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Abstract

Let (Xk)k≥1 and (Yk)k≥1 be two independent sequences of i.i.d. random variables,
with values in a finite and totally ordered alphabet Am := {1, . . . ,m}, m ≥ 2, having
respective probability mass function pX1 , . . . , pXm and pY1 , . . . , pYm. Let LCIn be the
length of the longest common and weakly increasing subsequences in X1, ..., Xn and
Y1, ..., Yn. Once properly centered and normalized, LCIn is shown to have a limiting
distribution which is expressed as a functional of two independent multidimensional
Brownian motions.
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1 Introduction and preliminary results

1.1 Introduction

We analyze the asymptotic behavior of LCIn, the length of the longest common subse-
quences in random words with an additional weakly increasing requirement. Throughout,
(Xk)k≥1 and (Yk)k≥1 are two independent sequences of i.i.d. random variables with val-
ues in the finite totally ordered alphabet Am := {1, . . . ,m}, m ≥ 2, and respective pmf
pX1 , . . . , p

X
m, pXi > 0, i = 1, . . . ,m and pY1 , . . . , p

Y
m, pYi > 0, i = 1, . . . ,m. Next, LCIn, the

length of the longest common and weakly increasing subsequences of the two random
words X1 · · ·Xn and Y1 · · ·Yn, is the largest integer r ∈ {1, . . . , n} such that there exist
1 ≤ i1 < · · · < ir ≤ n and 1 ≤ j1 < · · · < jr ≤ n such that
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On the limiting law of the length of the longest common and increasing subsequences

• ∀s ∈ {1, . . . , r}, Xis = Yjs ,

• Xi1 ≤ Xi2 ≤ · · · ≤ Xir and Yj1 ≤ Yj2 ≤ · · · ≤ Yjr ,

and if no integer satisfies these two conditions, we set LCIn = 0.

A thorough discussion of the study of LCIn, with potential applications, and a more
complete bibliography, is present in [2], where the following is further proved (below, as
usual, ∧ is short for minimum):

Theorem 1.1. Let Xk and Yk (k = 1, 2, . . . ) be uniformly distributed over {1, . . . ,m}.
Then,

LCIn − n/m√
n/m

===⇒
n→∞

max
0=t0≤t1≤···≤tm=1

[(
− 1

m

m∑
i=1

BXi (1) +

m∑
i=1

(
BXi (ti)−BXi (ti−1)

))
∧(

− 1

m

m∑
i=1

BYi (1) +

m∑
i=1

(
BYi (ti)−BYi (ti−1)

))]
, (1.1)

where BX and BY are two independent m-dimensional standard Brownian motions on
[0, 1].

The results of [2] extended (and corrected) the proof of the case m = 2 analyzed in
[4] and also conjectured the following generalization:

Theorem 1.2. Let Xk and Yk (k = 1, 2, . . . ) have the same distribution, let pmax =

maxi∈{1,...,m} p
X
i and let k∗ be its multiplicity. Then

LCIn − npmax√
npmax

===⇒
n→∞

max
0=t0≤t1≤···≤tk∗=1

[(√
1− k∗pmax − 1

k∗

k∗∑
i=1

BXi (1)+

k∗∑
i=1

(
BXi (ti)−BXi (ti−1)

))
∧

(√
1− k∗pmax − 1

k∗

k∗∑
i=1

BYi (1) +

k∗∑
i=1

(
BYi (ti)−BYi (ti−1)

))]
,

(1.2)

where BX and BY are two independent k∗-dimensional standard Brownian motions on
[0, 1].

Clearly, in case k∗ = m, the two limiting distributions in (1.1) and (1.2) are the
same but they differ otherwise. Indeed, (1.1) involves two independent m-dimensional
Brownian motions while (1.2) involves k∗-dimensional ones. So, in particular, if k∗ = 1,
then the right-hand side of (1.2) is just the minimum of two independent centered normal
random variables. In view of the results obtained in the one-sequence case, e.g., see
[5], [1], and the many references therein, it is tantalizing to conjecture that both the
right-hand side of (1.1) and of (1.2) can be realized as maximal eigenvalues of some
Gaussian random matrix models.

Below, we aim to obtain the limiting distribution of LCIn, without assuming that the
Xk and Yk (k = 1, 2, . . . ) have the same distribution; providing also an alternative proof
of Theorem 1.1 as well as a proof of the conjectured (1.2). A brief description of the
content of our notes is as follows: the rest of the current section is devoted to studying
the asymptotic mean of LCIn. This asymptotic mean result is already not so predictable
and allows for the proper centering in the limiting theorem whose proof is provided in
the next section. The third and final section is mainly devoted to studying extensions and
complements, such as results for sequences with blocks and infinite countable alphabets.
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On the limiting law of the length of the longest common and increasing subsequences

1.2 Probability

For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, let ` ∈ N = {0, 1, 2, . . . } be such that j+` ≤ n+1,
and let

NX,i
j,` =

`−1∑
k=0

1Xj+k=i

(
resp.NY,i

j,` =

`−1∑
k=0

1Yj+k=i

)
,

be simply the number of letters i between, and including, j and j + ` − 1 in X1, ..., Xn

(resp. Y1, ..., Yn), with the convention that the sum is zero in case ` = 0. From the very
definition of LCIn, it is clear that

LCIn = max
`X ,`Y ∈Nm
`X1 +···+`Xm=n

`Y1 +···+`Ym=n

(
NX,1

1,`X1
∧NY,1

1,`Y1
+NX,2

`X1 ,`
X
2
∧NY,2

`Y1 ,`
Y
2

+· · ·+NX,m

`X1 +···+`Xm−1,`
X
m
∧NY,m

`Y1 +···+`Ym−1,`
Y
m

)
.

Next, let Λ = {λ ∈ (R+)
m

= [0,+∞)m : λ1 + · · ·+ λm = 1}. For λ ∈ Λ, let

`n(λ)i = b(λ1 + · · ·+ λi)nc − b(λ1 + · · ·+ λi−1)nc, (1.3)

where b.c is the usual integer part, aka the floor, function. When λ runs through Λ,
`n(λ) = (`n(λ)1, . . . , `

n(λ)m) runs exactly through {` ∈ Nm : `1 + · · ·+ `m = n}, so

LCIn = max
λX ,λY ∈Λ

(
NX,1

1,`n(λX)1
∧NY,1

1,`n(λY )1
+NX,2

`n(λX)1,`n(λX)2
∧NY,2

`n(λY )1,`n(λY )2
+ . . .

+NX,m
`n(λX)1+···+`n(λX)m−1,`n(λX)m

∧NY,m
`n(λY )1+···+`n(λY )m−1,`n(λY )m

)
. (1.4)

For ease of notations, throughout the paper, for all x ∈ (Rm)
2, we write x = (xX , xY )

so, for example, above, λX , λY ∈ Λ becomes λ ∈ Λ2.
For i ∈ {1, . . . ,m} and t ∈ [0, 1], let now

B̃n,Xi (t) =
NX,i

1,btnc − p
X
i tn√

pXi (1− pXi )n
,

(
resp. B̃n,Yi (t) =

NY,i
1,btnc − p

Y
i tn√

pYi (1− pYi )n

)
, (1.5)

and for λ ∈ Λ2, let

Ṽ n,Xi (λX) =
√
pXi (1− pXi )

(
B̃n,Xi (λX1 + · · ·+ λXi )− B̃n,Xi (λX1 + · · ·+ λXi−1)

)
, (1.6)

Ṽ n,Yi (λY ) =
√
pYi (1− pYi )

(
B̃n,Yi (λY1 + · · ·+ λYi )− B̃n,Yi (λY1 + · · ·+ λYi−1)

)
, (1.7)

so that (1.4) becomes

LCIn = max
λ∈Λ2

m∑
i=1

[(
npXi λ

X
i +
√
nṼ n,Xi (λX)

)
∧
(
npYi λ

Y
i +
√
nṼ n,Yi (λY )

)]
. (1.8)

The above identity provides a representation of LCIn as a maximum over the locations,
λ ∈ Λ2, where to pick in each word X1, . . . , Xn and Y1, . . . , Yn, the letters 1, 2, . . . ,m in
order to form a common sub-word. This is different from the approach in [2], where the
maximum is over the numbers of letters 1, 2, . . . ,m in a common sub-word. Of course the
two representations are equivalent. However, the advantage of our approach is that λ
takes its values in a deterministic set, as opposed to a random set.
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On the limiting law of the length of the longest common and increasing subsequences

In order to keep dealing with maxima it will be convenient to replace B̃ni in (1.5) by
its continuous alternative: for i ∈ {1, . . . ,m} and t ∈ [0, 1], let

Bn,Xi (t) =
NX,i

1,btnc + (tn− btnc)1Xbtnc+1=i − pXi tn√
pXi (1− pXi )n

and

Bn,Yi (t) =
NY,i

1,btnc + (tn− btnc)1Ybtnc+1=i − pYi tn√
pYi (1− pYi )n

.

Next define V n,X , V n,Y just as in (1.6) and (1.7), replacing B̃ by B, and let

LCIcn = max
λ∈Λ2

m∑
i=1

[(
npXi λ

X
i +
√
nV n,Xi (λ)

)
∧
(
npYi λ

Y +
√
nV n,Yi (λ)

)]
.

Our analysis rests upon estimating the variations of Bn,Xi and of Bn,Yi . To do so, let
η ∈ (0, 1/6) and let Aηn be the event:

∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , n},∀` ∈ {0, . . . , n+ 1− j},

∣∣∣∣∣N
X,i
j,` − pXi `√

n

∣∣∣∣∣ ≤ nη

2

√
`

n
,

and

∣∣∣∣∣N
Y,i
j,` − pYi `√

n

∣∣∣∣∣ ≤ nη

2

√
`

n
.

By Hoeffding’s inequality,

1− P (Aηn) ≤ 2n(n+ 1)m exp

(
−n

2η

2

)
, (1.9)

and so if Aηn occurs, then for all x, y in [0, 1] and i ∈ {1, . . . ,m},∣∣∣∣√pXi (1− pXi )
(
Bn,Xi (y)−Bn,Xi (x)

)∣∣∣∣ ≤ nη

2

√
|y − x|+ 1

n
.

and in particular,∣∣∣∣√pXi (1− pXi )
(
Bn,Xi (y)−Bn,Xi (x)

)∣∣∣∣ ≤ nη

2

√
|y − x|+ nη−1/2

2
≤ nη,

and the same applies to Y instead of X.

1.3 Asymptotic mean: distinct cases

Let us investigate the limiting behavior of LCIn/n. From (1.8),

LCIn
n

= max
λ∈Λ2

m∑
i=1

[(
pXi λ

X
i +

Ṽ n,Xi (λX)√
n

)
∧

(
pYi λ

Y
i +

Ṽ n,Yi (λY )√
n

)]
.

