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Abstract

We study the spectral norm of random lifts of matrices. Given an n × n symmetric
matrix A, and a centered distribution π on k × k (k ≥ 2) symmetric matrices with
spectral norm at most 1, let the matrix random lift A(k,π) be the random symmetric
kn × kn matrix (AijXij)1≤i<j≤n, where Xij are independent samples from π. We
prove that

E‖A(k,π)‖ . max
i

√∑
j

A2
ij + max

ij
|Aij |

√
log(kn).

This result can be viewed as an extension of existing spectral bounds on random ma-
trices with independent entries, providing further instances where the multiplicative√

logn factor in the Non-Commutative Khintchine inequality can be removed.
As a direct application of our result, we prove an upper bound of 2(1 + ε)

√
∆ +

O(
√

log(kn)) on the new eigenvalues for random k-lifts of a fixed G = (V,E) with
|V | = n and maximum degree ∆, compared to the previous result of O(

√
∆ log(kn))

by Oliveira [Oli10a] and the recent breakthrough by Bordenave and Collins [BC19]
which gives 2

√
∆− 1 + o(1) as k →∞ for ∆-regular graph G.

Keywords: concentration inequality; random matrix theory; matrix lifts.
MSC2020 subject classifications: 60C99.
Submitted to ECP on August 22, 2020, final version accepted on June 28, 2021.
Supersedes arXiv:2006.06505.

1 Introduction

1.1 The Non-Commutative Khintchine inequality

The Non-Commutative Khintchine (NCK) inequality, originally introduced by Lust-
Piquard and Pisier [Pis03], is one of the simplest tools for understanding the spectrum
of matrix series, namely

X =

N∑
i=1

γiAi (1.1)

where Ai (i = 1, 2, . . . , N) are n× n real symmetric matrices and γi (i = 1, 2, . . . , N) are
i.i.d. random variables, usually assumed gaussian or Rademacher. The inequality is
stated as follows.

*Afonso S. Bandeira partially supported by NSF grants DMS-1712730 and DMS-1719545, and by a grant
from the Sloan Foundation. Yunzi Ding partially supported by NSF grant DMS-1712730.

†Department of Mathematics, ETH Zurich, Switzerland. E-mail: bandeira@math.ethz.ch. Part of this
work was done while ASB was with the Department of Mathematics at the Courant Institute of Mathematical
Sciences, and the Center for Data Science, at New York University.

‡Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, USA.
E-mail: yding@nyu.edu.

https://doi.org/10.1214/21-ECP415
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2006.06505
mailto:bandeira@math.ethz.ch.
mailto:yding@nyu.edu.


The spectral norm of random lifts of matrices

Theorem 1.1 (Non-Commutative Khintchine (NCK) inequality). Let A1, A2, . . . , AN be
n× n symmetric matrices and γ1, γ2, . . . , γN be i.i.d. N (0, 1) random variables, then

E

∥∥∥∥∥
N∑
i=1

γiAi

∥∥∥∥∥ ≤ σ√2 + 2 log(2n), where σ :=

(∥∥∥∥∥
N∑
i=1

A2
i

∥∥∥∥∥
)1/2

. (1.2)

The NCK inequality and other phenomena of matrix concentration have been proven
under various settings and extensively studied in [Oli10b, Tro12, Tro15]. One particularly
important application of matrix concentration is on the spectra of random matrices with
independent entries. These random matrices can be represented as matrix series upon a
direct entry-wise decomposition, as we show below.

1.2 Random matrices with independent entries

The study of random matrices with independent entries traces back to the seminal
work by Wigner [Wig58]. For Wigner matrices (real symmetric or Hermitian random
matrices with independent mean-zero and unit variance entries), a long line of work has
established a comprehensive understanding towards its spectral properties over the past
decades (see, for example, [FK81, BY88, AGZ10, Tao12]). One of the most important
results is the Wigner semicircle law: for n× n Wigner matrix X, E‖X‖/

√
n→ 2 and the

spectrum of X converges to the semicircle 1
2π

√
4− x21{−2≤x≤2} as n→∞.

