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Abstract

We prove that for x € (0, 8), if (11, 72) is a 2-SLE,; pair in a simply connected domain
D with an analytic boundary point zo, then as r — 0%, P[dist(z0,n;) < r,j = 1,2]
converges to a positive number for some « > 0, which is called the two-curve Green’s
function. The exponent « equals % —1lor 2(%2 — 1) depending on whether z is one
of the endpoints of 11 or n2. We also find the convergence rate and the exact formula
for the Green’s function up to a multiplicative constant. To derive these results, we
construct two-dimensional diffusion processes and use orthogonal polynomials to
obtain their transition density.
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1 Introduction

1.1 Main results

This paper is the follow-up of [25], in which we proved the existence of the two-curve
Green’s function for 2-SLE at an interior point, and obtained the formula for the Green'’s
function up to a multiplicative constant. In the present paper, we will study the case
when the interior point is replaced by a boundary point.

As a particular case of multiple SLE,, a 2-SLE,, consists of two random curves in a
simply connected domain connecting two pairs of boundary points (more precisely, prime
ends), which satisfy the property that, when any one curve is given, the conditional law
of the other curve is that of a chordal SLE, in a complementary domain of the first curve.

The two-curve Green’s function of a 2-SLE,, is defined to be the rescaled limit of the
probability that the two curves in the 2-SLE,, both approach a marked point in D. More
specifically, it was proved in [25] that, for any « € (0,8), if (11,72) is a 2-SLE,, in D, and
2o € D, then the limit

G(zo) := lim r~“P[dist(n;, 20) <r,j =1,2] (1.1)
r—0t
is a positive number, where the exponent « is o := (127';#. The limit G(z) is called
the (interior) two-curve Green’s function for (71,72). The paper [25] also derived the
convergence rate and the exact formula for G(z;) up to an unknown constant.

In this paper we study the limit in the case that zy € 0D assuming that dD is analytic

near z,'. Below is our main theorem.

Theorem 1.1. Let s € (0,8). Let (n1,72) be a 2-SLE,; in a simply connected domain D.
Let zy € 0D. Suppose 0D is analytic near z,. We have the following results in two cases.

(A) If zo is not an endpoint of 11 or 7, then the limit in (1.1) exists and lies in (0, o)
fora =a; = as:=2(2 —1).

1By saying that D is analytic near zg, we mean that there is a conformal map f defined on {|z| < 1} such
that £(0) = 20, f({l2] < 1,Imz > 0}) = £({|2| < 1}) N D, and f({|2| < 1,Im= < 0}) = f({|2| < 1}) N D=

EJP 26 (2021), paper 32. https://www.imstat.org/ejp
Page 2/58


https://doi.org/10.1214/21-EJP592
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Two-curve Green'’s function for 2-SLE: the boundary case

(B) If 2z is one of the endpoints of 1, or 1y, then the limit in (1.1) exists and lies in

(0,00) forav = a3 := 22 — 1.

Moreover, in each case we may compute Gp(zy) up to some constant C > 0 as follows.

Let F' denote the hypergeometric function o Fy (2,1 — 2;2 ). Let f map D conformally

KK’

onto H such that f(z9) = co. Let J denote the map z — —1/z.

(A1) Suppose Case (A) happens and neither 1, nor n, separates zy from the other curve.
We label the f-images of the four endpoints of n; and 12 by v < w_ < wy < vy.
Then

Gp(20) = C1|(J o f) (20)|"* G1(w; v),

where C > 0 is a constant depending only on k, and

w; ) = T N T 0 o 4 Gl ool A
Gr(w;v) : UEH_}(I N L )F((w+—v_)(v+—w_)) a2

(A2) Suppose Case (A) happens and one of n; and 1, separates zy from the other curve.
We label the f-images of the four endpoints of 7, and 1 by v_ < w_ < wy < vy.
Then

Gp(20) = C2|(J o f)(20)|** G2 (w; v)

where C; > 0 is a constant depending only on k, and

GQ(Q;Q) — H |U+—U7|%_1 H |U)U—U,J|%F((U+_w+)(wi_v7)>_1.

wefwv} celt—} (Wi —v-)(vy —w-)
(1.3)
(B) Suppose Case (B) happens. We label the f-images of the other three endpoints of
n1 and 1o by wy,w_, v, such that f~!(v,) and 2, are endpoints of the same curve,
and w4, vy lie on the same side of w_. Then

Gp(20) = C3](J o f)'(20)|** Gz (w; vy.),

where C'5 > 0 is a constant depending only on k, and

w)_l. (1.4)

Galwsvy) = lwy —w-|F oy —w_ | F(

Uy —W_
In each case, the function G does not depend on the choice of f because G, and G2
are homogeneous of degree 2(% -1+ %) = a1 = aw, and G3 is homogeneous of degree
% -1 + % = (3.

Our long-term goal is to prove the existence of Minkowski content of double points of
chordal SLE, for « € (4, 8), which may be transformed into the existence of Minkowski
content of the intersection of the two curves in a 2-SLE,,. Following the approach in
[6], we need to prove the existence of two-curve two-point Green'’s function for 2-SLE,,
where Theorem 1.1 is expected to serve as the boundary estimate in the proof.

The paper uses a two-curve technique introduced in [25], which will be described in
Section 1.2. Besides [25] and this paper, the technique was recently used in [24] to study
the Green’s function for the cut points of chordal SLE,, s € (4,8). One future application
of the technique is the interior two-curve Green’s function for a commuting pair of
SLE, (2, p) curves (which may arise as a commuting pair of flow lines in the imaginary
geometrgf theory ([12]) in the case k # 4, or a commuting pair of Gaussian free field
level lines ([21]) in the case xk = 4, cf. Section 4). The result is expected to lead to the
existence of the Minkowski content of the intersection of the two curves (subject to the
existence of the two-curve two-point Green’s function for this commuting pair).
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Figure 1: The three figures above respectively illustrate Cases (A1), (A2) and (B).

1.2 Strategy

We now briefly explain how the two-curve technique works for the boundary two-
curve Green'’s function. By conformal invariance of 2-SLE,;, we may assume that D =
H:={z € C:Imz > 0}, and zy = oo. It suffices to consider the limit

Lli_>m LPn; n{|z| > L} #0,j =1,2]. (1.5)

In Case (A) of Theorem 1.1, we label the four endpoints of n; and 7, by vy > wy > w_ >
v_. There are two possible link patterns: (w4 <> vy;w_ <> v_) and (w4 <> w_;v4 > v_),
which respectively correspond to Case (A1) and Case (A2) of Theorem 1.1. See Figure 1
for illustrations of the thee cases of Theorem 1.1.

For the first link pattern, we label the two curves by 74 and 7_. By translation and
dilation, we may assume that v4 = +1. Additionally, we assume that % € [w_,w4].
After converting vy to £1 using translation and dilation, we get 0 € [w_,w;]. Let
vg = 0. We orient n; and 7 from w; and w_ to v; and v_, and grow the two curves
simultaneously with some speeds to be described later. The growing process stops at
the time T when either curve reaches its target, or separates v4 or v_ from oco. For
each ¢ in the lifespan [0,T%), let H; denote the unbounded connected component of
H\ (74[0,¢]Un-]0,¢t]). During the lifespan [0, 7) of the process, the speeds of 1, and 7_
are controlled by two factors:

(F1) the harmonic measure of [v_,v4]Un4[0,{]Un_[0,t] in H; viewed from oo increases
in ¢t exponentially with factor 2, and

(F2) [v—,v0]Un—[0,t] and [vg, v4+]Un4[0,¢] have the same harmonic measure viewed from
0.

Suppose g; maps H; conformally onto H and satisfies g:(z) = z + o(1) as z — oo. Define
V—‘r(t) = limzimax([vo7v+]Un+[07t]ﬂ]R) gf(x) and V_ (t) = hmmeax([U,,vo]Un, [0,t]NR) gt(x) Then
(F1) is equivalent to the condition that V, (t) — V_(t) = ¢*(v; —v_). The inverse g; *
extends continuously to H. We will see that there is a unique Vy(t) € (V_(¢), V. (t)) such
that g; ' maps [Vy(t), V()] into [vo, vs] Une[0,t] for o € {+, —}. Then (F2) is equivalent
to the condition that V. (t) — Vo(t) = Vo(t) — V_ ().

If k € (0,4], ny and 7_ are disjoint, and do not disconnect v, v_, vy from oo. In this
case, V,(t) is simply g¢:(v,) for o € {+,—,0}. If k € (4,8), n4 and n_ may or may not
intersect, and they together may disconnect some v,, o € {+,—,0} from co. When the
disconnection happens, the function V,(¢) is more complicated. The two curves do not
cross each other even if they intersect.

At the time T, one of the two curves, say 7y, separates v, or v_ from oo. If 1y
separates v, the rest of n; grows in a bounded connected component of H \ 1[0, T");
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if n, separates v_, the whole 7_ is disconnected from co by 7, [0,7%). Thus, after T*, at
least one curve cannot get closer to co. So we may focus on the parts of ;. and 7_ before
T". Using Koebe’s 1/4 theorem (applied to ¢; at co) and Beurling’s estimate (applied to
a planar Brownian motion started near ~o), we find that for 0 < ¢ < T, the diameter of
both 7. [0,t] and 7_[0, t] are comparable to e*'.

We define a two-dimensional diffusion process R(t) = (R, (t), R_(t)) € [0,1]2,0 <t <
T, by Ro(t) = T2, o € {+,~}, where W,(t) = g:(n,(t)) € [Vo(t),V,(t)]. Here
N (t) is understood as a prime end of H;. We then use the knowledge of 2-SLE,; partition
function and a technique of orthogonal polynomials to derive the transition density of
(B).

From the transition density, we find that (R) has a quasi-invariant distribution, which
means that if (R) starts with this distribution, then the lifetime 7" follows an exponential
distribution, and the distribution of R(¢) conditionally on the event {T* > ¢} stays
unchanged. Moreover, if we start (R) from any other distribution, then the distribution of
R(t) conditionally on {T" > t} converges exponentially to the quasi-invariant distribution.

To prove the existence of the limit in (1.5), we first prove that the limit exists if the
condition n; N {|z| > L} # 0, j = 1,2, is replaced by the condition that ¢?”" > L. The
value " plays the role of the conformal radius: by Koebe’s 1 /4 theorem, the supremum
of the set of L > 0 such that n; N {|z| > L} # 0, j = 1,2, is comparable to ¢*”". Suppose
(R) starts from its quasi-invariant distribution. Then L*P[¢*”" > L] stays constant for
L € (0,00) by the property of the quasi-invariant distribution, and so its limit as L — oo
exists. If (R) starts from a deterministic point, then the existence of the limit follows from
the convergence of the conditional distribution of R(t) to its quasi-invariant distribution.
After this step, we remove the additional assumption that % € [w_,w;] by growing
a segment of one of the two curves. Finally, we use a technique in [6] (obtaining the
Euclidian distance Green’s function from the conformal radius Green’s function) to prove
the existence of the limit in (1.5).

For the link pattern (w4 + w_;vy < v_), we label the curves by 7, and n,. We
observe that 7, disconnects 7,, from oo. Thus, for L > max{|vy|, |v_|}, n, intersects
{|z| > L} implies that 7, does the intersection as well. Then the two-curve Green's
function reduces to a single-curve Green’s function. But we will still use a two curve
approach. We assume that v+ = £1 and 0 € (w_, w4 ), and let v = 0 as in the previous
case. This time, we grow 74 and 7n_ simultaneously along the same curve 7,, such that
Ne runs from w, towards w_,, o € {+, —}. The growth is stopped if 7, and n_ together
exhaust the range of 7, or any of them disconnects its target from oco. The speeds
of the curves are also controlled by (F1) and (F2). The relation between n; and 75 is
similar to that in Case (Al) depending on whether « € (0,4] or x € (4,8). Then we
define Vy, VL, Wy, Ry in the same way as before, and derive the transition density of
R = (R4, R_), which will be used to prove the existence of the limit in (1.5) following
the same approach as in Case (Al).

In Case (B), we may assume that vy = 1 and w4 +w_ = 0. Now we introduce two
new points: vy = 0 and v_ = —1. Unlike the previous cases, v_ is not an end point of any
curve. For this case, we grow 7, and 7n_ simultaneously from w4 and w_ along the same
curve 1, as in Case (A2). The rest of the proof almost follows the same approach as in
Case (Al).

1.3 Outline

Below is the outline of the paper. In Section 2, we recall definitions, notations, and
some basic results that will be needed in this paper. In Section 3 we develop a framework
on a commuting pair of deterministic chordal Loewner curves, which do not cross but
may touch each other. The work extends the disjoint ensemble of Loewner curves that
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appeared in [31, 30]. At the end of the section, we describe the way to grow the two
curves simultaneously with properties (F1) and (F2). In Section 4, we use the results from
the previous section to study a pair of multi-force-point SLE(p) curves, which commute
with each other in the sense of [2]. We obtain a two-dimensional diffusion process
R(t) = (R+(t),R_(t)), 0 < t < oo, and derive its transition density using orthogonal
two-variable polynomials. In Section 5, we study three types of commuting pairs of
hSLE, curves, which correspond to the three cases in Theorem 1.1. We prove that each
of them is locally absolutely continuous w.r.t. a commuting pair of SLE(p) curves for
certain force values, and also find the Radon-Nikodym derivative at different times. For
each commuting pair of hSLE, curves, we obtain a two-dimensional diffusion process
R(t) = (R4 (t), R_(¢t)) with random finite lifetime, and derive its transition density and
quasi-invariant density. In the last section we finish the proof of Theorem 1.1.

Acknowledgments

The author thanks Xin Sun for suggesting the problem on the (interior and boundary)
two-curve Green'’s function for 2-SLE.

2 Preliminaries

We first fix some notation. Let H = {z € C : Imz > 0}. For zp € C and S C C,
let rad,, (S) = sup{|z — 20| : 2 € SU{z0}}. If a function f is absolutely continuous on
a real interval I, and f’ = ¢ a.e. on I, then we write f/ = g on /. This means that
f(xe) = f(z1) = f;f g(z)dz for any x; < x9 € I. Here g may not be defined on a subset

of I with Lebesgue measure zero. We will also use “=” for PDE or SDE in some similar
sense. For example, if B, is a standard Brownian motion, the SDE dX; = dB, + ¢.dt
means that a.s. f; := X; — B; is absolutely continuous, and f’ = g a.e. in the lifespan.

2.1 H-hulls and chordal Loewner equation

A relatively closed subset K of H is called an H-hull if K is bounded and H\ K is a
simply connected domain. For a set S C C, if there is an H-hull X such that H \ K is the
unbounded connected component of H \ S, then we say that K is the H-hull generated
by S, and write K = Hull(S). For an H-hull K, there is a unique conformal map gx from
H \ K onto H such that gx(z) = z + £ 4+ O(1/2%) as z — oo for some ¢ > 0. The constant
¢, denoted by hcap(K), is called the H-capacity of K, which is zero iff K = (). We write
hecap, (K) for heap(K)/2. If 9(H \ K) is locally connected, then g;.' extends continuously
from H to H, and we use fx to denote the continuation. If K = Hull(S), then we write
gs, fs,hcap(S), heap,(S) for gk, fi, hcap(K), hcap, (K), respectively.

If K C K, are two H-hulls, then we define K»/K; = gx, (K2 \ K1), which is also an
H-hull. Note that gk, = gk, /k, © gx, and hcap(Ks) = hcap(K>/K1) + hecap(K;), which
implies that hcap(K;),hcap(K2/K;) < hcap(Ks). If K3 C Ky C K3 are H-hulls, then
KQ/Kl C Kg/Kl and

(K3/K1)/(Ko/K;) = K3/ Ko. (2.1)

Let K be a non-empty H-hull. Let K4°"» = K U {z: z € K}, where K is the closure of
K, and % is the complex conjugate of z. By the Schwarz reflection principle, there is a
compact set Sk C R such that gx extends to a conformal map from C\ K doub gnto C\Sk.
Let ax = min(K NR), b = max(K NR), cx = min Sk, dx = max Sk . Then the extended
gx maps C\ (K9 U [ax,bk]) conformally onto C \ [ck, d]. Since gx(2) = z + o(1) as
2 — 00, by Koebe’s 1/4 theorem, diam(K) =< diam(K9" U [af, bx]) < dx — ck.
Example 2.1. Let zp € R, » > 0. Then H := {z € H : |z — o] < r} is an H-hull with
gu(z) =z+ 2 heap(H) =12, ag = x9 — 7, by = vg + 7, HPW = {2 € C: |z — 20| <71},

z—xo’
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cy = x9 — 2r, dg = xo + 2r.

The next proposition combines [32, Lemmas 5.2 and 5.3].
Proposition 2.2. If L C K are two non-empty H-hulls, then [ak,bk]| C [ck,dk], [cL,dr] C
[ck,dKk], and [ck ), dg L) C [k, dK].
Proposition 2.3. For any z € R\ K%, 0 < g} (z) < 1. Moreover, g} is decreasing on
(—o0,ax) and increasing on (bg, o).

Proof. By [19, Lemma C.1], there is a measure ux supported on Sk with || = heap(K)

such that g3 (2) —z = [ Sk Z__ly duk (y) for any z € R\ Sk . Differentiating this formula and
1

letting z = = € R\ Sk, we get (g95") (z) = 1+ Is.c Wdu;{(y) >1.S00< gk <lon
R\ K9P, Further differentiating the integral formula w.r.t. z, we find that (g5")"(z) =

fSK ﬁdm((y) is positive on (—oo, cx) and negative on (dg,00), which means that

(9%")" is increasing on (—oo, cx) and decreasing on (dx,c0). Since gx maps (—oo, ar)
and (bg,00) onto (—oo, cx) and (dg, >0), respectively, we get the monotonicity of ¢}. O

Proposition 2.4. If K is an H-hull with rad,, (K) < r for some z, € R, then hcap(K) <
72, rady, (Sk) < 2r, and |gx () — 2| < 3r for any z € C\ K9°UP,

Proof. We have K ¢ H := {z € H : |z — 29| < r}. By Proposition 2.2, hcap(K) <
heap(H) = 12, Sk C [ck,dk] C [cu,du] = [v0 — 2r, 20 + 2r]. If 79 = 0, the inequality
heap(K) < 72 is just [5, Formula 3.9]; and the inequality |gx (z) — 2| < 3r forany z € H\ K
is just [5, Formula 3.12]. By translation, continuation, and reflection, we then extend
these inequalities to general 2o € R and all z € C \ K9°ub, O

Proposition 2.5. For two nonempty H-hulls K1 C K, such that Ko/K1 N [ck,,dk,] # 0,
we have ‘CKI — CK2|7 |dK1 — dK2| < 4diam(K2/K1).

Proof. By symmetry it suffices to estimate [cx, — cr,|. Let ¢i = limyqa,, gk, (z) and
AK = Ky/K,. Since gi, maps H\ K> onto H\ AK, we have ¢; = min{ck,,aax }. Since
AK N|ck,,dx,| #0, ¢} > ck, — diam(AK). Thus, by Proposition 2.4,

¢k, = lim gag oggk,(z) = ?}lré’/l gak (y) > ¢ —3diam(AK) > ck, — 4diam(AK).

zltak, Tci
By Proposition 2.2, ¢k, < ck,. So we get |cx, — ck,| < 4diam(AK). O

The following proposition is [5, Proposition 3.42].
Proposition 2.6. Suppose K, K1, Ko are H-hulls such that Ky C K1 N K5. Then

heap(K1) + heap(K2) > heap(Hull(K; U Ks)) + heap(Kg).

Let w € C([0,T),R) for some T € (0, 0]. The chordal Loewner equation driven by @&

is
2

gr(2) —w(t)’
For every z € C, let 7, be the first time that the solution g¢.(z) blows up; if such a time
does not exist, then set 7, = 0. Fort € [0,T), let K; = {# € H: 7, <t}. It turns out that
each K, is an H-hull with hcap,(K;) = t, K§°"* = {» € C : 7, < t}, which is connected,
and each g; agrees with gg,. We call g; and K; the chordal Loewner maps and hulls,
respectively, driven by @ (cf. [22, Section 2.2]).

If for every t € [0,T), fk, is well defined, and n(t) = fk,(@(t)), 0 < ¢t < T, is
continuous in ¢, then we say that 7 is the chordal Loewner curve driven by @w. Such 7

gi(2) = 0<t<T; go(z) ==z
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may not exist in general. When it exists, we have 7(0) = @w(0) € R, and K; = Hull(n[0, #])
for all ¢, and we say that K;, 0 <t < T, are generated by 7.

Let u be a continuous and strictly increasing function on [0, 7). Let v be the inverse
of u — u(0). Suppose that g} and K}, 0 < ¢t < T, satisfy that g;j(t) and K;f(t), 0<t<
u(T) — u(0), are chordal Loewner maps and hulls, respectively, driven by @ o v. Then we
say that g and K}*, 0 <t < T, are chordal Loewner maps and hulls, respectively, driven
by @ with speed u, and call (K;)) the normalization of (K}'). If (K}') is generated by
a curve n“, i.e., K}* = Hull(n*[0,t]) for all ¢, then n“ is called a chordal Loewner curve
driven by @ with speed u, and n“ o v is called the normalization of n“. If u is absolutely
continuous with « £ ¢, then we also say that the speed is ¢. In this case, the chordal
Loewner maps satisfy the differential equation 9;g}(z) = q,tffg)( ok We omit the speed
when it is constant and equal to 1.

The following proposition is straightforward.

Proposition 2.7. Suppose K;, 0 < t < T, are chordal Loewner hulls driven by w(t),
0 <t < T, with speed u. Then for any t, € [0,T), Kyy+1/K,, 0 <t <T —to, are chordal
Loewner hulls driven by w(ty +t), 0 <t < T — t,, with speed u(ty + -). One immediate
consequence is that, for any t; < ty € [0,T), Ky,/K;, is connected.

The following proposition is a slight variation of [7, Theorem 2.6].

Proposition 2.8. The H-hulls K;, 0 <t < T, are chordal Loewner hulls with some speed
if and only if for any fixed a € [0,T), lims o Supg<;<, diam(K;45/K;) = 0. Moreover, the
driving function w satisfies the property that {w(t)} = (550 Ki+s/K:, 0 <t < T; and the
speed u could be chosen to be u(t) = hcapy(K;), 0 <t < T.

Proposition 2.9. Suppose K;, 0 <t < T, are chordal Loewner hulls driven by @ with
some speed. Then for any t, € (0,7T), Cryy < w(t) < dk,, forallt € [0, to].

Proof. Letty € (0,T). Ift € [0,%o), by Propositions 2.2 and 2.8, @(t) € [ak, /x,,bk,,/Kx.] C
[cKto/Kt’thO /K] C [CKtO , thO]. By the continuity of @, we also have @w(ty) € [CKtO , thO}.

O

The following proposition combines [12, Lemma 2.5] and [11, Lemma 3.3].

Proposition 2.10. Suppose w € C([0,T),R) generates a chordal Loewner curve n and
chordal Loewner hulls K;, 0 <t < T. Then the set {t € [0,T) : n(t) € R} has Lebesgue
measure zero. Moreover, if the Lebesgue measure of n[0,T) N R is zero, then the
functions ¢(t) and d(t) defined by ¢(0) = d(0) := @(0), and c(t) := ck, and d(t) := dg,,
0 <t < T, satisfy that (i) c < w < d on [0,T); (ii) the set of t € [0,T) such that
c(t) = w(t) or w(t) = d(t) (which implies that n(t) € R) has Lebesgue measure zero;
and (iii) ¢(t) = ;525 and d'(t) = g2 on [0,7). Thus, ¢ and d are respectively
strictly decreasing and increasing on [0,T). Moreover, ¢(t) and d(t) are continuously
differentiable at the set of times t such that 7)(t) ¢ R, and in this case “=” can be replaced

by “=".
Definition 2.11. We define the following notation.

(i) Modified real line. For w € R, we define R,, = (R \ {w}) U {w™,w"}, which
has a total order endowed from R and the relation x < w~ < w* < y for any
z,y € R such that x < w and y > w. It is assigned the topology such that
(—o0,w™] = (—oo,w) U {w~} and [wT,o0) := {wt} U (w, ) are two connected
components, and are respectively homeomorphic to (—oo,w] and [w, o) through
the map 7, : R, — R with 7, (w*) = w and 7,,(z) = = forz € R\ {w}.

(ii) Modified Loewner map. Let K be an H-hull and w € R. Let a}% = min{w,ax},
by = max{w,bx}, % = limgpaw gr(v), and dg = limg pw gk (z). They are all
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equal to w if K = (). Define ¢g}} on R,, U {400, —co} such that g}}(+o0) = +oo,
g¥(x) = gr(z) ifx € R\ [a%, %] g% (z) =% if v = w™ orx € [al%, b%] N (—o0, w);
and g¥(z) = d¥% ifx = w* orx € [a%,b%] N (w, 00). Note that g% is continuous and
increasing.

Example. Let g € R, r >0, and H = {z € H: |z —z¢| < r}. Letw € [xg — 7,20 + 7]
Then a%y =9 — 7, b = xo + 7, ¢ff = 20 — 2r, dfy = xo + 2r, and
x—i—zfxo, ifx e R\ [xg — 7,20+ 7]
gu(r) =19 xo+2r, ifze{wt}uU(w,xo+r]
xg—2r, ifzxe{w }Uxo—rw).

For the case w ¢ [xg — 7, xo + 7], we assume w € (xg + r,00) by symmetry. In this case,
a¥ = a0 —7, BY =w, % =z — 2r, dY = gp(w) = w+ —=—, and

w—xo’

x4+ - ifx e R\ [xg — r,w]

rx—xo’
w _ r . R
gr () W+ o ifr=w

xo — 2r, ifex e {fw }U[xg—r,w).