Note that |Ṽ n,Xi (λX)− V n,Xi (λX)| ≤ 1/
√
n (and similarly for Y ). Thus, using (throughout

the paper) the following elementary inequality, valid for any a, b, c, d ∈ R,

|a ∧ b− (a+ c) ∧ (b+ d)| ≤ max(|c|, |d|), (1.10)

we get ∣∣∣∣LCInn
− LCIcn

n

∣∣∣∣ ≤ m

n
. (1.11)
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Moreover, if Aηn occurs, then for all λ ∈ Λ2,∣∣∣∣∣
m∑
i=1

[(
pXi λ

X
i +

V n,Xi (λX)√
n

)
∧

(
pYi λ

Y
i +

V n,Yi (λY )√
n

)]
−

m∑
i=1

[(
pXi λ

X
i

)
∧
(
pYi λ

Y
i

)]∣∣∣∣∣ ≤ m

n1/2−η ,

so, letting f : (Rm)
2 → R be given via

f : (yX , yY ) 7→
m∑
i=1

[(
pXi y

X
i

)
∧
(
pYi y

Y
i

)]
, (1.12)

we have: ∣∣∣∣LCInn
− max
λ∈Λ2

f(λ)

∣∣∣∣ ≤ mnη−1/2.

By the Borel-Cantelli lemma (recalling (1.9)), almost surely, eventually Aηn occurs so
LCIcn/n and LCIn/n both converge almost surely to

emax := max
λ∈Λ2

f(λ). (1.13)

From
LCIn
n
−−−−→
n→∞

emax, a.s.,

we also get by dominated convergence

ELCIn
n

−−−−→
n→∞

emax.

One can think of emax as the length ratio of the longest common and increasing
subsequences in a continuous, non-probabilistic setup: the letters have density masses
pX1 , p

X
2 , . . . , p

X
m and pY1 , p

Y
2 , . . . , p

Y
m.

Now, let

U =

{
u ∈ (R+)m :

u1

pX1
+ · · ·+ um

pXm
≤ 1,

u1

pY1
+ · · ·+ um

pYm
≤ 1

}
,

and let φ : Rm → R be given by φ : u 7→ u1 + · · ·+ um.
On U , there is a correspondence between f in (1.12), and the above φ. Indeed,

for λ ∈ Λ2, defining u by ui =
(
pXi λ

X
i

)
∧
(
pYi λ

Y
i

)
, f(λ) = φ(u), and for u ∈ U , there

exists λ ∈ Λ2, such that λXi ≥ ui/p
X
i and λYi ≥ ui/p

Y
i so that f(λ) ≥ φ(u). Therefore,

emax = maxu∈U φ(u). Also, let

KΛ2 = f−1 ({emax}) ∩ Λ2, and LU = φ−1 ({emax}) ∩ U. (1.14)

The above correspondence provides for each element of KΛ2 an element of LU , and for
each element of LU at least one element of KΛ2 (if one of the two inequalities defining
U is strict, then there is more than one way to define the corresponding λ). Next, let I
be the set of integers i ∈ {1, . . . ,m} such that there exists ui ∈ LU with uii > 0. One can
think of I as the letters that can be used to maximize φ, or, equivalently, to maximize f .
Let

uI =
1

|I|
∑
i∈I

ui, (1.15)

so uI ∈ LU and for all i ∈ I, uIi > 0. Thanks to the above correspondence, we define (and
will use throughout the paper) a ∈ Λ2 such that aXi = aYi = 0 for all i /∈ I and aXi ≥ uIi /pXi ,
aYi ≥ uIi /pYi , for all i ∈ I (a is a correspondent of uI ). Since f(a) ≥ φ(uI) = emax, a ∈ KΛ2 .
We shall see, and use, that when restricting the alphabet to I, asymptotically (when
properly centered and normalized) the distribution of LCIn remains unchanged.

Two distinct cases need to be analyzed in order to study the limiting distribution of
LCIn.
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On the limiting law of the length of the longest common and increasing subsequences

Case a) There exists u ∈ LU such that u1

pX1
+ · · ·+ um

pXm
= 1 and u1

pY1
+ · · ·+ um

pYm
< 1.

For example, when pX = (3/8, 3/8, 1/4) and pY = (1/2, 3/8, 1/8). Here the maximum
is 3/8, and I = {1, 2}.

Heuristically, this case indicates that the length of the common words is limited by
the word X1 · · ·Xn and not by Y1 · · ·Yn. Using the correspondence between LU and KΛ2 ,
this case is equivalent to the following statement: there exists λ ∈ KΛ2 such that for all
i ∈ {1, . . . ,m}, pXi λXi ≤ pYi λYi with at least one strict inequality. In this case, one has:

Lemma 1.3. Let pXmax = maxi∈{1,...,m} p
X
i . Then I = {i ∈ {1, . . . ,m} : pXi = pXmax} and

emax = pXmax. Moreover there exists i1 ∈ I such that pYi1 > pXmax.

Proof. Let i, j ∈ {1, . . . ,m} be such that pXi < pXj , and assume, by contradiction, that
i ∈ I. Let u ∈ LU satisfying u1

pX1
+ · · ·+ um

pXm
= 1 and u1

pY1
+ · · ·+ um

pYm
< 1, and let v = (ui+u)/2,

so that v ∈ U , vi > 0, v1

pX1
+ · · ·+ vm

pXm
≤ 1 and v1

pY1
+ · · ·+ vm

pYm
< 1. Let, for ε > 0, v(ε) be the

vector v except at the coordinates i and j where v(ε)i := vi − εpXi and v(ε)j := vj + εpXj .
It is clear that, when ε is small enough, v(ε) ∈ U and φ (v(ε)) = emax + ε(pXj − pXi ) > emax,
leading to a contradiction. Hence I ⊂ {i ∈ {1, . . . ,m} : pXi = pXmax}. Reciprocally, let
i ∈ {1, . . . ,m} be such that pXi = pXmax and let j ∈ I. If i = j we are done. Otherwise,
one can slightly change u by adding ε to the ith coordinate and subtracting ε to the jth
coordinate so that φ(u) remains unchanged, and u is still in U (for ε small enough), so
I = {i ∈ {1, . . . ,m} : pXi = pXmax}.

Since u1

pX1
+ · · ·+ um

pXm
=
∑
i∈I

ui
pXmax

>
∑
i∈I

ui
pYi

, there exists i1 ∈ I such that pYi1 > pXmax.

It is finally clear that emax = pXmax, completing the proof.

As a consequence of the above lemma, we prove next that

J :=

{
λX ∈ Λ : ∀i /∈ I, λXi = 0,

∑
i∈I

λXi
pYi
≤ 1

pXmax

}
=
{
λX : λ ∈ KΛ2

}
, (1.16)

(in particular, this set is non-empty which is all that is really needed in the rest of the
proof). To show this equality, first note that

{
λX : λ ∈ KΛ2

}
⊂ J since, indeed, when

λ ∈ KΛ2 , for every i ∈ I, pXmaxλ
X
i ≤ pYi λYi and then take the sum. Conversely, if λX ∈ J ,∑

i∈I p
X
maxλ

X
i /p

Y
i ≤ 1, so let λY be such that for every i ∈ I, λYi ≥ pXmaxλ

X
i /p

Y
i and∑

i∈I λ
Y
i = 1, while for i ∈ Ic, let λYi = 0. Clearly, λ ∈ KΛ2 .

Case b) For all u ∈ LU , u1

pX1
+ · · ·+ um

pXm
= u1

pY1
+ · · ·+ um

pYm
= 1.

Heuristically, this second case indicates that in order to form the longest common
words, it is necessary to make full use of both words. Using the correspondence
between LU and KΛ2 , this case is equivalent to the following: for all λ ∈ KΛ2 , for all
i ∈ {1, . . . ,m}, pXi λXi = pYi λ

Y
i . We can further distinguish two subcases, namely, we are

in Case b1) if each coordinate of PX :=
(
1/pXi

)
i∈I ∈ R

I is equal to each coordinate of

PY =
(
1/pYi

)
i∈I ∈ R

I , and in Case b2) otherwise.

For example, if pX = (1/3, 1/3, 2/9, 1/9) and pY = (1/3, 1/3, 1/9, 2/9), we are in Case
b1) and emax = 1/3. If pX = (2/3, 1/6, 1/6) and pY = (1/6, 2/3, 1/6), we are in Case b2)
and emax = 4/15. In both of these examples, I = {1, 2}.

Below Span(PX) (resp. Span(PY )) is the linear span of PX (resp. PY ).

Lemma 1.4. In Case b2), there exists a unique pair of reals s, t such that sPX + tPY =

(1)i∈I

Proof. The only alternatives to Case b1) are: PX and PY are linearly independent, or
PX and PY are linearly dependent and PX 6= PY . If the latter, given that PX and
PY have positive coordinates, PX < PY (coordinate by coordinate) or PY < PX . But
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PX < PY clearly implies that Case a) occurs, and not Case b) leading to a contradiction
(and similarly PY < PX). Therefore, the only alternative to Case b1) is for PX and PY

to be linearly independent. We now prove that H := (1)i∈I ∈ Span(PX , PY ). To do so,
we use an elementary duality result: if E is a finite-dimensional space with dual E∗, and
if l1, l2, l3 ∈ E∗, then Ker(l1) ∩ Ker(l2) ⊂ Ker(l3) if and only if l3 ∈ Span(l1, l2). Indeed,
considering the restrictions l2|Ker(l1) and l3|Ker(l1) of l2 and l3 to the subspace Ker(l1), we
have Ker(l2|Ker(l1)) ⊂ Ker(l3|Ker(l1)). Therefore, l3|Ker(l1) = λl2|Ker(l1) for some λ ∈ R, and if

u /∈ Ker(l1), then l3 = λl2 + l3(u)−λl2(u)
l1(u) l1 (because this is true on Ker(l1) and on u). So,

returning to our problem, H ∈ Span(PX , PY ) is equivalent to: Ker(PX
∗
) ∩ Ker(PY

∗
) ⊂

Ker(H∗), where for any L ∈ RI , L∗ denotes the linear form defined by L∗(y) = L · y. Let
x ∈ Ker((PX)

∗
)∩Ker((PY )

∗
). Clearly, there exists ε > 0 such that uI+εx and uI−εx have

non-negative coordinates, and so they are in LU , and H∗(uI + εx) = H∗(uI − εx) = emax

otherwise one of them would be greater than emax, hence x ∈ Ker(H∗).

For instance, taking again pX = (2/3, 1/6, 1/6) and pY = (1/6, 2/3, 1/6), we get
PX = (3/2, 6), PY = (6, 3/2) and s = t = 2/15.

Without loss of generality (switching the roles of X and Y ), one can thus assume that
either Case a) or Case b) occurs.

In Case b), the following technical lemma, whose proof (given in the Appendix) is not
crucial to understand the rest of this manuscript, is needed to state our main theorem.
Let us define first, in Case b1),

sX :=

{
maxi∈Ic:pXi ≥emax

pYi (pXi −emax)

emax(pXi −pYi )
if {i ∈ Ic, pXi ≥ emax} 6= ∅,

0, if {i ∈ Ic, pXi ≥ emax} = ∅,
tX := 1− sX , (1.17)

and, similarly,

sY :=

{
maxi∈Ic,pYi ≥emax

pXi (pYi −emax)

emax(pYi −pXi )
, if {i ∈ Ic : pYi ≥ emax} 6= ∅,

0, if {i ∈ Ic, pYi ≥ emax} = ∅,
tY := 1− sY . (1.18)

It is clear, from the definition of I, that if i ∈ I is such that pXi ≥ emax, then pYi < emax,
therefore sX and sY are well defined and one can check that sX , tX , sY , tY ∈ [0, 1].

