
n
tq =

√
∆n

n

r∑
q=1

λqS
∆n,1
[ntq ]

+ oP(1), n ∈ N.
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Thus, in order show the convergence of the finite-dimensional distributions, it is enough
to verify that

√
∆n

n

r∑
q=1

λqS
∆n,1
[ntq ]

d→ σa

 r∑
q,q′=1

λqλq′tq ∧ tq′

1/2

N(0, 1). (5.21)

Since √
∆n

n

r∑
q=1

λqS
∆n,1
[ntq ]

=
1√
Tn

n−1∑
i=1

ξi,n,

where the array

ξi,n =

n−1∑
j=i

∆n(j − i+ 1)dn,jχ
∆
i,j , dn,j :=

r∑
q=1

λq1j<[ntq ], (5.22)

is centered and row-wise independent, (5.21) will be achieved whenever

1

Tn

n−1∑
i=1

E
(
|ξi,n|2

)
→ σ2

a

r∑
q,q′=1

λqλq′tq ∧ tq′ , n→∞, (5.23)

as well as the Lyapunov condition is satisfied, i.e. for some p > 2

In,p,1 :=

n−1∑
i=1

E (|ξi,n|p) = o
(

(Tn)p/2
)
, as n→∞. (5.24)

In view that, for all t > u, S∆n,1
[nt] = S∆n,1

[nu] +
∑[nt]−1
j=[nu]

∑j
i=1(j− i+ 1)χ∆n

i,j , we conclude from
the proof of Lemma 5.3 that

E
(
S∆n,1

[nt] S
∆n,1
[nu]

)
= Var

(
S∆n,1

[nu]

)
= Var (Snu) + o(n/∆n), t > u.

(5.23) follows now easily from this and Lemma 5.1. In order to check (5.24) first observe
that thanks to Assumption 3.5,

∫
R
|ΓX(s)|ds < ∞, and that for any 0 ≤ p < p0 the

measure
µp,a(ds) = 1s≥0s

pd |a| (s),

is finite. Now, fix p0 ∧ 3 > p > 2. By Rosenthal’s inequality

E (|ξj,n|p) ≤ C


n−i∑
j=1

|tj |pE
(∣∣∣χ∆n

i,j+i−1

∣∣∣p)+

n−i∑
j=1

|tj |2E
(∣∣∣χ∆n

i,j+i−1

∣∣∣2)
p/2

 ,

where we further used that dn,j is uniformly bounded. Moreover, from (5.4), we deduce
that the Lévy measure of χ∆n

i,j+i−1 is given by

νχ∆n
i,j+i−1

(·) =

∫ tj

tj−1

[a(s)− a(s+ ∆n)] dsν(·), j = 1, . . . , n− i.

Therefore, from Corollary 1.2.7. in [30], there is a constant C > 0 only depending on p
and ν(·), such that

E
(∣∣∣χ∆n

i,j+i−1

∣∣∣p) ≤ C max


∫ tj

tj−1

[a(s)− a(s+ ∆n)] ds,

(∫ tj

tj−1

[a(s)− a(s+ ∆n)] ds

)p/2 .

EJP 26 (2021), paper 116.
Page 23/36

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP652
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for trawl processes

Hence,

In,p,1 ≤ C(I
(1)
n,p,1 + I

(2)
n,p,1 + I

(3)
n,p,1), (5.25)

where we let

I
(1)
n,p,1 := Tn

n∑
j=1

∫ tj

tj−1

|tj |p d |a| (s),

I
(2)
n,p,1 := ∆p/2

n n

n∑
j=1

(∫ tj

tj−1

|tj |2 d |a| (s)

)p/2
,

I
(3)
n,p,1 := ∆p/2

n n

 n∑
j=1

∫ tj

tj−1

|tj |2 d |a| (s)

p/2

.

Thus, (5.24) is obtained whenever I(1)
n,p,1 + I

(2)
n,p,1 + I

(3)
n,p,1 = o

(
(Tn)p/2

)
. Observe that, for

any j = 1, . . . , n, tj−1 ≤ ζ ≤ tj and p0 ∧ 3 > q ≥ 2, it holds that∫ tj

tj−1

|ζq − sq|d |a| (s) ≤ C(∆nµq−1,a(tj−1, tj ] + ∆2
nµq−2,a(tj−1, tj ] + ∆q

nµ0,a(tj−1, tj ]).

(5.26)
Using the previous property and the fact that µp,a(R) <∞, one easily deduces that, for
any p0 ∧ 3 > p > 2,

1

(Tn)p/2

∣∣∣I(1)
n,p,1

∣∣∣ ≤ C 1

(Tn)p/2−1

n∑
j=1

∫ tj

tj−1

|tj |p d |a| (s) (5.27)

≤ C 1

(Tn)p/2−1
→ 0.

Similarly,

1

(Tn)p/2

∣∣∣I(3)
n,p,1

∣∣∣ ≤ C 1

np/2−1
→ 0.