Proposition 2.12. Let K| C K, be two H-hulls. Letw € R and w € [c} ,d¥, |. Revise
g such that when g (w) = @, we define g% (z) = w¥s"(*~*). Then

9io1c, © 9K, = 9. 0n Ry U {00, —o0}. (2.2)

Proof. By symmetry, it suffices to show that (2.2) holds on [w™, o0]. Since for z > w™,
g%, (z) > d¥% > w, the revised gj; is a continuous map from [w™, oc] into [W™, oc], and so
both sides of (2.2) are continuous on [w*, co]. If z > b% , then 2 > max{b}; ,bx, }, which
implies that g, (z) = gk, (z) > max{dg, ,bx,/x,} = by, . Thus, IRs Ky © 9K, (z) =
9K,/ K, 09K, (T) = gre, (%) = g%, (x) on (b, , 00]. We know that gf, is constant on [w*, b} ].
To prove that (2.2) holds on [w™, oc], by continuity it suffices to show that the LHS of (2.2)
is constant on [w,b%. ]. This is obvious if bj%; = b}, since gj; is constant on [w*,b} ].
Suppose by < bf, . Then we have bx,,w < by, = bk,. So [w™,b% ] is mapped by g
onto [dy,,bx, K, ] (or (W, bk, /K, ]), which is in turn mapped by g%z /K, to aconstant. [

Proposition 2.13. Let K; and n(t), 0 <t < T, be chordal Loewner hulls and curve driven
by w with speed q. Suppose the Lebesgue measure of n[0,7) N R is 0. Let w = w(0),
and x € R,,. Define X(t) = g (z), 0 <t < T. Then X satisfies (i) X'(t) ¥
on [0,T); (ii) the set of t such that X(t) = w(t) has Lebesgue measure zero; and (iii)
ifx > w (resp. x < w), then X(t) > w(t) (resp. X(t) < @w(t)) on [0,T), and so X is
strictly increasing (resp. decreasing) on [0,T). Moreover, for any 0 < t; < to < T,
| X (t1) — X (t2)| < 4diam(Ky,/Ky,).

Proof. We may assume that the speed ¢ is constant and equal to 1. By symmetry, we may
assume that x € (—oo,w™]. If z = w™, then X (t) = ¢k, for t > 0 and X (0) = @w(0). Then
the conclusion follows from Propositions 2.5 and 2.10. Now suppose z € (—oo, w).

Fix 0 < t; < to < T. We first prove the upper bound for |X(¢1) — X (¢2)|. There are
three cases. Case 1. z € K;,, j = 1,2. In this case, X(t3) = 9K, /K., (X(t1)), and the
upper bound for | X (t;) — X (t2)| follows from Proposition 2.4. Case 2. z € K;, C K;,. In
this case X(¢;) = CK, 7 =1,2, and the conclusion follows from Proposition 2.5. Case

3.z ¢ K, and x € Ky,. Then X(t1) = gk, (20) < ck,, and X (t3) = ck,,. Moreover, we
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have 7, € (t1,t2], limyqy,, X(t) = W(7,), and X (¢) satisfies X'(t) = W < 0on [ty, Tz)-
By Propositions 2.9 and 2.2, cx(y,) > X(t1) > w(72) > ¢k, > ck,, = X(t2). So we have
| X (t1) — X(t2)| < [ek,, —ck,,| < 4diam(Ky, /Ky, ) by Propositions 2.5. By Proposition 2.8,
X is continuous on [0,T).

Since X(t) = gk, (z) satisfies X (¢) < w(¢) and the chordal Loewner equation driven
by @w up to 7, we know that X'(¢) = m< 0 on [0,7;). So X is strictly decreasing
on [0, 7,). From Proposition 2.10 we know that X (¢) = cg, is strictly decreasing, the set
of t € [r,,T) such that X (t) = @(t) has Lebesgue measure zero, and X'(t) £ m
on [r,,T). By the continuity of X, we conclude that X has these properties throughout
[0,T). O

2.2 Chordal SLE, and 2-SLE,

If W(t) = /kB(t), 0 <t < oo, where x > 0 and B(t) is a standard Brownian motion,
then the chordal Loewner curve 7 driven by @ is known to exist (cf. [18]). We now call it a
standard chordal SLE,; curve. It satisfies the property that (0) = 0 and lim;_,, n(t) = co.
The behavior of  depends on «: if k € (0,4], n is simple and intersects R only at 0; if
k > 8, n is space-filling, i.e., H = n(R. ); if & € (4,8), 7 is neither simple nor space-filling.
If D is a simply connected domain with two distinct marked boundary points (or more
precisely, prime ends) a and b, the chordal SLE,; curve in D from a to b is defined to be
the conformal image of a standard chordal SLE, curve under a conformal map from
(H; 0, 00) onto (D;a,b).

Chordal SLE,, satisfies the Domain Markov Property (DMP): if n is a chordal SLE,
curve in D from a to b, and T is a stopping time, then conditionally on the part of n before
T and the event that n has not reached b by time 7T, the part of n after 7' is a chordal
SLE, curve from n(T') to b in a connected component of D \ 5[0, T.

We will focus on the range « € (0, 8) so that SLE,, is non-space-filling. One remarkable
property of these chordal SLE, is reversibility: the time-reversal of a chordal SLE,; curve
in D from a to b is a chordal SLE, curve in D from b to a, up to a time-change ([31, 10]).
Another fact that is important to us is the existence of 2-SLE,.

Definition 2.14. Let D be a simply connected domain with pairwise distinct boundary
points a1, b1, as, by such that a; and by together do not separate as from by on 9D (and
vice versa). A 2-SLE,; in D with link pattern (a; <> b1;as <> be) is a pair of random curves
(m,n2) in D such that n; connects a; with b; for j = 1,2, and conditionally on the whole
image of any one curve, the other curve is a chordal SLE,, curve in a complementary
domain of the given curve in D.

Because of reversibility, we do not need to specify the orientation of ; and 79. If we
want to emphasize the orientation, then we use an arrow a; — b in the link pattern. The
existence of 2-SLE,, was proved in [3] for x € (0, 4] using the Brownian loop measure
and in [12, 10] for k € (4, 8) using the imaginary geometry theory. The uniqueness of
2-SLE, (for a fixed domain and link pattern) was proved in [11] (for & € (0, 4]) and [13]
(for k € (4,8)).

2.3 SLE,(p) processes

First introduced in [8], SLE,(p) processes are natural variations of SLE,, where one
keeps track of additional marked points, often called force points, which may lie on
the boundary or interior. For the generality needed here, all force points will lie on
the boundary. In this subsection, we review the definition and properties of SLE(p)
developed in [12]. B

Letn e NN,k >0,p=(p1,...,pn) € R". Letw € R and v = (vy,...,v,) € RZ. The
chordal SLE,(p) process in H started from w with force points v is the chordal Loewner
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process driven by the function @w(t), which drives chordal Loewner hulls K;, and solves
the SDE

n

div(t) 2 /rdB(t) +Z dt, @(0) = w,

gKt (v5)

where B(t) is a standard Brownian motion, and we used Definition 2.11. We require that
foro € {+,-}, ijj:wa pj > —2. The solution exists uniquely up to the first time (called
a continuation threshold) that Zj@_(t):cm pj < —2or Zj:ﬁj(t):th p; < —2, whichever
comes first. If a continuation threshold does not exist, then the lifetime is co. For each 7,
A, ae 2

v;(t) = gK(t)(vj) is called the force point function started from v;, satisfies © =5

—w’

and is monotonically increasing or decreasing depending on whether v; > w or v < w.

A chordal SLE,(p) process generates a chordal Loewner curve 7 in H started from w
up to the continuation threshold. If no force point is swallowed by the process at any
time, this fact follows from the existence of the chordal SLE, curve ([18]) and Girsanov’s
Theorem. The existence of the curve in the general case was proved in [12, Theorem
1.3] (for k # 4) and [21, Theorem 1.1.3] (for x = 4). By Proposition 2.12 and the Markov
property of Brownian motion, a chordal SLEK,(B) curve 7 satisfies the following DMP. If 7
is a stopping time for 7, then conditionally on the process before 7 and the event that 7
is less than the lifetime T, w(7 +t) and v;(7+1t), 1 < j <n, 0 <t < T —7, are the driving
function and force point functions for a chordal SLE(p) curve n” started from @(7) with
force points at v1(7),...,0,(7), and n(r + ) = fx,(n”), where K, := Hull([0, 7]). Here if
9;(1) = @(7), then v;(7) as a force point is treated as @(r)%&»(vs—w),

We now relabel the force points v, ..., v, by vr(;) <...< vﬁ‘)g w™ <w< wt §v§+) <

- < fufi), where n_ + ny = n (n_ or ny could be 0). Then for any ¢ in the lifespan,
u;)( )<< <o) <o\P) < - < o). If for any o € {—,+} and
1<k<ng,, Z] 1 pga) > —2, then the process will never reach a continuation threshold,
and so its lifetime is oo, in which case lim; o 7(t) = oo (cf. [12, Theorem 1.31,[21,
Theorem 1.1.3]). If for some o € {+,~} and 1 < k < ny, 35, p\”) > & — 2, then
(cf. [12, Remark 5.3]) n does not hit v(”) and the open interval between v,g 7) and v,gi)l
(vﬁb(erl :=0-00). If k € (0,8) and forany o € {+,—} and 1 < k < n,, Ek 1p§U) > 5 —4,
then for every z € R\ {w}, a.s. n does not visit x, which implies by Fub1n1 Theorem that
a.s. N R has Lebesgue measure zero.

The last statement is similar to [12, Lemma 7.16] and [21, Lemma 2.5.2], and its
proof resembles that of [12, Lemma 5.2]. The key idea is that, for a fixed z € (w, o),
on the event FE that 7 visits z, we may compare n with an SLE, (p) curve n’ in H started
from w with the force point at x, where p = Z{p(+) EH < z}. It can be show that the
law of 7 is absolutely continuous w.r.t. that of  on F. We have p > § — 4 by assumption.
Let f be a Mobius automorphism of H, which fixes w, maps = to co, and maps oo to
some y € (—oo,x). By [20], after a time-change, f o7’ up to the time that n’ separates x
from oo becomes a chordal SLE,(p) curve 7 in H started from w with the force point at
y up to the time that it separates y from oo, where p:=x — 6 —p < § — 2. Let w and v
be respectively the driving function and force point function. Then w — v is a rescaled
Bessel process of dimension %;M +1 < 2. So 7 a.s. hits (—o0, y|, which implies that " a.s.
does not hit x. The same statement then holds for n by the absolute continuity between
the laws of n and ' on E.
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2.4 Hypergeometric SLE

For a,b,c € C such that ¢ ¢ {0,—1,—2,- -}, the hypergeometric function 2Fj(a,b;c; z)
(cf. [15, Chapter 15]) is defined by the Gauss series on the disc {|z] < 1}:
- (a)n(b)n
oF1(a,b;¢2) = — " (2.3)
ng() (¢)nn!
where (z), is rising factorial: (z)g = 1 and (z), = z(z+1)---(z+n—-1)ifn > 1. It
satisfies the ODE

2(1—=2)F"(z) = [(a+b+ 1)z — c|F'(z) — abF(z) = 0. (2.4)

For the purpose of this paper, we set a,b,c by a b=1-42,c= 2, and define

— 4
F(z) = oF1(1—-2,4;2:2). Sincec—a—b=3—1>0, by [15, 15.4.20], F extends

continuously to [0, 1] with

_T(e)T(c—a—-0b) F(%)F(E -1)
PO = Se—arte—p ~ Tz =1 > "

K

We claim that F' > 0 on [0,1]. If b > 0, then since a, ¢ > 0, every term of the series in (2.3)
is nonnegative for z € [0,1), and equals 1 for n = 0, which implies that F' > 0 on [0, 1).
Suppose b < 0. If F > 0 on [0, 1] does not hold, then from F(1) > 0 and F(0) =1 > 0,
we see that there is 2o € (0,1) such that F(xzo) < 0, F'(z9) = 0, and F"'(z¢) > 0. Since
ab <0, (2.4){ does not hold at xg, which is a contradiction. So the claim is proved. Let
G(z) = kx I;((f)) +2.

Definition 2.15. Let x € (0,8). Let v; < vy € [0F, +o0] or vy > vy € [—00,07]. Suppose
w(t), 0 <t < oo, solves the following SDE:

e 1 1 ~ 1 D(t) — By (t) _
di(t) 2 /rdB(t) + (@(t) T O ﬁQ(t))c:%(t) - 62(t))dt, @(0) =0,

where B(t) is a standard Brownian motion, U;(t) = g%, (v;), j = 1,2, and K, are chordal
Loewner hulls driven by w. The chordal Loewner curve driven by w is called a hypergeo-
metric SLE,;, or simply hSLE,, curve in H from 0 to oo with force points v1,v,. We call
v;(t) the force point function started from v;, j = 1,2.

If f maps H conformally onto a simply connected domain D, then the f-image of an
hSLE, curve in H from 0 to oo with force points vy, vy is called an hSLE, curve in D from
f(0) to f(co) with force points f(v1), f(v2)

Remark 2.16. The existence of the solutions of the SDE follows from Girsanov’s theorem.
We start with an SLE, (2, —2) curve 7 in H started from w with force points vy, vy. We
assume 0" < v; < vy by symmetry. Let @ be the driving function, and v; be the force
point function started from v;, j = 1,2. Let g; be the chordal Loewner maps. Define
R(t) = 2=21) < 19 1) and I(t) = L) =010] for 0 < ¢ < Ty,- By Loewner’s equation, I,

’ V2 (t)—w(t) 9t(v2)
is decreasing. Then we define

_ F(R(t) (I(t) 1%
M(t) = W(m) L 0<t <y,

Using It6’s formula and (2.4), we see that M is a positive local martingale. If x < 4, then
a.s. 7, = 00, and M is defined on (0, 00). If K > 4, then a.s. 7, < 0o, and as t 1 7,,, M (t)
converges to a positive number. We then extend M to [0, 00) such that M is constant
and equals limt,, M(t) on [7,,,00). After the extension, M is a positive continuous local
martingale defined on [0, c0). Suppose T is any stopping time such that Mr,. is bounded.
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We may weight the underlying probability measure by M (T') and get another probability
measure. Under the new measure, the w, 1,0, satisfy the SDE in Definition 2.15 for
some standard Brownian notion B up to the time T'.

Remark 2.17. The definition of SLE using hypergeometric functions first appeared
in [29], in which the new SLE were called intermediate SLE,(p). The notion of hy-
pergeometric SLE and hSLE first appeared in W. Qian’s [16], which generalized the
intermediate SLE,(p). Here we follow the definition of hSLE used in the later paper [23],
in which hSLE, agrees with intermediate SLE,(2), and so is only a very special case of
Qian’s hSLE.

Hypergeometric SLE is important because if (11, 72) is a 2-SLE,; in D with link pattern
(a1 — b1;a2 — ba), then for j = 1,2, the marginal law of ; is that of an hSLE, curve in D
from a; to b; with force points b3_; and a3_; (cf. [23, Proposition 6.10]).

Using the standard argument in [20], we obtain the following proposition describing
an hSLE,, curve in H “in the chordal coordinate” in the case that the target is not occ.

Proposition 2.18. Let wy # we € R. Let v1 € Ry, U{00} \ {weo} and v € Ry, U {oo}\
{wo} be such that the cross ratio R := % € [0*,1). Let k € (0,8). Let 7 be
an hSLE,, curve in H from wy to w., with force points at vy,v,. Stop 7] at the first time
that it separates w», from oo, and parametrize the stopped curve by H-capacity. Then
the new curve, denoted by n, is the chordal Loewner curve driven by some function w,

which satisfies the following SDE with initial value w,(0) = woq:

dibo(t) 2\/rdB(t) + wo(t;i—;;(t) dt+
L\ (@) — i) (at) — Gs(t)
+ (@o(t) o) a0l - @(t)) G((@o(w o)) @1 (f) — @oo(t))) at,

where B(t) is a standard Brownian motion, W (t) = gk, (weo) and vj(t) = g (v;), j = 1,2,
and K, are the chordal Loewner hulls driven by .

Definition 2.19. We call the n in Proposition 2.18 an hSLE,; curve in H from wg to ws
with force points at vy, vs, “in the chordal coordinate”; call Wy the driving function; and
call W, v1 and v, the force point functions respectively started from w.,, v and vs.

Proposition 2.20. We adopt the notation in the last proposition. Let T' be the first time
that w., or ve is swallowed by the hulls. Note that |y — Wso|, |U1 — V2|, Wy — V2|, and
|Weo — v1| are all positive on [0,T). We define M on [0,T) by M = G1(@Wo,V1; Weo, V2),
where (G is given by (1.2). Then M is a positive local martingale, and if we tilt the law
of n by M, then we get the law of a chordal SLE,(2,2,2) curve in H started from w, with
force points w,, v1 and vy. More precisely, if T < T is a stopping time such that M is
uniformly bounded on [0, 7], then if we weight the underlying probability measure by
M (7)/M(0), then we get a probability measure under which the law of n stopped at the
time 7 is that of a chordal SLE,(2,2,2) curve in H started from wy with force points wx.,
v1 and vy stopped at the time .

Proof. This follows from straightforward applications of I1t6’s formula and Girsanov’s
Theorem, where we use (2.4), Propositions 2.13 and 2.18. Actually, the calculation could
be simpler if we tilt the law of a chordal SLE,(2,2,2) curve by M ~! to get an hSLE,
curve. O

2.5 Two-parameter stochastic processes

In this subsection we briefly recall the framework in [25, Section 2.3]. The framework
will help us to study stochastic processes defined on some random subset D of R2, where
every element in D is understood as a two-dimensional random variable. We assign a
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TE(th) = TH (&)
TR(#)

TREL) b £
=TE#)

Figure 2: The figure above illustrates an HC region R (grey), the function Tf valued at
t!,¢?, and the function 7™ valued at ¢}, % ,¢3.

partial order < to R2 = [0,00)? such that t = (t;,t_) < (s;,s_) = s iff t; < s, and
t_ < s_. It has a minimal element 0 = (0,0). We write t < sif t; < sy andt_ < s_. We
define t A s = (t1 A s1,ta Asz). Givent,s € R, we define [t,s] = {r € R2 : ¢t <r < s}. Let
e, =(1,0)ande_ = (0,1). So (t4,t_) =tye, +t_e_.

Definition 2.21. An ]Ri-indexed filtration F on a measurable space () is a family of
c-algebras Fy, t € R3, on Q) such that F; C F, whenevert < s. Define F by F; = (5, Fs.
t e ]Ri. Then we call F the right-continuous augmentation of 7. We say that F is
right-continuous if F = F. A process X = (X(ﬁ))gelRi defined on (2 is called F-adapted if
for any t € R%, X (t) is F;-measurable. It is called continuous ift — X (t) is sample-wise
continuous.

For the rest of this subsection, let F be an Ri-indexed filtration with right-continuous
augmentation F, and let Foo = Vierz Fi-

Definition 2.22. A [0, oo]?-valued random element T is called an F-stopping time if for
any deterministict € R, {T <t} € F,. Itis called finite if T € R2, and is called bounded
if there is a deterministict € ]R?F such thatT' < t. For an F-stopping time T, we define a
new o-algebra Fr by Fr = {A € Foo : AN{T <t} € F;,Vt € R2}.

The following proposition follows from a standard argument.

Proposition 2.23. The right-continuous augmentation of F is itself and so F is right-
continuous. A [0, oo]?-valued random map T is an F-stopping time if and only if {T < t} €
JFy for any t € R%. For an F-stopping time T, A € Fr if and only if AN {T < t} € F; for
anyt € Ri. If (T™) nen is a decreasing sequence of F-stopping times, then T := inf,, T"
is also an F-stopping time, and Fr = (), Fr=.

Definition 2.24. A relatively open subset R oflRi is called a history complete region,
or simply an HC region, if for any t € R, we have [0,t] C R. We use the name because
we view (the rectangle) [0,t] as the history of t. Given an HC region R, for o € {+,—},
define TF : Ry — Ry U{oo} by TR(t) = sup{s > 0 : se, +te_, € R}, where we set
sup ) = 0. See Figure 2 for an illustration

An HC region-valued random element D is called an F-stopping region if for any
teR?, {weQ:teDw)} e F. Arandom function X (t) with a random domain D is
called an F-adapted HC process if D is an F-stopping region, and for everyt € R%, X,
restricted to {t € D} is F;-measurable.

EJP 26 (2021), paper 32. https://www.imstat.org/ejp
Page 14/58


https://doi.org/10.1214/21-EJP592
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Two-curve Green'’s function for 2-SLE: the boundary case

The following propositions are [25, Lemmas 2.7 and 2.9].
Proposition 2.25. Let T and S be two F-stopping times. Then (i) {I < S} € Fg; (ii) if
S is a constant s € R?, then {I < S} € Fr; and (iii) if f is an Fr-measurable function,
then 1;r<gs, f is Fs-measurable. In particular, if T' < S, then Fr C Fg.

We will need the following proposition to do localization. The reader should note that
for an F-stopping time T and a deterministic time ¢t € R2, T At may not be an F-stopping
time. This is the reason why we introduce a more complicated stopping time.

Proposition 2.26. Let T be an F-stopping time. Fix a deterministic timet € Ri. Define
Tt such that if T < t, then Tt = T; and if T £ t, then Tt =+¢. Then Tt is an F-stopping
time bounded above by t, and Fr: agrees with Fr on {T < t}, i.e., {I <t} € Fpre N Fr,
and forany A C {T <t}, Ac Fp: ifand only if A € Fr.

Proof. Clearly Tt < t. Let s € R%. If t < s, then {I% < s} is the whole space. If t £ s,
then {Tt < s} = {T <t} N{T < s} = {T <tAs} € Fipns C Fs. So Ttis an F-stopping
time.

By Proposition 2.25, {T' < t} € Fr. Suppose A C {T < t} and A € Fr. Let
seR2. Ift<s thenAN{I*<s}=A=An{T <t} € F C Fs. Ift £ s, then
AN{Tt<s}=AnN{T <tAs}c Fins C Fs. So A € Fpe. In particular, {T < t} € Fpe.
On the other hand, suppose A C {I' < t} and A € Fpt. Let s € Ri. If t < s, then
AN{T <s}=A=An{Tt* <t} e F, C Fs. Ift £ s, then AN{T < s} = AN{T <
tN{T <s}=AN{It<s} € F,. Thus, Ac Fr.Sofor AC {T' <t}, Ae Fre if and only
ifAe .7:1. O

Now we fix a probability measure P, and let |E denote the corresponding expectation.
Definition 2.27. An F-adapted process (Xz)ieRi is called an F-martingale (w.r.t. P) if
for any s <t € R?%, a.s. E[X;|F,] = X;. If there is ¢ € L' (2, F,P) such that X; = E[(|F]
for every t € R2, then we say that X is an F-martingale closed by (.

The following proposition is [25, Lemma 2.11].

Proposition 2.28 (Optional Stopping Theorem). Suppose X is a continuous F-martingale.

The following are true. (i) If X is closed by (, then for any finite F-stopping time T,
Xr = E[|Fr]. (i) IfT < S are two bounded F-stopping times, then E[Xg|Fr] = Xr.

2.6 Jacobi polynomials

For a,8 > —1, Jacobi polynomials ([15, Chapter 18]) P{*(z), n = 0,1,2,3,...,
are a class of classical orthogonal polynomials with respect to the weight \Il(a"@)(:v) =
111(1 —2)*(1 + 2)”. This means that each pLd (x) is a polynomial of degree n,
and for the inner product defined by (f, g)gc.s = [, f(z)g(z)¥ (P (z)dr, we have
(P{*? PPy s = 0 when n # m. The normalization is that P{*?) (1) = Llatntl)

n!T'(a+1) ’
PP (1) = (1) TR, and
ga+pf+1 T nr 1
P2, = (nta+ in+f+1) 2.5)

mt+a+B+1 nln+a+pB+1)

For eachn > 0, pLd (x) is a solution of the second order differential equation:
(1—2¥)y" —[(a+B+2)z+ (a—B)y +n(n+a+B+1)y=0. (2.6)

When max{«a, 3} > —3, we have an exact value of the supernorm of P over [—1,1]:

I(max{a, S} +n+1)

pless) o = P ()] | P (1)} = )
P e = ma{ [P (D), [P (1) = e AL

(2.7)
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For general «, 5 > —1, we get an upper bound on ||P,§a’ﬂ) |l using (2.7), the exact value
of P{*?)(1), and the derivative formula d%P,(la’ﬁ)(x) = %Pfff{lﬁﬂ)(@ forn > 1:

T(a+n+1)
n!l(a+1)

I(max{a, S} +n+1)
I'(n)T'(max{«, B} +2)°

[P o < fla+B+n+1)- (2.8)

3 Deterministic ensemble of two chordal Loewner curves

In this section, we develop a framework about commuting pairs of deterministic
chordal Loewner curves, which will be needed to study the commuting pairs of random
chordal Loewner curves in the next two sections. The major length of this section is
caused by the fact that we allow the two Loewner curves to have intersections. This
is needed in order to handle the case x € (4,8). The ensemble without intersections
appeared earlier in [31, 30].