Random matrices with different variances on each of the independent entries, for
instance real symmetric X ∈ Rn×n with Xij ∼ N (0, b2ij) for 1 ≤ i ≤ j ≤ n, have also been
studied [DS01, RV10, Ver10]. With the NCK inequality, the following estimate can be
obtained:

E‖X‖ . σ
√

log n, where σ := max
i

√∑
j

b2ij . (1.3)

Here A . B (respectively, A & B) refer to A ≤ CB (respectively, A ≥ CB) for some
absolute positive constant C. The definition of σ is consistent with (1.2) upon writing X
as the following matrix series:

X =

n∑
i=1

γiibiiEii +
∑

1≤i<j≤n

γijbij(Eij + Eji). (1.4)

Here Eij := eie
>
j . One may immediately notice that the bound (1.3) is not sharp for

Wigner matrices with i.i.d. standard gaussian entries, since it gives E‖X‖ .
√
n log n

rather than E‖X‖ ∼
√
n. In fact, a recent improvement for matrices with independent

entries [BvH16] yields

E‖X‖ . σ + σ∗
√

log n, where σ∗ := max
ij
|bij |. (1.5)

This upper bound is sharp as a matching lower bound E‖X‖ & σ + σ∗
√

log n is also
given in [BvH16] under mild assumptions on the bij ’s. Further refinements, that hold for
general bij ’s, have been recently obtained [vH17, LvHY18, BGBK+20].

1.3 Improving the NCK inequality

The gap between the NCK bound (1.3) and its improvement (1.5) demonstrates
the sub-optimality of the NCK inequality in some settings. In fact, many improve-
ments to bounds obtained via the NCK inequality are known under various settings.
Seginer [Seg00] improved the NCK bound for random matrices with independent uni-
formly bounded entries. Exploiting the non-commutativity among the Ai’s, Tropp [Tro18]
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proved the following upper bound for the series (1.1), which improved the multiplicative
factor on σ from

√
log n to 4

√
log n:

E‖X‖ . σ 4
√

log n+ ω
√

log n

where the alignment parameter ω is defined as

ω := max
Q1,Q2,Q3∈Un

∥∥∥∥∥∥
n∑

i,j=1

AiQ1AjQ2AiQ3Aj

∥∥∥∥∥∥
1/4

,

here Un denotes the group of n × n unitary matrices (the paper [Tro18] considers
Hermitian Ai’s, while in this paper we focus on the real symmetric setting). In fact,
a bound which replaces the multiplicative

√
log n factor in the NCK inequality by an

additive factor has been hypothesized in many different forms [Tro12, Ban15, BvH16,
vH17, LvHY18, Tro18]. For the matrix series (1.1), define the “weak variance” as

σ∗ =

(
max
‖v‖=1

N∑
i=1

(v>Aiv)2

)1/2

, (1.6)

a possible improvement to Theorem 1.2 could be

E

∥∥∥∥∥
N∑
i=1

γiAi

∥∥∥∥∥ ≤ C(σ + σ∗
√

log n). (1.7)

Note that σ∗ ≤ σ by a simple application of the Cauchy-Schwarz inequality. For random
matrices with independent Xij ∼ N (0, b2ij) for 1 ≤ i ≤ j ≤ n, upon writing it as a matrix
series as in (1.4), we have

X =

N∑
i=1

γiAi, where {Ai}Ni=1 = {biiEii}ni=1 ∪ {bij(Eij + Eji)}1≤i<j≤n.

It is not hard to show that

max
‖v‖=1

(
N∑
i=1

(v>Aiv)2

)1/2

� max
ij
|bij |,

thus σ∗ defined in (1.6) is consistent with the quantity defined in (1.5) in that they differ
only by a multiplicative constant, and the proposed improvement (1.7) is indeed true in
the case of random matrices with independent entries due to [BvH16].