Finally, by Jensen’s inequality,

1

(Tn)p/2

∣∣∣I(2)
n,p,1

∣∣∣ ≤ C 1

np/2−1

n∑
j=1

∫ tj

tj−1

|tj |p d |a| (s)→ 0,

which concludes the argument for (5.21).

Step 2: Tightness. Using similar arguments as in the proof of Lemma 2.1 in [29] and

Lemma 5.1, we deduce that
√

∆n

n Sn is tight if for any sequence mn ∈ N, such that

mn ↑ ∞, ∆nmn →∞ and ∆n ↓ 0, as n→∞, it holds that

E
(∣∣S∆n

mn

∣∣p) = O

((
mn

∆n

)p/2)
, (5.28)

for some p > 2. We proceed now to show that (5.28) is fulfilled. By (5.5), Lemma 5.1 and
Rosenthal’s inequality, we have that(

∆n

mn

)p/2
E
(∣∣S∆n

mn

∣∣p) ≤ C {In,p,1 + In,p,2 + In,p,3 + In,p,4}+ O(1),
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where In,p,1 is as in step 1 but we replace n by mn, and

In,p,2 =
1

(mn∆n)p/2

mn−1∑
i=1

(tmn − ti)pE
(∣∣∣χ∆n

i,mn−1

∣∣∣p) ,
In,p,3 =

1

(mn∆n)p/2

mn−1∑
i=1

(tj+1)pE
(∣∣∣χ∆n

0,j

∣∣∣p) ,
In,p,4 = (∆nmn)

p/2
E
(∣∣∣χ∆n

0,mn−1

∣∣∣p) .
We have already seen that In,p,1 → 0 as n→∞. On the other hand, invoking once again
Corollary 1.2.7 in [30] and using (5.4), we get

E
(∣∣∣χ∆n

i,mn−1

∣∣∣p) ≤ C max


∫ ti

ti−1

a(tmn−1 − s)ds,

(∫ ti

ti−1

a(tmn−1 − s)ds

)p/2 ,

E
(∣∣∣χ∆n

0,j

∣∣∣p) ≤ C max


∫ tj

tj−1

a(s)ds,

(∫ ti

ti−1

a(s)ds

)p/2 ,

E
(∣∣∣χ∆n

0,mn−1

∣∣∣p) ≤ C max


∫ ∞
tmn−1

a(s)ds,

(∫ ∞
tmn−1

a(s)ds

)p/2 .

Similarly as in Step 1, we deduce that for p0∧3 > p > 2 and n large enough, the following
estimates are valid

In,p,2 ≤ C
1

(mn∆n)p/2

mn−1∑
i=1

(tmn − ti)p
∫ ti

ti−1

a(tm−1 − s)ds,

In,p,3 ≤ C
1

(mn∆n)p/2

mn−1∑
i=1

(tj+1)p
∫ tj

tj−1

a(s)ds,

In,p,4 ≤ C (∆nmn)
p/2
∫ ∞

∆n(mn−1)

a(s)ds.

Assumption 3.5 now asserts that, as n→∞,

Ip,4 ≤ C(∆nmn)p/2−p0+1 → 0,

because 2 < p < p0 < 2(p0 − 1). Furthermore, analogous arguments used to establish
(5.8) and (5.9), can be applied in order to get that

Ip,2 + Ip,3 = C
1

(∆nmn)p/2

∫ ∆nmn

0

spa(s)ds+ o(1)→ 0,

which implies (5.28).

Step 3: Stability. From Step 2, Proposition 3.9 in [15] and its subsequent remark, the
stable convergence in D([0, 1]) will be obtained if (5.21) can be strengthened to GX -stable
convergence. Consider the filtration

Fni := σ

({
L(P∆n

A (k, j))
}
j≥k

: k = 0, . . . , i

)
, i = 0, . . . , n− 1, n ∈ N. (5.29)

From Step 1 √
∆n

n

r∑
q=1

λqS
n
tq =

1√
Tn

n−1∑
i=1

ξi,n + oP(1), n ∈ N,
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where ξi,n, defined in (5.22), is Fni -measurable and independent of Fni−1, for all i =

1, . . . , n− 1. Consequently, thanks to (5.23), (5.24) and Theorem 6.1 in [15], (5.21) can
be strengthened to G-stable convergence, where

G := σ

( ⋃
n≥1

⋂
N≥n

FNn
)
,

but in view that

σ(X0, X∆n , . . . , Xi∆n) ⊆ Fni , i = 0, 1, . . . , n− 1,

it follows immediately that GX ⊆ G, which concludes the proof.

5.5 Proof of Theorems 3.10-3.13

In this subsection, we justify the statements of Theorems 3.8-3.11. In what follows
(γ, b, ν) and ψ will denote respectively, the characteristic triplet and exponent of L. We
note that, for the sake of exposition, the proof of each theorem is given in a corresponding
subsubsection.