3.1 Ensemble with possible intersections

Let w_ < wt € R. Suppose for o € {+,—}, n,(t), 0 <t < T,, is a chordal Loewner
curve (with speed 1) driven by @, started from w,, such that 74 does not hit (—oco, w_],
and 7n_ does not hit [w, ). Let K,(t,) = Hull(n[0,t,]), 0 < t, < T,, 0 € {+,—}. Then
K,(-) are chordal Loewner hulls driven by @,, hcap,(K,(t,)) = t,, and by Proposition
2.8,

{W5(to)} = () Kolto +0)/Ko(ts), 0<ty <T,. (3.1)
6>0

The corresponding chordal Loewner maps are gx, ), 0 <t <7y, 0 € {+,—}. From the
assumption on 74 and n_ we get

AR _(t_) <w- < AR, (ty)> bK,(t,) <wg < bKJr(tJr), fort, € (O,Tg), S {+, —}.
(3.2)
Since each K, (t) is generated by a curve, fx_(; is well defined. Let Z, = [0,75),
oe{+,—}, andfort = (ty,t_) € I, x I_, define

K(t) = HUH(U+ [Oﬂ t+] Un- [Ov t—])a m(t) = hcap2 (K@))v H(i) =H \ K(D (3.3)

It is obvious that K(-,-) and m(-,-) are increasing (although not necessarily strictly)
in both variables. Since 0K (t,,t_) is locally connected, fx(, ;) is well defined. For

ce{+ ~}t sl yandt, €I, define K. " (t,) = K(t;,t_)/K_,(t_,). Then we have
gK(t+,t_) = gK:i (t+) © gK_(t_) = gKi+(t,) © gK+(t+)' (34)

By (3.2) and the assumption on n,,n-, we have ag, ;) = ax_¢_) if - > 0, and
bK(t+,t_) = bK+(t+) lf t+ > 0
Lemma 3.1. Foranyt, <t/ €Z, andt_ <t €7Z_, we have

m(t),,t" ) —m(t,,t-) —m(ty,t") + m(t4,t-) <O0. (3.5)

In particular, m is Lipschitz continuous with constant 1 in any variable, and so is
continuousonZy X Z_.

Proof. Lett, <t € Zyandt_ <t € ZI_. Since K(t/,,t_) and K(t;,t_) together
generate the H-hull K(#/_,t"), and they both contain K(t,,t_), we obtain (3.5) from
Proposition 2.6. The rest of the statements follow easily from (3.5), the monotonicity of
m, and the fact that m(t,e,) = t, for any t, € Z,, o0 € {+,—}. O
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Definition 3.2. Let D C 7, x Z_ be an HC region as in Definition 2.24. Suppose
that there are dense subsets 1} and 1* of 7, and T_, respectively, such that for any
o€ {+,—}andt_, € IT* ,, the following two conditions hold:

(D) K. (ty), 0 < ty < TP(t_,), are chordal Loewner hulls generated by a chordal
Loewner curve, denoted by nf;“, with some speed.

(D) ny°[0,TP(t_,)) N R has Lebesgue measure zero.

Then we call (ny,n—; D) a commuting pair of chordal Loewner curves, and call K(-,-)
and m(-, -) the hull function and the capacity function, respectively, for this pair.

Remark 3.3. The theory developed in this section will later be applied to the random
setting. In Section 4, we will study a commuting pair of SLE, (2, p) curves (n,,n_). They
have random lifespan 7, and Z,, and satisfy the property that, for any o € {4, —} and
t_, € Ry, a.s. on the event {t_, € Z_,}, Conditions (I) and (II) are satisfied. Letting
71 =11 NQ, we see that ny and 7_ a.s. satisfy the condition of Definition 3.2. So they
are a.s. a (random) commuting pair of chordal Loewner curves.

Later in Lemma 3.9 we will show that for the commuting pair in Definition 3.2,
Conditions (I) and (II) actually hold forallt_, € Z_,, o € {+,—}.

From now on, let (n4,7n-;D) be a commuting pair of chordal Loewner curves, and let
77 and Z* be as in Definition 3.2.

Lemma 3.4. K(-,-) and m(-, ) restricted to D are strictly increasing in both variables.

Proof. By Condition (I), for any 0 € {+,—-} and t_, € Z* , t — K(t_,e_, + te,) and
t+— m(t_,e_, + te,) are strictly increasing on [0, 77 (¢_,)). By (3.5) and the denseness
of Z7* . in T_,, this property extends toany ¢t_, € Z_,. O

In the rest of the section, when we talk about K(t,,t_), m(ty,t_), Ki‘ (t+) and
K™ (t-), it is always implicitly assumed that (¢;,{_) € D. So we may now simply say
that K (-,-) and m(-, ) are strictly increasing in both variables.

Lemma 3.5. We have the following facts.

(i) Let a = (a4,a_) € D and L = rado(K(ay,a_)). Let o € {+,—}. Suppose t, <
t,. € [0,a,) satisfy that diam(n,[t,,t,]) < r for some r € (0,L). Then for any
t_y €[0,a_,], diam(K. 7 () /KL (ty)) < 10mLlog(L/r)~ /2.

(ii) For any (ay,a_) € Dando € {+,—},

lim sup sup sup sup g t—o ., (2) =g, t_0,. (2)]=0.
310 0<t, <ao 1 E(ty tat0) 0<t_,<a_, ZEC\K ~2 (41 ydoub Ko7 () Ko 7 (ts)

(iii) The map (t,z) — g (z) is continuous on {(t,z) : t € D,z € C\ K(t)4°""}.

Proof. (i) Suppose o0 = + by symmetry. We first assume that a4 € 75. Let Any =
nelts.t,] and S = {|z = ny(t)| = r}. By assumption, Aqs C {|z — n;.(t)| < r}. By
Lemma 3.4, there is z, € Any N H(t4,a_) C H(ty,t_). Since z, € {|z — ny(t4)| < r},
the set SN H(ty,t_) has a connected component, denoted by J, which separates z,
from oo in H(ty,t_). Such J is a crosscut of H(t,,t_)?, which divides H(t,,t_) into two
domains, where the bounded domain, denoted by D, contains z,.

Now Any NH(ty,a_) C H(ty,a—)\ J. We claim that An; N H(t4,a_) is contained in
one connected component of H(ty,a_)\ J. Note that J N H(t4,a_) is a disjoint union
of crosscuts, each of which divides H(t4,a_) into two domains. To prove the claim, it

2A crosscut of a domain D is the image of a simple curve v : (o, 3) — D such that the limits lim,_, ,+ v(¢)
and lim,_, 53— (¢) both exist and lie on 0D.
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suffices to show that, for each connected component Jy of JNH (t1,a_), Any NH(t4,a_)
is contained in one connected component of H(ty,a_) \ Jy. Suppose that this is not
true for some Jy. Let J, = gK(t+,a_)(Jo)- Then J, is a crosscut of H, which divides H
into two domains, both of which intersect A7)y := gx (¢, ,a_)(Any N H(t4,a_)). Since Any
has positive distance from S O J, and g;(}t%ai) | extends continuously to H, A7, has
positive distance from J.. Thus, there is another crosscut J; of H, which is disjoint from
and surrounded by J,, such that the subdomain H bounded by J; and J. is disjoint from
A7y. Label the three connected components of H\ (J. U J;) by D., A, D;, respectively,
from outside to inside. Then A7, intersects both D, and D;, but is disjoint from A. Let
K,=D;UJ;and K, = K; UAU J, be two H-hulls.

Let n} =n(ty +-) and 7} = gk (¢, ,a_) © N}, Whose domain is S := {s € [0, T —t,):
ni(s) € H\ K(t4,a_)}. Foreach s € [0,0 :=t/ —t,], K(t+ +s,a_) = Hull(K(t4,a_)U
An%),and so K, (s) := K™ (t4+s) /K. (t4) = K(t4+s,a_)/K(t;,a_) (by (2.1)) is the H-
hull generated by 7} ([0, s]N.S). For 0 < s < 4, since A is disjoint from 77 ([0, 5]N.S) C A7y,
it is either contained in or disjoint from K’ (s). If K, (s) D A, then K/, (s) D Hull(4) = K;;
if K', (s) N A = (), then by the connectedness of K’ (s), K/ (s) is contained in either K;
or H\ (K;UA). Since K', (§) D A7y intersects both D, and D;, we get K/, (§) D K..
Let so = inf{s € [0,0] : K. C K/ (s)}. By Proposition 2.8, we have sy € (0,4] and
K! (s0) D Ke. By the increasingness of K’ (-), Uy<,<,, K} (s) is contained in either
Kior H\ (K;UA). Let Sg = {s € (so, T} —ty) : ni(s) € H\ K(t4 + so,a—)}. Then
m:(S0) C 9ty ,ay(H\ K(ty +50,a-)) = H\ K', (s0) C H\ K, = D.. By Lemma 3.4, S is
dense in [so, Ty — t4]. Thus, 77 ([s0,d] NS) C D.. Since An, = 77;.([0,0] N S) intersects
both D, and D;, we conclude that 7% ([0,s0) N S) intersects D;. So K’ (s) C K; for
0 < s < s, which implies that K’ (so) = Hull(U<,,, £’ (s)) C K;. This contradicts that
K; G K. C K (s0). So the claim is proved.

Let N denote the connected component of H (t4,a_)\ J that contains A,y NH (t1,a_).
Then N is contained in one connected component of H(¢;,t_) \ J. Since N D An. N
H(ty,a_) > z, and z, lies in the connected component Dy of H(t,,t_)\ J, we get An, N
H(ty,a_) C N C Dy. Since An;NH(t4,a_)isdensein An, NH(t4,t_) (Lemma 3.4), and
Ay has positive distance from .J, we get An, NH(ty,t_) C D;. Since K(t,,t_) is the H-
hull generated by K (t4,t_) and Any NH(t,,t_), we get K(t/,,t_)\ K(t+,t_) C D, and
so K' (§) = K(t,,t_)/K(t,,t_) is enclosed by the crosscut g(./), where g := gx @ ¢+ ).
Thus, diam (K, (6)) < diam(g(J)).

Let R = 2L. From n4(t+) € K(a), we get [n+(t+)] < L. Recall that J C S =
{|]z = n4(t4+)| = r}. So the arc J and the circle {|z — n4(t4+)| = R} are separated by
the annulus centered at 7, (¢4) with inner radius r and outer radius R — L = L. Let
J' = {lz = na(ts)| = RY N H and Dy = (BN {2 = ny(t4)] < R} \ K(t+.t-). By
comparison principle ([1]), the extremal length of the curves in D;  that separate
J from J' is bounded above by 27/log(L/r). By conformal invariance, the extremal
length of the curves in the subdomain of H bounded by the crosscut g(J’), denoted
by Dy, that separate g(.J) from g(.J') is also bounded above by 27/log(L/r). By
Proposition 2.4, g(J’) C {|z| < R+ 3L = 5L}. So the Euclidean area of D,/ is bounded
above by 257 L? /2. By the definition of extremal length, there exists a curve in ) with
Euclidean length less than 107 L(log(L/r))~'/2, which separates g(J) from g(J'}). This
implies that the diam(g(.J)) is bounded above by 107 L(log(L/r))~'/2, and so is that of
K' (6) = Kf; (t’Jr)/Kf; (t4). This finishes the proof of (i) in the case a4 € Z7.

Now we do not assume ay € Z}. Let L'’ > L. By the denseness of 7} in 7, and
the continuity of 1., we can find @/, > a4 such that o/, € I}, (da/,,a’ ) € D, and
rado(K (a,,a’)) < L. Since t, < t,, € [0,a.], diam(n,[t,,t,]) <r < L,and t_, € [0,a’,],
by the above result, we get diam(Ky 7 (t,)/Ks " (t,)) < 10xL'log(L' /r)~'/2. Since the
inequality holds for any L’ > L, it also holds with L in place of L’.
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(ii) This follows from (i), Proposition 2.4, the continuity of 7,, the fact that as r | 0,
—1/2 ; _
Llog(L/r) tends to 0, and the equality Iict—o (1) = IKto () K (1) © IR (1)

(iii) This follows from (ii), (3.4) and the fact that gx ;) is analytic on €\ K (t)%°"*. O

For a function X defined on D, o € {+,—} and t_, € R, we use X|; ? to denote the
single-variable function t, > X (t,¢, +t_se_,), 0 <t, <T7(t_,), and use 9, X (t1,t)
to denote the derivative of this function at ¢,.

Lemma 3.6. There are two functions W, ,W_ € C(D,R) such that for any o € {+,—}
andt_, € I_,, K4 °(t,), 0 < t, < TP(t_,), are chordal Loewner hulls driven by Woli %
with speed m |; 7, and for anyt = (t4,t_) € D, 1,(ts) = [x@)(Ws(t)).

Proof. By symmetry, we only need to prove the case that o = +. Since
heap, (K (64 +8)) — heapy (K (1)) = m(ty +6,6-) —m(ty, 1),

by Lemma 3.5 (i), the continuity of 5, and Proposition 2.8, foreveryt_ € 7_, Ki’ (t4),
0<ty <TP(t-), ., and the driving function,
denoted by W, (-, t_), satisfies the property that

(Wit to)y = () Ky (b +0)/E (b)) = [ Kty +06,6-) /K (t+,t-). (3.6)
>0 >0

Fix t = (ty,t-) € D. We now show that fx)(Wy(t)) = n4(t4). By Lemma 3.4,
there exists a sequence " | ¢4 such that n(t) € K(t,t_) \ K(t4,t_) for all n. Then

grm (e (1)) € K(t,¢2)/K(t) = K (t9)/KY (t4). So we have grp (4 (t1)) = W (t)
by (3.6). From the continuity of fx ;) and 7., we then get
ny(ty) = nh_{go Ny () = nh_{go Trw rw(et)))) = fre (Wi ().

It remains to show that W, is continuous on D. Let t,,t! ,t> € R, be such that
t! <% and (t,,t%) € D. By Lemma 3.4, there is a sequence 6,, | 0 such that z,, := 1, (¢, +
j j 7 7
5”) € H(t+at2—)' Then gK(tJr,t?;)(Zn) € K(t+ + 5natj—)/K(t+atj—) = K—i— (t+ + 571)/K+ (t-i-)'
7 =1,2. From (3.6) we get

‘ . t) t ,
(Wi (b th) = grer, 0y (2n)| < diam(K T (E +0n) /K7 (81)), j=1,2.
Since gk (1, 42 )(2n) = G (1,62 ) /K (t5,¢1 ) © Ik (14 1 )(2n), Dy Proposition 2.4 we get

195ty 421 (20) = Grc(ey a0 ) (20)] < Bdlam (K (t4,12) /K (t1,tL)) = 3diam (KL (12) /KL (L)
Combining the above displayed formulas and letting n — oo, we get
W (b #2) = We (s, £1)] < Bdiam (K™ (2) /K" (11)), 3.7)

which together with Lemma 3.5 (i) implies that, for any (ay,a_) € D, the family of
functions [0,a_] 3 t— — W, (t4,t-), 0 < ty < a,, are equicontinuous. Since W, is
continuous in ¢, as a driving function, we conclude that W, is continuous on D. O

Definition 3.7. We call W, and W_ the driving functions for the commuting pair
(n+,n—; D). It is obvious that W, |;7 = W,, o € {+,—}.

Remark 3.8. By (3.6) and Propositions 2.7 and 2.9, for t} <3 € 7, and ¢t_ € Z_ such
that (12,¢_) (t2,¢) — Wy (th,t )| < 4diam(K'~ (#2)/K' (t1)). This combined
with (3.7) and Lemma 3.5 (i) implies that, if 7, extends continuously to [0,7,] for
o € {+,—}, then W, and W_ are uniformly continuous on D, and so extend continuously
to D.
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Lemma 3.9. Forany o € {+,—} andt_, € I_,, the chordal Loewner hulls K, ° (t,) =
K(ty,t )/K_,(t_,), 0 < t, < TP(t_,), are generated by a chordal Loewner curve,
denoted by nff", which intersects R at a set with Lebesgue measure zero such that
Nollo,rPt_y)) = fK_o(t_y) © ne~°. Moreover, foro € {+,—}, (t4,t_) — n5° (t,) is continu-
ous on D.

Proof. It suffices to work in the case that ¢ = +. First we show that there exists a
continuous function (t,t_) — ni’ (t4) from D into H such that

ne(te) = fre @ (s (ty)), V(ti.t_) € D. (3.8)

Let (t4,t_) € D. By Lemma 3.4, there is a sequence ¢’} | ¢, such that for all n, (t'},t_) €
D and n4 () € H\ K(t4,¢-). Then we get gK_(t_)(ﬂ+(t+)) € g @ )(K(th,t-)\
K(ty,t-)) = K (t%)/KY (t4). If t_ € Z*, then by Condition (1), (), K~ (t7)/K (t4) =
{773_’ (t4)}, which implies that gx__)(ny (7)) — 773; (ty). From the continuity of fx ()
and 74, we find that (3.8) holds if t_ € 7* . Thus,

W (0) = gxc_ ) (e (t2)), B (t4.t2) €D, t_ € T° and . (t2) € H\ K_(t). (3.9)

Fixa_ € Z*. Let R ={t; € Z; : (t4,a-) € D,n+(t+) € H\ K_(a_)}, which by Lemma
3.4 is dense in [0, TP (a_)). By Propositions 2.4 and 2.8,

lim  sup sup sup |9x__)(n+(t+)) — 9x_ ) (n+(t4))| = 0. (3.10)
610 t_e[0,a_] ¥ €[0,a_]N(t_—b6,t_+5) t+ER

This combined with (3.9) implies that

t/
lim sup sup sup |773_’ (ty+) —ny (t4)] = 0. (3.11)
040 ¢_€[0,a_]1NT* ' €[0,a_]NT* N(t_—6,t_+3) t+ER

By the denseness of R in [0,77(a_)) and the continuity of each ni‘, t_ €I*, we know
that (3.11) still holds if sup, c is replaced by SUP, €(0,7P(a_))" Since Z* is dense in
Z_, the continuity of each ni’, t_ € I*, together with (3.11) implies that there exists
a continuous function [0,7P(a_)) x [0,a_] > (t4,t-) — ni‘ (t,) € H, which extends
those ni‘ (ty) fort_ € I* N[0,a_] and ¢4 € [0,7P(a—)). Running a_ from 0 to T_, we
get a continuous function D > (t4,t_) — ni’ (t;) € H, which extends those ni’ (t4)
for (ty,t_) € D and t_ € Z*. Since ni’ (ty) = 9x_@_)(n4(t4)) for all t; € R and
t_ €0,a_]NZ*, from (3.9,3.10) we know that it is also true for any ¢t_ € [0,a_]. Thus,
ny(ty) = fo(L)(ni’ (t4)) for all ¢4y € R and t_ € [0,a]. By the denseness of R in
[0,7P(a—)) and the continuity of 1, fx (. ) and ni’, we get (3.8) forallt_ € [0,a_] and
t+ €[0,7P(a_)). So (3.8) holds for all (¢,,t_) € D.

For (t4,t—) € D, since K(t4,t_) = Hull(K_(t-) U (n+[0,tL] N (H\ K_(t_))), we see
that K (t4) = 9k _ ) (K (t4,t-)\ K_(t_)) is the H-hull generated by gx_(;_(n+[0,24+]N
(H\ K_(t2))) = ni’ [0,¢4] N H. So Ki’ (ty) = Hull(ni’ [0,t4]). By Lemma 3.6, for any
t_e[0,T-), ni’ (t+), 0 <ty <TP(t_), is the chordal Loewner curve driven by W (-, t_)
with speed m(-,t_). So we have nf; (t4) = frr- (W+(t+, —)), which together with

N4 (ts) = fr(ey o) (We(ty, 1)) implies that 77+(t+) = Fr_)(y (£4).
Finally, we show that ni’ N R has Lebesgue measure zero for allt_ €7 . Fixt_eZ_

and 7, € Z, such that (f,,¢_) € D. It suffices to show that 77+ [0, t+] N R has Lebesgue
measure zero. There exists a sequence Z* > t” | ¢t_ such that (£,,t") € D for all n.

Let K,, = K*(tﬁ)/K*(t*)' n = 9K,, and fn = g»;l- Then fK_(t_) = fK_(tﬁ) © gn ON
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B\ K. Let ty € [0.02). From fic_ (i (1)) = (i) = fic_on(n (1+)) we get
77+ (t+) = gu(nl (4)) if 0 (t+) € H\ K,. By continuity we get n () = fn(m (1)) if
W () € R\ [ex, dic,), 0 < £y < Ty Thus, 7' [0,24] 0 (R [arc,. b)) € Fuln's [0.24]0

(R\[ck,,dK,])). Since t" € Z*, by Condition (II) and the analyticity of f,, on R\ [ck,, , dx, ]
we know that ni’ [0,2:]N(R\ [ak,,bx,]) has Lebesgue measure zero for each n. Sending
n — oo and using the fact that [ak, , bk, ] | {¥_(t_)}, we see that ni’ [0,:] N R also has

Lebesgue measure zero. O
Lemma 3.10. For any o € {+,~} and (t+,t-) € D, Wo(ts) = fyto o \(Wo(ts,t-)) €
AW\ K7, (t—5))-
Proof. By symmetry, it suffices to work on the case 0 = +. For any (¢4,t_) € D, by
Lemma 3.4 there is a sequence t"} | t; such that n, (t7) € K(t'},t_) \ K(t4,t_) for all
n. From (3.1) and Lemma 3.6 we get 9k, ¢ (N (1)) = Wy (ty) and gg(e, ey (M (t})) —
W, (ty,t_). From (3.4) we get gk ) = fKi+(t_) © gk(t+,,+_)- From the continuity of
i+ 4y om H, we then get @y (t) = f, i (Wi (ty,t-)). Finally, @y (ty) € O(H \
K" (t_)) because W, (t4,t_) € OH and fr '+ (;_) Maps H conformally onto H\ K" (¢_).
O

3.2 Force point functions
For o € {+,—}, define C, and D, on D such that if t, > 0, C,(t4,t—

Dy(ty,t-)=d Ko (1) and ift, =0,then C, = D, = W, att_,e_

)= Cxlo i) and

Since K57 (-) are

o

+|;." with some speed, by Proposition 2.9 we get
C, <W,<D, onD, oe{+,—}. (3.12)
Since K. (t,) is the H-hull generated by n5°[0, t,], we get
sz,U(tg)[Cg(t+,t_),DU(t+, t_)] Cnt-0,t,]. (3.13)

Recall that w_ < w; € R. We write w for (w4, w_). Define R, = (R\ {ws,w_}) U
{wi,w;,wf,w:} with the obvious order endowed from R. Assign the topology to
R, such that I_ := (—oo,w”], Iy := [wF,w]], I} := [w],0c0) are three connected com-
ponents of R,,, which are respectively homeomorphic to (—oo,w_], [w_,w4], [w4,00).
Recall that for o € {+,—} and ¢t € Z,, g}"(i(t) (Definition 2.11) is defined on R,,_, and
agrees with gx ;) on R\ ([ax, @), bk, @) U{ws}). By Lemma 3.10 and the fact that
w_o & [ak, @), bk, )] U {ws}, we then know that g}“{;(t) (w_y) = W_,(te,). So we define
95 (t)(wjfa) = W_,(te,)*, and understand 9K 4 as a continuous function from R, to

W_o,(te,)*
Wi (0,t-)
K\ (1)
on R, and the common function in the equality, denoted by gK(z)’ satisfies the following
properties.

Ww_ (t+,0)

Lemma 3.11. Foranyt = (t,,t_) € D, 9, g}t(t yandg K ) g%fr(t” agree

6)) g%@) is increasing and continuous on R,,, and agrees with g ;) on R\ m
(ii) g%@) maps I, N(K (t)U{w}}) and I_N(K (¢t)u{w_}) to D (t) and C_(t), respectively.
(i) FK (tL)NK_(t-) =0, g}ﬂf((z) maps Io N (K (t+)U{wl}) and Ip N (K_(t—) U {w'})
to C(t) and D_(t), respectively.
(iv) IFK (t2) N K_(t-) # 0, gi,) maps Io to C(t) = D_(t).
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(v) The map (t,v) — 9}0?@) (v) from D x Ry, to R is jointly continuous.

Proof. Fixt = (t;,t_) € D. For o € {+,—}, we write K for K(t), K, for K,(t,), K, for
KL (ty), Wy for W, (t_se_,), Cy for C,(t), and D, for D,(t). The equality now reads
gT* 0gy = glfﬁ; o g}‘}i . Before proving the equality, we first show that both sides are
well defined and satisfy (i-iii) and a weaker version of (iv) (see below). First consider

g“z o gK Since gK : Ry — Ry_, the composition is well defined on R,,. We denote it

v,+
by gic(y)-

(i) The continuity and monotonicity of the composition follows from the continuity and
monotonicity of both g}“{ and g}’g Letv € R\ K. Thenv ¢ K., and g}‘(’i (v) = gk, (v).
Since K_ = K/K,, K\ K, = fx,(K_). From v = fK+(gK+( v)) ¢ K\ K and the
continuity of fx, on H, we know that g, (v) & K_, which implies that g}’&r)( v) =
9z ° 9K, (v) = gk (v).

In the proof of (ii,iii) below, we write 7, for 7,[0,,] and 7, for n5°[0,t,]; when t, = 0,
ie. K, —K = (), we understand ax, = bx, = cx, = dk, —wg,andaK =bgp =
k. = dp = w,. Then it is always true that ax, = min{n, "R}, bk, = maX{% ﬂ IR}
ag, = mln{ng NR}, b =max{, NR}, cg = C,, and di = D,. Since nt = fx_ (7+),
we get b R, = gKf(bKJr), le(i = gK+(aK7). IfEﬂK = @, then af(Jr = gKi(a;Q),
b =9k, (bx_).