In order to state our next lemma, below let E = {x ∈ Rm : x1 + · · ·+ xm = 0} and let
E′ = {x ∈ E : ∀i ∈ Ic, xi ≥ 0}.
Lemma 1.5. Let ν ∈ (Rm)

2 be such that for all i ∈ Ic, νXi = νYi = 0, then the following
maximum is well defined:

m(ν) := max
x∈E′2

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
, (1.19)

and

m(ν) = max
x∈E′2

‖x‖∞≤2Cm‖ν‖∞

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
, (1.20)

for some constant C > 0, depending only on pX and pY , as given in Lemma 2.3. In Case
b1), writing S• :=

∑
i∈I ν

•
i , then

m(ν) =

{
sXS

Y + tXS
X , ifSX ≤ SY ,

sY S
X + tY S

Y , ifSX ≥ SY .
. (1.21)

In Case b2), and recalling the notations of Lemma 1.4, then

m(ν) =
∑
i∈I

(
s

pXi
νXi +

t

pYi
νYi

)
. (1.22)
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1.4 Representation of emax

We now aim to give a more explicit expression for emax defined by (1.13). To do so,
let us start with the following lemma which asserts that, in the non-probabilistic setup,
“two letters are enough to reach the maximum”.

Lemma 1.6. There exist i, j ∈ {1, . . . ,m} and λ ∈ KΛ2 such that for all k /∈ {i, j}, λXk =

λYk = 0.

Proof. Let u ∈ LU having (at least) three non-zero coordinates. Then, recalling the
correspondence between LU and KΛ2 , in order to prove the result it is enough to show
that there exists a v ∈ LU having one less null coordinate. Without loss of generality, let
u1, u2, u3 > 0, and let

V =

{
x ∈ Rm :

m∑
i=1

xi
pXi

=

m∑
i=1

xi
pYi

= 0, x4 = · · · = xn = 0

}
.

Since the dimension of V is at least one, let x ∈ V \ {0}. Then clearly, there exists t ∈ R
such that v := u+ tx has non-negative coordinates and one more null coordinate than u.
Moreover, v ∈ LU , which completes the proof.

If there exists u ∈ LU such all its coordinates except one, call it i, are zeros, then
emax = pXi ∧ pYi . Otherwise, let i, j be defined as in the statement of the lemma. At first,
assume that pXi = pXj and that pYi ≤ pYj , then emax ≤ (λXi p

X
i ∧ λYi pYj ) + (λXj p

X
i ∧ λYj pYj ) ≤

(λXi p
X
i + λXj p

X
i ) ∧ (λYi p

Y
j + λYj p

Y
j ) = pXi ∧ pYi , so emax = pXi ∧ pYi and we are actually

in the first case, giving a contradiction. Similarly, if pXi ≤ pXj and pYi ≤ pYj , using
λXi p

X
i ∧ λYi pYi ≤ λXi pXj ∧ λYi pYj we get a contradiction as well. Therefore, in the second

case, necessarily, possibly permuting i and j, pXi < pXj and pYi > pYj . Additionaly, it
is necessary to have that pXi < pYi , otherwise emax = pYi and we are in the first case.
Similarly, pYj < pXj . Then, in this case, the maximum is when the quantities in each
minima are equal, and so one shows that

emax = e(i, j) :=
pXi p

Y
i (pXj − pYj ) + pXj p

Y
j (pYi − pXi )

pYi p
X
j − pXi pYj

.

Therefore,

emax = max
(

max
1≤i≤m

(
pXi ∧ pYi

)
, max
i,j : pXi <p

X
j

> <

pYi >p
Y
j

e(i, j)
)
. (1.23)

Note that

max
1≤i≤m

(
pXi ∧ pYi

)
≤ emax ≤

(
max

1≤i≤m
pXi

)
∧
(

max
1≤i≤m

pYi

)
, (1.24)

where the left inequality is clear, while the right one is easily seen from the expression
of f . Note also that above, emax is equal to the lower bound when the second max in
(1.23) is over the empty set, and is equal to the upper bound when there exists i such
that pXmax = pXi ≤ pYi or pYmax = pYi ≤ pXi .

When pX = pY (same distribution for each word), we see that emax = maxi∈{1,...,m} p
X
i

is minimal when pX is uniform (for a given alphabet). This is to be contrasted with the
case of the length of the longest common subsequences, LCn (defined just as LCIn, but
without the increasing condition). Indeed, little is known about γ∗ := limn→+∞ELCn/n,
for instance whether or not it is minimal (for a given alphabet) for the uniform distribution.
Since LCn is defined with one less constraint than LCIn, clearly emax ≤ γ∗ which is of
potential interest since the exact value of γ∗ is unknown, even in the binary uniform case.
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(This last inequality provides a lower bound on γ∗, no matter the distributions on the
letters. For uniform letters, emax = 1/m, although it is known that, then, asymptotically,
γ∗ ∼ 2/

√
m, see [7].)

1.5 A criterion to distinguish the three cases

For a given distribution, it is not completely apparent which situation is in play as far
as the respective cases a), b1) and b2) are concerned. Our next result makes this more
transparent. First, set

e1 = max
1≤i≤m

(
pXi ∧ pYi

)
, e2 = max

i,j : pXi <p
X
j

> <

pYi >p
Y
j

e(i, j),

so that, by (1.23), emax = max(e1, e2).

Theorem 1.7. Let e1 < e2, then Case b2) holds true. Let e1 ≥ e2, then:
(i) If for some i ∈ {1, . . . ,m} such that pXi ∧ pYi = e1, one has pXi 6= pYi , then Case a)

holds true or so does its symmetric version: there exists u ∈ LU such that u1

pY1
+· · ·+ um

pYm
= 1

and u1

pX1
+ · · ·+ um

pXm
< 1.

(ii) Otherwise, i.e., if for all i ∈ {1, . . . ,m} such that pXi ∧ pYi = e1, one has pXi = pYi ,
then if e1 > e2 Case b1) holds true, while if e1 = e2, then so does Case b2).

Proof. First, for any 0 < δ < 1, let emax,δ, e1,δ, e2,δ and eδ(i, j) be defined just as emax, e1, e2

and e(i, j) but replacing pYi with δpYi , for all i ∈ {1, . . . ,m}. Next, from the very definition
of Case a): There exists u ∈ LU such that u1

pX1
+ · · · + um

pXm
= 1 and u1

pY1
+ · · · + um

pYm
< 1.

Letting δ0 := u1

pY1
+ · · ·+ um

pYm
, we have u1

δ0pY1
+ · · ·+ um

δ0pYm
= 1 so emax,δ0 ≥ emax and therefore

(clearly, emax,δ is non-decreasing in δ) emax,δ0 = emax. So when Case a) occurs there
exists 0 < δ0 < 1, such that for all δ ∈ (δ0, 1], emax,δ = emax, and one can easily check the
converse. A similar result continues to hold for the symmetric version of Case a).

We can now prove the statement of the theorem by distinguishing the following four
occurrences.

(1) Let e1 < e2. Let 0 < δ0 < 1 be close enough to 1 such that for any δ ∈ (δ0, 1], the

set of pairs i, j ∈ {1, . . . ,m} such that
pXi <p

X
j

> <

pYi >p
Y
j

is equal to the set of i, j ∈ {1, . . . ,m} such

that
pXi <p

X
j

> <

δpYi >δp
Y
j

. Since for every i, j in this set, it is immediate to check that e(i, j) > eδ(i, j),

the maximums satisfy e2 > eδ,2. Since e1 < e2, by continuity, for δ close enough to 1,
max(eδ,1, eδ,2) = eδ,2 so eδ,max < emax, hence we are in Case b). There are i, j ∈ {1, . . . ,m}
such that emax = e2 = e(i, j), so i, j are in I, but pXi < pXj so we are in Case b2).

(2) Let e1 ≥ e2, and let there exist i ∈ {1, . . . ,m} such that pXi ∧ pYi = e1 and pXi 6= pYi ,
say, pXi < pYi . Then, the very definition of Case a) is verified with the vector u ∈ Rm
having coordinates equal to zero except for ui = pXi . If instead, pXi > pYi then the
symmetric case holds true.

(3) Let e1 > e2 and let for all i ∈ {1, . . . ,m} such that pXi ∧ pYi = e1, pXi = pYi . By
continuity, for δ close enough to 1, max(eδ,1, eδ,2) = eδ,1 = δemax so we are in Case
b). Additionally, one verifies that under our assumptions I is restricted to the set of
i ∈ {1, . . . ,m} such that pXi = pYi = emax. Therefore, we are, in fact, in Case b1).

(4) Let e1 = e2 and let for all i ∈ {1, . . . ,m} such that pXi ∧ pYi = e1, pXi = pYi . From
what is done above, we see that for δ close enough to 1, eδ,max < emax hence we are in
Case b). Once again, since there are i, j ∈ {1, . . . ,m} such that emax = e2 = e(i, j), we
are in Case b2).
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To present another explicit example, let us fully corner the case m = 2, with
pX1 , p

X
2 , p

Y
1 , and pY2 . The following completely describes the various cases:

• If pX1 = pY1 , then (since, necessarily, pX2 = pY2 ) emax = max(pX1 , p
X
2 ) = max(pX1 , 1−

pX1 ) and we are in Case b1).

• If pX1 6= pY1 and 1/2 ∈ (min(pX1 , p
Y
1 ),max(pX1 , p

Y
1 )), then

emax = max(min(pX1 , p
Y
1 ),min(pX2 , p

Y
2 )) = max(min(pX1 , p

Y
1 ),min(1− pX1 , 1− pY1 )),

and we are in Case a) or its symmetric.

• If pX1 6= pY1 and 1/2 /∈ (min(pX1 , p
Y
1 ),max(pX1 , p

Y
1 )), then

emax =
pX1 p

Y
1 (pX2 − pY2 ) + pX2 p

Y
2 (pY1 − pX1 )

pY1 p
X
2 − pX1 pY2

= pX1 p
Y
1 +pX2 p

Y
2 = pX1 p

Y
1 +(1−pX1 )(1−pY1 ),

and we are in Case b2).

2 The limiting law

It is clear, from the previous section, that the proper way to center (and normalize)
LCIn is via

Zn =
LCIn − nemax√

n

= max
λ∈Λ2

m∑
i=1

[(√
npXi λ

X
i + Ṽ n,Xi (λX)

)
∧
(√

npYi λ
Y
i + Ṽ n,Yi (λY )

)]
−
√
nemax.