In this paper, we show another class of examples, in which we improve the bound
given by the NCK inequality (1.2) by replacing the multiplicative log factor with an
additive factor, as is the case in the conjectured bound (1.7). In the following context, all
the matrices we consider are real. As an extension to random matrices with independent
entries, we consider the operation of matrix lifts, in which each entry of an underlying
deterministic matrix is replaced by the product of itself and a random k × k matrix, as
described in the following definition.

Definition 1.2 (Matrix lifts). Let A be an n × n symmetric matrix with zero diagonal
entries, and π be a measure supported on k × k matrices. Define the (k, π) lift of A,
denoted A(k,π), as follows:

• Draw i.i.d. samples {Πij}1≤i<j≤n from π; for 1 ≤ i < j ≤ n, denote Πji := Π>ij;

• For 1 ≤ i ≤ n, denote Πii := 0k;
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• For all 1 ≤ i, j ≤ n, replace Aij with the matrix AijΠij .

The resulting matrix is a kn× kn symmetric random matrix, which can be written as

A(k,π) =
∑

1≤i,j≤n

Aij(Eij ⊗Πij) (1.8)

where the symbol “⊗” on the RHS denotes the Kronecker product of matrices.

The main theorem of this paper is the following bound:

Theorem 1.3. Let A be a symmetric n × n matrix (n ≥ 2) with zero diagonal entries.
Suppose π is a centered measure supported on k × k matrices with spectral norm at
most 1. Then there exists a universal constant C, such that for any ε ∈ (0, 1/2],

E‖A(k,π)‖ ≤ 2(1 + ε)σ +
C√

log(1 + ε)
σ∗
√

log(kn). (1.9)

where

σ := max
i

√∑
j

A2
ij , σ∗ := max

ij
|Aij |.

Note that Definition 1.2 and Theorem 1.3 only apply to base matrices A with zero
diagonal entries. A base matrix with possibly non-zero diagonal entries can be handled
by splitting it in its diagonal and non-diagonal parts and using triangular inequality in
the result random matrices.

Remark 1.4. Upon taking A = {bij}, k = 1 and π = Uniform{±1}, Definition 1.2 and
Theorem 1.3 include as a special case the real symmetric random matrix X ∈ Rn×n
with Xij = εijbij , where {bij} are given and εij are independent Rademacher random
variables for 1 ≤ i ≤ j ≤ n, that is, P [εij = ±1] = 1/2. Since [BvH16] showed that
the bound O(σ + σ∗

√
log n) captures the optimal scaling of E‖X‖ with respect to σ and

σ∗
√

log n and is in general unimprovable, this implies the same for our bound (1.9) on
E‖A(k,π)‖. However, Theorem 1.3 does not directly imply the bound (1.5), since gaussian
random variables are not compactly supported.

Besides the k = 1 case, Theorem 1.3 is also interesting with natural choices such as
π being the Haar measure on the orthogonal group O(k) or special orthogonal group
SO(k). One particular application is an estimate on the spectrum of random lifts of
graphs, which we discuss below.

1.4 Application: random lifts of graphs

Given an undirected graph G = (V,E) and an integer k ≥ 2, the random k-lift of
G, denoted G(k), is obtained by replacing each vertex v ∈ V by k new vertices, and
each edge e = (v1, v2) by a random k × k bipartite matching between the k new vertices
corresponding to v1 and those corresponding to v2. Here “random” refers to a uniform
choice on all k! possible bipartite matchings. We denote A and A(k) the adjacency matrix
of G and G(k), respectively.