(ii) Since I N (K U{wl}) = {wi}t U (w+,bK] = {wl} U (w},bx,] is mapped by g;*
to a single point, it is also mapped by g’ K( 0 to a single point, which by (i) is equal to

1 = li = i = =dz = D;.
Jﬁgl{( x) ﬁ)m 9k, ©9K_ (z) y¢1br£+gK+(y) K. +

To show that I_ N (K U {w-}) = [ax,w”) U {w_} is mapped by g}‘é(t to C_, by (i) it
w— wy

suffices to show that lim,4q, gk (z) = g;i{ o gK+( w_) = c . This holds because

wW_ wy W~ s ~ _
9z o9k, (WI) =gz (W) =cg = z%ggﬁ 9r_(x) = Jm gz o gk, (¥) = Jim 9 (2).
(iii) Suppose K N K_ = (). Then I N (E U{wi}) = lak,,w;)U{wy} is mapped by
g}’}i to a single point, so is also mapped by g% K( 0 to a single point. By (i) the latter point is
lim = lim gz o )= lim gz =cz =C,.
ITaK+gK( ) ITGK+gK+ gK,( ) yTa§+gK+(y> Ky +
Since Ip N (K- U {w’}) = {w} U (wF,bx ] is mapped by g;’" to {w’} U (0, bz |,
which is further mapped by ggi todz = D_, we see that g}“";’(; maps Ip N (K_ U {wt})
toD_.
(iv) Suppose K, N K_ # (). For now, we only show that I, is mapped by gK(t) to

D_. By the assumptlon we have t,t_ > 0and [ck,,dk, ] N K_ # (), which implies that
cr, <bg . Thus, gi* (Ip) = [wF, ek, ] C [0F, bz ], from which follows that g}‘;(;(j'o) =
ldg_} = {Df}

Now g}":{: o g}”a satisfies (i-iii) and a weaker version of (iv). By symmetry, this is also

true for g§+ o gw’, where for (iv), I is mapped to {C;}. We now show that the two
Ky JK- +

functions agree on R,,. By (i), g? o gy and g? o g]”;: agree on R\ K. By (ii), the two
w . _ ~
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functions also agree on I N (K(t) U{wl}) and I_ N (K(t) U {w_}). Thus they agree
on both I, and I_. By (i,iii) they agree on Iy when K, N K_ = (). To prove that they
agree on Iy when K, N K_ # (), by the weaker versions of (iv) we only need to show that
Cg, = dg in that case.

First, we show that dz < cj . Suppose dz > ci . Then J := (C§+’df<_) -
ez »dg 1N leg, dg,]- So fz (J) C O\ Ky). If fz (J) C R, then it is disjoint from

K +, and so is disjoint from [a Ry b f(+] since K 4 is generated by 7;, which does not spend
any nonempty interval of time on R. That fl~(+(J )N [a f(pbfq] = () then implies that
JNleg, dg, ] = (), a contradiction. So there is 2o € J such that fiz, (zo) C H, which
implies that fx (z0) = fx_ o fz, (¥0) € H\ K_. On the other hand, since zy € ez di ],
fr(xo) = fr, o fz (wo) C fx,(n-) = n—, which contradicts that fx(z¢) € H\ K_. So
df(_ S CI~(+'

Second, we show that dy > i, Suppose di; < i, Let J = (dz?,’ch)' Then
f[~(+(J) = (ffﬂ(df(i),afq). From K, N K_ # () we know ag, < dx_ . Fromap =
gr,(ax_)wegetdy >cgp =limgpa, 9z (2) =limyre, 95 o9k, (y) = limypa, IR, °
gk_(y). Thus, fIN(+(dl~(_) > limyra, gx_(y) = cx_. So we get fIN(+(J) C [ex_,dk_],
which is mapped into n— by fx_. Thus, fx(J) C n—. Symmetrically, fx(J) C n4. Since
n- = frx,.(n-) and fx(J) C O(H\ K), for every = € J, there is z_ € 7_ NOMH \ K_)
such that fx(r) = fx,(2-). Then there is y_ € [c;z ,dz ] such that z_ = fz (y_).
So fix(z) = fx(y—). Similarly, for every = € J, there is y, € [c; ,d; | such that
fx(x) = fr(ys). Pick 2! < 22 € J such that fx(x!) # fx(2?). This is possible because
fx(J) has positive harmonic measure in H\ K. Then there exist y! € [c[h,d 1~<+] and
y2 € [cz ,dg |suchthat fx(2') = fx(y;) and fx(2?) = fx(y?). This contradicts that
yL>a2?>z' >y2. Sody > g, -

W (0,t_)

K_t,__ (t) OgKi(t,) and

Combining the last two paragraphs, we get Cg, = dgz . Sog

Ww_ (t+,0) wy _ - .
ng ) ° 9k, (+,) agree on I, UlI_ul, = R,, and the original (iv) holds for both
functions.

(v) By (i), the composition g%( £ is continuous on R,, for any ¢ € D. It suffices to show
that, for any (a4+,a-) € D and o € {+,—}, the family of maps [0,a,] > t, — g%(t) (v),

(t_s,v) € [0,a_,] X Ry, are equicontinuous. This statement follows from the expression
w Wol(t—oe_,) -

IK@w = gKf,’“(tG) 9K Tty Proposition 2.13 and Lemma 3.5 (i). O

Lemma 3.12. Forany (t,,t_) € D and o € {+,—}, W,(t4,t_) = gg’,;“((ttjg;)(@g(tg)).

Proof. Fix t = (ty,t_) € D. By symmetry, we may assume that o = +. If t_ = 0,
it is obvious since W, (-,0) = @, and K'*(0) (). Suppose t— > 0. From (3.12)

and Lemma 3.11 (i,iii,iv) we know that W, (t) > Cy(t) > D_(t) = th+(t_). Since

Wy (ty) = fth(t_)(WJr(g)) by Lemma 3.10, we find that either W, () = d ., (t_) and

(Wy(ty)). In either case,

U/}+(t+) = bKt_'*'(t,)' or W+(t) > th_+(t,) and W+(t) = gKt_"'(t,)
W_(t1,0) / ~
we get Wy (1) = g,/ (0 (@4(24)). 0

Definition 3.13. Forv € R,,, we call V(t) := g%(t)(v), t € D, the force point function
started from v (for the commuting pair (n.,n—; D)), which is continuous by Lemma 3.11
(v). The v is called the force point for this function V (t).
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Remark 3.14. The name in Definition 3.13 comes from the following fact. In Section
4, we will study a commuting pair of SLE (2, p, p+, p—) curves (n4,n—), which is a.s. a
commuting pair of chordal Loewner curves. For o € {+, —}, 1, starts from w, with force
points w_,, vg, v+, v—. Let V, be the force point function started from v,, v € {0, +, —}, for
the commuting pair (n4,7-). The two curves commute in the sense that, for o € {+, -},
if 7 is an F~“-stopping time, then conditionally on /- and the event that n_, is not
complete by time 7, 1] is an SLE(2, po, p+, p—) curve with some speed, whose driving
function is W, |/, and whose force point functions for 2, pg, p1, p— are respectively
W_o|77, Vol 77, V|77, and V|77,

Definition 3.15. Let (n4,n—; D) be a commuting pair of chordal Loewner curves started
from (w4, w_) with hull function K(-,-).

(i) Foro € {+,—}, let ¢, be a continuous and strictly increasing function defined on
the lifespan of 1, with ¢,(0) = 0, and let ¢g(t4,t_) = (P4 (t+),p—_(t-)). Let 7, =
no¢;l, o € {+,—}, and D = ¢ (D). Then we call (7j,,7_; D) a commuting pair of
chordal Loewner curves with speeds (¢, ¢_), and call (14, n—_; D) its normalization.

(ii) Lett € D. Suppose there is a commuting pair of chordal Loewner curves (7+, 7]— ;5)
with some speeds such that D = {t € R% : 7+t €D}, and 0, (7o + ) = fK(r) © Mo
o € {+,—}. Then we call (ijy,7_; D) the part of (n,,n_; D) afterr up to a conforma]
map.

For a commuting pair (7, 7_; 5) with some speeds, we still define the hull function

E’/ (+,-) and the capacity function m(-,-) using (3.3), define the driving functions W+ and

W_ using Lemma 3.6, and define the force point functions by V (¢) = g% (t)(v) started

from v for any v € R,,. All lemmas in this section still hold except that in Lemma 3.1, m

may not be Lipschitz continuous.

Lemma 3.16. (i) Forthe N4,m=;D), (4,7— D) and ¢g in Definition 3.15 (i), we have
X=Xo qﬁ@l for X € {K,m,W,,V}, where V and V are force point functions
respectively for (ny,n—; D) and (4,7—; D) started from the same v € R,,.

(ii) For the (n4,n—;D), (77+,17_;5) and 7 in Definition 3.15 (ii), we have K = K(r+
)/K (1), m = m(r+-)—m(r), and W, = Wo(r+-), 0 € {+,—}. Letv € Ry, _), and
let V' be the force point function for (ny,n_; D) started from v. Let Wy = We (0) =
Wi (r). Define v € Ry, )y such that if V(r) & {wy,w_}, thenv = V(z); and if
V(1) = W,, then ¥ = agEnvmwe) oo (4 ) Let V be the force point function for

(714, 7—; D) started from . Then V =V (r +-) on D.

Proof. Part (i) is obvious. We now work on (ii). Let ¢t = (t4,t_) € D. From K(r+t) =
Hull(U, 7+[0, 7o + t5]), we get

K(r+1t) = Hull(K (1) U o [70 7o + t6]) = HUll(K (7) U fre(z) (7010, 26]))-
This implies that K(t) = Hull(U, 7+[0,t,]) = K(z +t)/K(z), which then implies that
m(t) = m(z +t) — m(r). It together with (2.1,3.6) implies that W, (¢) = W,(z + ¢).

By (i), Proposition 2.12 and Lemma 3.11, if V(7) & {w,,w_},

S Wi (0,t-) W_ Wi (1,7 +t_) W_(r ~
V) =9z % 1) ° 9% 1) = Ik(riiy/kirer 410) ©Ik(rrir 41 )k (@) (©)

Wi (r4,7—+t-) W_(1) (74,0) w
= IRt /K (ryor i) O IK(ryr ) /K (D) 9K<r>/7<<f+, ) © 9K (rp.0)(V)

Wi (T4, 7—+t_) (74,0) w
= IRt Ko +t) O IR (ro bt K (r4.0) © Iy 0) (V)
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t
t ty N
N+
M- N+
vio
vievs  w_viwUy w, Uy v w- Uy wy v} viw

Figure 3: The above figures illustrate two situations. In each situation, the curves 7,
and 7)_ are respectively stopped at the time ¢, and ¢_. Lett = (¢4,¢t_). Forv € {0,+, -},
the point fx ) (V,(t)) is labeled by V;/(t), which agrees with v, in the case v, ¢ K(t).
The sets fx)[Vo(t), Vi (t)] and fr ) [V- (L), Vo(t)] are respectively colored green and red.

_ Wy(rp,m—+t-) W (07— +t_) w_
= 9K (e )/ K (s r ) O IK (rpr 41/ K0 +1-) © 9K (0,7 +1) (V)
W0, 7—+t— w_ Wy, W_
= 0x(n Ok ) (V) = 0K () =V + D).
Here the “=" in the 1% line follow from the definition of V' (¢) and that K = K (r+-)/K (1),
the “=” in the 2™ line follows from the definition of ¥, the “=" in the 3 line and the first
“—" in the 5 line follow from Proposition 2.12, and the “=" in the 4™ line follows from

Lemma 3.11.
Now suppose V(r) € {wy,w_}. By symmetry, assume that V(r) = w_ = W_(7).

If v > w', we understand gE(V(T()T/}(())T+ 0

W_(7+,0) ~ . .
K(z)/K(rs0) takes value w_ at some point in [W_ (74,0)", 00), we redefine

the value as w'. Then the above displayed formula still holds. The case that v < w™

, as a map from [W_(7;,0)%,00) into [@7,c0),

i.e., when g

is similar, in which we understand gf(v(; ()T/+K(2)T+ o) s a map from (—o0, W_(74,0)7] into
(—oo,w_]. O
From now on, we fix vg € Iy = [w*,wi], vy € I} = [w},00), and v_ € I_ = (—o0,w_],

and let V,,(t), t € D, be the force point function started from v,, v € {0, +, —}. By Lemma
3.11, Vo <C_<D_<Vy <C4 <Dy <Vy, which combined with (3.12) implies

VoSO <SW_ < D_<V <Oy <Wo <Dy <V, (3.14)
Lemma 3.17. For anyt = (t4,t_) € D, we have
Vi(t) = V- (0)]/4 < diam(K (£) U [0, 0,]) < [V (8) = V_ (1) (3.15)

frw Vo), Vo ()] Cm[0,t,] U vo,v,], v € {+,~} (3.16)

Here for z,y € R, the [z,y] in (3.16) is the line segment connecting x with y, which is
the same as [y, ]; and if any v, v € {0, +, —}, takes value w¥ for some o € {+,—}, then
its appearance in (3.15,3.16) is understood as w,. See Figure 3.

Proof. Fixt = (t,,t_) € D. We write K for K(t), K for K. (t+), Ky for K (t+), ny for
1n+]0,t+], 7 for nF[0,tx], and X for X (t), X € {V,,V,,V_,Cy,C_, Dy, D_}.

Since g maps C \ (K" U [v_,v,]) conformally onto C \ [V_, V,], fixes oo, and has
derivative 1 at oo, by Koebe’s 1/4 theorem, we get (3.15). For (3.16) by symmetry we only
need to prove the case v = +. By (3.14), V, < C; < D, < V,. By (3.13), fx[C+,D4] C
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fx_(4+) = n4. It remains to show that fx (D4, Vi) C [wo,v4+] and fx[Vo, Ct) C [vo, wo)-
If Vi, = D4, then (D, V4] =0, and fx(D4,Vy] =0 C [wy,vy]. Suppose Vi > Dy.
By Lemma 3.11, Dy = lim, |, . (®rRr)u{w, ) 9K (), and Vi = gr(v4). So fr (D4, V4] =
(max((K NR) U {w4 }),v4] C [wy,vy]. If Vo = C4, then [V, Cy) = 0, and fx[Vo,Cy) =
0 C [vo,wy]. If Vo < Cy, by Lemma 3.11 (iii,iv), Ky N K_ =0, vo # K,, and Cy =
B (RR)Ufw, 1) 9K (€). Now either vy ¢ K U {w!} and Vo = gx(vo), or vo € K_ U
{w*} and V5 = D_. In the former case, fx[Vo,Cy) C [vo, min((K; NR) U {wy})) C
[vg, w,]. In the latter case, fx[Vo, Cy) = [max((K_NR)U{w_}), min((KyNR)U{w,})) C
[vo, w4]. O

Lemma 3.18. Suppose for somet = (t;,t_) € Dand o € {+,—}, 1,(ty) € N—[0,t_,] U
[V_e,v0]. Then W, (t) = V().

Proof. We assume o = + by symmetry. By Lemma 3.12, W, () = ¢ tf(t: ()))( +(t4+)). By

Lemma 3.11, V(t) = ¢ tf;* ()]) g}?:(t”(vo). Ifny(ty) € [v_,vo], then W (t1) = cx (1)) =
g}g(t”(vo), and so we get W, (¢) = Vo(t). Now suppose 74 (t+) € n—[0,¢_]. Then w4 (t4) €
K'*(t_), which together with @ (t,) = W4 (t,,0) > Vo(ts,0) = 9K 1,y (Vo) = W_(t,0)

w_ ,0 ) w_ ,0 .
implies that ¢,/ 0 gt ) (v0) = g,/ (@ (1)), as desired. 0

3.3 Ensemble without intersections
We say that (n4,n—; D) is disjoint if K, (¢t+) N K_(¢t—) = 0 for any (¢4+,t_) € D. Given
a commuting pair (74, 7—; D), we get a disjoint commuting par (74, 7—; Ddisj) by defining

Daisj = {(t4,t_) €D : K (t) N K_(t_) = 0}. (3.17)

In this subsection, we assume that (1., 7_; D) is disjoint. In addition to the W, V,, Vi
defined in the previous subsection, we are going to define on D the functions Wy, ;, j =
1,2,3, Wis, Q Wen, Vun, ve{0,+,—},and Exy for X #Y e {W,, W_,V,,V,,V_}.
We will also derive differential equations for these functions, which will be applied to the
random setting in Section 4.2 to construct some two-time-parameter local martingale.

We now write g5 ° (t,,-) for Iit—o 1,y O € {+,-}. For (t;,t_) € Dand ¢ € {+,—},

since Ki(ty) N K_(t-) = 0, [ck, () dx, ()] has positive distance from K' (t_,)).
So g'°,(t_s,-) is analytic at @, (t,) € [cx, (1), drc,(1,))- By Lemma 3.12, W, (t4,t_) =
9", (t_», W, (t,)). We further define W, j, j = 1,2,3, and W, s on D by

Wea 3 (ng

Wo’,l a 5 Wo,l

. 2
Wog(tt-) = (97) Dt B (ta)), Was = ). oy} 19

Here the superscript (j) means the j-th complex derivative w.r.t. the space variable. The
functions are all continuous on D because (t,,t_,z) — (g', )Y (t_,, z) is continuous by
Lemma 3.5. Note that W, (¢, ,t_) is the Schwarzian derivative of g7 (t_,,-) at W, (t,).

Lemma 3.19. m is continuously differentiable with 0, m = W2 ,, 0 € {+,—}.

Proof. This follows from a standard argument, which first appeared in [7, Lemma
2.8]. The statement for ensemble of chordal Loewner curves appeared in [31, Formula
(3.7)]. O

So for any 0 € {+,~}and t_, € Z_,, K °(t;), 0 < t, < TP(t_,), are chordal
Loewner hulls driven by W, |;° with speed (W,:[;7)? and we get the differential
equation:

QW (ty,t_)?
atggfyia(ta;z) — — ( ,1( + )
go " (tg,2) = Wo(ty,t-)

, (3.19)
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which together with Lemmas 3.12 and 3.11 implies the differential equations for
V07V+7V—:

ae 2W021
(%V,, = m7 IS {O, +, _}, (320)

and the differential equations for W_,, W_, ; and W_; s:

2W3, 0o W—0,1 —2W7, 12W3, W2,

O W_5 = - ; = : 3 OW_55=—— .
W_ o =W, W_o1  (Wy—W_)? ST T W — W)

(3.21)

Define Q on D by

2 2
Qt) = exp ( /[O ) 12Wea(8) Wonle) ds). (3.22)

(Wi (s) = W-())*

Then @ is continuous and positive with Q(¢4,¢-) =1 when ¢, =0 or¢_ = 0. From (3.21)
we get

82262 =W,s, o€{+ —} (3.23)

Remark 3.20. The function @ implicitly appeared earlier in [31, 30]: Q5 agrees with
the second factor on the RHS of [31, Formula (4.3)]. It is related to the Brownian loop
measure ([9]) by the fact that —% log Q(t) equals the Brownian loop measure of the set of
loops in H that intersect both K (¢, ) and K_(¢_). The ODE (3.23) reflects the facts that
the Brownian loop measure can be decomposed into Brownian bubble measures along a
curve, and the Schwarzian derivatives are related to the Brownian bubble measures.

By (3.14), V., > W, >C, >V, > D_>W_ >V_ on D. Because of disjointness, we
further have Cy > D_ by Lemma 3.11. By the same lemma,

Volty,t-) =9 (t—o, Vo(toe,)); (3.24)

Vo(ty,t-) =g'7,(t—0, Voltoe,)), ifvo & K o(t_o). (3.25)

Lett = (t4,t-) € D. For o € {+,—}, differentiating (3.4) w.r.t. ¢,, letting z =
9K, (t,)(2), and using Lemma 3.12 and (3.19,3.18) we get

29'%) (b, Bo () 20 (b0 )

01,9 (t—0,2) = = = L
A gﬁ’g(t,mz) _gt—(ra(tfmwa(ta)) Z— Wo(to)

(3.26)

Letting H\ K'_(t_,) > Z — @,(t,) and using the power series expansion of g7 (t_,,-)
at w,(t,), we get
8tagtf'jo(t—0'72)|2:’@a(tg) = _3W0',2(E)7 (S {+a _} (327)

Differentiating (3.26) w.r.t. Z and letting z — W, (t,), we get

O, (97,) (t—o,%)
975) (t-0,%)

B ;(Wg,g(z))Q ~ §W0,3@) oe {+,—}. (3.28)

oy 2\, (1) Woi(t)’

Z=We (to)

For o € {+,—}, define W, y on D by W, n = Vﬁv"ﬂla. Since W,1],7 = 1, we get
a,1lo

Wy n(t+,t-) =1 whent,¢t_ = 0. From (3.21) we get

80W7.:7 N _2W3 1 _QWE 1 -7
= = Oty — : Ooty, o€ {+,—}. 3.29
W—o’,N (W—O' - WO’)2 (W—O' - Wa)2 0 7 {+ } ( )
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We now define Vy v, Vi ~,V_ n on D by
Von(t) = (92) (t-, Vi ltue )/ (92,) (t-vsvw), v € {4~}

Von(t) = (",) (t—o. Vo(tae,))/(95,) (t—osv0), ifvo & K_o(t_,), o€ {+,—}. (3.30)

The functions are well defined because either vy ¢ K, (t4) or vg ¢ K_(t_), and when
they both hold, the RHS of (3.30) equals 9}((t+,t,)(v0)/(9}q(t+ (vo)g}ﬂ(ti)(vo)) by (3.4).

Note that V, n(t4,t—) = 1ift4t_ = 0 for v € {0,—1—,—?}. From (3.24-3.25) and
(3.4,3.19) we find that, for 0 € {+,—} and v € {0, —¢}, if v, &€ K,(t,), then V, y satisfies
the following differential equations on D:

—0

aG'VV,N _2W3 1 _2W02,1

= 2 to_ - -
2 9 (Vu _ Wo’)2

Von A Ot,. (3.31)

0

We now define Ex y on D for X #Y € {W,,W_,V;, V4, V_} as follows. First, let

(X(ty,t-) = Y(ty,t-))(X(0,0) = ¥(0,0))
(X (t+,0) = Y (t4,0))(X(0,2-) = Y(0,2-))’

Exy(ty,t_) = (3.32)
if the denominator is not 0. If the denominator is 0, thensince V,. > W, >V, > W_ > V_
and W, > W_, there is o € {+, —} such that {X,Y} C {W,,V,, Vy}. By symmetry, we
will only describe the definition of Ex y in the case that o = +. If X (¢4,0) = Y (¢4,0),
by Lemmas 3.11 and 3.12, X(t4,:) =Y (¢4,). If X(0,t_) = Y (0,¢_), then we must have
X(0) =Y (0), and so X(0,-) = Y(0, ). For the definition of Ex y, we modify (3.32) by

i X(ty,t_)—Y(ty,t_) . X(0,t_)=Y(0,t_
writing the RHS as )(((L,ogfygt:,o)) : )(((o,ogfygo,o))

“") by (9)(t_, X (t+,0)) when X (t,0) = Y(t,,0), replacing the second factor (after
“”) by g’K_(t_)(X(O, 0)) when X (0,¢_) = Y (0,7_); and do both replacements when two
equalities both hold. Then in all cases, Ex y is continuous and positive on D, and
Exy(ty,t—)=1ift;L =0ort_ =0. By (3.20,3.21), for 0 € {+, -}, if X, Y # W, then

, replacing the first factor (before

OoExy ae —2WZ, ot
Exy (X = W) (Y =W,) 7

_2W02,1 7

(X = W)Y W, Oty (3.33)

3.4 A time curve in the time region

We call the set D a time region, which is composed of two-dimensional time variables,
whose two components are one-dimensional time variables for 14 and n_ respectively. A
time curve in D is a continuous and strictly increasing function v = (uy,u_) : [0,T%) — D
with u(0) = 0. Such a time curve can be used to grow 7, and n_ simultaneously. This
means that we construct two curves n% := 1, o u,, 0 € {+,—}, on the same interval
[0, T%), which are time-changes of some initial segments of ;. and 7n_. In this subsection,
we are going to construct a special time curve in D such that if we grow 74 and 7_
simultaneously using w, then the factors (F1) and (F2) in Section 1.2 are satisfied. Later
in the next section, for a commuting pair of SLE. (2, po, p+, p—) curves, we will use the
driving functions W, o € {+, —}, and the force point functions V,, v € {0, +, —}, and the
time-curve u to construct a diffusion process (R(t))o<i<7, whose transition density then
leads to the proof of the main theorem of the paper.

We use the settings and results in the previous subsections except that we do not
assume that (n4,n_; D) is disjoint. We made an additional assumption in this subsection
that

V4 — Vg = Vg — U_. (334)

Define A and T on D by A = %log% and T = %log ‘U/jr :Z:. By the additional

assumption (3.34), we have A(0) = T(0) = 0.
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Lemma 3.21. There exists a unique continuous and strictly increasing function u :
[0,7*) — D, for some T" € (0,00], with u(0) = 0, such that for any 0 < t < T* and
o€ {+,—} |Vo(u®) — Vo(u(t))] = e**|v, — vo|; and u cannot be extended beyond T
while still satisfying this property.

Proof. The proof resembles the argument in [25, Section 4]. It is clear that the property
of u is equivalent to that A(u(t)) = 0 and YT(u(t)) =t for 0 < t < T*. By (3.14), the
definition of V,, (V,,(t) = g%@) (v,)), Lemma 3.11 (the definition of g%@)) and Proposition
2.13, we see that, for o € {+,—}, |V, — Vo| and |V,, — V_,| are strictly increasing in ¢,
and |Vp — V_,| is strictly decreasing in ¢,. Thus, A is strictly increasing in ¢, and strictly
decreasing in t_, and 7Y is strictly increasing in both ¢, and ¢_. Since A(Q) = 0, we see
that A >0on [0,7}) x {0} and < 0 on {0} x [0,7_). For o € {+,—}, let

T* = sup{t, € [0,T,) : 3t_, € [0,TP (t,)) such that cA(t,e, +t_oe_,) <0}

By the definition of 7%, A > 0 on D N (T}, 00) x R. By the continuity of A, we have
A>0onDN [T}, 00) x Ry. If A(TY,t_) = 0 for some t_ € Ry such that (T},t_) € D,
then by the strictly deceasingness of A in ¢_, there is ¢’ > ¢_ such that (T%,t ) € D
and A(T},t_) < 0, which is a contradiction. So A > 0 on D N [T},00) x Ry . For
t4 € [0,T%), by intermediate value theorem and the strictly decreasingness of A in t_,
there exists a unique ¢_ € [0,7P(t.)) such that A(t,,t_) = 0. We then define a function
Ugp— :— [0,T}) — [0,7_) such that A(ty,uy_(t1)) =0, 0 < ¢4 < TY. Note that
uy——(0) = 0. Since A is strictly increasing (resp. decreasing) in ¢, (resp. t_), uy_,_ is
strictly increasing. Similarly, A < 0 on DNR x [T%, 00), and there is a strictly increasing
function w__,4 : [0,T%) — [0,T}) with u__,(0) = 0 such that A(u__4(t_),t_) = 0,
0<t_<T" Since A>0onDN[T}, 00)x Ry. We see that u__, takes values in [0,T7}).
Similarly, u;_,_ takes values in [0,7"). From A(t4,uy——(t4+)) = Alu——4(t-),t-) =0
and the monotonicity of A, we see that u,_,_ and u__, are inverse of each other, and
are both continuous

By the continuity and strictly increasingness of u,_,_ and Y, the map [0,7%}) >t
T(t,us——_(t)) is continuous and strictly increasing, and so its range is [0,7") for some
T" € (0,00]. Let uy denote the inverse of this map, and let u_ = u;_,_ o uy. Then for
o € {+,—}, u, is a continuous and strictly increasing function from [0, T") onto [0, T%).
Let u = (uq,u_). Then for 0 < ¢ < T*, A(u(t)) = 0 and Y(u(t)) = t. So u satisfies
the desired property on [0,7"). It cannot be extended beyond 7" while keeping this
property because supu,[0,7") = T}, and A > 0 on DN [T},00) x R4, and A < 0 on
DNRy x [T, c0). O

Lemma 3.22. Foranyt € [0,7"%) and o € {+,—},
e*vy —v_|/128 < rady, (160, us (t)] U [vo, ve]) < € |vy —v_|. (3.35)

IfT" < oo, then limyrw u(t) is a point in 9D N (0,00)?. If D = R?, then T" = oo. If
T" = oo, then diam(n;) = diam(n_) = oc.