Let also

Zcn =
LCIcn − nemax√

n

= max
λ∈Λ2

m∑
i=1

[(√
npXi λ

X
i + V n,Xi (λX)

)
∧
(√

npYi λ
Y
i + V n,Yi (λY )

)]
−
√
nemax,

from (1.11) we have

|Zn − Zcn| ≤
m√
n
, (2.1)

and therefore the convergence in distribution of Zcn will imply the convergence, in
distribution, of Zn towards the same limit.

2.1 Statement of the theorem

Below is the main result of the paper. In this statement, the covariance matrices of the
Brownian motions stem from the covariance matrix of the rescaled variables (1Xk=i)i∈I
(resp. 1Yk=i, i ∈ I) used to construct the polygonal approximations Bn,•i (here, and

throughout, • is short for either X or Y ). Indeed, note that E

(
(1Xk=i−pXi )(1Xk=j−pXj )√
pXi (1−pXi )

√
pXj (1−pXj )

)
=

−
√

pXi p
X
j

(1−pXi )(1−pXj )
(with a similar result for Y ).

Theorem 2.1. Let BX and BY be two independent |I|-dimensional Brownian motions
defined on [0, 1] with respective covariance matrix CX defined by CXi,i = 1 and CXi,j =

−
√

pXi p
X
j

(1−pXi )(1−pXj )
, for i 6= j in I, and CY defined in a similar fashion, replacing pXi by pYi
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and pXj by pYj . For all λ ∈ KΛ2 and i ∈ I, set

V Xi (λX) =
√
pXi (1− pXi )

BXi
 i∑
j=1

λXj

−BXi
i−1∑
j=1

λXj

 ,

V Yi (λY ) =
√
pYi (1− pYi )

BYi
 i∑
j=1

λYj

−BYi
i−1∑
j=1

λYj

 .

If there exists u ∈ LU such that u1

pX1
+ · · ·+ um

pXm
= 1 and u1

pY1
+ · · ·+ um

pYm
< 1 (Case a)), then

LCIn − nemax√
n

===⇒
n→∞

Za := max
λX∈J

∑
i∈I

V Xi (λX), (2.2)

where J is given by (1.16).
If for all u ∈ LU , u1

pX1
+ · · ·+ um

pXm
= u1

pY1
+ · · ·+ um

pYm
= 1 (Case b)), then

LCIn − nemax√
n

===⇒
n→∞

Zb := max
λ∈KΛ2

m
(
V X(λX), V Y (λY )

)
, (2.3)

where m is given by (1.19).

At this point, one can remark that emax is invariant with respect to the order in which
the letters are chosen, and that both in Case a) and Case b1), the above limiting laws are
invariant as well (to see this fact in Case a), recall Lemma 1.3). Therefore, in Case a) and
Case b1), no matter the prescribed order (increasing, decreasing, etc..) the asymptotic
behavior of the length of the corresponding optimal alignments is the same. We refer
the reader to Section 3.2 for more general results of this flavor.

In Case b2) it is less clear that the limiting distribution is permutation-invariant as it
might not just boil down to m(ν). Indeed, in Case b2) the limiting law can be written as
the law of

Z = max
λ∈KΛ2

∑
i∈{1,...,m}
•∈{X,Y }

V (λ)•i ,

where V (λ) is in (Rm)
2, and defined via

V •(λ)i = B•i

 i∑
j=1

λ•j

−B•i
i−1∑
j=1

λ•j

 ,

where the B•i are Brownian motions which are, up to a multiplicative factor, as in our
main theorem. Further introducing, for any permutation σ of {1, . . . , n}, Vσ(λ) defined
via

V •σ (λ)i = B•i

σ−1(i)∑
j=1

λ•σ(j)

−B•i
σ−1(i)−1∑

j=1

λ•σ(j)

 ,

we have V (λ) = VId(λ), where Id is the identity permutation. When the letters are not
required to be non-decreasing, but instead follow an order given by σ, the limiting law
is simply the law of Zσ := maxλ∈KΛ2

∑
i∈{1,...,m}
•∈{X,Y }

Vσ(λ)•i . It is still not that clear whether

or not this last quantity depends on σ. For example, if m = 3 and KΛ2 = Λ2 and BX1
is a standard Brownian motion, while all others are null, define σ by σ(1) = 2, σ(2) =

1, σ(3) = 3, then with probability one Zσ > ZId. However, in Case b2) it is actually not
possible to have KΛ2 = Λ2 (and also to have only one non null Brownian motion) but this
shows that a general argument for the validity of the permutation-invariance is not that
transparent.
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2.2 Proof of Theorem 2.1

The proof of this theorem is based on a non-probabilistic lemma. First, let Eηn be
the set of all continuous functions b from [0, 1] into R such that: for all x, y in [0, 1],

|b(y) − b(x)| ≤
(
nη
√
|y − x|+ nη−1/2

)
/2. Then, for all b ∈ (Eηn)

m, i ∈ {1, . . . ,m} and

λ ∈ Λ, set vbi (λ) = bi(λ1 + · · · + λi) − bi(λ1 + · · · + λi−1), and for all bX , bY ∈ (Eηn)
m and

λ ∈ Λ2 let

zn(λ) =

m∑
i=1

[(√
npXi λ

X
i + vb

X

i (λX)
)
∧
(√

npYi λ
Y + vb

Y

i (λY )
)]
−
√
nemax.

One can think of bXi (resp. bYi ) as
√
pXi (1− pXi )Bn,Xi (ω) (resp.

√
pYi (1− pYi )Bn,Y (ω))

for a fixed ω ∈ Aηn, where the symbol bX (resp. bY ) is used for ease of notation and
in order to emphasize the non-probabilistic nature of the proof. For further ease of
notation, we omit the dependency in bX and bY in the notation zn. This omission is
also present in v and vX is just short for vb

X

(similarly with Y ), and further write
v(λ) :=

(
vX(λX), vY (λY )

)
. In Case a), for all λX ∈ Λ, let

za(λX) :=
∑
i∈I

vXi (λX). (2.4)

In Case b), for all λ ∈ Λ2, let

zb(λ) = m
(
vX(λX), vY (λY )

)
. (2.5)

Next, let us finally present two simple inequalities stemming from the very definition
of Eηn, often used in the sequel, which are valid for all b ∈ Eηn, λ, λ′ ∈ Λ, i ∈ {1, . . . ,m},
• ∈ {X,Y }, namely,

|v•i (λ•)| ≤
nη
√
λ•i + nη−1/2

2
and in particular |v•i (λ•)| ≤ nη, (2.6)

|v•i (λ•)− v•i (λ′•)| ≤ nη
√

max
i∈{1,...,m}

|λ1 + · · ·+ λi − λ′1 − · · · − λ′i|+ nη−1/2 (2.7)

≤ nη
√
m|‖λ− λ′‖∞ + nη−1/2. (2.8)

Lemma 2.2. There exists a sequence (εn)n≥1 of positive reals converging to zero and
such that for all n ≥ 1 and bX , bY ∈ (Eηn)

m, either |maxλ∈Λ2 zn(λ)−maxλ∈J z
a(λ)| ≤ εn,

or |maxλ∈Λ2 zn(λ)−maxλ∈KΛ2 z
b(λ)| ≤ εn, in Case a) or b), respectively.

The proof of this crucial lemma is delayed to the next subsections, and instead we
turn our attention to the proof of the main theorem.

Proof of Theorem 2.1. Let us assume that Case b) is occurring. Let

Zbn = max
λ∈KΛ2

m
(
V n,X(λX), V n,Y (λY )

)
.

For all ω ∈ Aηn, Bn,X(ω) and Bn,Y (ω) are in Eηn so by Lemma 2.2, |Zcn(ω)− Zbn(ω)| ≤ εn.
So
∣∣Zcn − Zbn∣∣1Aηn ≤ εn, but Zcn − Zbn =

(
Zcn − Zbn

)
1Aηn +

(
Zcn − Zbn

)
1(Aηn)c , where this

second term tends to zero in probability, therefore so does Zcn − Zbn. Next, by Donsker’s
theorem and the continuity of m (recalling Lemma 1.5), Zbn tends to Zb in distribution,
so does Zcn and finally so is the case for Zn, recalling (2.1). The proof in the Case a) is
analogous and therefore omitted.
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Let us now turn to the proof of Lemma 2.2. The method of proof goes as follows:
Maximizing zn(λ) is equivalent to maximizing

zn(λ)/
√
n =

m∑
i=1

[(
pXi λ

X
i + vb

X

i (λX)/
√
n
)
∧
(
pYi λ

Y + vb
Y

i (λY )/
√
n
)]
− emax,

which converges, as n goes to infinity, to f(λ) − emax. So one can expect that λ must
“almost” be maximizing f , i.e., be in or “close to” the set KΛ2 . In Case a), we bound the
maximum by taking the maximum over two sets which are closer and closer to the set
J . In Case b), first write λ = λKΛ2 + λr (actually dealing with a λ− a in order to have a
vector space, but the idea is the same), then ignore the small perturbation term λr in v,
and the idea is (roughly) to fix λKΛ2 and to find the maximum over λr. In both cases, the
end of the proof consists in showing how the maximum of the relevant function (za or zb)
over a set of parameters that “tends to” a limiting set goes to the maximum over this
limiting set.

2.3 Proof of Lemma 2.2, Case a)

2.3.1 Restriction to I

First, fix b = (bX , bY ) ∈ ((Eηn)
m

)
2
. Next, for ease of notation, omit in the sub-index b in

z and v. Roughly speaking, we begin by proving that any λ maximizing zn must have
“small” coordinates outside of I, and therefore we can “replace” the variations v.i, for
i /∈ I, by zero.

Let

pXsec =

{
maxi/∈I p

X
i I 6= {1, . . . ,m},

0 I = {1, . . . ,m}
. (2.9)

Let us assume first that I 6= {1, . . . ,m}. Then by Lemma 1.3, pXsec < pXmax. Our first
observation is that if λ maximizes zn, i.e., if zn(λ) = maxλ∈Λ2 zn(λ), then

s :=
∑
i/∈I

λXi ≤
2mnη−1/2

pXmax − pXsec

. (2.10)

In words, the above indicates that the contribution of the letters not in I is, as
expected, very limited. To prove this inequality, note that on the one hand (recalling
Lemma 1.3 and (2.6)),

zn(λ) ≤
m∑
i=1

(√
npXi λ

X
i + vbi (λ)

)
−
√
npXmax ≤

√
n
(
pXmax(1− s) + pXsecs

)
+mnη −

√
npXmax,

while on the other hand, for λ̃ ∈ KΛ2 , using (2.6) and the elementary inequality (1.10),

zn(λ) ≥ zn(λ̃) ≥
√
nf(λ̃)−mnη −

√
npXmax = −mnη. (2.11)

The inequality (2.10) follows, and it therefore allows, for i /∈ I, to replace the terms
vXi (λX) by zero. More precisely, let for all λ ∈ Λ2,

zIn(λ) =
∑
i∈I

[(√
npXi λ

X
i + vXi (λX)

)
∧
(√
npYi λ

Y
i + vYi (λY )

)]
+
∑
i/∈I

[(√
npXi λ

X
i

)
∧
(√
npYi λ

Y
i + vYi (λY )

)]
−
√
nemax,

EJP 26 (2021), paper 69.
Page 13/27

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP612
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the limiting law of the length of the longest common and increasing subsequences

then as shown next,∣∣∣∣max
λ∈Λ2

zn(λ)− max
λ∈Λ2

zIn(λ)

∣∣∣∣ ≤ |Ic|2

(
nη

√
2mnη−1/2

pXmax − pXsec

+ nη−1/2

)
, (2.12)

and this inequality remains true when I = {1, . . . ,m} (since then maxλ∈Λ2 zn(λ) =

maxλ∈Λ2 zIn(λ) and |Ic| = 0).
Indeed, let λ ∈ Λ2 be such that zn(λ) = maxλ∈Λ2 zn(λ). Using (1.10) along with (2.6)

(λXi ≤ 2mnη−1/2/(pXmax − pXsec), for all i /∈ I), it follows that

max
λ∈Λ2

zIn(λ) ≥ zIn(λ) ≥ max
λ∈Λ2

zn(λ)− |I
c|

2

(
nη

√
2mnη−1/2

pXmax − pXsec

+ nη−1/2

)
.