Previous studies on the k-lifts of graphs, under the setting of fixed G and k →∞, have
revealed many properties of the resulting random graph, such as connectivity [AL02],
chromatic number [ALM02], edge expansion [AL06] and the existence of perfect match-
ing [LR05]. The spectrum of random k-lifts, namely the new spectrum introduced in the
lifting process

max
η∈spec(A(k))\spec(A)

|η| = ‖A(k) − EA(k)‖ (1.10)

was studied by Friedman [Fri03] via the trace method, who showed that with a random
d-regular graph as the base graph, as k → ∞, (1.10) is O(d3/4) with high probability.
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He also conjectured the tight bound 2
√
d− 1 + o(1). The high probability upper bound

on (1.10) was improved by Linial and Puder to O(d2/3) in [LP10], then by Lubetzky,
Sudakov and Vu [LSV11] to O(

√
d log d) in the case that the second eigenvalue of the

base graph is O(
√
d). Later, Addario-Berry and Griffiths [ABG10] and Puder [Pud15]

proved that (1.10) is O(
√
d), the latter giving 2

√
d− 1 +O(1) as an upper bound. Since

then, various extensions or alternative proofs of the bound on (1.10) of the scale O(
√
d)

(some under slightly different settings) have been carried out with different combinatorial
and probabilistic techniques, for example, in [FK14, BLM15, Bor19, ACKM17].

We should notice that the above line of work adopted the asymptotic regime k →∞
and the setting that the base graph is taken randomly over all d-regular graphs on n

vertices. In fact, in the case that the base graph is a fixed d-regular graph and k ∈ N+ is
fixed, (1.10) is not always upper bounded by O(

√
d). As a counterexample (see [BvH16],

Remark 4.8): consider G the union of n/s cliques of s vertices each, with no edges
between different cliques; here s = d

√
log ne, and we assume that n/s is an integer for

simplicity. Seginer [Seg00] showed that

E‖A(2) − EA(2)‖ ∼
√

log n,

whereas the O(
√
d) bound would incorrectly predict that LHS is O(log1/4(n)).

Another line of work considers a fixed base graph G with maximum degree ∆ with-
out assuming its randomness. Making use of matrix concentration, Oliveira [Oli10a]
obtained a high probability upper bound of O(

√
∆ log(kn)) on (1.10). The most recent

advancement by Bordenave and Collins [BC19] considered the k-lifts problem under a
much more general framework, and proved that (1.10) is 2

√
d− 1+o(1) for any d-regular

base graph G as k →∞, finally settling Friedman’s conjecture even without assuming
the randomness of the base graph.

In what follows, we manage to improve the bound in [Oli10a] by removing the
multiplicative factor

√
log(kn), replacing it with an additive factor. We also improve

the constant factor before
√

∆ down to 2, in consistence with Friedman’s theorem
and [BC19]. In the large k limit, our bound is weaker than [BC19] by an additive√

log(kn) factor. For k = 2, an additive
√

log n factor is needed as illustrated by a
counterexample due to Seginer [Seg00]. However, our result does not capture the
correct dependence on k, namely concentration arising from large k. Note that we are
only using a slight modification of the moment method, compared to the sophisticated
combinatorial technique in [BC19].

Theorem 1.5. LetA be the adjacency matrix ofG = (V,E) with |V | = n and maxdeg(G) =

∆, and A(k) be the corresponding random k-lift. Then there exists a universal constant
C, such that for any ε ∈ (0, 1/2]

E‖A(k) − EA(k)‖ ≤ 2(1 + ε)
√

∆ +
C√

log(1 + ε)

√
log(kn). (1.11)

Our bound is essentially 2(1 + ε)
√

∆ as long as ∆� log(kn), i.e. the base graph G is
not too sparse. The proof of Theorem 1.5 will follow from our main result, Theorem 1.3.

Notation

In this paper, for positive quantities A and B, A . B and A & B respectively refer to
A ≤ CB and A ≥ CB for some absolute positive constant C. For x ∈ R, dxe denotes the
minimum integer that is larger than or equal to x.
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2 Proof of main results

In this section, we carry out the proof of Theorems 1.3 and 1.5. We begin with the
following comparison argument which links A(k,π) to an auxiliary Wigner matrix. This
argument is a modification of Proposition 2.1 in [BvH16], and the auxiliary matrix Yr is
same as in the proof of Theorem 4.8 in [LvHY18].

Proposition 2.1. Let Yr be the r × r symmetric matrix with zero diagonal and

Yij =


√

3, w.p.
1

4

− 1√
3
, w.p.