5.5.1 The case b > 0

For every n ∈ N, we will let rn = 1

n
√
a(n∆n)n∆n

. Observe that the same argument used in

step 2 in the proof of Theorem 3.8 together with Lemma 5.1, give us automatically that

rnS
n is tight in D([0, 1]) if E

(
|L′|2

)
<∞. Therefore, we only need to show that within

the framework of Assumption 3.6, the finite-dimensional distributions of rnSn converges
to those of the fBm with index H = 3−α

2 .

Proof of Theorem 3.10. Let us start by noting that from the proof of Theorem 3.10 ii.
below, and the Lévy-Itô decomposition of Lévy bases, it follows that the non-Gaussian
component of rnSn is negligible. Consequently, we may and do assume that rnSn is
centered and Gaussian. Moreover, it satisfies that and such that for all 1 ≥ t ≥ u ≥ 0

E(Snt S
n
u) =

1

2

{
Var(Snt ) + Var(Snu)−Var(Snt−u)

}
,

where we have used that X is stationary. The convergence of the finite-dimensional
distributions of rnSn follows now by Lemma 5.1.

5.5.2 The case b = 0

In this part, unless otherwise said, we will always assume that b = 0. Observe that,
under the assumptions of Theorem 3.11 ii., (5.16) is once again valid. We recall for the
convenience of the reader that we are also assuming that L has mean zero. Finally, we
would like to stress that in view that (5.33) below holds whenever L has mean zero, then
relation (5.34) as well as (5.36)-(5.38) remain valid if we replace βν by 2. It follows from
this that

1

n
√
a(n∆n)n∆n

Snt
P→ 0, n→∞.

We now proceed to present a proof for Theorem 3.11.

Proof of Theorem 3.11. The proof is organized as follow: First, based on our assumption,
we derive some preliminary estimates. Secondly, by using (5.5), we approximate the
characteristic function of Snt by means of I∆,1

n (·) and I∆,2
n (·), where the latter are as in
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Lemma 5.6. We conclude by applying such approximation to obtain the desired result.
For the rest of the proof, we will use the notation Tn = n∆n, rn = a(Tn)Tn, as well as

Bn =

{
∆n/(caTn)

1
α if βν < α;

1/nr
1/βν
n if 2 > βν > α.

Preliminary estimates: First, Assumptions 3.6 and 3.7 allow us to invoke the so-
called Potter’s bounds (see Theorem 1.5.6 in [7]). Such a result provides the existence
of a positive constant only depending on ε > 0, such that, for all 0 ≤ r ≤ 1,

a(Tns)

a(Tn)
≤ C

(
s−α−ε ∨ s−α+ε

)
, and

a′(r∆n + Tns)

a′(Tn)
≤ C

(
s−(α+1)−ε ∨ s−(α+1)+ε

)
, s > 0.

(5.30)
From Lemma 5.5 and the square integrability of L′, we have that, for every 2 ≥ θ > βν ,

|ψ (zy)| ≤ C
(
|y|2 ∧ |y|θ

)
, z, y ∈ R. (5.31)

On the other, using that E
(
|L′|2

)
< ∞, it follows that as x → ∞, ν±(x) = O(xθ), for

all θ ≤ 2. Thus, if ν±(x) ∼ K̃±x
−βν as x → 0+, for some constants K̃+ + K̃− > 0, then

the càdlàg function `(x) := v̄(x)xβν := [v+(x) + v−(x)]xβν is uniformly bounded in [0,∞).
Consequently, by Lemma 5.5, for any y > 0, z ∈ R

|ψ (zy)| ≤ C(|z| ∨ 1)2

∫ 1

0

v̄(x/y)xdx ≤ Cyβν . (5.32)

Estimating the characteristic function: In this part we will only assume that
a ∈ RV∞α . Recall that from (5.5), the following decomposition holds

C(z;S∆n
n ) =

4∑
k=1

C(z;S∆n,k
n ), n ∈ N, z ∈ R.

From Lemmas 5.6 and 5.4 as well as KT, for l = 2, 3

En1 (z) :=
∣∣C (z;S∆n,1

n

)
− I∆,1

n (z)
∣∣ ≤C |z|2 nO(1)

+ C∆n

∫ Tn

0

∣∣∣ψ ( s
∆
z
)∣∣∣ d |a| (s),

Enl (z) :=
∣∣C (z;S∆n,l

n

)
− I∆,2

n (z)
∣∣ ≤C |z|2

∆n

(
O(T 2

na(Tn)) + O(∆n)
)
.

(5.33)

Suppose first that βν > α. If (5.32) holds, then

En1 (Bnz) ≤C
∆n

r
2/βν
n Tn

O(1) +
C

n

1

T βνn a(Tn)

∫ Tn

0

sβνd |a| (s),

Enl (Bnz) ≤ C
∆n

r
2/βν
n T 2

n

(
O(T 2

na(Tn)) + O(∆n)
)
.