Moreover, let λ̃ ∈ Λ2 be such that maxλ∈Λ2 zIn(λ) = zIn(λ̃). Then, just as in proving (2.10),
it follows that

∑
i/∈I λ̃

X
i ≤ 2|I|nη−1/2/(pXmax − pXsec). Hence

max
λ∈Λ2

zn(λ) ≥ zn(λ̃) ≥ max
λ∈Λ2

zIn(λ)− |I
c|

2

(
nη

√
2mnη−1/2

pXmax − pXsec

+ nη−1/2

)
,

which completes the proof.

2.3.2 Bounds on the maximum with different sets of constraints

Let us next define two sets “close” to J . To do so, let Sn = 2|I|2nη−1/2, let CI =
∑
i∈I

1
pYi

,

let Tn = CI2n
η−1/2, and finally let

J+
n =

{
λX ∈ Λ :

∑
i∈I

λXi
pYi
≤ 1 + Sn

pXmax

}
,

and

J−n =

{
λX ∈ Λ :

∑
i∈I

λXi
pYi
≤ 1− Tn

pXmax

}
.

Note that by Lemma 1.3, setting δi1 = (1i=i1)i∈{1,...,m}, δi1 ∈ J−n eventually. We show,
in this part of the proof, that

max
λ∈J−n

za(λ) ≤ max
λ∈Λ2

zIn(λ) ≤ max
λ∈J+

n

za(λ). (2.13)

Let us prove the upper bound first. Let λ ∈ Λ2 be such that zIn(λ) = maxλ∈Λ2 zIn(λ),
and let S be the unique real such that∑

i∈I

λXi
pYi

=
1 + S

pXmax

.

Then, there exists i0 ∈ I such that,

λYi0p
Y
i0 ≤ λ

X
i0p

X
max −

S

|I|
,

since otherwise,
∑
i∈I λ

Y
i > 1, which is a contradiction. Then, using the following

inequalities,

∀i ∈ I \ {i0}
(√
npXi λ

X
i + vXi (λX)

)
∧
(√
npYi λ

Y
i + vYi (λY )

)
≤
(√
npXi λ

X
i + vXi (λX)

)
,(√

npXi0λ
X
i0 + vXi0 (λX)

)
∧
(√
npYi0λ

Y
i0 + vYi0(λY )

)
≤
(√
n

(
λXi0p

X
max −

S

|I|

)
+ vYi0(λY )

)
,

∀i /∈ I
(√
npXi λ

X
i

)
∧
(√
npYi λ

Y
i + vYi (λY )

)
≤
√
npXi λ

X
i ,
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leads to

zIn(λ) ≤
√
n

m∑
i=1

pXi λ
X
i +

∑
i∈I\{i0}

(
vXi (λX) + vYi0(λY )

)
−
√
n
S

|I|
−
√
nemax

≤
∑

i∈I\{i0}

(
vXi (λX) + vYi0(λY )

)
−
√
n
S

|I|

≤ |I|nη −
√
n
S

|I|
.

Just as in obtaining the inequality (2.11), we have −|I|nη ≤ zIn(λ), hence S ≤ 2|I|2nη−1/2,
i.e., λX ∈ J+

n , leading to conclude with the upper estimate:

max
λ∈Λ2

zIn(λ) = zIn(λ) ≤
√
nf(λX) + za(λX)−

√
nemax ≤ za(λX) ≤ max

λ∈J+
n

za(λ).

Let us now turn our attention to the lower bound. Let λX ∈ J−n be such that
za(λX) = maxλ∈J−n z

a(λ). Since∑
i∈I

(
pXmaxλ

X
i + 2nη−1/2

)
/pYi ≤ 1,

there exists λY ∈ Λ such that for i ∈ I, λYi ≥
(
pXmaxλ

X
i + 2nη−1/2

)
/pYi and for i /∈ I,

λYi = 0. For all i ∈ I,
√
npYi λ

Y
i + vYi (λY ) ≥

√
npXmaxλ

X
i + 2nη + vYi (λY )

≥
√
npXmaxλ

X
i + vXi (λX) =

√
npXi λ

X
i + vXi (λX).

Therefore,

zIn(λ) =
∑
i∈I

(√
npXi λ

X
i + vXi (λX)

)
+
∑
i/∈I

[
(
√
npXi λ

X
i ) ∧ 0

]
−
√
npXmax

=
∑
i∈I

vXi (λX) = za(λX) = max
λ∈J−n

za(λ),

and maxλ∈J−n z
a(λ) ≤ maxλ∈Λ2 zIn(λ).

2.3.3 End of the proof

Both quantities |maxλ∈J−n z
a(λ)−maxλ∈J z

a(λ)| and |maxλ∈J+
n
za(λ)−maxλ∈J z

a(λ)| still

need to be investigated. Let C1 =

(
1− pXmax

pYi1

)
> 0. For λX ∈ Λ and t ∈ (0, 1), let

λX,t = tδi1 + (1 − t)λX . It is straightforward to prove that for all n greater than some

constant, depending only on η, pX and pY , and for all λX ∈ J , λX,
Tn
C1 is well defined, and

is in J−n , while for all λX ∈ J+
n , λX,

2Sn
C1 ∈ J .

This is useful since for all i ∈ {1, . . . ,m},

|λX1 + · · ·+ λXi − λ
X,t
1 − · · · − λX,ti | ≤ 2t,

and therefore, using (1.10) along with (2.7),

max
λ∈J

za(λ)− max
λ∈J−n

za(λ) ≤ |I|

(
nη
√

2Tn
C1

+ nη−1/2

)
,

max
λ∈J+

n

za(λ)−max
λ∈J

za(λ) ≤ |I|

(
nη
√

4Sn
C1

+ nη−1/2

)
.
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Putting these two inequalities, together with (2.13), leads to∣∣∣∣max
λ∈Λ2

zIn(λ)−max
λ∈J

za(λ)

∣∣∣∣ ≤ C2n
6η−1

4 + |I|nη−1/2,

for some constant C2 depending only on the p’s but need not be made explicit. The
lemma is thus proved in this case.

2.4 Proof of Lemma 2.2, Case b)

2.4.1 Preliminaries

Fix b = (bX , bY ) ∈ ((Eηn)
m

)
2
. Just as in Case a), we omit in the notation the sub-index b.

Let E = {x ∈ Rm : x1 + · · ·+ xm = 0}, let K be the subspace of E2 defined by

K =
{
x ∈ E2 : ∀i ∈ I, pXi xXi = pYi x

Y
i ,∀i /∈ I, xXi = yYi = 0

}
,

and let P (recalling the definition of a following (1.15): a ∈ KΛ2 , for all i ∈ I, pXi aXi =

pYi a
Y
i > 0, for i /∈ I, a•i = 0, and f(a) = emax) be given by:

P =
{
x ∈ E2 : ∀i ∈ {1, . . . ,m}, xXi ≥ −aXi , xYi ≥ −aYi

}
. (2.14)

Note that Λ2 = a + P . By definition of the case b), for all λ ∈ KΛ2 , for all i ∈ I

λXi p
X
i = λYi p

Y
i , while for all i /∈ I, λXi = λYi = 0. Reciprocally, let λ ∈ Λ2 such that for all

i ∈ I λXi pXi = λYi p
Y
i and for all i /∈ I, λXi = λYi = 0, we show that λ ∈ KΛ2 . Let u ∈ RI be

defined by ui = pXi λ
X
i − pXi aXi for all i ∈ I. We have that u · PX = u · PY = 1− 1 = 0 so

by Lemma 1.4, u · (1)i∈I = 0, hence the result. This characterization of KΛ2 , combined
with Λ2 = a+ P , gives us

KΛ2 = a+K ∩ P. (2.15)

Since pXi a
X
i = pYi a

Y
i , for all i ∈ {1, . . . ,m},

zn(a+ x) =

m∑
i=1

[(√
npXi x

X
i + vXi (aX + xX)

)
∧
(√
npYi x

Y
i + vYi (aY + xY )

)]
.

Clearly,
max
λ∈Λ2

zn(λ) = max
x∈P

zn(a+ x).

Note also that for all x ∈ (Rm)
2, f(a+ x) = f(a) + f(x) so by (2.15)

∀x ∈ P, f(x) ≤ 0 and (f(x) = 0) ⇐⇒ (x ∈ K ∩ P ) . (2.16)

Our next result is an elementary projection result.

Lemma 2.3. There exists C > 0 depending only on pX and pY such that for all x ∈ P ,
there exist xK∩P ∈ K ∩ P and xr ∈ E2 such that x = xK∩P + xr and ‖xr‖∞ ≤ −Cf(x).

Proof. Let K⊥ be the orthogonal complement of K in E2 (for the usual Euclidean inner
product defined on E2 by, for x, y ∈ E2, x · y := xX1 y

X
1 + · · ·+xXmy

X
m +xY1 y

Y
1 + · · ·+xYmy

Y
m).

Let x ∈ P (so x ∈ E2) and let (xK , xK
⊥

) be its orthogonal decomposition, i.e., xK ∈ K,

xK
⊥ ∈ K⊥ and x = xK + xK

⊥
. Without loss of generality, assume xK

⊥ 6= 0. For ease of
notation, set g = −f . Let

amin = min
i∈I

ai.

In order to bound the image of xK
⊥
, we first rescale it to make it an element of P : it is

easy to check that y :=
(

amin

‖xK⊥‖∞

)
xK
⊥ ∈ P . Now, consider the sphere,

Samin
:=
{
z ∈ K⊥ : ‖z‖∞ = amin

}
.
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Then, Samin
∩ P is a non-empty compact set, so let

M = min
z∈Samin

∩P
g(z).

Recalling (2.16), M > 0. Since y ∈ Samin ∩ P , M ≤ g(y) so that, using g
(
xK
⊥
)

= g(x),

‖xK
⊥
‖∞ ≤

amin

M
g(x).