Proof. Fixt € [0,T%). For o € {+,.—}, let S, = [v0, Vo] U 5[0, ux(t)] Uns [0, us(t)], where
the bar stands for complex conjugation, and L, = rad,,(S,). From (3.15) and that
Vi (u()) — V- ((t)] = vy —v_|, we get e¥[v, —v_|/8 < Ly v L < oy —v_|.
Since Vi (u(t)) — Vo(u(t)) = Vo(u(t)) — V_(u(t)), by Lemma 3.17, S; and S_ have the
same harmonic measure viewed from co. By Beurling’s estimate, Ly VL_ < 16(Ly AL_).
So we get (3.35). For any o € {+,—}, uy(t) = hcapy(1,[0,u,(t)]) < L2 < e*|vy —v_|2
Suppose T" < co. Then u; and u_ are bounded on [0,7%). Since u is increasing,
limg47« u(t) is a point in (0, 00)?, which must lie on 9D because u cannot be extended
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beyond T. If D = R?, then 0D N (0,00)? = (), and so T" = oco. If T" = oo, then by (3.35),
diam(n4) = oo. O

For any function X on D, define X* = X ouon [0,7"). Let I = |uy — vo| = |v— — vg]-
From the definition of u, we have |V(t) — Vi*(t)| = €?'I for any ¢ € [0,T"). Let

_ Wy -

R, = —2 0
vy

€ [071]3 U€{+77}; E:(R+7R—)'
Let e¢ denote the function ¢ — e for ¢ € R.

Lemma 3.23. Let Dyisj be defined by (3.17). Let T € (0,T"] be such that u(t) € Dyg;sj
for 0 <t < Tg;. Then u is continuously differentiable on [0, T ), and

P2
(W), = %e‘*'ﬂ on [0,T4), o€ {+ —} (3.36)
+ —

Proof. By (3.20), A and 7T satisfy the following differential equations on Dgs;:

é (V+ - V*)W21 ae _W21
O N2 < and 9,7 = = —, o€{+ -}
Hue{o,jt,f}(vuu - W;L) Hue{Jﬁ,f}(Vz}L - W#)
From A%(¢t) =0 and T“(¢t) = ¢, we get
Wwu 2,/ — (WY 2,1
( a,l) Uy a:eO and ( a,l) Uy ae 1.

HVE{O,-&-,—}(VL}L - W;L) HV6{+,_}(Vl}L — W;L)

U€{+77} 0€{+’7}

Solving the system of equations, we get (W2, )u, = (ILego,+, (V' =W5))/ (We=W_,),
o € {+,—}. Using V* — V* = 0e®] and W* — V# = R, (V¥ — V), we find that (3.36)
holds with “=” in place of “=". Since W > W_ on Dysj, we get Ry +R_ >0 on [0, Ti;).

So the original (3.36) holds by the continuity of its RHS. O

Now suppose that 14 and n_ are random curves, and D is a random region. Then
w and T are also random. Suppose that there is an Ri-indexed filtration F such that
D is an F-stopping region, and V;, V,,V_ are all F-adapted. Now we extend u to R
such that if T* < oo, then u(s) = limyy7« u(t) for s € [T, 00). The following proposition
is similar to [25, Lemma 4.1].

Proposition 3.24. For everyt € Ry, u(t) is an F-stopping time.

Since u is non-decreasing, we get an R -indexed filtration J*: F;* = Fy), t > 0, by
Propositions 2.25 and 3.24.

4 Commuting pairs of SLE,(2,p) curves

In this section, we apply the results from the previous section to study a pair of
commuting SLE, (2, p) curves, which arise as flow lines (x # 4) or level lines (for k = 4)
of a GFF with piecev;ise constant boundary data (cf. [12, 21]). The results of this section
will be used in the next section to study the commuting pairs of hSLE,, curves that we
are mostly interested in.
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4.1 Martingale and domain Markov property

Throughout this section, we fix x, po, p+, p— such that x € (0,8), p4,p— > max{-2,5 —
4}, po = %5 —2,and po+ po > 5 —4, 0 € {+,—}. Letw_ < w; € R. Let v} € [w],0),
v_ € (—oo,w_], and vy € [w,wi]. Write p for (po, p+,p—). From [12] (for x # 4) and
[21] (for Kk = 4), we know that there is a coﬁpling of two chordal Loewner curves 7, (t4),
0<ty <oo,andn_(t_), 0 <t_ < oo, driven by w, and w_ (with speed 1), respectively,
with the following properties.

(A) For o € {+,—}, 1o is a chordal SLE(2, p) curve in H started from w, with force
points at w_, and v,, v € {0,+,—}. Let w?_,?7 denote the force point functions
for 7, started from w_,,v,, v € {0,+, —}, respectively.

(B) Let o € {+,—}. If 7_, is a finite stopping time w.r.t. the filtration F~° generated by
1_o, then a.s. there is a chordal Loewner curve n5 7 (t), 0 < t < co, with some speed
such that , = fx__(r_,)© ne 7. Moreover, the conditional law of the normalization
of 75~ given F, 7 is that of a chordal SLE,(2, p) curve in H started from @, (7_,)

with force points at W_,(7—,), 0, 7 (- ), v € {0, 4+, —}.

There are some tiny flaws in the above two properties, which will be described and
fixed as follows. First, since 7, starts from w,, its force points must take values in
R,,. However, some v, may take value w'  or w”,, which does not belong to R,,, .
When this happens, as a force point for 7,, v, is treated as w_,. Second, it may happen
that v, °(7_,) = @, °(7_,) for some v. When this happens, as a force point for the 7, °
(started from W, 7 (7_4)), ¥, (7, ) is treated as w, ?(7_, )" for some yp € {+,—}, which is
chosen such that, if v € {+,—}, then y = v, and if v = 0, then ;x = —o. We choose p in
this way because v_7 < w_° < 7,7 <w, ° <v.°.

One may construct n; and n_ as two flow lines of the same GFF on H with some
piecewise boundary conditions (cf. [12]). The conditions that « € (0,8), po, p+,p— >
max{—2,%5 — 4} and po + p, > § — 4, 0 € {+, —}, ensure that (i) there is no continuation
threshold for either n; or n_, and so 74 and 7_ both have lifetime co and 74 (t) — oo
as t — oo; (ii) n4 does not hit (—oo,w_], and n_ does not hit [w;,0); and (iii) n+ N R
has Lebesgue measure zero. The stronger condition that pg > 4 — 2 (which implies that
po > max{—2, § — 4}) will be needed later (see Remark 4.14). We call the above (1,7_)
a commuting pair of chordal SLE, (2, p) curves in H started from (wy,w_;vg,v4,v_). If
po = 0, which satisfies pg > 7 — 2 since k < 8, the vy does not play a role, and we omit py
and vy in the name.

We may take 7_, in (B) to be a deterministic time. So for each t_, € Q4, a.s. there is
an SLE-type curve nf;“ defined on Ry such thatn, = fx__(_,) onf;“. The conditions on

k and p implies that a.s. the Lebesgue measure of nf,"’ N R is 0. This implies that a.s. 7+
and 7)_ satisfy the conditions in Definition 3.2 with Z, =Z_ = R, I7 =I* =Q4, and
D =RA. So (n4,n-) is a.s. a commuting pair of chordal Loewner curves. Here we omit
D when it is ]Ri. Let K and m be the hull function and the capacity function, W, , W_ be
the driving functions, and Vy, V., V_ be the force point functions started from vy, vy, v_,
respectively. Then @, = W,|,7, W7, = W_,|;°, and v =V, |;°, v € {0,+, —}. For each
F°-stopping time 7_,, n,  is the chordal Loewner curve driven by W, |72 with speed
m |, %, and the force point functions are W_,|;° and V, |77, v € {0,+,—}.

Let F* be the R -indexed filtration as in (B). Let F be the separable Ri-indexed
filtration generated by F+ and F~. From (A) we know that, for o € {+,—}, there exist
standard F?-Brownian motions B, such that the driving functions @, satisfies the SDE

ae 2 14
diy = \/kdB, + P e E /\[)7/\} dt,. 4.1)
We — W o — VY
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Lemma 4.1 (Two-curve DMP). Let G be a o-algebra. Let D = ]Ri. Suppose that, condi-
tionally on G, (n.,n—; D) is a commuting pair of chordal SLE.(2, p) curves started from
(wy,w_;vg,v4,v_), which are G-measurable random points. Let K,W,,V,, o € {+,-},
v € {0,+, —}, be respectively the hull function, driving functions, and force point func-
tions. For o € {+,—}, let F7= (F7);>0 be the R -indexed filtration such that fort > 0,
F7? is the o-algebra generated by G and 1, (s)), 0 < s < t. Let F be the right-continuous
augmentation of the separable ]Ri -indexed filtration generated by F* and F~. Let T be
an F-stopping time. Then on the event E, := {1 € R%,n,(7,) € n-[0,7_5],0 € {+,—1}},
there is a random commuting pair of chordal Loewner curves (i, 7j2; 5) with some speeds,
which is the part of (n4,n—;D) after T up to a conformal map (Definition 3.15), and
whose normalization conditionally on F. N E; has the law of a commuting pair of chordal
SLE(2,p) curves started from (W, ,W_;Vy,V,,V_)|,. Here if V, (1) = W,(z) for some

o € {+,~} and v € {0,+, —}, then as a force point V, () is treated as W, (r)%&"(Vv—o),

Proof. This lemma is similar to [24, Lemma A.5], which is about the two-directional DMP
of chordal SLE,, for x < 8. The argument also works here. See [24, Remark A.4]. O

Remark 4.2. Here is an intuition why Lemma 4.1 is true. By Properties (A) and (B), it is
easy to see that Lemma 4.1 holds if the stopping time 7 has the form (7, 0) or (0,7_),
which means that we only grow one curve up to a stopping time. Applying this argument
for a second time, we see that the lemma holds if 7 = (74,7_) is such that 7 is an
(G, FT)-stopping time, and 7_ is a stopping time w.r.t. the filtration generated by G, ]—'Tt,
and F—, which means that we first grow 7. up to some stopping time, and then grow 7_
up to some stopping time depending on the part of 7, that has grown. We may further
alternatively grow n, and n_ up to stopping times depending on previously grown parts,
and conclude that the lemma holds for the 7 constructed in this way. However, not
all F-stopping time can be constructed by this way. To deal with the general case, an
approximation argument was used in [24].

4.2 Relation with the independent coupling

Write w and v respectively for (w.,w_) and (vo, v4,v_). Let Ph., denote the joint law
of the driving functions (@;,@w_) of a commuting pair of chordal SLE(2, p) curves in H
started from (w;v). Now we fix w and v, and omit the subscript in the joiﬁt law.

The P4, is a probability measure on %2, where X := Uo<r<oo C([0,T),R) was defined
in [27, Section 2]. A random element in ¥ is a continuous stochastic process with
random lifetime. The space Y2 is equipped with an ]Ri-indexed filtration F defined by
Fltop) = J-"tt V F, , where F* and F~ are R, -indexed filtrations generated by the first
function and the second function, respectively.

Let IP% and P2 respectively denote the first and second marginal laws of P2 on
Y. Then P2 is different from the product measure ]P? = ]P% x P2. We will derive
some relation between P2 and IP;E. Suppose now that (@, w_) follows the law IPiB
instead of P2. Then (4.1) holds for two independent Brownian motions B, and B_,
and 74 and 7_ are independent. Define Dg;s; by (3.17). Then (94, 7—; Daisj) is a disjoint
commuting pair of chordal Loewner curves. Since B, and B_ are independent, for any
o € {+,—}, B, is a Brownian motion w.r.t. the filtration (F7 V F.?):;>0, and we may
view (4.1) as an (F7, V F7):,>0-adapted SDE. We will repeatedly apply It6’s formula
(cf. [17]) in this subsection, where o € {+, —}, the variable ¢_, of every function is a
fixed finite 7~ “-stopping time ¢_, unless it is set to be zero using |;“, and all SDE are
(FE V F37)t,>0-adapted in t,.
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By (3.27) we get the SDE for W, :

oWy = W,y 0, + (g - 3) W, 20ty 4.2)
We will use the boundary scaling exponent b and central charge c in the literature
defined by b = 2% and ¢ = % By (3.28) we get the SDE for VVb
O Wo _ NULEPE W Oty (4.3)
Wok_)’N - Wo. L + a,S .

Recall the Ex y defined in (3.32). For Y € {W_,, V,, V4, V_}, Ew, y(t4,t_) equals a
function in t_, times f (¢, W, (tse,),Y (tse,)), where

(QKt_oﬂ(t,a)(w) - gxt_vd(t,c,)(y))/(w —y), w#Fy;
f@v w, y) = / ( _ (4.4)
gKt_“{,(t,a) w)) w =Y.
Using (3.20,4.2) and (3.24-3.25) we see that Fyy_ y satisfies the SDE
OcEw,y ac [ Woi Woi |797 2W2, 2W2, o
: :[ 1 o }dwng[ L : ]Gta
Ew, vy W,-Y W,—-Ylo Wy =Y)2 (W,—-Y)%lo
K - Won Wi We.2
_ AN — 2= _Ot,. 4.
W, —vlo | ]8t +(2 3)Wg—yat” (4.5)
Recall the () defined in (3.22). Deﬁne a positive continuous function M on Dy;s; by
e % PV125V2 b ﬂu(ﬂu-:4—~)
M=Q Ey, w._ H By, H |:WO',N H EW v, VuN }
v1<v2€{0,4,—} oce{+,-} ve{0,+,—}
(4.6)

Then M(ty,t_) =1ift, =0 or¢_ = 0. Combining (3.23,3.29,3.31,3.33,4.1,4.3,4.5) and

using the facts that @, = W, |, w7, = W_,|; 7 and 77 = ?, we get the SDE for M
int,: 5
aO'M Wo’ 2 Pv BU
0B, — + Z o _ao +
M W"’ [ %o ve{ot,—y 7 v"} VE
ZWU 1 p,j aB
+ { + > ] 4.7)
Wo—Wo, e W, i v

This means that M|, 7 is a local martingale in ¢,.

For o € {+, —}, let 2, denote the space of simple crosscuts of H that separate w, from
w_, and co. Note that the crosscuts also separate w, from v_, since v_, is further away
from w, than w_,. But the crosscuts may not separate w, from v, or vg. For o € {+, —}
and §, € =, let 77 be the first time that 7, hits the closure of {,; or co if such time does
not exist. We see that 7¢ < heap,(§;) < oo. Let = = {({+,£-) € B4 xE_, dist(§4,§-) > 0}
For{ = (§4,-) € E let ¢ = (TE :T¢_). Let E* be the set of (1,{_) € = such that {;
and £_ are polygonal curves whose vertices have rational coordinates. Then =Z*isa
countable subset of = such that for every { = ({;,{_) € E there is ({},£") € E* such
that &, is enclosed by ¢, o € {+, —}. See Figure 4.

Lemma 4.3. For any { € E and R > 0, there is a constant C' > 0 depending only on
K, p,§, R, such that if [vy —v_| < R, then [log M| < C on [0, 7¢|.

Proof. Fix { = (£4,{-) € Zand R > 0. Suppose |vy —v_| < R. Throughout the
proof, a constant is a number that depends only on &, R; and a function defined on
[0, 7¢] is said to be uniformly bounded if its absolute value on [0, 7¢| is bounded above
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Figure 4: The figure above illustrates an element (¢,,¢_) € Z* and the corresponding
stopping times Tg; and 7. for the curves 7, and 7.

by a constant. By the definition of M, it suffices to prove that |log @
Yi#Ye e (Wi, W_, Vo, V4, V_}, |logWo n|, 0 € {+,—}, and |log V,, n
all uniformly bounded.

Let K¢, = Hull(&,), 0 € {+,—} and K¢ = K¢, UK, . Let I = (max({_ NR), min({, N
R)). Then |gk, ()] is a positive constant. By symmetry we assume that either vy € K¢
or vy € I and gk, (vo) is no more than the middle of gk, (I). So we may pick vj < vj € I

log Ey, v,
,ve{0,+,—}, are

’ ’

with vy < v§ such that |gr, (v3) — gx. (v3)] > |gx. (I)|/3. Let V§ be the force point function
started from vj, j = 1,2. By (3.14), V, > Wy > V2 > V! > Vo > W_ > V_ on [0, 7¢].

By Proposition 2.3, W, ;, W_ ; are uniformly bounded by 1. For ¢ € {+, :}, the
function (t4,t{_) — t, is bounded on [0, 7] by hcap,(K¢). For any ¢t € [0, 7], since
9Ke = 9K /K(t) © IK(b)» by Proposition 2.3 we get 0 < g’K;§ g’K(Q <1lon [vé,vg]. Since
Vi () = gxw(v), j = 1,2, we have [V (t) — V5 ()] = lgr, (v5) — gx (vo)| = lgxe (1)]/3.
So ﬁ is uniformly bounded, which then implies that | and are

|W(,—1W,(, |Wg—lv,(,\
uniformly bounded, o € {+, —}. From (3.22) we see that |log Q)| is uniformly bounded.
From (3.29,3.31) and the fact that W_, y|§ = V_, ~|] = 1, we see that |log W_, v| and
|log V_, n|, 0 € {+,—}, are uniformly bounded. We also know that ; is

e < vEeve
uniformly bounded. From (3.31) with » = 0 and o = + and the fact that VO,N‘E)"_ =1we
find that |log Vj | is uniformly bounded.

Now we estimate |log Ey, v,|. By (3.15), |V4 — V_| is uniformly bounded. Thus, for
any Y1 # Yy, € {W, W_ Vo,V ,V_}, |Y7 — Y| < |Vy — V_| is uniformly bounded. If
Yy € (W4, V. }and Yo € {W_,V_}, then IYlin\ < IVolivoz‘ is uniformly bounded. From
(3.32) we see that |log Fy, y,| is uniformly bounded. If Y7,Y> € {W_,,V_,} for some
o € {+,—}, then W j = 1,2, are uniformly bounded, and then the uniformly
boundedness of |log Ey, y,| follows from (3.33) and the fact that Ey, y,|J = 1. Finally,
we consider the case that Y; = Vy. If Yo € {W,,V,}, then |Y2iVD\ < \VoziVoll’ which
is uniformly bounded. We can again use (3.32) to get the uniformly boundedness of
|log Ev, v,|. If Yo € {W_,V_}, then |V0_1W+‘ and ‘Y2_1W+| are uniformly bounded. The
uniformly boundedness of |log Ey; v,| then follows from (3.33) with 0 = +, X =1},
Y = Y5, and the fact that Ey, v,|§ = 1. O

Corollary 4.4. For any § € =, M(- A\ 7¢) is an F-martingale closed by M (7¢) w.r.t. P
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Proof. This follows from (4.7), Lemma 4.3, and the same argument used to prove [25,
Corollary 3.2]. O

Lemma 4.5. Forany ¢ = ({4,¢-) € 2, P2 is absolutely continuous w.r.t. ]Piﬁ onFl, VFZ,
2 &1 &2
and the RN derivative is M (7¢).

Proof. Let § = (£4,£_) € E. The above corollary implies that EX M (7¢)] = M(0) = 1. So
we may define a new probability measure IP? by dP% = M (Té)dIPZ-B. -

Since M(t4,t_) = 1 when t;t_ = 0, from the above corollary we know that the
marginal laws of ]Pg agree with that of IPZ-E, which are IP% and P2. Suppose (@4, %)

follows the law IPf. :Fhen they satisfy Condition (A) in Section 4.1. Now we write 7 for

Ti , and 7 for 7¢. Let o_ < 7_ be an F~-stopping time. From Lemma 2.28 and Corollary
d]Péfqu,w,)

44, —5——
APEIF (e, o)

=M(ty AN7y,0-),0<t; < oco. From Girsanov’'s Theorem and (4.1,4.7),

we see that, under ]Pg, w, satisfies the following SDE up to 7, :

dt++ Z M_dt%

. 2
dy =/kdBT + kb Wez)|” Cdty + LES
bt W=Vl

Wilr Wy — W_

T

where Bf is a standard (F;, _)):, >0-Brownian motion under ]Pf. Using Lemma 3.12
and (3.27) we find that W, (-,0_) under IP? satisfies the following SDE up to 74 :

ae g 2W2
AWl 2 R,y dBT + — |

| dt+ (4.8)

W24 |
s S
ve{0,+, }W+ V

Note that the SDE (4.8) agrees with the SDE for W, (-,o_) if (n;+,7n_) is a commuting
pair of chordal SLE, (2, p) curves started from (w;v), where the speed is W, 1(-,0_)%.
There is a similar SDE for W_(o,) if o < 7, is an F*-stopping time. Thus, ]Pf agrees

with P2 on F}, Vv F2, , which implies the conclusion of the lemma. O
51 &2

Corollary 4.6. If T is an F-stopping time, then P2 is absolutely continuous w.r.t. ]Piﬁ
on Fr N{T € Dyisj}, and the RN derivative is M(T'). In other words, if A € Fr and
A CA{T € Dyisj}, then PL[A] = IE [1aM(T)].

Proof. Since {T' € Daisj} = Ugc=-{T < 7¢} and E* is countable, it suffices to prove the
statement with {T' < 7¢} in place of {T ¢ Dyisj} for every £ € Z*. Fix { = ({1,&-) €

Wewrltej’-',gfor}'+ VF_ . Let A e FrnN{l < ¢} Fixt = (ty,t _) € Q%. Let
Tet Te-
Ar = An{T <t < 7} ForeveryBJrE]-"tt and B_ € 7y, BiNB_N{t <7} €

F t VF~ = F¢. Using a monotone class argument, we conclude that 7, N{t < 7} € F¢.
7'5+ Tg, > = > >

Thus, 4; € FyN{t < 7¢} C F¢. Since A = UzeQi A;, we get A € F¢. By Lemma 4.5,

Proposition 2.28, and the martingale property of M (-A7¢), we get E2[A] = EX[14M (re)] =

Ef[14M (T A7e)] = EF[1L4M(T)]. .

Remark 4.7. We call the M a two-time-parameter local martingale. It plays the same
role as the M defined in [31, Formula (4.3)] and the M defined in [30, Formula (4.34)].
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4.3 SDE along a time curve up to intersection

Recall that (n4,n-) is a.s. a commuting pair of chordal Loewner curves with the time
region R?. Now assume that vy —vg = vg — v_. Let u = (u4,u_) : [0,7") — R? be the
function u developed in Section 3.4 for this random pair (1, ,7n_). By Lemma 3.22, a.s.
T" = co. By Proposition 3.24, u(t) is an (F;)-stopping time for each ¢t > 0. We then get
an R, -indexed filtration F* by F;' := Fy), t > 0. For { = ({1,£_) € E, let T denote the
first ¢ > 0 such that u; (t) = 7{, or us(t) = 72, whichever comes first. Note that such time
exists and is finite because (7-511 , 7-522) € D. The following proposition has the same form
as [25, Lemma 4.2], and its proof is also the same as the proof there.

Proposition 4.8. For every { € E, 7¢ is an F"-stopping time, and u(7') and u(t A 7'),
t > 0, are all F-stopping times. - - -

Assume that (@, w_) follows the law ]Piﬁ. This assumption will be used up to Lemma
4.10. Let n+ be the chordal Loewner curve driven by w.. Let Dy;sj be as before. Let
w7 . (t) and 07 (t) be the force point functions for 7, started from w_, and v, respectively,

—0

v €{0,+,—}, o € {+,—}. Define E(,, oe{+,-} by

~ . t 2d ! vd
\/EBa(t) = wa(t) - Wo 7/0 % - Z /0 #. (49)

e o B =)

Then §+ and B_ are independent standard Brownian motions. So we get five F-
martingales on Dyis: By (t4), B_(t_), By(t;)> —ty, B_(t_)2 —t_, and B (t;)B_(t_).
Fix § € Z. Using Propositions 2.28 and 3.24 and the fact that u. is uniformly bounded
above on [0, 7¢], we conclude that B(t A ), B(t A ) —ug(t AT), 0 € {+,~}, and
Ei(t A T;)EE (t A7) are all F*-martingales under IP?. Recall that for a function X
defined on D, we use X" to denote the function X ou defined on [0, 7). This rule applies
even if X depends only on ¢, or t_ (for example, B%(t) = B, (uy(t))); but does not apply
to Fv, T, T:{isj, 7-5“. Thus, the quadratic variation and covariation of Ejﬁ and B* satisfy

(BY); 2wy (t), (B“):Zu_(t), (BY,B);=0, (4.10)

up to 7¢'. By Corollary 4.4 and Proposition 2.28, M"(- A 7¢) is an F*-martingale. Let
T}; denote the first ¢ such that u(t) € Daisj. Since Ti;
is countable, we see that, T(isj is an F“-stopping time. We now compute the SDE for
M*" up to Tg{isj in terms of Ei and B*. Using (4.6) we may express M" as a product of
several factors, among which Efj; y , (W2 y), (Efi, v, )7/" 0 € {+, =}, v € {0, +, -},
contribute the local martingale part, and other factors are differentiable in ¢. For
o € {+,—}, since W, (ty,t_) = gKt_"(T(t,U)(’&}U(tU))' using (3.27) we get the F“-adapted
SDEs:

= suf)éeE T = SUPg ez~ 7¢', and 2

u u ~qu K w o/ 2( iL(T,l)Qul—a'
dWU = Wajldwo + (5 — 3) U,ngdt + W dt, (411)

Since W, y = W‘Zoﬂlg Wity ,t-)= Iicto o, (@s(to)), Wl|g is differentiable in t_,, and

g/Ki”(,(t_ﬁ) is differentiable in both ¢, and ¢_,, we get the SDE for (W;N)b:

d(Wu b e Wy N
((W(;]\I;f))b =b W;? VKkdBY + drift terms.