Moreover, by KT ∫ Tn

0

sβνd |a| (s) = O(T βνn a(Tn)).

We deduce from this and (5.33) that

En1 (Bnz) =C
∆n

r
2/βν
n Tn

+ o(1)→ 0,

Enl (Bnz) =
∆n

r
2−βν
βν

n Tn

O(1) +
∆2
n

r
2/βν
n T 2

n

O(1)→ 0,
(5.34)
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where we further used that a ∈ RV∞α as well as the fact that βν + 2(1 − α) > 0 and
(1− α)(2− βν) + βν > 0. Suppose now that βν < α. If (5.31) holds, we obtain from (5.33)
that, for all 2 > α > θ > βν ,

En1 [Bnz] ≤ C∆n

∫ Tn

0

(∣∣∣s/T 1
α
n

∣∣∣2 ∧ ∣∣∣s/T 1
α
n

∣∣∣θ)d |a| (s) + o(1),

Enl [Bnz] ≤ C∆na(Tn)T
2(α−1)
α

n O(1).

Using that 2(α− 1)− α < 0, results in Enl [Bnz] vanishing as n→∞, for l = 2, 3. Now, KT
implies that

∫ Tn

0

(∣∣∣s/T 1
α
n

∣∣∣2 ∧ ∣∣∣s/T 1
α
n

∣∣∣θ)d |a| (s) =

∫ T
1
α
n

0

(
s/T

1
α
n

)2

d |a| (s) +

∫ Tn

T
1
α
n

(
s/T

1
α
n

)θ
d |a| (s)

= O(a(T
1
α
n )) + O(T

− θ
α

n ).

We conclude from this that En1 [Bnz]→ 0 as n→∞.
Convergence in i.: So far we have shown that, if a ∈ RV∞α and either βν > α and

(5.32) or βν < α and (5.31) hold, then for l = 2, 3

C(z;BnS∆n,1
n ) = I∆,1

n (Bnz) + o(1);

C(z;BnS∆n,l
n ) = I∆,2

n (Bnz) + o(1).

We proceed to verify that S∆n,l
n is negligible for l = 2, 3, 4, whenever βν < α and

a ∈ RV∞α . Indeed, from (5.31), for all z 6= 0 and 2 > α > θ > βν , we get due to KT that∣∣C (z;BnS∆n,4
n

)∣∣ =

∣∣∣∣ψ (zT α−1
α

n

)∫ ∞
Tn

a(s)ds

∣∣∣∣ ≤ CT θ(α−1)
α

n

∫ ∞
Tn

a(s)ds→ 0.

In a similar way, we deduce from (5.30) and KT that for (3− α) ∧ (α− θ) > ε > 0

∣∣I∆,2
n (Bnz)

∣∣ ≤ CT 1
α
n

∫ T
α−1
α

n

0

(
s2 ∧ sθ

)
a(T

1
α
n s)ds (5.35)

= O(T
1
α
n a(T

1
α
n )) + T

1
α
n a(T

1
α
n )

∫ T
α−1
α

n

1

sθ−α+εds.

If βν < α− 1, we can further choose βν < θ < α− 1 and 0 < ε < α− 1− θ in such a way∫∞
1
sθ−α+εds <∞. Otherwise, we have

∫ T
α−1
α

n

1

sθ−α+εds = O(T
α−1
α (θ−(α−1)+ε)

n ).

Either way, T
1
α
n a(T

1
α
n )
∫ T α−1

α
n

1
sθ−α+εds → 0 whenever a ∈ RV∞α , which implies immedi-

ately that I∆,2
n (Bnz)→ 0. Using the previous reasoning, we conclude that, if a ∈ RV∞α ,

then
BnS

n
t = BnS

∆n,1
[nt] + oP(1).

Since (S∆n,1
[nt] )t≥0 has independent increments, it only remains to verify that, for all

1 ≥ t > u ≥ 0, as n→∞,

C
(
z;Bn

[
S∆n,1

[nt] − S
∆n,1
[nu]

])
→ C(z;Yt − Yu),
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where Y is as in the theorem. For simplicity, we will only consider the case when t = 1,
u = 0 and ca = 1. Suppose now that z 6= 0, then by doing the change of variables

x = (s |z|)/T
1
α
n and invoking Assumption 3.7, we see that

I∆,1
n (Bnz)

=
a′(T

1
α
n )T

α+1
α

n

|z|

∫ 1

0

∫ T
α−1
α

n |z|

0

[
1− x

|z|T
α−1
α

n

]
ψ(sign(z)x)

a′
(
r∆n + T

1
α
n

x
|z|

)
a′(T

1
α
n )

dxdr.