This is almost the desired result, except that xK might not be in P . Let us assume, firstly,

that g(x) ≤M (and therefore that ‖xK⊥‖∞ ≤ amin). Let xK∩P =

(
1− ‖x

K⊥‖∞
amin

)
xK and

let xr = ‖xK
⊥
‖∞

amin
xK + xK

⊥
. We next prove that xK∩P ∈ K ∩ P . Since x ∈ P , for i ∈ I,(

1− ‖x
K⊥‖∞
amin

)
xKi +

(
1− ‖x

K⊥‖∞
amin

)
xK
⊥

i ≥ −

(
1− ‖x

K⊥‖∞
amin

)
ai

xK∩Pi ≥ −ai +
‖xK⊥‖∞
amin

ai −

(
1− ‖x

K⊥‖∞
amin

)
xK
⊥

i

≥ −ai + ‖xK
⊥
‖∞ −

(
1− ‖x

K⊥‖∞
amin

)
‖xK

⊥
‖∞

≥ −ai,

and for i /∈ I, xK∩Pi = 0, since xK∩P ∈ K. So xK∩P ∈ K ∩ P .
Let us turn to xr. Since a + x ∈ Λ2, ‖x‖∞ ≤ 1. Moreover, xK is the orthogonal

projection of x so ‖xK‖∞ ≤
√

2m‖x‖∞ ≤
√

2m and

‖xr‖∞ ≤

(√
2m

amin
+ 1

)
‖xK

⊥
‖∞

≤

(√
2m

amin
+ 1

)
amin

M
g(x).

Setting C :=
(√

2m+ amin

)
/M , we have just proved that if g(x) ≤M , then there exist

suitable xK∩P and xr satisfying the lemma. Finally, if g(x) > M , we let xK∩P = 0 and
xr = x, so that ‖xr‖∞ ≤ 1 < g(x)/M < Cg(x) which completes the proof.

2.4.2 Separation of the parameters

To begin with, we prove that maxx∈P zn(a+ x) can be written as a maximum over two
kind of parameters, one belonging to K in the variations v.i, the other one being a small
remaining term.

Let x ∈ P be such that zn(a+ x) = maxλ∈Λ2 zn(λ). Then,

−mnη ≤ zn(a) ≤ zn(a+ x) ≤
√
nf(x) +mnη,

and so
− f(x) ≤ 2mnη−1/2. (2.17)

Now, let
D =

{
(xK∩P , xr) ∈ (K ∩ P )× E2 : xK∩P + xr ∈ P

}
,
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and, recalling the constant C from Lemma 2.3, let

Dn =
{

(xK∩P , xr) ∈ (K ∩ P )× E2 : ‖xr‖∞ ≤ 2Cmnη−1/2, xK∩P + xr ∈ P
}
.

Then, for all (xK∩P , xr) ∈ D, set

zn(xK∩P , xr) = zn(a+ xK∩P + xr) =

m∑
i=1

[(√
npXi x

r,X
i + vXi (aX + xK∩P,X + xr,X)

)
∧
(√

npYi x
r,Y
i + vYi (aY + xK∩P,Y + xr,Y )

)]
.

Applying Lemma 2.3 to (2.17) gives maxx∈Dn zn(x) = maxx∈P zn(a+ x).

Let us next define a slight modification of zn by letting, for all (xK∩P , xr) ∈ Dn,

z′n(xK∩P, xr) =

m∑
i=1

[(√
npXi x

r,X
i + vXi (aX+ xK∩P,X)

)
∧
(√

npYi x
r,Y
i + vYi (aY+ xK∩P,Y )

)]
.

The parameters are now “separated”. For all (xK∩P , xr) ∈ Dn, by (2.7),

∣∣z′n(xK∩P , xr)− zn(xK∩P , xr)
∣∣ ≤ m(nη√2Cm2nη−1/2 + nη−1/2

)
,

so that ∣∣∣∣max
x∈P

zn(a+ x)− max
x∈Dn

z′n(x)

∣∣∣∣ =

∣∣∣∣max
x∈Dn

zn(x)− max
x∈Dn

z′n(x)

∣∣∣∣
≤ m

(
nη
√

2Cm2nη−1/2 + nη−1/2
)
. (2.18)

2.4.3 Independence of the parameters

A major issue with Dn is the condition xK∩P + xr ∈ P . We would rather have a set of
possible values for xr independent of the value of xK∩P . To try to achieve that goal, let

Pn =
{
x ∈ E2 : ∀i ∈ I, ∀• ∈ {X,Y }, x•i ≥ −a•i + 2Cmnη−1/2,∀i /∈ I, xXi ≥ 0, xYi ≥ 0

}
⊂ P,

and let D′n ⊂ Dn be given by

D′n =
{

(xK∩Pn , xr) ∈ (K ∩ Pn)× E2 : ‖xr‖∞ ≤ 2Cmnη−1/2, xK∩Pn + xr ∈ P
}
.

Now, recalling the definition E′ = {x ∈ E : ∀i ∈ Ic, xi ≥ 0} ⊂ E, we have that

D′n =
{

(xK∩Pn , xr) ∈ (K ∩ Pn)× E′2 : ‖xr‖∞ ≤ 2Cmnη−1/2
}
.

For (xK∩P , xr) ∈ Dn, and for n large enough so that 2Cmnη−1/2

amin
≤ 1, it follows that, letting

x′K∩P :=
(

1− 2Cmnη−1/2

amin

)
xK∩P , (x′K∩P , xr) ∈ D′n, so by (2.7)

∣∣∣∣max
x∈D′n

z′n(x)− max
x∈Dn

z′n(x)

∣∣∣∣ ≤ |I|
nη

√
2Cm2nη−1/2

amin
+ nη−1/2

 . (2.19)
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2.4.4 Connections with the functions of Lemma 2.2

Let us now prove that for n large enough,

max
x∈D′n

zηn(x) = max
λ∈a+K∩Pn

m
(
vX(λX), vY (λY )

)
.

Fix xK∩Pn ∈ K ∩ Pn. Applying the previous lemma to ν := v(a + xK∩Pn), since
‖ν‖∞ ≤ nη, by Lemma 1.5

max
xr∈E′2

‖xr‖∞≤2Cmnη

m∑
i=1

[(
pXi x

r,X
i + νXi

)
∧
(
pYi x

r,Y
i + νYi

)]
= max
xr∈E′2

m∑
i=1

[(
pXi x

r,X
i + νXi

)
∧
(
pYi x

r,Y
i + νYi

)]
= m(ν),

and so

max
xr∈E′2

‖xr‖∞≤2Cmnη−1/2

z′n(xK∩Pn , xr) = max
xr∈E′2

‖xr‖∞≤2Cmnη−1/2

m∑
i=1

[(√
npXi x

r,X
i + νXi

)
∧
(√

npYi x
r,Y
i + νYi

)]

= max
xr∈E′2

‖xr‖∞≤2Cmnη

m∑
i=1

[(
pXi x

r,X
i + νXi

)
∧
(
pYi x

r,Y
i + νYi

)]
= m(ν).

Finally,

max
x∈D′n

z′n(x) = max
x∈K∩Pn

max
x∈E′2

‖x‖∞≤2Cmnη−1/2

z′n(xK∩Pn , xr) = max
λ∈a+K∩Pn

m
(
vX(λX), vY (λY )

)
.

(2.20)

2.4.5 End of the proof

Just as done with (2.19),∣∣∣∣ max
λ∈a+K∩P

m(v(λ))− max
λ∈a+K∩Pn

m(v(λ))

∣∣∣∣ ≤ |I|
nη

√
2Cm2nη−1/2

amin
+ nη−1/2

 ,

and so, using (2.18), (2.19) and (2.20) (recall that a+K ∩ P = KΛ2),∣∣∣∣max
x∈P

zn(a+ x)− max
λ∈KΛ2

m(v(λ))

∣∣∣∣ ≤ ( 2|I|
√
amin

+m

)√
2Cm2n

6η−1
4 + (2|I|+m)nη−1/2.

3 Consistency with previous results and generalizations

3.1 Two words with identical distributions

As stated in the introductory section, Theorem 1.1 and the conjectured Theorem 1.2
are consequences of our main theorem. Indeed, let Xk and Yk (k = 1, 2, . . . ) have the
same distribution, then note that

I =
{
i ∈ {1, . . . ,m} : pXi = pmax

}
,

and so the multiplicity k∗ of pmax is equal to |I| and we are in Case b1). It is also clear
that

KΛ2 =
{
λ ∈ Λ2 : ∀i /∈ I, λXi = λYi = 0

}2
.
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In this case, Lemma 1.5 simplifies and gives m(ν) = SX ∧ SY , so our theorem states that
the limiting distribution of Zn/

√
pmax(1− pmax) is

max
λ∈KΛ2

∑
i∈I

BXi

 i∑
j=1

λXj

−BXi
i−1∑
j=1

λXj

 ∧
∑
i∈I

BYi

 i∑
j=1

λYj

−BYi
i−1∑
j=1

λYj


= max

0=t0≤t1≤···≤tk∗=1

[(
k∗∑
i=1

(
BXi (ti)−BXi (ti−1)

))
∧

(
k∗∑
i=1

(
BYi (ti)−BYi (ti−1)

))]
, (3.1)

where BX and BY are two independent k∗-dimensional Brownian motions on [0, 1] with
respective covariance matrix defined in Theorem 2.1. The proof of Corollary 3.3 in
[5] shows that, by writing BX and BY as linear combinations of independent standard
Brownian motions, Zn is identical in law to

max
0=t0≤t1≤···≤tk∗=1

√
pmax

[(√
1− k∗pmax − 1

k∗

k∗∑
i=1

B
X

i (1) +

k∗∑
i=1

(
B
X

i (ti)−B
X

i (ti−1)
))

∧

(√
1− k∗pmax − 1

k∗

k∗∑
i=1

B
Y

i (1) +

k∗∑
i=1

(
B
Y

i (ti)−B
Y

i (ti−1)
))]

,

where now B
X

and B
Y

are two independent k∗-dimensional standard Brownian motions
on [0, 1]. Dividing both sides by

√
pmax, one obtains the conjectured Theorem 1.2 which

reduces to Theorem 1.1 when k∗ = m.

3.2 Generalization to any fixed sequence of blocks

As pointed out by an Associate Editor, and also developed, for binary alphabets, in
[8], a longest common increasing subsequence can be viewed as a longest common
subsequence where letters are aligned in blocks. (For LCIn, a non-void block only
aligns a single type of letter and the first block consists of the letter α(1) := 1, then the
second one consists of α(2) := 2 and so on, up to the last block eventually consisting of
the letter α(m) := m.) So, more generally, one could investigate the longest common
subsequences where letters are aligned in blocks of letters α(1), . . . , α(l), for any l ≥ m,
and where α : {1, . . . , l} → Am is onto. For any fixed α, the length of the longest common
subsequences where letters are aligned with blocks α is at most equal to LCn, the length
of the longest common subsequences, and moreover, LCn is the maximum of these
lengths over all the possible block-orders α (l is not fixed). To pass from the block version
to LCn, there is, however, a major issue of interversion of limits. In what follows, at first,
we merely give for any fixed α, the limiting law of the length of the (rescaled) longest
common subsequences where letters are aligned in blocks α(1), . . . , α(l), and then the
corresponding limiting laws, when allowing for a fixed numbers of such blocks.