For the SDE for (Ey,, )5 note that when X = W, and Y = WW_, the numerators and
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denominators in (3.32) never vanish. So using (4.11) we get

2 [ o1 1 ] ~ .
=z = — — VKkdBY + drift terms.
B )7~ 7, 2 W=, ~ G5 =7,

Note that Ej, . (t) equals f(u(t), Wy (t), (v7)"(¢)) times a differential function in u_,(t),

o v

where f(-,-,-) is given by (4.4). Using (4.11) we get the SDE for (E%,‘vay)pT":

d(EY, )% we 1 ~

(B, v, )py ae pl[ ol _ VkdB! + drift terms.

(B, v,)* s LW =V wg = (0p)"

Here if at any time ¢, (v7)"(t) = W%(¢), then the function inside the square brackets is

%%’728 which is the limit of the function as (v7)“(t) — wW%(t).
o,1

Combining the above displayed formulas and using the fact that M* and Ei are all

understood as

F*-local martingales under IPZ-B, we get

dM ae Wg2 01_11 1
5 ol el ot
TS [“ N VT R T N T A
oe{+,—} ’
W, 1 dB"
+ Z pu|: u : u u o u]:| = (412)
vefomy oV wp— @)l Ve

From Corollary 4.6 and Proposition 4.8 we know that, for any £ € = and ¢ > 0,

dIPﬁ|.7:£(t/\T£)

———— = M"(tAT). (4.13)
dPﬁ}L(mT&u) S
We will use a Girsanov’s argument to derive the SDEs for @ and @ up to T, under
P2
For o € {+,—}, define a process B%(t) such that B“(t) = 0 and
~ ~ Wi, 2WE, 2
dBY =dBy — kb2 4 [ - ]
7 ’ {H Wgp  LWg =W, wg — (02,)"
PeWaa Py } uy (1)
+ Z w : uw  u oo u} y dt. (4.14)
ve{0,+,—} Wo’ - VV Wo — (UV) \/E

Lemma 4.9. Forany o € {+,-} and { € E,
depending only on k, p,w, v, §.

1

BY| is bounded on [0,7¢] by a constant

Proof. Throughout the proof, a positive number that depends only on «, p, w, v, { is called
a constant. By Proposition 2.4, V, and V_ are bounded in absolute value by a constant
on [0, 7], and so are Wy, V,, W_ because V, > W, > Vy > W_ > V_. It is clear

that BY(t) = U(us(t)e,) — U(0), o € {+,—}, where U := W, + W_ + 2vefot -y F Vo

Thus, BY, ¢ € {+,—}, are bounded in absolute value by a constant on [0,7¢]. By

(3.15) and that V{(t) — V¥(t) = e*(vy —v_) for 0 < t < T, we know that e <
4diam(§y U U v—,v4])/Jvy — v_|. This means that 7' is bounded above by a constant.
Since u[0, 7] C [0, 7¢], it remains to show that, for o € {+,-}.

Wa‘,2 W(T,l 1 WO 1

1
3 - = —~, ) ” = ~ S Oa +7 I S)
Wi W, —W_, Wy —w? We -V, wW,—79 { }
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are all bounded in absolute value on [0, 7¢] by a constant.

—0 -
Wo 1 1
, the boundedness of 3—f— — F—or, on [0, T¢]

1 _ Wo 1
Because Toma, — Wa-Wos|,

o,1

simply follows from the boundedness of W
and that |W, — W_,| is bounded from below on [0, 7¢] by a positive constant, where the

latter bound was given in the proof of Lemma 4.3.
Wo‘,2

, which in turn follows from 0 < W, ; <1

For the boundedness of 3 - on [0, Té], we assume o = + by symmetry. Since
Wy ity to) = 9§3+(t )(13+(t+)), j=1,2, and K'*(-) are chordal Loewner hulls driven

by W_(t4,-) with speed W_ 1(t4,-)?, by differentiating 9/1/<t+(t_)/glz<t+ “ at wy (t4) w.rt.

)
t_, we get

Wi a(ty,t-) /t AW2 W, s
Wialte,to)  Joo (We =W, oy

From the facts that 0 < W, ;,W_; <1 and that |IW, — W_| is bounded from below by a

constant on [0, 7¢|, we get the boundedness of VVE?
For the boundedness of WVZ"_’{,V — ﬁ we assume by symmetry that o = +. By
differentiating w.r.t. t_ and using (3.20,3.21), we get
W+71(t+, t,) _ 1 - /t 2WE)1W+)1 s
Wilte to) =Volteto)  wp(ty) =05 (ty)  Jo We=Wo)2(V —Wo)|,

Since0 < Wy <1,

W —W_|is bounded from below by a constant on [0, 7¢], and V,, —W_

2
does not change sign (but could be 0), it suffices to show that ] fO* %\(t+7s_) ds‘ is
bounded by a constant on [0, 7¢]. This holds because the integral equals V, (¢4,t-) —
V. (t+,0) by (3.20), and |V, | is bounded by a constant on [0, 7¢]. O

Lemma 4.10. There is a stopped planar Brownian motion B(t) = (B4 (t),B_(t)),0 <t <
T3 under P2 such that, for o € {+,—}, w¥ satisfies the SDE

(o2

we, T Wwe —we 2 We —Vu
ag, a a y€{07+7_} a

g

Wso 2W5a PWsia }

A 2 /i, dB, + kb whdt, 0<t< Tl

Here by saying that (B (t), B-(t)), 0 <t < Tg,, is a stopped planar Brownian motion,
we mean that B, (t) and B_(t), 0 < t < Tg, are local martingales with d(B,); = t,
(S {+7 *}, d<B+,B_>t == 0, 0 S t < T(‘?{ls]
Proof. For o € {+,—}, define é}; using (4.14). By (4.12), E};(t)M“(t), 0<t<Tg
F“-local martingale under IP?. By Lemmas 4.3 and 4.9, forany £ € £, BY(- ATE)MU(-ATE)

is an

is an F“-martingale under IPZ-E. Since this process is (]—"H(. /\Tsu))-adapted, and Fy; Az C
Fury = Fi', it is also an (]—'E(_Mg))-martingale. From (4.13) we see that B¥(- A Tg) is an
(Fu(- Mg))—martingale under P2. Then we see that B¥(- A 75“) is an F“-martingale under
P2 since for any ¢t > t; > 0and A € F! = Fy,), AN{t1 < Tg} C fg(tlwg")f and on the
event {t; > Tg} BY(t; A Tg) = BY(ta A Tg) Since T
o€ {+, —} BYt), 0 <t < T,

From (4.10) and that for any £ € Z* and t > 0, P2 < P% on Fu(tnry), We know
that, under P2, (4.10) holds up to 7¢'. Since T(’fisj
differentiable, (4.10) holds for Ei aI:.d EE under P2 up to Té‘isj. Since Ej‘r and EE
up to T&‘isj are local martingales under P2, the (4.10) for BY implies that there exists

= Supgez- 7¢', We see that, for

is an F“-local martingale under P2,

= Supgez- ¢, and BY — BY are
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a stopped planar Brownian motion (B4 (t), B_(t)), 0 < t < T, under P2, such that

dB“ = /ul(t)dB,(t), o € {+,—}. Combining this fact with (4.9) and (4.14), we then
complete the proof O

From now on, we work under the probability measure IP2. Combining Lemma 4.10
with (4.11) and (3.20), we get an SDE for W} — V{/* up to Tgisj:

ae pl/( u )QUZI 2( | (1;1)211’/0'
AWy — V) =Wy dB, + dt + : dt
( 7 K/u VE{OZ+ _} : IZJI (;L'L [[EO'

2( u )2ul 2( u )2ul 2( u )2ul

—o,1 o,1 o —o,l —0
Z dt ! dt : dt.
we—we, W vy O T, vy
Recall that R, = vZ Yo' £ 10,1], o € {+,—}, and V¥ — V¥ = ge> I, where I = v, —vo| =

|v— — vp|. Combining the above SDE with (3.36) and using the continuity of R, and the
positiveness of R + R_ (because W} > W*), we find that R,, o € {+, —}, satisfy the
following SDE up to T:

KR,(1=R3) 24 p0) = (Pr = p-o)Ro = (ps +p- + po +6)F

dR, =
Ry +R_ Ry +R_

(4.15)

4.4 SDE in the whole lifespan
We are going to prove the following theorem in this subsection.

Theorem 4.11. Under P2, R, and R_ satisfy (4.15) throughout R, for a pair of inde-
pendent Brownian motions By and B_.

Remark 4.12. Theorem 4.11 gives the SDE for the two-dimensional diffusion process
(R) in its whole lifespan. In the next subsection, we will use this SDE to derive the
transition density of (R).

Lemma 4.13. Suppose that R, and R_ are [0,1]-valued semimartingales satisfying
(4.15) for a stopped planar Brownian motion (B, B_) up to some stopping time 7. Then
on the event {1 < oo}, a.s. limy, R4 (t) exists and equals a finite number other than 0.

Proof. Let X = Ry —R_andY =1—-R,R_. Then |X| <Y < 1because Y £ X =
(1+R{)(1FR-)>0.By(4.15), X and Y satisfy the following SDEs up to 7:

dX = dMx — [(p+ +p— + po +6)X + (ps — p_))dt, (4.16)

dY = dMy — [(p+ + p— + po + 6)Y — (p+ + p— + 4)]dt, (4.17)

where Mx and My are local martingales whose quadratic variation and covariation
satisfy the following equations up to 7:

d(Mx) = k(Y — X?)dt, d{Mx,My)=r(X — XY)dt, d{My)=r(Y —Y?)dt. (4.18)

By (4.18), (Mx)., (My), < k7, which implies that lim;;, Mx (¢) and limy, My (¢) a.s.
converge on the event {7 < oo}. By (4.16,4.17), limy4, (X (¢t) — Mx (¢)) and lim4, (Y (t) —
My (t)) a.s. converge on the event {7 < oco}. Combining these results, we see that,
on the event {7 < oo}, limy, X (¢) and lim, Y'(¢) a.s. converge, which implies the a.s.
convergence of lim;y, Ry (t).

Since (Ry(t),R_(t)) — (0,0) iff (X(¢),Y(¢t)) — (0,1). It suffices to show that,
(X(t),Y(t)) does not converge to (0,1) as ¢t T 7. Since (X,Y’) is Markov, it suffices
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to show that, if Y/(0) # 0, and if T' = 7 A inf{t : Y'(¢) = 0}, then (X (¢), Y (¢)) does not con-
verge to (0,1) as ¢ 1 T. Since Y # 0 on [0,7), we may define a process Z = X/Y € [-1,1]
on [0,7). Now it suffices to show that (Z(¢),Y (¢)) does not converge to (0,1) as ¢ 1 7T.
From (4.16-4.18) and It6’s calculation, we see that there is a stopped planar Brownian
motion (Bz(t), By (t)), 0 <t < T, such that Z and Y satisfy the following SDEs on [0, T):

K(1=22) p  (petp-+4)Z+ (pr —p-)
Y 7 Y
Y = /kY(1 = Y)dBy — [(p1 + p— + po +6)Y — (py + p_ + 4)]dt.

Let v(t) = [y /Y (s)ds, 0 <t < T, and T = sup 0, T). Let Z(t) = Z(v~"(t)) and Y (¢) =

Y(v‘l( ), 0<t< T. Then there is a stopped planar Brownian motion (Bz(t), By (1)),
0 <t < T, such that Z and Y satisfy the following SDEs on [0, T):

dZ =\/1— Z2dBy — (azZ + byz)dt,

dY =Y\/1=YdBy — Y(ay(Y — 1) + by )dt,
where ayz = (p+ + p— +4)/k, bz = (p+ — p—) /K, by = (po + 2)/k, ay = az + by.
— arcsin(Z) € [— — Jog(HV 1Y 7(t),Y
Let © = arcsin(Z) € [—n/2,7/2] and P 1og(1_m) € Ry. Then (Z(t),Y(t)) —

(0,1) iff O(£)2 4+ ®(t)2 — 0, and © and P satisfy the following SDEs on [0,7):

dzZ = dt;

~ 1
d® =dBy — (az — §)tan Odt — by sec Odt;

- 1
d® = —dBy + (by — 1) cothy(®)dt + (% — ay ) tanhy (P)dt.

Here tanhs := tanh(-/2) and cothy := coth(-/2). So for some 1-dimensional Brownian
motion Bg ¢, ©% + ®? satisfies the SDE

1
d(©% + ®?) = 21/02 + ®2dBe ¢ + 2dt + (2by — 5)® coths (®)dt

+(g — 2ay)O tanhy (P)dt — (2az — 1)O tan Odt — 2bz sec Odt.

From the power series expansions of coths, tanhs, tan, sec at 0, we see that when ©2+®2 is
close to 0, it behaves like a squared Bessel process of dimension 4by +1 = %(p0+2)+1 >2

because pg > 4§ — 2. Thus, a.s. lim, 7 O(t)* + ®(t)* # 0, as desired. O

Remark 4.14. The assumption pg > § — 2 is used in the last line of the above proof.

Lemma 4.15. For every N > 0 and L > 2, there is C' > 0 depending only on k, p, N, L
such that for any vy € [(—1)*,17], v; € [11,00) and v_ € (—o0, (—1)"] with vy —v_| < L,
if (n4,n-) is a commuting pair of chordal SLE,;(2, p) curves started from (1, —1; vy, v4,v_),
then for any y € (0, N], P[E,(y) N E_(y)] > C, where for o € {+,—}, E,(y) is the event
that 1, reaches {Im z = y} before {Rez =03} U{Rez =03}

Proof. In this proof, a constant depends only on &, p, N, L. Since E.(y) is decreasing in y,
it suffices to prove that P[E, (N) N E_(N)] is bounded from below by a positive constant.
By [14, Lemma 2.4], there is a constant C' > 0 such that P[E,(N)] > C for o € {+,—}.
Thus, if (n’.,n" ) is an independent coupling of 7, and 7_, then the events Ei(N ) for
(0., 1) satisfy that P[E',(N) N E"(N)] > C%. Let &, = HNd{z +iy: [z — ol < 1,0 <
y < N}, 0 € {+,—}. Since the law of (n;,n_) restricted to ]—'ﬁ VF s absolutely
Te Te_
continuous w.r.t. that of (n’_,7_) (Lemma 4.5), and the logarithm gf the Radon-Nikodym
derivative is bounded in absolute value by a constant (Lemma 4.3), we get the desired

lower bound for P[E, (N)N E_(N)]. O
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Corollary 4.16. For any r € (0,1], there is § > 0 depending only on k, p,r such that the
following holds. Suppose w; > w_ € R, vy € [w,wi], vy € [wl,0), v_ € (—o0, w ]
satisfy [vy —vo| = |v— —wo| and |wy —w_| > rlvy —v_|. Let (ny,n—) be a commuting pair
of chordal SLE, (2, p) curves started from (w4, w_;vo,v4,v_). Let £ = (£4+,&_), where
e =HNHz+iy: |z —w,| < |wy —w_|/4,0 <y <oy —v_|}, 0 € {+, -} Let 7¢* be
as defined in Section 4.3. Then IP[ > 1] >9. -

Proof. Let E denote the event that for both ¢ € {+,—}, 7, hits &, at its top for the
first time. Suppose that F happens. By the definition of us for one of 0 € {+,-},

the imaginary part of 7, (uq (7)) is €*[vy — v_|. So rad,, (UUTO,UU(T;)]) > vy —v_|.
By (3.35) we then get 7 > 1. Thus, P[r# > 1] > P[E], which by Lemma 4.15 and
scaling is bounded from below by a positive constant depending only on x, p,T whenever

lvg —v-| < fwy —w_|/r. 0

Proof of Theorem 4.11. We have known that (4.15) holds up to 7§; ;. We will combine it
with the DMP of commuting pairs of chordal SLE, (2, p) curves (Lemma 4.1).

Let n} = n+. Let G° be the trivial o-algebra. We will inductively define the following
random objects. Let n = 1. We have the c-algebra "' and the pair ("~ L=,
whose law conditionally on G"~! is that of a commuting pair of chordal SLE, (2, B) curves.
Let K"~ m" 1 W21 V7~ V™!, be respectively the hull function, capacity function,
driving functions and force point functions. Let Dglsjl and Z"! be respectively the
Dyisj and = defined for the pair. Let 7"~ ! be the R?-indexed filtration defined by
]-'Z;t )= =o(G" 0 o0 € {+.—}). Let u"~* be the time curve for (nifl,nﬁfl) as
defined in Section 3.4, which exits for n = 1 because we assume that |v; — vg| = |vg —v_|.

Let {"™ ! be the ¢ obtained from applying Corollary 4.16 to w+ = WZ _1(7) and

vy = Vi~ (7) Then it is a G* !-measurable random element in ="~ !. Let Tgnn L

be the random time 7' introduced in Section 4.3 for the (1!~ Lp™ 1) and §"‘1 here.
Let "' = (777, 7" = @"—1(7-;111’“). Then 777! is a finite 7" '-stopping time

that lies in Dglsjl. Let G" = .7-""; L. We then obtain by Lemma 4.1 a random com-
mutlng pa1r of chordal Loewner curves (%, n™) with some speeds, which is the part
of (n}~',n"~") after 7! up to a conformal map, and the normalization of (77%,7"),
denoted by (n',n"), conditionally on G", is a commuting pair of chordal SLE(2, p)
curve started from (Wf‘l,Wi‘_l; VO”_l, V]:_l, Vil n—1. If for some o € {+,—} and
v e {0,+,—}, Vrl(z"1) = Wr—l(z"~1), then as a force point, V,*~!(r"1) is treated

s (Wp—Y(zn—1))sien(vv=ws) . By the assumption of u"~!, we have [V]™' — V5! =
|V_" ' — vy~ at "', So we may increase n by 1 and repeat the above construc-
tion.

Iterating the above procedure, we obtain two sequences of pairs (1% ,7"), n > 0, and
(7, 7™), n > 1. They satisfy that for any n e NN, (n},n") is the normalization of (7%, 7"),
and (7%,7n") is the part of (1~ 1 n"~1) after 77! up to a conformal map. Let ¢ be
the speed of 7}, and ¢} (t4,t_) = (¢7(t4),¢" (t—)). By Lemma 3.16, for any n € IN and
Z e Wy, W_ Vo, Vi, Vo), Z" = Z" o ¢ and 2" = Z"~ (1! + ).

Recall that, for n > 0, u” is characterized by the property that

[VE (" (1) = V5" (u"(1))] = e*|VE(0) = V5 (0)], ¢>0.
So we get u" = (;5%(@”_1(7':;11 + ) — w2 Ten- 1)) which then implies that Z7~! o
gnfl(Tgn__ll +:) = Z"ou", Z € {Wi, W_,V,,V4,V_}. Let R} be the Ry defined in

Section 4.3 for (n%,n™). Then we have lel(T;: +:) =R} LetT" = Z;L;Ol ng,
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n > 0. Since Ry = RY, we get Ry (T" + ) = R%?. For n > 0, since condition-
ally on G, (n%,n™) has the law of a commuting pair of chordal SLE(2,p) curves
started from (W}, W™ V", V', V")|o, by the previous subsection, there is a stopped
two-dimensional Brownian motion (B,B") w.r.t. .7-";,1(.) such that R} and R” sat-
isfy the F,. ,-adapted SDE (4.15) with (B, B") in place of (B4, B-) up to 7¢.. Let
T = limy, oo T = Z;’;O ng, and define a continuous processes By on [0,7°°) such
that By (t) — B+ (T") = B™(t — T") for each t € [T",T""!] and n > 0. Then (B4, B_) isa
stopped two-dimensional Brownian motion, and Ry and R_ satisfy (4.15) up to 7°°. It
remains to show that a.s. T = co.

Suppose it does not hold that a.s. 7> = co. By Lemma 4.13, there is an event E with
positive probability and a number r € (0, 1] such that on the event F, R, + R_ > 2r
on [0.7%). Forn > 0, let E, = {{W2(0) - W'(Q)| > r[V}(0) — V2(O)[} = {R}(0) +
R™(0) > 2r}, which is G"-measurable. Since R} = R.(T" + ), we get E C (| E,. Let
A, = {Tg’n > 1}. By Corollary 4.16, there is 6 > 0 depending only on &, p, r such that for

n >0, P[A,|G", Ey] > 0. Since E C {>_, 7§ < oo}, we get £ C liminf(E™ N A5,). For any
m>n €N, N

P[() (Bx N A7) = E[P[[) (Bx N A)IG™]] < (1 - 6)P| ﬁ (Ex N Ap)]-
k=n k=n k=n

So we get P[N,—,, (Ex N A¢)] < (1 —6)" ™", which implies that P[,—, (Ex N Af)] =0
for every n € IN, and so P[E] = 0. This contradiction completes the proof. O

Corollary 4.17. Almost surely the path (R, (t), R_(t)), t € R, avoids (0,0).

Proof. Let 7 be the first ¢ such that (R (t), R_(t)) = (0,0), if such ¢ exists; and be co if
otherwise. Then 7 is a stopping time, and on the event {7 < oo}, limy, Ry (¢) = 0. By
Lemma 4.13, such event has probability zero. O

4.5 Transition density

In this subsection, we are going to use orthogonal polynomials to derive the transition
density of R(t) = (Ry(t), R_(t)), t > 0, against the Lebesgue measure restricted to
[0,1]2. A similar approach was first used in [28, Appendix B] to calculate the transition
density of radial Bessel processes, where one-variable orthogonal polynomials were
used. Two-variable orthogonal polynomials were used in [25, Section 5] to calculate
the transition density of a two-dimensional diffusion process. Here we will use another
family of two-variable orthogonal polynomials to calculate the transition density of the
(R) here. In addition, we are going to derive the invariant density of (R), and estimate
the convergence of the transition density to the invariant density.

Llet X =Ry —R_andY =1—- R;R_. Since R, and R_ satisfy (4.15) throughout
R,, X and Y then satisfy (4.16,4.17,4.18) throughout R;. Moreover, by Corollary 4.17,
a.s. (X,Y) e A\{(0,1)}, where A = {(x,y) € R?: 0 < |z| < y < 1}. We will first find the
transition density of (X (¢),Y(¢)). Assume that the transition density p(¢, (z,y), («*,y*))
exists, and is smooth in (z,y), then it should satisfy the Kolmogorov’s backward equation:

—Op+Lp =0, (4.19)
where L is the second order differential operator defined by

£ =5y =202 + k(1= y)0:0, + 5y(1 = 9)9;

—[(p+ +p=+po+6)z+ (py — p-)|0z — [(p+ + p— + po + 6)y — (p+ + p— +4)]0y.
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We perform a change of coordinate (x,y) — (r,h) by x = rh and y = h at y # 0. Direct
calculation shows that

0r = hdy, O =10, +0,, 02=h02, OF =102 +2r0,0,+02, 8,0, = rhd?+hd,0,.

Define
2
(pe+2)—1, B=as+a_+1;

2
040=;(p0+2)—17 ot =—
L =1 =07 —[(ar +a- +2)r + (s — )]y

LM = h(1 =13} — [(ao + B+ 2)h — (8 + 1)]0h.

Then in the (r, h)-coordinate, £ = 5[£" + 1 £()]. Let
An=-n(n+ao+B+1), A =-nn+p), n>0.
Direct calculation shows that
™ + %Amh" = h"L™ — 2n(h — 1)0, + A, (4.20)

where each h™ in the formula is understood as a multiplication by the n-th power of h.
From (2.6) we know that Jacobi polynomials P,(LO‘*’Q’)(T), n > 0, satisfy that

LU pleto=) (r) = AP Pl (r), 0> 0; (4.21)
and the functions £y, ™’ — 1), m > 0, satisfy that
d the functions P{""# 2" (2, — 1 0, satisfy th

(LM —2n(h — 1)), 4 M) PL0B+H2) (28 — 1) = N, 1, PL0BT20(9h — 1) m > 0. (4.22)

For n > 0, define a homogeneous two-variable polynomial QS{J“*’Q‘)(JC, y) of degree

n such that Q\*+*~) (z,y) = y" P{***~)(x/y) if y # 0. It has nonzero coefficient for z".
For every pair of integers n, m > 0, define a two-variable polynomial v,, ., (x, y) of degree
n + m by

'Un,m(xa y) = Py(nao,ﬁ+2n)(2y - 1)Q£La+,a7)(l'7 y)

Then v, ., is also a polynomial in r, h with the expression:

Upm (1, B) = AT P02 (9h 1) plasas)(p), (4.23)

m

By (4.20,4.21,4.22), on R2 \ {y # 0},
2 Lomm = 21e® 4 Ly, 120 4 Laegn ploo.sten (g 1y ploac) ()
K n,m K h n,m h n m n

= WP [LW — 2n(h = 1)8), + A (PL0BH2) (2h — 1) PH2) (1)) = Nyt V.-

m
Since vy, ,, is a polynomial in z,y, by continuity the above equation holds throughout
R2. Thus, for every n,m > 0, v, n(z,y)e2?+mt solves (4.19), and the same is true
for any linear combination of such functions. From (4.23) we get an upper bound of

[Vn,mlleo = SUP(z,y)eA [Un,m (2, )2
[vn,m oo < ||P1gna0’5+2n)HOOHP75,OC+’OL7)||OO7 (4.24)

where the supernorm of the Jacobi polynomials are taken on [—1,1] as in (2.7,2.8).
Since P**"*~)(r), n > 0, are mutually orthogonal w.r.t. ¥(+:%=)(7), and for any fixed

n > 0, PP 9p 1), m > 0, are mutually orthogonal w.r.t. the weight function
Pleo.f+2n)(2p — 1) = 200+6+2n7 4y (h)(1 — h)*°h?+2", using a change of coordinates
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we conclude that v, ,,(x,y), n,m € INU {0}, are mutually orthogonal w.r.t. the weight
function

U(z,y) == 1a(@,y)(y — ) (y + )% (1 —y)*.