From (5.30) and (5.31), we deduce that for 2 > α > θ > βν and any ε > 0∣∣∣∣∣∣
[
1− x

zT
α−1
α

]
ψ(sign(z)x)

a′
(
r∆n + T

1
α
n
x
z

)
a′(T

1
α
n )

∣∣∣∣∣∣1x≤T α−1
α z

≤ C
(
|x|2 ∧ |x|θ

)(
|x|−(α+1)−ε ∨ |x|−(α+1)+ε

)
.

Choosing 0 < ε < (2 − α) ∧ (α − θ) allows us to apply the Dominated Convergence
Theorem in order to get that

I∆,1
n (Bnz)→ |z|α

∫ ∞
0

ψ(sign(z)x)x−(α+1)dx.

The result now follows from Fubini’s Theorem and the relation (see Lemma 14.11 in
[24]) ∫ ∞

0

(e±ir − 1± ir)r−$−1dr = Γ(−$)e∓i
π$
2 , 1 < $ < 2.

Convergence of ii.: We conclude the proof by showing that ii. holds, so for the rest
of the proof we will assume that ν±(x) ∼ K̃±x−βν as x→ 0+ and that 2 > βν > α. From
the first and second part of the proof, it is enough to show that in this situation

I∆,1
n (Bnz)→ α

∫ 1

0

(1− s)sβν−(α+1)dsψβν (z); (5.36)

I∆,2
n (Bnz)→

∫ 1

0

sβ−αdsψβν (z), l = 2, 3; (5.37)

C
(
z;BnS

∆n,4
n

)
→ 1

α− 1
ψβν (z). (5.38)

Since rn → 0, we deduce from KT and (5.16) that as n→∞

C
(
z;BnS

∆n,4
n

)
= rnψ

(
z

r
1/βν
n

)
1

rn

∫ ∞
Tn

a(s)ds→ 1

α− 1
ψβν (z), z ∈ R.

On the other hand, by doing the change of variables x = s/Tn, we get that

I∆,1
n (Bnz) =

Tna
′(Tn)

a(Tn)

∫ 1

0

∫ 1

0

(1− s)rnψ
(

zs

r
1/βν
n

)
a′(Tn(r/n+ s))

a′(Tn)
dsdr,

I∆,2
n (Bnz) =

∫ 1

0

rnψ

(
zs

r
1/βν
n

)
a(Tns)

a(Tn)
ds.

From (5.16) and the fact that a′ ∈ RV∞α+1, it follows that for 0 < r, s ≤ 1 as n→∞

Tna
′(Tn)

a(Tn)
rnψ

(
zs

r
1/βν
n

)
a′(Tn(r/n+ s))

a′(Tn)
→ αψβν (zs)s−(α+1),

rnψ

(
zs

r
1/βν
n

)
a(Tns)

a(Tn)
→ψβν (zs)s−α.
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Moreover, from (5.30) and (5.32), we infer that∣∣∣∣rnψ( zs

r
1/βν
n

)
a′(Tn(r/n+ s))

a′(Tn)

∣∣∣∣ ≤ Csβν−(α+1)−ε,∣∣∣∣rnψ( zs

r
1/βν
n

)
a(Tns)

a(Tn)

∣∣∣∣ ≤ Csβν−α−ε.
Therefore, (5.36) and (5.37) now follow by letting βν − α > ε > 0 and by applying the
Dominated Convergence Theorem.

5.6 Proof of Theorem 3.13

Proof of Theorem 3.13. We will only show that i. holds, since the proof of ii. is identical
to the proof of ii. in Theorem 3.11. Observe that, by the strict stability of L, (5.33) and
KT for all z ∈ R and l = 2, 3, 4

C
(
z;

∆n

T
1/β
n

S∆n,l
n

)
→ 0, n→∞.

This implies that ∆n

T
1/β
n

S∆n

[tn] = ∆n

T
1/β
n

S∆n,1
[tn] + oP(1). Therefore, as in the proof of Theorem

3.11, we only need to show that, for all 1 ≥ t > u ≥ 0, as n→∞,

C
(
z;Bn

[
S∆n,1

[nt] − S
∆n,1
[nu]

])
→ C(z;Yt − Yu).

As before, we will only consider the case when u = 0. Now, from Assumption 3.7,∫∞
0
sβa′(s)ds <∞ and

C
(
z;

∆n

T
1/β
n

S∆n,1
[tn]

)
= ψ (z)

∫ 1

0

∫ [nt]∆

0

(
[nt]

n
− s

Tn

)
([s/∆n] ∆n)

β
a′(r∆n + s)dsdr

+ ψ (z)
1

Tn

∫ 1

0

[nt]−1∑
j=1

∫ tj+1

tj

(s− tj) tβj a
′(r∆n + s)dsdr,

in which ∣∣∣∣∣∣ 1

Tn

∫ 1

0

[nt]−1∑
j=1

∫ tj+1

tj

(s− tj) tβj a
′(r∆n + s)dsdr

∣∣∣∣∣∣ ≤ 1

n

∫ ∞
0

sβa′(s)ds→ 0,

as well as for tj ≤ s ≤ tj+1 and 0 ≤ r ≤ 1∣∣∣∣( [nt]

n
− s

Tn

)
([s/∆n] ∆n)

β
a′(r∆n + s)dsdr

∣∣∣∣ ≤ sβa′(r∆n + s).