Firstly, defining for any k ∈ N, k ≥ 2, Λk := {λ ∈ (R+)
k

= : λ1 + · · · + λk = 1}, we
claim that:

max
λ∈Λ2

l

l∑
i=1

[(
pXα(i)λ

X
α(i)

)
∧
(
pYα(i)λ

Y
α(i)

)]
= max
λ∈Λ2

m

m∑
i=1

[(
pXi λ

X
i

)
∧
(
pYi λ

Y
i

)]
. (3.2)

Indeed to see the validity of this equality, note that above the left-hand side is greater
or equal than the right-hand side since α is onto, while it is also less or equal since we
can partition {1, . . . , l} via α−1({1}), α−1({2}), . . . , α−1({m}) and use the basic inequality
(a ∧ b) + (c ∧ d) ≤ (a+ c) ∧ (b+ d).
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Next, to adapt the proof of our main theorem, we need to define the set Uα, as well
as all other quantities which depended on m or p, with l instead of m and p•α(1), . . . , p

•
α(l)

instead of p•1, . . . , p
•
m. Note also that, when l > m, the quantities p•α(1), . . . , p

•
α(l) do not

form a probability mass function (their sum is not equal to one), but all their elements
are positive which is enough to have everything well defined.

Formally, for example,

Uα :=

{
u ∈ Rl+ :

u1

pXα(1)

+ · · ·+ ul
pXα(l)

≤ 1,
u1

pYα(1)

+ · · ·+ ul
pYα(l)

≤ 1

}
,

φα : Rl → R is given by
φα : u 7→ u1 + · · ·+ ul,

and Iα is now defined to be the set of integers i ∈ {1, . . . , l} such that there exists
ui ∈ LUα with ui > 0. Using almost the same proof as the one showing the equality of the
two maxima in (3.2), we get α−1(I) = Iα, where I is defined as before. There is no need
to redefine the various cases a), b1), b2) here since they coincide with those previously
defined when taking p•α(1), . . . , p

•
α(l) instead of p•1, . . . , p

•
m. For example, “there exists

u ∈ Uα maximizing φα over Uα such that u1

pX
α(1)

+ · · ·+ ul
pX
α(l)

= 1 and u1

pY
α(1)

+ · · ·+ ul
pY
α(l)

< 1”

is equivalent to Case a) defined in Section 1.3. Finally, the function m defined in
Lemma 1.5 can be extended naturally to

(
Rl
)2

.
Within this generalized setting, the proof of Lemma 2.2 carries over, giving us the

following theorem for, LCαn , the length of the longest common subsequences with blocks
α(1), . . . , α(l).

Theorem 3.1. Let BX and BY be two independent |I|-dimensional Brownian motions
defined on [0, 1] with respective covariance matrix CX defined by CXi,i = 1 and CXi,j =

−
√

pX
α(i)

pX
α(j)

(1−pX
α(i)

)(1−pX
α(j)

)
, for i 6= j in I, and CY defined in a similar fashion. For all λ ∈ Kα

Λ2

and i ∈ Iα, set

V α,Xi (λX) =
√
pXα(i)(1− p

X
α(i))

BXα(i)

 i∑
j=1

λXj

−BXα(i)

i−1∑
j=1

λXj

 ,

V α,Yi (λY ) =
√
pYα(i)(1− p

Y
α(i))

BYα(i)

 i∑
j=1

λYj

−BYα(i)

i−1∑
j=1

λYj

 .

If there exists u ∈ LUα such that u1

pX
α(1)

+ · · · + ul
pX
α(l)

= 1 and u1

pY
α(1)

+ · · · + ul
pY
α(l)

< 1, or

equivalently if there exists u ∈ LU such that u1

pX1
+ · · · + um

pX1
= 1 and u1

pY1
+ · · · + um

pYm
< 1

(Case a)), then
LCαn − nemax√

n
===⇒
n→∞

Za := max
λX∈Jα

∑
i∈Iα

V α,Xi (λX). (3.3)

If for all u ∈ LUα , u1

pX
α(1)

+ · · ·+ ul
pX
α(l)

= 1 and u1

pY
α(1)

+ · · ·+ ul
pY
α(l)

= 1, or equivalently if for

all u ∈ LU , u1

pX1
+ · · ·+ um

pX1
= 1 and u1

pY1
+ · · ·+ um

pYm
= 1 (Case b)), then

LCαn − nemax√
n

===⇒
n→∞

Zb := max
λ∈Kα

Λ2

m
(
V α,X(λX), V α,Y (λY )

)
, (3.4)

where, again, now m is defined on
(
Rl
)2

.

For instance, for m = 2 and in the uniform case, the order α(1) = 2, α(2) = 1, α(3) = 2

gives the limiting distribution:
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LCαn − nemax√
n

===⇒
n→∞

Zb := max
λX1 +λX2 +λX3 =1

λY1 +λY2 +λY3 =1

m
(
V α,X(λX), V α,Y (λY )

)
, (3.5)

i.e.,

LCαn − nemax√
n

===⇒
n→∞

Zb :=
1

2
max

λX1 +λX2 +λX3 =1

λY1 +λY2 +λY3 =1

min
•∈{X,Y }

(B•2(λ•1) +B•1(λ•1 + λ•2)−B•1(λ•1)

+B•2(1)−B•2(λ•1 + λ•2)) . (3.6)

Also note that, sometimes, the limit in the above theorem is simply a normal random
variable. Indeed, take pX1 = 1/3, pX2 = 2/3, pY1 = 1/4, pY2 = 3/4, and α(1) = 1, α(2) = 2,
then we are in Case a), I = {2} and:

LCαn − nemax√
n

===⇒
n→∞

Za :=

√
2

3
BX2 (1). (3.7)

This is also, as one would expect, the limiting distribution of the number of 2’s in the
first word (which is almost equal to LCαn ). However, if we take α(1) = 2, α(2) = 1, α(3) =

2, the limit is more involved.
For b ∈ N such that b ≥ m, let now F bm denote the set of all surjections from {1, . . . , b}

to {1, . . . ,m}, and let LC(b)
n be the length of the longest common subsequences with

b ≥ m blocks, with for each letter at least one block of this letter, and still allowing the
blocks to have size zero. This is nothing but the maximum, over all the possible α ∈ F bm,
of LCαn , so, recalling the discussion preceding the statement of Theorem 3.1, we have:

Theorem 3.2. In Case a),

LC
(b)
n − nemax√

n
===⇒
n→∞

Za := max
λX∈Jα
α∈F bm

∑
i∈Iα

V α,Xi (λX). (3.8)

In Case b),

LC
(b)
n − nemax√

n
===⇒
n→∞

Zb := max
λ∈Kα

Λ2

α∈F bm

m
(
V α,X(λX), V α,Y (λY )

)
. (3.9)

Proof. The proof of this theorem follows lines of the proof of our previous main result,
considering p•α(i) instead of p•i .

Note that LCn, the length of the longest common subsequences without any condi-
tions on blocks, corresponds to LC(n+m)

n (or to be more precise, LC(b)
n for any b ≥ m+n−2:

this is because when, say, there are only two kind of letters involved in the longest com-
mon word, we have to take m− 2 additional empty blocks to make α onto). Although the
above theorem requires a fixed number of blocks, say, b, it is nevertheless noteworthy
that no matter this fixed number,

lim
n→+∞

ELC
(b)
n

n
= emax.

3.3 Countably infinite alphabet

To continue, let us consider, as in [5, Section 4], the generalization to countably
infinite alphabets. Let the alphabet be N∗ = {1, 2, . . . }, let (p′Xi )i≥1 and (p′Yi )i≥1 be two
probability mass functions on this alphabet, we are now interested in LCI∞n , the length
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of the longest common and increasing subsequences over this countably infinite alphabet.
Let

Λ∞ =

{
λ ∈ (R+)

N∗
= [0,+∞)N

∗
:

+∞∑
i=1

λi = 1

}
,

and let

e∞max = sup
λ∈(Λ∞)2

+∞∑
i=1

[(
p′Xi λXi

)
∧
(
p′Yi λ

Y
i

)]
. (3.10)

Let m ∈ N,m ≥ 2 be such that
∑+∞
i=m p

′X
i < e∞max and

∑+∞
i=m p

′Y
i < e∞max. Let us consider

the distributions over {1, . . . ,m} obtained by replacing all the letters greater or equal
to m by m, namely, let pXi = p′Xi for i < m and pXm :=

∑+∞
i=m p

′X
i , and let pYi , 1 ≤ i ≤ m,

be defined in a similar fashion. Let now LCIn be the length of the longest increasing
subsequences formed by replacing all the letters greater or equal to m by m, i.e.,
the longest common and increasing subsequences on {1, . . . ,m} associated with the
probability mass functions p′X and p′Y . Next we argue, via a sandwiching argument,
that when properly centered and scaled (note that e∞max = emax), LCI∞n and LCIn
tend to the same limit. Indeed, let LCI∗n be the length of the longest common and
increasing subsequences not using the letter m, i.e., the length of the longest common
and increasing subsequences on {1, . . . ,m − 1} associated with the probability mass
functions p′X and p′Y or, equivalently, pX and pY . Since m /∈ I (where I is defined with
the distribution (pXi )1≤i≤m and (pYi )1≤i≤m), (LCI∗n − nemax)/

√
n and (LCIn − nemax)/

√
n

converge to the same limiting distribution. But,

LCI∗n − nemax√
n

≤ LCI∞n − nemax√
n

≤ LCIn − nemax√
n

,

completing the proof.
From the proofs presented above, the passage from two to three or more sequences

is clear: the minimum over two Brownian functionals becomes a minimum over three or
more Brownian functionals, and such a passage applies to the cases touched upon above
and below.

Throughout the text, the two sequences (Xk)k≥1 and (Yk)k≥1 are assumed to be
independent with respective i.i.d. components. In view of [6] or [3], one expects that
the i.i.d. assumption could be replaced by a Markovian one or even a hidden Markovian
one. Moreover, one further expects that the independence of the two sequences is
unnecessary and that a potential dependence structure between the two sequences
would carry over to corresponding 2m-dimensional Brownian functionals, another case
at hand could be the hidden Markov framework. Finally, it should also be of interest
(as already done in [2] for uniform letters) to study the ramifications/connections of our
results with last passage percolation.