Moreover, we have

[nmlfy = 27O PSS P Ry (425)

Let f(z,y) be a polynomial in two variables. Then f can be expressed by a linear
combination f(z,y) = > 0" o> 0C_( apmUnm(,y), Where aym = (f,0mm))w/||VnmlF
are zero for all but finitely many (n,m). In fact, every polynomial in z,y of degree < k
can be expressed as a linear combination of v,, ,, with n +m < k. In fact, the number of

such vy, o, is W Define

(¥
F@) =3 dnmtnmaei oot = 30 S0 L et

n=0m=0 n=0m=0 anmH\p

Then f(t,(x,y)) solves (4.19). Let (X(¢), Y (¢)) be a diffusion process in A, which solves
(4.16,4.17,4.18) with initial value (z,y). Fix ¢, > 0 and define M, = f(to — ¢, (X (¢),Y (¢¥))),
0 <t <tgy. By Ito’s formula, M is a bounded martingale, which implies that

E[f(X(to), Y (t0))] = E[My,] = Mo = f(to, (z,y))

= Z Z // f ’y 7:lfaﬁ)’un,,rn(w Y )UT;,m($7y) '6%)\"+mt0d$*d’y*. (4.26)

n=0m=0 ”v”vm”\I/

Fort >0, (z,y) € A, and (z*,y*) € A, define

pe((x,y), (2%, y%)) = U(z*,y* Z Z U (8 W) onm @ YT) gt (4.27)

[|vn, m“\l/

Let poo (z*, %) = 1a(z*, y*)¥(2*,y*)/|[1]|3. Note that Ay = 0 and vo = 1 since P{*F =
Py =1. S0 poo(z*, y*) corresponds to the first term in the series.

Lemma 4.18. (i) For any ty > 0, the series in (4.27) (without the factor ¥(x*,y*))
converges uniformly on [ty,00) x A x A. (ii) There is Cy, € (0,00) depending only on
K, p, to such that for any (z,y) € A and (z*,y*) € A,

(2, 9), (@, y")) = Poo(@™,y")| < Crpe” CHTP=FPF O (2% %)t > 1o, (4.28)

(iii) For any t > 0 and (z*,y*) € A,

y) = / /A Pool, )pe((, ), (&, ) dady. (4.29)

Proof. The statements (i) and (ii) both follow from Stirling’s formula, (4.24,4.25,2.5,2.8),
and the facts that 0 > Ay = —2(p4 + p— + po + 6) > A, for any n > 1 and A, < —n? for
big n. The statement (iii) follows from the statement (i) and the orthogonality of vy, »,
w.rt. (-, ). O

Lemma 4.19. The process (X(t),Y (t)) has a transition density p;((z,y), (z*,y*)) and an
invariant density p.o(x*,y*).
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Proof. Fix (z,y) € A\ {(0,1)}. Let (X (t),Y(t)) satisfy (4.16,4.17,4.18) with initial value
(x,y). It suffices to show that, for any continuous function f on A, we have

E[f (X (to), Y (t0))] = / /A pro (@), (&, y")) f (& ") de"dy". (4.30)

By Stone-Weierstrass theorem, f can be approximated by a polynomial in two variables
uniformly on A. Thus, it suffices to show that (4.30) holds whenever f is a polynomial in
x,y, which follows immediately from (4.26). The statement on p..(z*, y*) follows from
(4.29). O

Since X = Ry — R_,Y =1—- R, R_, and the Jacobian of the transformation is
—(R4+ + R_), we arrive at the following statement.

Corollary 4.20. The process (R(t)) has a transition density:
pf(z,[*) =pe((ry —r— 1 —ryro), (P —r2, L—rir?)) - (rL +17),

and an invariant density: p% (r*) := poo(r —r*,1—r%r*) - (r} +r*); and for any t, > 0,
there is Cy, € (0,00) depending only on k, p, and ty such that for any r € [0, 1] and
r* € (0,1)2,

(e, %) = pE (") < Cppe™PrHP= Pt OR (), 1 > 1o,

5 Commuting pairs of hSLE curves

In this section, we study three commuting pairs of hSLE, curves. Each commuting
pair corresponds to one case in Theorem 1.1, and the section will be split into a subsection
for each. It turns out that each commuting pair is “locally” absolutely continuous w.r.t. a
commuting pair of chordal SLE, (2, p) curves for some suitable force values. So the results
in the previous section can be applied here. Fix x € (0,8) and v_ < w_ < wy < vy € R.
We write w = (wy,w_) and v = (vy,v_). For p = (p1, p_) that satisfies the conditions
in Section 4.1, let P, denote the law of the driving functions of a commuting pair of
choral SLE. (2, p) curves started from (w;v).

5.1 Two curves in a 2-SLE,

Suppose that (7)4,7-) is a 2-SLE,; in H with link pattern (w; — vy ;w_ — v_). By [23,
Proposition 6.10], for o € {+,—}, 7, is an hSLE,; curve in H from w, to v, with force
points w_, and v_,. Stopping 7, at the first time ¢, denoted by 7,, such that 7,0, ¢]
disconnects oo from any of its force points, and parametrizing the stopped curve by
H-capacity, we get a chordal Loewner curve 7,(t), 0 < t < T,, which is an hSLE, curve
in the chordal coordinate. Let W, and K, (-) be respectively the chordal Loewner driving
function and hulls for 7,; and let 77 be the filtration generated by 7n,. Let F be the
separable Ri-indexed filtration generated by F* and F .

For o € {+,—}, if 7_, is an F~“-stopping time, then conditionally on 7, and the
event {7_, < T_,}, the whole 7, and the part of 7_, after n(7_,) together form a 2-
SLE, in H\ K_,(7_,) with link pattern (wy, — v;7—o(7—s) — v_s). This in particular
implies that the conditional law of 7, is that of an hSLE, curve from w, to v, in
H\ K_,(r_,) with force points n_,(7_,) and v_,. Since fx__(,_, ) maps I conformally
onto H\ K_,(7_,), and sends &_,(7_5), 9x_,(r_,)(ws) and gx__(-__y(v,), v € {+,—},
respectively to 7_,(7_,), w, and v,, v € {4+, —}, we see that there a.s. exists a chordal
Loewner curve 7, ° with some speed such that i, = f K_,(r_o)°No,r_,, and the conditional
law of the normalization of 7, ,_, given F_° is that of an hSLE, curve in H from
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9K _,(r_o)(Ws) t0 gx__(r_,)(vs) With force points W_,(7_,) and gx__(r_,)(v—), in the
chordal coordinate.

Thus, (n4+,7n-) a.s. satisfies the conditions in Definition 3.2 with I, = [0,7}), Z = Z, N
Q, 0 € {+,—}, and D, := 7, xZ_. By discarding a null event, we assume that (ny,n—; D)
is always a commuting pair of chordal Loewner curves, and call (n;,n—;D;) a commuting
pair of hSLE,, curves in the chordal coordinate started from (w; v). We adopt the functions
from Section 3. Define a function M; on D; by My = G;(W,,W_;V,,V_), where G, is
given by (1.2). Since F is continuous and positive on [0, 1], V_| for
o,v € {+,—}, and % -1, % > 0, there is a constant C' > 0 depending only on x such that

M, <C|Vy —V_|%1 min {|W — VRl < OV, — VPG, (5.1)
oef

Note that M; > 0 on D because |W, — V,| > 0, 0 € {+,—}, on D. We will prove that
M, extends to an F-martingale on R2, and the extended martingale plays the role of
a Radon-Nikodym derivative between two measures. We first need some deterministic
properties of M.

Lemma 5.1. M, a.s. extends continuously to Ri with M, =0 on IREr \ D;.

Proof. 1t suffices to show that for ¢ € {+,-}, as t, T T,, M1 — 0 uniformly in¢t_, €
[0,7T_,). By symmetry, we may assume that ¢ = +. Since the union of (the whole) 7,
and 7_ is bounded, by (3.15) |V — V_| is bounded (by random numbers) on D;. For a
fixedt_ € [0,7-), as t4 T T4, n+(t4) tends to either some point on [v4,c0) or some point
on (—oo,v_). By (5.1), it suffices to show that when 7, terminates at [v,00) (resp. at
(—o0,v_)), Wy =V — 0 (resp. W_ —V_ — 0) as t4 T T4, uniformly in [0,7_).

For any t = (t4,t_) € Dy, neither , [0,¢,] nor _[0,¢_] hit (—oo,v_] U [v, 00), which
implies that vy,v_ ¢ K(t) and Vi(t) = gx)(v+). Suppose that 7, terminates at zo €
[v4,00). Since SLE,, is not boundary-filling for « € (0, 8), we know that dist(zg,n_) > 0.
Let r = min{|wy — v |, dist(zg,7-)} > 0. Fix € € (0,r). Since x¢ = limyr, 74 (t), there is
d > 0 such that |4 (t) —xo| <efort e (T4 —§,T4). Fixt, € (T4 —0,T4+) and t_ € [0,T-).
Let J be the connected component of {|z — zg| = ¢} N (H \ K(¢)) whose closure contains
zo + €. Then J disconnects vy and n4 (¢4, 74) N (H\ K(¢)) from oo in H\ K(¢). Thus,
gr ) (J) disconnects V, (t) and W, (t) from oco. Since 7y Un_ is bounded, there is a
(random) R € (0,00) such that n, Un_ C {|]z — zo| < R}. Let £ = {|z — z9| = 2R} N H.
By comparison principle, the extremal length ([1]) of the family of curves in H \ K ()
that separate J from ¢ is < m. By conformal invariance, the extremal length of
the family of curves in H that separate g ) (J) from g4 (§) is also < oz R/ -
9x ) (§) and gx4)(J) are crosscuts of I such that the former encloses the latter. Let D
denote the subdomain of IH bounded by g ;) (§). From Proposition 2.4 we know that
D C {|z — o] < 5R}. So the Euclidean area of D is less than 137 R?. By the definition
of extremal length, there is a curve v in D that separates gx ) (J) from gg ) (§) with

Now

Euclidean distance less than 2, /137 R? x 7 < 8TR * log(R/e)~1/2. Since gg (1 (J)

disconnects V, (t) and W, (¢) from oo, v also separates V, (t) and W, (¢) from co. Thus,
Wi (t) — Vi (t)] < 87R *log(R/e)"Y?ift, € (T, —6,T,) and t_ € [0,T_). This proves

the uniform convergence of lim; 47, [Wy — V| = 0in t_ € [0,7_) in the case that
limy , 17, 14 (t+) € [v4,00). The proof of the uniform convergence of lim; 47, |[W_ —V_| =
0in¢_ € [0,7_) in the case that lim;, 47, n4(t1) € (—00,v_) is similar. O

From now on, we extend M; to Ri using Lemma 5.1. It is then a continuous
stochastic process defined on R? with constant value zero on R% \ D;. For o € {+,—}
and R > vy —v_|/2, let 7§, be the first time that |1, (t) — (v4+ +v_)/2| = R if such time
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exists; otherwise 7§ = T,,. Let T = (17,75 ). Note that 774, 7 < m(ry) < R?/2 because

K(rgp)c{z€H: |z — (vy +v_-)/2| < R}.

Lemma 5.2. For every R > 0, M;(- ATy) is an R -indexed martingale w.r.t. the filtration

(FF VF iy +_)erz closed by M, (rg). Moreover, if the underlying probability
L— TR ) L

teATH ,
measure for the (ns,n_) described at the beginning of this subsection is weighted by

M;i(zr)/M;(0), then the new law of the driving functions (w,,W_) agrees with ngj)

the c-algebra }':% % }:; .

on

Proof. Let R > 0, 0 € {+,—}, t_ >0, and 7_, = t_, A 75°. Since W, |7, W_,|;%
and V, |77, v € {+,—}, are all (F{ V 7.7 );>0-adapted, and are driving function and
force point functions for hSLE, curves with some speeds in the chordal coordinate
conditional on F_?, by Proposition 2.20 (with a time-change), M:|;? (t), 0 <t < Ty,
is an (F7 V F.? )i>o-local martingale. Since M, is uniformly bounded on [0, 7] and
5 < R%/2, Mi|7° (- ATE) is an (f;w V)
Applying this result twice respectively for ¢ = + and —, we obtain the martingale
property of Mi(- A7g)

Let IP; denote the underlying probability measure. By weighting Py by M (1 z)/M:(0),
we get another probability measure, denoted by IPy. To describe the restriction of Py to
Jz,, we study the new marginal law of 77— up to 7z and the new conditional law of 7, up
to T;{ given that part of 7_. We may first weight P, by N, := M;(0,7)/M;(0,0) to get a
new probability measure P 5, and then weight P 5 by No := My (114,75 )/M:1(0,75) to get
P.

By Proposition 2.20, the 7_ up to 7, under P 5 is a chordal SLE,(2,2,2) curve in H
started from w_ with force points v_,w, v, respectively, up to 7. Since N; depends
only on n_, the conditional law of 7, given any part of n_ under P 5 agrees with that
under P;. Since M;(0,75) = 0 implies that N; = 0, and P 5-a.s. N; > 0, we see that N; is
P 5-a.s. well defined. Since ]E[N2|]-"T_,} =1, the law of 1_ up to 7; under PP, agrees with

R

+,>o0-martingale closed by M| (7§).

that under P 5. To describe the conditional law of 7, up to TIJ{ = TE(nJr) given n_ up to
Tg ., it suffices to consider the conditional law of 171”’ up to Tg(m) since we may recover

1+ from 77_? using 1y = fK,(T,;) o n?. By Proposition 2.20 again, the conditional law of

the normalization of 77_? up to 74 (n+) under Py is that of a chordal SLE,(2,2,2) curve
in H started from W, (0, 7;) with force points at V(0,75;), W_(0,7;) and V_(0,75),
respectively. Thus, under P the joint law of i, up to Tf{ and 7_ up to 7 agrees with
that of a commuting pair of SLE, (2,2, 2) curves started from (w; v) respectively up to 77
and 7. So the proof is complete O

We let IP; denote the joint law of the driving functions w, and w_ here, and let
P) = P, We will later define P; and PY, j = 2,3, in Sections 5.2 and 5.3, and the
three pairs of measures ]Pj,IP‘;, 7 = 1,2,3, will be referred in Section 5.4. From the
lemma, we find that, for any t = (t4,t_) € ]Ri and R > 0,

o1+ -
dIP1|(ft+/\7—; v]:t_/\TE) _ Ml(z/\IR) (5 2)
dIPl | (]::Z_/\T; v ]:ti /\‘r};> Ml (Q)
Lemma 5.3. Under P, M; is an F-martingale; and for any JF-stopping time T,
dP1|F- n{r e RZ}  M;(0)
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2 ; + - ; + - _
Proof. For t € R4 and R > 0, since ]:t+AT?{ \% }—t,/\rg agrees with 7 V F,~ = F;, on

{t <zg} by (5.2),
dPY|(Fe N {t <1p}) _ Mi(t)

dP|[(Fyn{t <zp}) Mi(0)
Sending R — oo, we get dP{|F,/dP,|F, = M;(t)/M:(0) for all t € RY. So M; is an
F-martingale under IP;. Let 7 be an F-stopping time. Fix A € F- N{r € R2}. Lett € R?.
Define the F-stopping time 7t as in Proposition 2.26. Then AN {r <t} = AN {r < 1t} €
Fri C Fi. So we get

M, (t) M, (1) My (z)
PYAN {2 < 0] = Ba [Langren 22D = By Lo 22N = By 14000y 200))
1[ {I ,}] 1(+An{r<t} M, (Q) 1| LtAN{r<t} M, (Q) 1{LtAN{r<t} M, (Q)
where the second “=" follows from Proposition 2.28. Sending both coordinates of £ to oo,
we get P{[A] = Eq[14 %i%;] So we get the desired (5.3). O
Lemma 5.4. For any F-stopping time T,
dP1|F; n{r € D1} M, (0)
dP(l)|.7:£ﬂ {I c Dl} o Ml(l) ’
Proof. This follows from Lemma 5.3 and the fact that M; > 0 on D;. O

Assume now that vy := (v4 +v_)/2 € [w_,w;]. We understand vy as w7 if (vy +
v_)/2 = w,, o0 € {+,—}. Let Vj be the force point function started from vy. By Section
3.4, we may define the time curve u : [0,7%) — D; such that V, (u(t)) — Vo(u(t)) =
(v, —19), 0 <t <T% o € {+,—}, and u cannot be extended beyond T* while still
satisfying this property. We follow the notation there: for every X defined on D, we
use X to denote the function X o u defined on [0,7™). We also define the processes
R, = %%},‘E’: €[0,1), c € {+,—}, and R = (R4, R_). Since T, is an F“-stopping time for
o€ {—i—,g—}, Dy, =[0,74) x [0,T-) is an F-stopping region. As before we extend u to R,
such that if s > T then u(s) = lim;47w u(t). By Proposition 3.24, for any ¢t > 0, u(t) is an
JF-stopping time.

Let [ = vy — vy = vg — v_ and define G on [0,1]2 by G5 (ry,7_) = G1(r, —r_;1,-1).
Then M{(t) = (e**1)**G3(R(t)) for t € [0,T"), where a; = 2(%2 — 1) is as in Theorem 1.1

We now derive the transition density of the process (R(t))o<i<7+ under P;. In fact,
T is IP;-a.s. finite. By saying that pf*(¢,r,r*) is the transition density of (R) under Py,
we mean that, if (R(t)) starts from r, then for any bounded measurable function f on
(0,1)%,

Billyresn O] = [ SR G, >0

Applying Lemma 5.4 to the F-stopping time u(¢), and using that u(t) € D, iff t < T,

we get
APLFF 0T >t} M) 50, GHEO)
dPO|Frn{T* >t}  M(t) Gi(R(t) —

Combining it with Corollary 4.20, we get the following transition density.

Lemma 5.5. Let p; (r,r*) be the transition density pf(r,r*) given in Corollary 4.20 with
po =0 and p; = p_ = 2. Then under Py, the transition density of (R) is
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5.2 Opposite pairs of hSLE, curves, the generic case

Second, we consider another pair of random curves. Let w = (w4,w_) and v =
(vy,v_) be as before. Let (1., 7,) be a 2-SLE,, in H with link pattern (w4 <> w_;vy <> v_).
For o € {+,-}, let 7, be the curve 7, oriented from w, to w_, and parametrized by
the capacity viewed from w_,, which is an hSLE, curve in H from w, to w_, with force
points v, and v_,. Then 77, and 7,_ are time-reversal of each other.

For o € {+,—}, parametrizing the part of 7, up to the time that it disconnects
w_, from oo by H-capacity, we get a chordal Loewner curve: 7,(t), 0 <t < T, which
is an hSLE, curve in the chordal coordinate. Let w, and K,(-) denote the chordal
Loewner driving function and hulls for 7,. Let K(t4,¢_) = Hull(K,(t+) U K_(t_)),
(t4,t-) €0,74) x [0,7_), and define an HC region:

Dy = {te[0,T}) x [0,7_) : K(t) S Hull(n,,)}. (5.4)

For o € {4, —}, let 77 be the filtration generated by 7,. Let 7_ be an F~-stopping
time. Conditionally on 7. and the event {7_ < T_}, the part of 7j,, between n_(7_) and
w4 and the whole 7, form a 2-SLE, in H \ K_(7_) with link pattern (w4 <> n—(7-); v} <
v_). So the conditional law of the part of 7, up to hitting n_(7_) is that of an hSLE,
curve in H\ K_(7_) from w, to n_(7_) with force points v;,v_, up to a time-change. This
implies that there is a random curve ﬁi’ such that the fx_(r_)-image of ﬁf is the above
part of 77, , and the conditional law of a time-change of ﬁi‘ is that of an hSLE,, curve in H
from gx_(r_y(w4) to W_(7_) with force points gx_(-_y(v4),9x_(r_)(v—). By the definition
of Dy, the part of n, up to Tf2 (r_) is a time-change of the part of 7, up to the first
time that it hits n_(7_) or separates _(7_) from oo, which is then the fx_(._)-image of
the part of 7)} up to the first time that it hits @w_(7_) or separates @w_(7_) from co. So
there is a random curve n: such that the fx_(,_)-image of nf is the part of 4 up to
TfQ (7-), and the conditional law of a time-change of | is that of an hSLE, curve in
H from gx_(-_y(wy) to @w_(7—) with force points gx_(-_y(v4),9x_(-_)(v—), in the chordal
coordinate. A similar statement holds with “+” and “—” swapped.

Taking the stopping times in the previous paragraph to be deterministic numbers,
we find that (n4,n_;D2) a.s. satisfies the conditions in Definition 3.2 with Z, = [0,T%.)
and 7% =7, N Q. By removing a null event, we may assume that (n;,n_; Ds) is always
a commuting pair of chordal Loewner curves. We call (n4,7-; D) a commuting pair of
hSLE,; curves in the chordal coordinate started from (w; < w_;v4,v_).

Let F be the separable R? -indexed filtration generated by F* and 7, and let F be
the right-continuous augmentation of 7. Then D, is an F-stopping region because by
Lemma 3.4,

{teDo}p = lim ({s < (T, TO}N{KQ G K(s)}) € Fy, VteRY.

Define M : Dy — Ry by My = Go(W,, W_; V., V_), where G5 is given by (1.3). Since
Vi > W, >W_ >V_, and F is uniformly positive on [0, 1], there is a constant C' > 0
depending only on x such that

My < ClWy —W_|x YV, —V_|* L < OV, — V_|=(127m), (5.5)
Lemma 5.6. ), a.s. extends continuously to Ri with M = 0 on lR%r \ Ds.

Proof. Since for o € {+,—}, 1, a.s. extends continuously to [0,7,], by Remark 3.8, W,
and W_ a.s. extend continuously to D,. From (3.15) we know that a.s. Vo —V_|is
bounded on D,. Thus, by (5.5) it suffices to show that the continuations of W, and W_
agree on 9D, NR2. Define A, = {tye, + T2(t,)e_, : t, € (0,T,)}, 0 € {+,—}. Then
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A, UA_ isdense in 9D,N (0, c0)?. By symmetry, it suffices to show that W, and W_ agree
on A, . If this is not true, then there exists (s4,s_) € Dy such that W (s, ) > W_(s4, ")
n [s—, T2 (s4)].

Let K% (t) = K(sy,5_ +1)/K(s) = K" (s_ +t)/K*"(s_), 0< t <T' :=TP2(s,) — s_.
Since K**(t_), 0 < t_ < TP2(s.), are chordal Loewner hulls driven by W_ (s, -) with
speed m(sy,-), K=(t), 0 <t < T’, are chordal Loewner hulls driven by W_(s,,s_ + -)
with speed m(s;,s— + ). By Lemma 3.12 and Proposition 2.12, Wy (s4,s_ +t) =

gIVg‘((;)(W+(§ ), 0 <t <T'. Since Wy (sy,s_ +-) > W_(s,s_ + ) on [0,7"), we have

dist(W(s), K=(t)) > 0for 0 <t < T’. Since W, (s4,s_+-), W_(s4,5_+-) and m(s,s_+
-) all extend continuously to [0,7"], and W, (s4,s— +T') > W_(w4,s— + T"), the chordal
Loewner process driven by W_(s,s_ +t), 0 <t <7T’, with speed m(s;,s_ + -) does not
swallow W, (s) at the time 7”, which implies that dist(W,(s), Hull( <, ., K= (t))) > 0.

Since s € Dy, by Lemma 3.4 we may choose a (random) sequence 4, | 0 such
that ny(sy +0,) € H\ K(s4,s_) for all n. Let 2, = gr(s, s ) (N (54 +0n)) € K(s1 +

s—)/K(s4,s-),n €N, then z, — W, (s) by (3.6). So dist(z,, Hull(Uy<; 7 K2(t)) >0
for n big enough. However, from

N (s +3,) € Hull(n,) \ K (s) = K(ss,s_ +T)\K(s) = Hull( | J K(sy,5-+6)\K(s)
0<t<T’

we get z, € Hull(Jy<, v K= (t)) for all n, which is a contradiction. O

From now on, we understand M5 as the continuous extension defined in Lemma 5.6.
Let Tﬁt and 7p, R > 0, be as defined before Lemma 5.2.

Lemma 5.7. For any R > 0, Ms(- A Tg) is an (]—'+ prt v F prs )(t..+_)crz -martingale
closed by Ms (1), and if the underlying measure is we1ghted by MQ(TR)/MQ( ), then the

(22) on]-"Jr VF .

R

new law of (W, w_) agrees with the measure Py,

Proof. We follow the argument in the proof of Lemma 5.2, where Proposition 2.20 is the
key ingredient, except that here we use (5.5) instead of (5.1). O

Let IP, denote the joint law of the driving functions @, and w_ here, and let P§ =
Pg;ﬁ). Following the proof of Lemma 5.3 and using Lemma 5.7, we get the following

lemma.