Hence, the Generalized Dominated Convergence Theorem asserts that

C
(
z;

∆n

T
1/β
n

S∆n,1
[tn]

)
→ tψ (z)

∫ ∞
0

sβa′(s)ds,

as required.

5.7 Proof of Theorem 4.7

Proof of Theorem 4.7. In this proof without loss of generality we consider the case

rn > 0, for every n ∈ N. Assume first that ν̃(rn)
n

weak→ ν̃ and κ(rn)
n → κ as n→∞. Thanks

EJP 26 (2021), paper 116.
Page 30/36

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP652
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for trawl processes

Ãt,s

B̃t,s,r

C̃t,s,r

D̃s,r

Ẽt,s,r

F̃t,r

a(0)

tsr

a(t− ·)
a(s− ·)

a(r − ·)

Figure 1: Separation of overlapping trawl sets into disjoint sets.

to Theorem 16.7 in [6] it is sufficient to prove the statement in the space D[0, T ] for any
finite T > 0.

We first prove that the finite-dimensional distributions convergence. For given
t0 < t1 < · · · < tm and every i, j = 0, . . . ,m with j ≥ i, define

PA(i, j) := {(r, s) : a(tj+1 − s) < r ≤ a(tj − s), ti−1 < s ≤ ti},

with the convention that t−1 = −∞ and tm+1 =∞. Using that for all k = 0, 1, . . . ,m,

Leb

(
Atk \

k⋃
i=0

m⋃
j=k

PA(i, j)

)
= 0,

it follows that for any z0, . . . , zm ∈ R, it holds that

logE

(
exp

(
i

m∑
k=0

zjrnX
(n)
tk

))
=

m∑
i=0

m∑
j=i

logE

(
exp

(
iz̃i,jrnL

(n)(PA(i, j))

))

=

m∑
i=0

m∑
j=i

Leb(PA(i, j))C(z̃i,j ; rnL′n),

where z̃i,j =
∑j
k=i zk. Then, by Lemma 15.15 in [17] and by the convergences ν̃(rn)

n
weak→ ν̃

and κ(rn)
n → κ as n→∞, we obtain that

C(z̃i,j ; rnL′n)→ C(z̃i,j ;L′Y ), as n→∞,

where L′Y is the trawl seed of the trawl process Yt. Thus, we conclude that the finite-
dimensional distributions of rnX(n) converge to those of Y .

We now prove tightness. First, observe that (see Fig. 1)

Ln(At)− Ln(As) = Ln(Ãt,s)− Ln(B̃t,s,r ∪ Ẽt,s,r) = Ln(Ãt,s)− Ln(B̃t,s,r)− Ln(Ẽt,s,r),

that

Ln(As)− Ln(Ar) = Ln(B̃t,s,r ∪ C̃t,s,r)− Ln(D̃t,s,r) = Ln(B̃t,s,r) + Ln(C̃t,s,r)− Ln(D̃t,s,r),
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and that Ln(Ãt,s), Ln(B̃t,s,r), Ln(Ẽt,s,r), Ln(C̃t,s,r), Ln(D̃t,s,r) are independent of each
other. Then, we have

P(|Ln(At)− Ln(As)| ∧ |Ln(As)− Ln(Ar)| ≥ λ)

= P
(
|Ln(Ãt,s)− Ln(B̃t,s,r)− Ln(Ẽt,s,r)|

∧ |Ln(B̃t,s,r) + Ln(C̃t,s,r)− Ln(D̃t,s,r)| ≥ λ
)

≤ P
((
|Ln(Ãt,s)|+ |Ln(B̃t,s,r)|+ |Ln(Ẽt,s,r)|

)
∧
(
|Ln(B̃t,s,r)|+ |Ln(C̃t,s,r)|+ |Ln(D̃t,s,r)|

)
≥ λ

)
= P

(
|Ln(B̃t,s,r)|+ min

(
|Ln(Ãt,s)|+ |Ln(Ẽt,s,r)|, |Ln(C̃t,s,r)|+ |Ln(D̃t,s,r)|

)
≥ λ

)
≤ P

(
|Ln(B̃t,s,r)| ≥

λ

2

)
+ P

(
min

(
|Ln(Ãt,s)|+ |Ln(Ẽt,s,r)|, |Ln(C̃t,s,r)|+ |Ln(D̃t,s,r)|

)
≥ λ

2

)
= P

(
|Ln(B̃t,s,r)| ≥

λ

2

)
+ P

(
|Ln(Ãt,s)|+ |Ln(Ẽt,s,r)| ≥

λ

2

)
P

(
|Ln(C̃t,s,r)|+ |Ln(D̃t,s,r)| ≥

λ

2

)
≤ P

(
|Ln(B̃t,s,r)| ≥

λ

2

)
+

[
P

(
|Ln(Ãt,s)| ≥

λ

4

)
+ P

(
|Ln(Ẽt,s,r)| ≥

λ

4

)]
×
[
P

(
|Ln(C̃t,s,r)| ≥

λ

4

)
+ P

(
|Ln(D̃t,s,r)| ≥

λ

4

)]
(5.39)

where we used that given two independent real valued random variables Z and V we
have that P(min(Z, V ) ≥ λ) = P(Z ≥ λ)P(V ≥ λ).