Appendix: proof of Lemma 1.5

Proof. Define fν : E′2 → R by fν : x 7→
∑m
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
. In order to

prove that m(ν) is well defined and (1.20), it is enough to prove that for all x ∈ E′2, there
exists x′ ∈ E′2 such that ‖x′‖∞ ≤ 2Cm‖ν‖∞ and fν(x′) ≥ fν(x). Let x ∈ E′2. Firstly,
assume that x ∈ P (recalling (2.14)). If fν(x) < fν(0), taking x′ = 0 works, so assume
fν(x) ≥ fν(0). By (1.10) (applied twice),

−m‖ν‖∞ ≤ fν(0) ≤ fν(x) ≤ m‖ν‖∞ + f(x)

hence −f(x) ≤ 2m‖ν‖∞ and, by Lemma 2.3, there exists xK∩P ∈ K ∩ P and xr ∈ E2

such that x = xK∩P + xr and ‖xr‖∞ ≤ −Cf(x) ≤ 2Cm‖ν‖∞. But from the definition
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of K, fν(xK∩P + xr) = f(xK∩P ) + fν(xr), and by (2.16), f(xK∩P ) = 0 so fν(x) = fν(xr).
Moreover, since x ∈ P and xK∩P,•i = 0 for all i ∈ Ic, xr ∈ E′2.

Now, if we do not assume x ∈ P anymore, observe that for ε > 0 small enough, εx ∈ P ,
so fεν(x′) ≥ fεν(εx) for some x′ ∈ E′2 such that ‖x′‖∞ ≤ 2Cm‖εν‖∞. Finally, dividing by
ε, fν((1/ε)x′) ≥ fν(x) where ‖(1/ε)x′‖∞ ≤ 2Cm‖ν‖∞.

In Case b1), let us begin with the subcase I = {1}. In this instance, pX1 = pY1 = emax,
while for all 1 < i ≤ m, pXi < emax or pYi < emax (otherwise i would be in I). We now
show that “the maximum of fν is realized with the first letter plus one other letter”,
more precisely, there exists x ∈ E′2 such that fν(x) = m(ν) and |{i ∈ {2, . . . ,m} : xXi 6=
0 or xYi 6= 0}| ≤ 1. Indeed, using the same method than in the proof of Lemma 1.6,
keeping in mind ν•2 = · · · = ν•m = 0, one can see that there exists some x maximizing fν
such that {i ∈ {1, . . . ,m} : xXi 6= 0 or xYi 6= 0} has at most two elements, and they can’t
both belong to {2, . . . ,m} otherwise they would be null (by the definition of E′).

Returning to the proof of the lemma, we have shown that

max
x∈E′2

fν(x) = max
i0∈{2,...,m}

sup
x∈E′2

∀i∈{2,...,m}\{i0},x•i=0

fν(x). (3.11)

Fixing i0 ∈ {2, . . . ,m}, we have

sup
x∈E′2

∀i∈{2,...,m}\{i0},x•i=0

fν(x) = sup
tX ,tY >0

[
(νX1 − emaxt

X) ∧ (νY1 − emaxt
Y ) + (pXi0 t

X) ∧ (pYi0t
Y )
]
.

(3.12)

It is then easily seen that this last supremum does not change with the additional
condition pXi0 t

X = pYi0t
Y . (Indeed, if, for example, pXi0 t

X > pYi0t
Y , reducing tX to transform

this strict inequality into equality will only increase the sum of the two minima in the
definition of fν .) Hence,

sup
x∈E′2

∀i∈{2,...,m}\{i0},x•i=0

fν(x) = sup
tX>0

[(
νX1 − emaxt

X + pXi0 t
X
)
∧

(
νY1 − emax

pXi0
pYi0

tX + pXi0 t
X

)]

= sup
tX>0

[(
νX1 + (pXi0 − emax)tX

)
∧

(
νY1 +

pXi0
pYi0

(pYi0 − emax)tX

)]
.

Since i0 /∈ I, it is impossible for both pXi0 − emax and pYi0 − emax to be positive, so
this last supremum is attained at tX = 0 (and is equal to νX1 ∧ νY1 ) unless νX1 < νY1 and
pXi0 − emax > 0, or νX1 > νY1 and pYi0 − emax > 0, in which case the supremum is attained

at tX =
pYi0
emax

νY1 −ν
X
1

pXi0
−pYi0

, a value at which the two sides in the above minimum are equal to

each other. So if νX1 < νY1 and pXi0 − emax > 0, or νX1 > νY1 and pYi0 − emax > 0, then

sup
x∈E′2

∀i∈{2,...,m}\{i0},x•i=0

fν(x) =
pXi0 (emax − pYi0)

emax(pXi0 − p
Y
i0

)
νX1 +

pYi0(pXi0 − emax)

emax(pXi0 − p
Y
i0

)
νY1 . (3.13)

Assuming that νX1 < νY1 , we see that in this case m(νX , νY ) = sXS
Y +tXS

X . This remains
true if SX = SY (in this case, m(νX , νY ) = SX = SY ), and, similarly, when SY ≤ SX .
The proof of Case b1) is therefore done when I = {1}.

Still in Case b1), but without the assumption that I = {1}, assume, without loss of
generality, that I = {1, . . . , k}, k ≥ 2. Define ν̃ by ν̃•1 = S• and ν̃•i = 0, for all i ≥ 2. Let
x0 ∈ E′2 be defined by x0,Y = 0, x0,X

1 = (SX−SY +νY1 −νX1 )/emax, x0,X
i = (νYi −νXi )/emax,
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for all i ∈ {2, . . . , k}, and x0,•
i = 0 for all i ∈ {k + 1, . . . ,m}. Note that for all x ∈ E′2,

fν(x+ x0) = fν̃(x), so m(ν) = m(ν̃). Moreover, defining x′ via x′•1 = x•1 + · · ·+ x•k, x′•i = 0,
for i ∈ {2, . . . , k}, and x′•i = x•i everywhere else, we have x′ ∈ E′2, and(
emax(xX1 + · · ·+ xXk ) + ν̃X1

)
∧
(
emax(xY1 + · · ·+ xYk ) + ν̃Y1

)
≥ (emaxx

X
1 +ν̃X1 )∧(emaxx

Y
1 +ν̃Y1 )

+ emax(xX2 + · · ·+ xXk ) ∧ (xY2 + · · ·+ xYk ), (3.14)

(
emax(xX1 + · · ·+ xXk ) + ν̃X1

)
∧
(
emax(xY1 + · · ·+ xYk ) + ν̃Y1

)
≥ (emaxx

X
1 +ν̃X1 )∧(emaxx

Y
1 +ν̃Y1 )

+ emax(xX2 ∧ xY2 ) + · · ·+ (xXk ∧ xYk ). (3.15)

Hence, fν̃(x′) ≥ fν̃(x), and therefore

m(ν̃) = max
x∈E′2

∀i∈{2,...,k},x•i=0

fν̃(x). (3.16)

Now applying the subcase I = {1} concludes the proof of Case b1).
In Case b2), again assume without loss of generality that I = {1, . . . , k}, k ≥ 2.

Let L1 = (1, 0, . . . , 0,−1, 0, . . . , 0) ∈ R2k, having k − 1 zeros between the two non-zero
coordinates, let L2 = (0, 1, 0, . . . , 0,−1, 0, . . . , 0) (still with k−1 zeros between the two non-

zero coordinates), and iterate this process up to Lk. Let also P̃X be the concatenation

of PX ∈ Rk with 0 ∈ Rk, and let P̃Y be the concatenation of 0 ∈ Rk with PY ∈ Rk. The
vectors L1, . . . , Lk, P̃X , P̃Y are linearly independent since, as already seen in Lemma 1.4,
PX and PY are linearly independent. Now, let Q be a 2k × 2k invertible matrix with first

rows L1, . . . , Lk, P̃X , P̃Y (for example, to form such a matrix Q, one could complete the
first columns with vectors from the canonical basis), let ∆ ∈ R2k be defined by

∆i :=

{
νYi − νXi if i ∈ {1, . . . , k}
0, if i ∈ {k + 1, . . . , 2k},

(3.17)

and let u ∈ R2k be defined by

ui :=

{
(Q−1∆)i if i ∈ {1, . . . , k}
0, if i ∈ {k + 1, . . . , 2k}.

(3.18)

We have uXi − uYi = νYi − νXi (where uX is the vector of the first k coordinates of u and
uY the vector of the last k coordinates of u) for all i ∈ {1, . . . , k}: these conditions stem
from the rows L1, . . . , Lk. Moreover, uX1 /p

X
1 + · · ·+ uXm/p

X
m = uY1 /p

Y
1 + · · ·+ uYm/p

Y
m = 0

(conditions stemming from the rows P̃X , P̃Y ). Then, expand uX and uY to Rm by
filling with zeros, so that u := (uX , uY ) is now in (Rm)

2. Setting, for all i ∈ {1, . . . ,m},
yXi := uXi /p

X
i , y

Y
i := uYi /p

Y
i , lead to y ∈ (Rm)

2, more precisely y ∈ E′2 such that for all
i ∈ {1, . . . ,m}, pXi yXi + νXi = pYi y

Y
i + νYi , with moreover

m∑
i=1

[(
pXi y

X
i + νXi

)
∧
(
pYi y

Y
i + νYi

)]
=
∑
i∈I

(
pXi y

X
i + νXi + pYi y

Y
i + νYi

2

)
.

Setting UX := (uXi )i∈I ∈ Rk, UY := (uYi )i∈I , RX := (νXi )i∈I and RY := (νYi )i∈I , the
above expression becomes

m∑
i=1

[(
pXi y

X
i + νXi

)
∧
(
pYi y

Y
i + νYi

)]
=

1

2
(UX +RX + UY +RY ) · (1)i∈I .
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With the notations of Lemma 1.4,

UX · (1)i∈I = UX · (sPX + tPY )

= UX · tPY

= (UX − UY ) · tPY

= (RY −RX) · tPY .

Similarly, UY · (1)i∈I = (RX −RY ) · sPX . So,

m∑
i=1

[(
pXi y

X
i + νXi

)
∧
(
pYi y

Y
i + νYi

)]
=

1

2
(RX −RY ) · (sPX − tPY )

+
1

2
(RX +RY ) · (sPX + tPY )

= RX · sPX +RY · tPY

=
∑
i∈I

(
s

pXi
νXi +

t

pYi
νYi

)
.

This shows that

max
x∈E′2

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
≥
∑
i∈I

(
sνXi /p

X
i + tνYi /p

Y
i

)
.

Now let x ∈ E′2,

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
−
∑
i∈I

(
s

pXi
νXi +

t

pYi
νYi

)

=

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
−

m∑
i=1

[(
pXi y

X
i + νXi

)
∧
(
pYi y

Y
i + νYi

)]
=

m∑
i=1

[(
pXi (x− y)Xi

)
∧
(
pYi (x− y)Yi

)]
= f(x− y).

We have x−y ∈ E′2 (recall, also, that yi = 0 for all i ∈ Ic), so for some c > 0, (x−y)/c ∈ P ,
and then f((x− y)/c) ≤ 0, so f(x− y) ≤ 0. Hence

∑m
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
−∑

i∈I
(
sνXi /p

X
i + tνYi /p

Y
i

)
≤ 0 and, finally,

max
x∈E′2

m∑
i=1

[(
pXi x

X
i + νXi

)
∧
(
pYi x

Y
i + νYi

)]
=
∑
i∈I

(
sνXi /p

X
i + tνYi /p

Y
i

)
.
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