Lemma 5.8. A revision of Lemma 5.3 holds with all subscripts “1” replaced by “2” and
the filtration F replaced by F.

Lemma 5.9. For any F-stopping time 7, M»(1) is Py-a.s. positive on {1 € D,}.

Proof. Let T be an F-stopping time. Let A = {r € Dy} N {Mz(r) = 0}. We are going
to show that P»[A] = 0. Since D, is an F-stopping region, we have {r € Dy} € F,,
and A € F.. Since M(r) = 0 on A, by Lemma 5.8, P[A] = 0. For any ¢ € Q2, since
A€ fzﬂ, by Lemma 5.8, Ps-a.s Ma(r +t) = 0 on A. Thus, on the event A, Ps-a.s.
My(7 +t) = 0 for any t € Q%, which implies by the continuity that M, = 0 on T + Ri,
which further implies that W, = W_ on (z + R%) N D,, which in turn implies by Lemma
3.6thatny (4 +ty) =n_(7— +t_) forany ¢ = (t+, _) € R% such that 7+t € D,. This is
impossible since it implies (by setting ¢ = 0) that n stays constant on [, Tf (r-)). So
we have Py[A] = 0. O

Remark 5.10. We do not have M3 > 0 on D, if there is (t4,t_) € Dy such that n; (t4) =
n—(t—), which almost surely happens when & € (4, 8).

Lemma 5.11. A revision of Lemma 5.4 holds with all subscripts “1” replaced by “2” and
the filtration F replaced by F.
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Proof. This follows from Lemmas 5.8 and 5.9. O

Assume that vy := (vy +v_)/2 € [w_,w4], and let Vj be the force point function
started from vg. Here if vy = w,, for some o € {+, —}, we treat it as w_ ?. We may define
the time curve u : [0,7") — D, and the processes R,(t), o € {+,—}, and R(¢) as in
Section 3.4, and extend u to R, such that u(s) = limypw u(t) for s > T*. Since D; is an
F-stopping region, by Proposition 3.24, for any ¢ > 0, u(t) is an F-stopping time.

Define G5(r4,r_) = Go(ry, —r_;1,—1). Then M3 (t) = (e**I)** G3(R(t)) for t € [0,T"),
where ay = 2(% — 1) is as in Theorem 1.1. Applying Lemma 5.11 to u(t), we get the
following lemma, which is similar to Lemma 5.5.

Lemma 5.12. Let p?(r,r*) be the transition density pf(r,r*) given in Corollary 4.20
with po = 0 and py = p_ = 2. Then under P,, the transition density of (R) is

Pi(r,r*) i= e 2" p} (r, 1) G5 (r) /G5 (r¥).

5.3 Opposite pairs of hSLE, curves, a limit case

Let w_ < wy < vy € R. Let (ny,7n,) be a 2-SLE,; in H with link pattern (w; <
w_;v; ¢ ). For o € {+,—}, let i), be the curve n,, oriented from w, to w_, and
parametrized by the capacity viewed from w_,, which is an hSLE, curve in H from w,
to w_,. Then 77, and 7)_ are time-reversal of each other.

For o € {+, —}, parametrizing the part of 7, up to the time that it disconnects w_,
from co by H-capacity, we get a chordal Loewner curve: 7,(t), 0 < t < T, which is
an hSLE, curve from w, to w_, in the chordal coordinate. Define D3 using (5.4) for
the (n4,n-) here. Then (n4,n—; Ds) is a.s. a commuting pair of chordal Loewner curves.
Define W, V, and F for the (1, ,7_) here in the same way as in the previous subsection.
Then D; is an F-stopping region. We call (1;,7_; D3) a commuting pair of hSLE, curves
in the chordal coordinate started from (wy <> w_;v).

Define M3 : D3 — Ry by M3 = Gs(W4,W_;V,), where Gj is given by (1.4). Since
Vi > W, >W_, we have My < C|W, — W_|= 1|V, —V_|* <C|V; — V_| %! for some
constant C' > 0 depending on . Then the exactly same proof of Lemma 5.6 can be used
here to prove the following lemma.

Lemma 5.13. M;3 a.s. extends continuously to Ri with M3 = 0 on IRi \ Ds.

Let P3 denote the joint law of the driving functions @, and @_ here, and let P} be the
joint law of the driving functions for a commuting pair of chordal SLE (2, 2) started from
(wy,w_;vy). Then similar arguments as in the previous subsection give the following
lemma.

Lemma 5.14. Revision of Lemmas 5.9 and 5.11 hold with all subscripts “2” replaced by
“3”.

Introduce two new points: vp = (w4 +w_)/2 and v_ = 2vg —vy4. Let V and V_ be
respectively the force point functions started from vy and v_. Since vy = (v +v_)/2,
we may define the time curve u : [0,7%) — D5 and the processes R, (t), o € {+,—}, and
R(t) as in Section 3.4. Let G5(r4,r_) = G3(ry,r_;1). Then M¥(t) = (' 1)1 G35(R(t)) for
t €[0,T*), where a3 = 1—5 — 1is as in Theorem 1.1. Applying Lemma 5.14 to u(t), we get
the following lemma, which is similar to Lemma 5.5.

Lemma 5.15. Let p}(r,r*) be the transition density pf(r,r*) given in Corollary 4.20
with pg = p— = 0 and p; = 2. Then under P3, the transition density of (R) is

Pi(r,r*) i= e pi(r, r*)Ga(r) /G (r”).
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5.4 A summary

For j = 1,2,3, using Lemmas 5.5, 5.12, and 5.15, we can obtain a quasi-invariant
density of R under P; as follows. Let G;(ry,r-) = G;(ry,—r—-;1,-1), j = 1,2, and
Gi(ry,r_) = G3(ry,—r_;1). Let p_ be the invariant density pZ% of R under P}, given by

Corollary 4.20, where P} = P2 = IP7("2+7,217“,;1,71 and P} = Pﬁ)ﬁr,;r Define
. | L
= Pooll) o i LBy (5.6)

o L Poo = ¥
(0,1)2 Gj (r*) > Z; Gj

It is straightforward to check that Z; € (0,00), j = 1,2,3. To see this, we compute
plrp,r ) = (1 —ry)e Y1 —r )" Yrpr_)s 1 for j = 1,2, and =< (1 —ry )= (1 —
4 4

ro)sYrgpro)x =l for j = 3; Gi(ry,ro) < (1 —ry)x Y1 —r_)x~! for j = 1, and <
&1

(ry +r_)=—1'forj=23.
Lemma 5.16. The following statements hold.
(i) For any j € {1,2,3},t > 0 and r* € (0,1)?, ‘ﬁ071]2ﬁ;0(f)]32(£,£*)d£ = e 20915 (1),
This means, under the law P, if the process (R) starts from a random point in

(0,1)? with density p’_, then for any deterministic t > 0, the density of (the survived)
R(t) is e2*'pl . So we call p} a quasi-invariant density for (R) under P;.

(ii) Let By = Bo = 10 and B3 = 8. Forj € {1,2,3} and r € (0,1)?, if R starts from r, then
P,;[T" > t] = ZjG;f(f)e_QaJt(l + O(e‘ﬁjt)); (5.7)

fp?(t,z, r*) =P;[T" > e, (r*) (1 + O(e~Pity). (5.8)

Here we emphasize that the implicit constants in the O symbols do not depend on
.

Proof. Part (i) follows easily from (4.29). For part (ii), suppose R starts from r. Using
Corollary 4.20, Lemmas 5.5, 5.12, and 5.15, and formulas (5.6), we get

P;[T" > t] = /(O l)zﬁimz*)dﬁ* :/( e~ 209t ] (r, ")

) G*
= [ )14 0l ) S = 2,65 e (14 0fe ),
(0,1)2 G3(r*) /

which is (5.7); and

Gi(r)

P2 = e () (14 O™ ™) s

= e IIZF (1) (1+ O™ G (),

which together with (5.7) implies (5.8). O

We will need the following lemma, which follows from the argument in [24, Appendix
Al.

Lemma 5.17. For j = 1,2,3, the (n;+,7-;D;) in the three subsections satisfies the
two-curve DMP as described in Lemma 4.1 except that the conditional law of the
normalization of (74,7—; 25]) has the law of a commuting pair of hSLE, curves in the
chordal coordinate respectively started from (W, W_;V,, V_)|,, (W4 <> W_;V,,V_)
and (W4 < W_;V)|,.

T/
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6 Boundary Green’s functions

We are going to prove the main theorem in this section.

Lemma 6.1. Forj = 1,2, let U; be a simply connected subdomain of the Riemann sphere
C, which contains oo but not 0, and let f; be a conformal map from D* := @\{|z| <1} onto
U;, which fixes co. Let a; = lim,_, |f;(2)|/|z| >0, j = 1,2, and a = as/a1. If R > 4a4,
then {|z| > R} C Uy, and {|z| > aR +4as} C fao f;*({|z] > R}) C {|2| > aR — 4as}.

Proof. By scaling we may assume that a; = ay = 1. Let f = fo o f; !, That {|2| > 4} c U,
follows from Koebe’s 1/4 theorem applied to J o f; o J, where J(z) :=1/z. Fix z; € Uj.
Let zg = ff (z1) € D* and 22 = fa(z0) € Us. Let rJ 2 Applying Koebe’s
distortion theorem to J o f; o J, we find that ro + - — 2 < rj <o + - +2,j=1,2, which
implies that |r; — rz| < 4. Thus, for R > 4, f({|z | > R}) C {|z] > j 4}, and f({|z] =

R}) C {|z| £ R+ 4}. The latter inclusion implies that f({|z] > R}) D {|z| > R+4}. O

Theorem 6.2. Let v_ < w_ < wy < vy € R be such that0 € [v_,v4]. Let (77+, _) be
a 2-SLE,; in H with link pattern (wy. <> vy;w_ <> v_). Let oy = 2(2 — 1), 8| = 2, and
G1(w;v) be as in (1.2). Then there is a constant C' > 0 depending only on k such that,

Pli, N {|z| > L} # 0,0 € {+,-}] = CL™™Gx(w;v)(1 + O(|jvy —v_|/L)*),  (6.1)
as L — oo, where the implicit constants in the O(-) symbol depend only on k.

Proof. Let p(w;v; L) denote the LHS of (6.1). Construct the random commuting pair
of chordal Loewner curves (n,n—;D;) from 77, and 7)_ as in Section 5.1, where D; =
[0,7}) x [0,7-), and T, is the lifetime of n,, o € {+,—}. We adopt the symbols from
Sections 3.1. Note that, when L > |v;| V |v_|, 4+ and 7)_ both intersect {|z| > L} if and
only if n, and n_ both intersect {|z| > L}. The fact is: for any o € {+,—}, 1, either
disconnects v, from oo, or disconnects v_, from co. If 7, does not intersect {|z| > L},
then in the former case, 7, grows in a bounded connected component of H \ 7, after the
end of 7,, and so cannot hit {|z| > L}; and in the latter case 1_, grows in a bounded
connected component of H \ 7,, and cannot hit {|z| > L}. We first consider a special
case: vy = +1 and wy = +ry, where rp € [0,1). Let vy = 0. This case corresponds to
the additional assumption (3.34) up to translation and dilation. Let V,, be the force point
function started from v,, v € {0,+, —}, as before. Since |v; — vg| =
define a time curve u : [0, T“) — D as in Section 3.4 and adopt the symbols from there.
Define p(r; L) = p(ry, —r—;1,—1; L).

Suppose L > 2¢5, and so 1log(L/2) > 3. Let ty € [3,5log(L/2)). If both 1, and
n— intersect {|z| > L}, then there is some ¢ € [0,7") such that either 74 o uy[0,?]
or 7_ ou_[0,#] intersects {|z| > L}, which by (3.35) implies that L < 2¢*', and so
T > t' > log(L/2)/2 > to. Thus, {n, N{|z| > L} # 0,0 € {+,—}} € {T* > to}. By
(3.35) again, radg (7, [0, us (to)]) < 2e%0 < L. S0 1, 0 ux[0,t0], o € {+,—}, do not intersect
{lz| > L}.

Let 52 (2) = (9iuion(2) — V(to))/e*0. Then gt maps € \ (K (u(to)) " U fu_, v, ))
conformally onto C \ [—1,1], and fixes oo with g;' (z)/z — e~ %" as z — co. From V" <
v_ <0,V >wvp >0, and Vit = (VI 4+ V™) /2, we get [V (to)| < Vi (to) — V¥(to)|/2 = 2P0
Applying Lemma 6.1 to f2(z) = (2 +1/2)/2, az = 1/2, f1 = (i)' o f2 and a; = €*/2,
and using that L > 2¢%0, we get {|z| > L} € C\ (K (u(tp))%*°*P U [v_,v,]) and

{|2| > Lje* — 2} 5 G ({|2]| > L}) D {|2] > L/e* +2}. (6.2)

Note that both n, and 7_ intersect {|z| > L} if and only if 7" > ¢, and the g;! -image
of the parts of 7, after u,(to), o € {+, —}, both intersect the g} -image of {|z| > L}. By
Lemma 5.17 for j = 1, conditionally on F,,) and the event {T" > t,}, the g} -image
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of the parts of 7, after u,(ty), o € {+, —}, after normalization, form a commuting pair
of hSLE,, curves in the chordal coordinate started from (R4 (to), —R—(t9);1,—1). The
condition that 1, (us(t0)) € 1—s[0,u_s(to)], o € {+, —}, is a.s. satisfied on {T" > to},which
follows from Lemma 3.18 and the fact that a.s. R,(tg) = (W¥(to) — V§*(t0))/ (VX (to) —
Vi(to)) >0, 0 € {+,—}, on {T* > to} (because of the transition density of (R) vanishes
outside (0,1)?). From (6.2) we get

Plne N{lz| > L} # 0,0 € {+, —}|.T2(t0),T“ > to] ; p(R(to); L/e* £ 2)]. (6.3)

Here when we choose + (resp. —) in +, the inequality holds with > (resp. <).

We use the approach of [6] to prove the convergence of limy,_, ., L* p(r, L). Note that
the underlying probability measure for the (11, 72) here is the PPy introduced in Section
5.1. We first estimate p(L) == [ ). p(r; L)pL (r)dr, where pl_ is the quasi-invariant
density for the process (R) under IP; given in Lemma 5.16. This is the probability that
the two curves in a 2-SLE,; in H with link pattern (ry < 1; —r_ + —1) both hit {|z| > L},
where (r4,r_) is a random point in (0,1)? that follows the density p. . From Lemma
5.16 we know that, for a deterministic time ¢, P[T* > t| = e~ !, and the law of (R(t))
conditionally on {T* > t} still has density p.,. Thus, the conditional joint law of the
gy-images of the parts of 7, after 9, (us(t)), o € {+,—} given F}* and {T* > t} agrees
with that of (74,7_). From (6.3) we get p(L) = e~ 2*1*p(L/e* £ 2). Let q(L) = L*p(L).
Then

q(L) = (1£2e¢*/L)"*q(L/e* £2), ift>3and L > 2e*. (6.4)

Suppose Lo > 4 and L > e%(Lg + 2). Let t+ = log(L/(Lo F2))/2. Then L/e** + 2 = L,
t, >t_ >3and L = (Ly — 2)e?'+ > 2e2+ > 2¢*-, From (6.4) (applied here with .. in
place of t) we get

q(L) Z (1F2/Lo)* q(Lo), if L > e%(Lo+2) and Lo > 4. (6.5)

From (3.35) we know that 7% > ¢ implies that both 1, and 7_ intersect {|z| > €%!/64}.
Since P[T* > t] = e~2*1t > ( for all t > 0, we see that p is positive on [0, c0), and so is
q. From (6.5) we see that lim;_,~, ¢(L) exists and lies in (0, c0). Denote it by ¢(c0). By
fixing Ly > 4 and sending L — oo in (6.5), we get

p(Lo) ; q(00) Ly “ (1 F2/Lo)~ ", if Ly > 4. (6.6)

Now we estimate p(r; L) for a fixed deterministic r € [0,1)? \ {(0,0)}. The process
(R) starts from r and has transition density p; given by Lemma 5.5. Fix L > 2¢°
and choose ty € [3,log(L/2)/2). The event that both n; and #_ intersect {|z| > L}
is then contained in the event {T* > ¢;}. Let 8; = 10. From Lemma 5.16 we know
that P [T > to] = Z,G(r)e 2%t (1 + O(e~P1'0)) and the law of R(ty) conditionally on
{T" > to} has a density on (0,1)2, which equals p., - (1 + O(e#1*)), where 3; = 10.
Using Lemma 5.17 and (6.3,6.6) we get

Plrs L) = Z19(00) G (r)e 20 (L/e20) =1 (1+ O(e#140)) (1 + O(e20/L))

For L > ¢3%, by choosing t, > 3 such that e?* = L?/(>+51) and letting Cy = Z¢(c0), we
get p(r; L) = CoG5(r) L= (1 4+ O(L~"1)). Here we note that 8] = (1 /(81 + 2).

Since G5 (r4,r—) = G1(r4,—r—;1,—1), we proved (6.1) for vy = +1, wy € [0,1), and
w_ € (—1,0]. Since Gy (awy + b,aw_ + b;avy + b,av_ +b) = a~ Gy (wy,w_;vy,v_) for
any a > 0 and b € R, by a translation and a dilation, we get (6.1) in the case that
(v4 +v-)/2 € [w_,w;]. Here we use the assumption that 0 € [v_,v] to control the
amount of translation.
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Finally, we consider all other cases, i.e., (v +v_)/2 & [w_,w]. By symmetry, we may
assume that (vy+v_)/2 < w_. Let vy = (wy+w_)/2. Then vy > wy > vy > w_ > v_, but
vy —vp < vg—v_. We still let V, be the force point functions started from v,, v € {0,+, —}.

2 ..
By (3.20), V satisfies the PDE 9.V, % & on D{™ as defined in Section 3.3. Thus,
—2W3

‘/;/2 7W+)(VV1 7W+) ’

on D™, for any vy # 1y € {+, —,0}, d; log [V, — Vi, | £ 0 which implies

that
0 (F=2) _Ve—Vo V-Vl 6.7)
Oplog(V = Vo) Wi —-Vo Vo—V- ' '
The displayed formula means that \‘2 :‘YE’ |o is increasing faster than log(Vy — V_)|g.
From the assumption, \‘;:((QQ));‘//B% = Z;::f € (0,1). Let 7 be the first ¢ such that

% = 1; if such time does not exist, then set 7, = T,. Then 7, is an F-

stopping time, and from (6.7) we know that, for any 0 < t < 74, |V4(¢,0) — V_(¢,0)| <
elvy — v_|, which implies by (3.15) that diam([v_,v4] Un[0,t]) < e|lvy —v_]|. Let L =
elvy —v_|. From 0 € [v_,v ] we get 7 < 7.

Here and below, we write W and V for (W,,W_) and (V,,V_), respectively. From
Lemma 5.2 we know that M, (-A7;,0) is a martingale closed by M (7;",0). By Proposition

2.28 and the facts that My = G1(W;V) and M;(¢,0) =0 for ¢t > T, we get

Elr, «cryGi(W;5 V)| (r0)] = E[Mi(74,0)] = M1(0,0) = G1(w;v). (6.8)

Using the same argument as in the proof of (6.3) with (7, 0) in place of u(to) and gx (-, o)
in place of gi! , we get

Pln, N {l2l = L} # 0,0 € {4+, —}FF, 71 < Ta) 2 p(W3 V)l ry 00 L £ (Vi = Vo)l 0)-
(6.9)
Suppose 74 < T'. Then the middle point of [V_(7y,0), Vi (74, 0)] is Vo(74, 0), which
lies in [W_(74,0), W4 (74,0)]. Also note that 0 € [V_(74,0), V (74, 0)] since Vi (74,0) z
VUi E 0. Let L+ = L £ (V4 — V_)|(~, 0)- We may apply the result in the particular case to
get

(W3 V)|, 003 L) =CoGi(W; V)| (ry 0 - LZ™ (1 4+ O((Vie = VO)|(ry 0)/L2)™)
=CoG1(W;V)|(r0) - L™ (1 + O(Jvy —v_|/L)%). (6.10)

Here in the last step we used (V}, —V_)|(,, o) < elvy —v_|and L+ /L = 14+O(jvy —v_|/L).
Plugging (6.10) into (6.9), taking expectation on both sides of (6.9), and using the fact
that {n; N {|z| = L} # 0} C {7+ < T4}, we get
plw;v; L) =CoB[1 <1,y G1(W; V)| (r0)] - L™ (1 + O(jog. — v—|/L)")
=CoG1(w;v) - L~ (1 + O(lvg — v_|/L)%),
where in the last step we used (6.8). The proof is now complete. O

Theorem 6.3. Let « € (4,8). Then Theorem 6.2 holds with the same a1, $1,G;1 but a
different positive constant C under either of the following two modifications:

(i) the set {|z| > L} is replaced by (L, o), (—oco,—L), or (L,00) U (—o0, —L);

(ii) the event thatn, N{|z| > L} # 0, o € {+,—}, is replaced by ny+ Nn_N{|z

> L} #0.

Proof. The same argument in the proof of Theorem 6.2 works here, where the assumption
that € (4,8) is used to guarantee that the probability of all event are positive for any
L>0. O
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Theorem 6.4. Let v_ < w_ < wy < vy € R be such that 0 € [v_,v4]. Letn, be an
hSLE,, curve in H connecting w, and w_ with force points vy andv_. Let ay = 2(12 k),
By = % and G5 be as in (1.3. Then there is a constant C' > 0 depending only on « such
that, as L — oo,

P, N {|z| > L} # 0] = CL™**Ga(w;v) (1 + O(jus — v|/L)™),
where the implicit constants in the O(-) symbol depend only on k.

Proof. Let (n4,n—;D2) be the random commuting pair of chordal Loewner curves as
defined in Section 5.2. Then for L > max{|vy|, [v_|}, Tw N {|z| > L} # 0 if and only if
ne N{|z| > L} # 0 for o € {+,—}. The rest of the proof follows that of Theorem 6.2
except that we now apply Lemmas 5.16 and 5.17 with j = 2 and use Lemma 5.7 in place
of Lemma 5.2. O

Theorem 6.5. Let w_ < wy < vy € R be such that0 € [w_,v.]. Letn, be an hSLE,
in H connecting wy and w_ with force points v, and co. Let az = 12 — 1, g} = 3, and
Gs3(w;vy) be as in (1.4). Then there is a constant C' > 0 depending only on « such that,
as L — oo,

Pl N {|z| > L} # 0] = CL™**Ga(w; vy ) (1 + O(Jwy — v_|/L)™),
where the implicit constants in the O(-) symbol depend only on k.

Proof. The proof follows those of Theorems 6.4 and 6.2 except that we now introduce
vo := (wy +w_)/2 and v_ = 2vy — v4 as in Section 5.3. Then we can define the time
curve u as in Section 3.4 and apply Lemmas 5.16 and 5.17 with j = 3. O

Proof of Theorem 1.1. By conformal invariance of 2-SLE,, we may assume that D = H
and zy = oco. Case (A1) follows immediately from Theorem 6.2. Cases (A2) and (B)
respectively follow from Theorems 6.4 and 6.5 since we only need to consider the
Green'’s function for the curve connecting w; and w_, which is an hSLE,; curve. O

Remark 6.6. The hSLE,; curve is a special case of the intermediate SLE,(p) (iISLE,(p) for
short) curves in [29] with p = 2. An iSLE,(p) curve is defined using Definition 2.15 with
F:=,F(1-4, 2—;; 2”:4; ) and G := n% + p. The curve is well defined for x € (0, 8) and
p > min{—-2, & — 4}, and satisfies reversibility when x € (0,4] and p > —2 or x € (4,8) and
p > & —2(cf. [26]). When an iSLE, (p) satisfies reversibility, we can obtain a commuting
pair of iSLE.(p) curves in the chordal coordinate started from (w4 > w_;vy,v_) or
(wy <> w_;vy) for given points v_ < w_ < w4 < vi, which satisfy two-curve DMP.
Following similar arguments, we find that Theorems 6.4 and 6.5 respectively hold for
iSLE,(p) curves with o = 22 (p+4 — %), a5 = 2(p+4 — &), By = 3255, g} = 248 and

2p+8’ ey
(with F = ,F(1 -2 Q.M_.))

K’ kY K 7

pP(2pt+i—r : - e -1
Galuws) =l —w- | oy —o- 5 T] Jwg—v-g ¥ P (=m0
sl 4.~} Wy — V- )V —wW-—

U+—w+>_1

8 _ 2p
Ga(wsvy) = |y —w | oy —w_ | ¥ F(
W+—U}_

The proofs use the estimate on the transition density of R under IP(M%)) and IP(J;)E (Corol-
lary 4.20) and revisions of Lemmas 5.11 and 5.14) with P and P} now respectively
representing ]P(Hp;f) and ]P(Qp;)y, P, and PP3 now respectively representing the joint law of
the driving functions for a commuting pair of iSLE,;(p) curves in the chordal coordinate
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started from (w4 ¢ w_;v4,v_) and from (w4 < w_;v,), and M, and M3 replaced by
Go(Wy, W_; V., V_) and G3(W,,W_; V,) for the current G, and Gs.

The revision of Theorem 6.4 (resp. 6.5) also holds in the degenerate case: vy = wi
in which the n,, oriented from w_ to w; is a chordal SLE,(p) curve in H from w_ to w,
with the force point at v_ (resp. co). After a conformal map, we then obtain the boundary
Green’s function for a chordal SLE,(p) curve in H from 0 to oo with the force point v > 0
at a point zg € (v, 00) or at zp = v. Such Green'’s functions may also be obtained from the
traditional one-curve approach in [4]. The exponents o, and a3 have appeared in [14,
Theorem 3.1] with a rougher estimate on the intersection probability.
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