Now, consider the following inequality which holds for any real valued random
variable ξ (see eq. (3.34) in [28] and see also [17])

P(|ξ| > λ) ≤ λ
∫ 2/λ

−2/λ

(1− E[exp(iθξ)])dθ.

Moreover, consider that

eb − eia+b = eb(1− e2i a2 ) = −ebei a2 (ei
a
2 − e−i a2 ) = −2iebei

a
2 sin

(a
2

)
,

from which we get that |eb − eia+b| = 2eb| sin
(
a
2

)
|, and consider that |1 − eia+b| ≤ |1 −

eb|+ |eb− eia+b|, for every a, b ∈ R. Observe also that 2| sin(x/2)| ≤ 10(1− e−|x|), and that
1− e−x ≤ x (and so that 1− e−|x| ≤ |x|), for x ∈ R.

Let us use these inequalities for P
(
rn|Ln(B̃t,s,r)| ≥ λ

2

)
, that is let φ(θ) be the charac-

teristic exponent of rnLn(B̃t,s,r) then

P

(
rn|Ln(B̃t,s,r)| ≥

λ

2

)
≤ λ

2

∫ 4/λ

−4/λ

(1− eφ(θ))dθ =
λ

2

∫ 4/λ

−4/λ

1− eRe(φ(θ))+iIm(φ(θ))dθ

≤ λ

2

∫ 4/λ

−4/λ

(|1− eRe(φ(θ))|+ |eRe(φ(θ)) − eRe(φ(θ))+iIm(φ(θ))|)dθ (5.40)

≤ 5λ

∫ 4/λ

−4/λ

Leb(B̃t,s,r)

(
|θγ(rn)

n |+ 1

2
θ2(b(rn)

n )2 +

∫
R

(
1 ∧ x2

)
ν(rn)
n (dx)

)
dθ.
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where for the first addend in (5.40) we used that

Re(φ(θ)) = Leb(B̃t,s,r)

(
−1

2
θ2(b(rn)

n )2 +

∫
R

(cos(θx)− 1)ν(rn)
n (dx)

)
≤ 0,

that ∣∣∣∣Re
(∫

R

(eizx − 1− izx1|x|≤1)ν(dx)
)∣∣∣∣ ≤ ∫

R

(
1 ∧ x2

)
ν(rn)
n (dx),

(and similarly for the imaginary part) and so that

|1− eRe(φ(θ))| = 1− eRe(φ(θ)) ≤ −Re(φ(θ))

≤ Leb(B̃t,s,r)

(
1

2
θ2(b(rn)

n )2 +

∫
R

(
1 ∧ x2

)
ν(rn)
n (dx)

)
and for the second addend in (5.40) we used that eRe(φ(θ)) ≤ 1 and so that

|eRe(φ(θ)) − eRe(φ(θ))+iIm(φ(θ))| ≤ 10|Im(φ(θ))|

≤ 10Leb(B̃t,s,r)

(
|θγ(rn)

n |+
∫
R

(
1 ∧ x2

)
ν(rn)
n (dx)

)
.

By the previously shown convergence rnL′n
d→ L′Y as n→∞ and by Theorem 8.7 in [24]

we have that
∫
R

(
1 ∧ x2

)
ν

(rn)
n (dx)→

∫
R

(
1 ∧ x2

)
ν(dx), γ(rn)

n → γ, and

lim
ε↓0

lim sup
n→∞

|(b(rn)
n )2 +

∫
|x|<ε

x2ν(rn)
n (dx)− b2| = 0.

Hence, we have that |γ(rn)
n |, (b

(rn)
n )2, and

∫
R

(
1 ∧ x2

)
ν

(rn)
n (dx) are uniformly bounded and

thus we have

P

(
rn|Ln(B̃t,s,r)| ≥

λ

2

)
≤ Leb(B̃t,s,r)5λ

∫ 4/λ

−4/λ

(
C0|θ|+ C1θ

2 + C2

)
dθ

= Leb(B̃t,s,r)10
(8C0

λ
+

64C1

3λ2
+ 4C2

)
.

To prove tightness we use Theorem 13.5 in [6] which requires to obtain the bound: for
r ≤ s ≤ t, n ≥ 1 and λ > 0,

P (rn (|Ln(At)− Ln(As)| ∧ |Ln(As)− Ln(Ar)|) ≥ λ) ≤ C

λβ
(t− r)1+ε,

where C > 0, β ≥ 0 and ε > 0. It is possible to see by its proof and by Theorems 13.2 and
13.2 in [6] (see also eq. (12.31) and (12.32) therein) that it is sufficient to take λ ∈ (0, 1).
Thus, in the following we consider only the case of λ ∈ (0, 1). Then, we have that

Leb(B̃t,s,r)10
(8C0

λ
+

64C1

3λ2
+ 4C2

)
≤ Leb(B̃t,s,r)

C3

λ2
.

From Assumption 4.1 it is possible to see that Leb(B̃t,s,r) is bounded by (t − r)1+ε for
some ε > 0. Thus, we have

P

(
rn|Ln(B̃t,s,r)| ≥

λ

2

)
≤ C3

λ2
(t− r)1+ε.

For the other summands of (5.39) we have that

P

(
rn|Ln(Ãt,s)| ≥

λ

4

)
≤ Leb(Ãt,s)

5λ

2

∫ 8/λ

−8/λ

(
C0|θ|+ C1θ

2 + C2

)
dθ

= Leb(Ãt,s)10(
16C0

λ
+

256C1

3λ2
+ 4C2) ≤ C4

λ2
(t− s) 1

2 + ε
2
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and similarly for the probabilities P
(
rn|Ln(Ẽt,s,r)| ≥ λ

4

)
, P

(
rn|Ln(C̃t,s,r)| ≥ λ

4

)
, and

P
(
rn|Ln(D̃t,s,r)| ≥ λ

4

)
. Then, we have that

P

(
rn|Ln(Ãt,s)| ≥

λ

4

)
P

(
rn|Ln(C̃t,s,r)| ≥

λ

4

)
≤ C2

4

λ4
(t− s) 1

2 + ε
2 (s− r) 1

2 + ε
2 ≤ C2

4

λ4
(t− r) 1

2 + ε
2 (t− r) 1

2 + ε
2 =

C2
4

λ4
(t− r)1+ε.

Since λ < 1 then we obtain that

P(rn(|Ln(At)− Ln(As)| ∧ |Ln(As)− Ln(Ar)|) ≥ λ) ≤ C5

λ4
(t− r)1+ε.

Thus, we obtain the desired bound. Since for any t ∈ R we have that Yt − Ys ⇒ 0 as
s → t, also condition (13.12) in Theorem 13.5 in [6] is satisfied and so we obtain the
stated convergence in distribution.

Assume now that {rnX(n)
t }t∈[0,T ]

D[0,T ]
=⇒ {Yt}t∈[0,T ] , as n → ∞. Since coordinate

projections are continuous functionals of the sample path, by the continuous mapping

theorem we obtain that {rnX(n)
t }t∈[0,T ]

fd→ {Yt}t∈[0,T ] , as n→∞. This implies that

C(z; rnL′n)→ C(z;L′Y ), as n→∞,

for every z ∈ R, which by Lemma 15.15 in [17] implies that ν̃(rn)
n

weak→ ν̃ and κ(rn)
n → κ as

n→∞.

5.8 Proof of Theorem 4.8

Proof of Theorem 4.8. From the same arguments as the ones used in the proof of Theo-
rem 4.7 we obtain that

logE

(
exp

(
i

m∑
k=0

zjrnX
(n)
tk

))
→ 1

2

m∑
j,l=0

zjzlLeb(Atj ∩Atl), as n→∞.

Since Leb(Atj ∩Atl) = Leb(Amax(tj ,tl)−min(tj ,tl)∩A0) =
∫∞

0
a(max(tj , tl)−min(tj , tl)+s)ds,

we need to show that
∫∞

0
a(max(tj , tl)−min(tj , tl) + s)ds =

∫min(tj ,tl)

−∞ g(tj − s)g(tl − s)ds,
for every j, l = 0, . . . ,m. Therefore, in general terms, we have the following condition to
satisfy ∫ ∞

0

a(h+ s)ds =

∫ 0

−∞
g(h− s)g(−s)ds.

Notice that∫ ∞
0

a(h+ s)ds =

∫ ∞
h

a(s)ds and

∫ 0

−∞
g(h− s)g(−s)ds =

∫ ∞
0

g(h+ s)g(s)ds,

so by the fundamental theorem of calculus we need to satisfy

−a(h) =
d

dh

∫ ∞
h

a(s)ds =
d

dh

∫ ∞
0

g(h+ s)g(s)ds,

which is indeed satisfied by assumption. Thus, we obtain the finite-dimensional distribu-

tions convergence. The tightness and the necessity of the conditions ν̃(rn)
n

weak→ δ0 and
κ

(rn)
n → 0 as n→∞ is proved using the same arguments as the ones used in the proof of

Theorem 4.7.
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