3

4

independently for all 1 ≤ i < j ≤ r. Under the setting of Theorem 1.3, suppose σ∗ ≤ 1,
then for every p ∈ N+ there holds

ETr
[
(A(k,π))2p

]
≤ kn

dσ2e+ p
ETr

[
Y 2p
dσ2e+p

]
.

To carry out the proof of Proposition 2.1, we start with a set of standard notations
adopted from [FK81] and [BvH16]. Following the representation (1.8), a direct expansion
of (A(k,π))2p yields

ETr
[
(A(k,π))2p

]
=

∑
u1,u2,...,u2p∈[n]

 2p∏
j=1

Aujuj+1

ETr
 2p∏
j=1

Πujuj+1

 . (2.1)

Let Gn = ([n], En) be the complete graph on n points. A cycle u1 → u2 → · · · →
u2p → u1 of length 2p, where ui ∈ [n] for all 1 ≤ i ≤ 2p (u2p+1 := u1), is identified as
u = (u1, . . . , u2p) ∈ [n]2p. Since E [Πij ] = 0 for any 1 ≤ i, j ≤ n, in the sum of (2.1) we
only need to consider cycles with each edge appearing at least twice.

We call the shape of a cycle u, denoted s(u), a relabeling of the vertices in the order of
their appearance. For example, the shape of u = (4, 7, 2, 7, 9, 4, 5, 4) is (1, 2, 3, 2, 4, 1, 5, 1).
The following set is a collection of all cycles of shapes that contribute to the sum in (2.1):

S2p := {s(u) : u is a cycle of length 2p with each edge appearing at least twice}.

For the sake of convenience, we also define the set of cycles with fixed shape and starting
point as

Γs,u := {u ∈ [n]2p : s(u) = s, u1 = u}.

The span of a shape s, denoted by m(s), is the largest index in its representation, also the
number of distinct vertices any cycle of shape s visits. A direct observation is m(s) ≤ p+1

for any s ∈ S2p.

Proof of Proposition 2.1. Following the expansion (2.1) we have

ETr
[
(A(k,π))2p

]
=
∑

s∈S2p

∑
u∈[n]

∑
u∈Γs,u

 2p∏
j=1

Aujuj+1

ETr
 2p∏
j=1

Πujuj+1


≤ k

∑
s∈S2p

∑
u∈[n]

∑
u∈Γs,u

 2p∏
j=1

|Aujuj+1
|


≤ kn

∑
s∈S2p

σ2(m(s)−1)

(2.2)
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where the first inequality follows from ‖
∏2p
j=1 Πujuj+1

‖ ≤ 1 and therefore

Tr
[∏2p

j=1 Πujuj+1

]
≤ k; and the second inequality owes to the fact that, under σ∗ ≤ 1, for

any u ∈ [n] and s ∈ S2p, Lemma 2.5 in [BvH16] gives

∑
u∈Γs,u

 2p∏
j=1

|Aujuj+1 |

 ≤ σ2(m(s)−1).

Meanwhile, for any positive integer r > p, for the auxiliary random matrix Yr we have

ETr
[
Y 2p
r

]
=

∑
u∈[r]2p

ETr

 2p∏
j=1

Yujuj+1


≥
∑

s∈S2p

∑
u∈[r]

∑
u∈Γs,u

ETr

 2p∏
j=1

Yujuj+1


=
∑

s∈S2p

|{u ∈ [r]2p : s(u) = s}| · ETr

 2p∏
j=1

Yujuj+1


≥
∑

s∈S2p

r(r − 1) · · · (r −m(s) + 1) · 1

The last inequality follows from the observation that E[Y mij ] ≥ 1 for all m ≥ 2. Now
choosing r = dσ2e+ p, noting that m(s) ≤ p+ 1 for all s ∈ S2p, we have

ETr
[
Y 2p
dσ2e+p

]
≥ (dσ2e+ p)

∑
s∈S2p

σ2(m(s)−1). (2.3)

Comparing (2.2) with (2.3) yields the result.

The following lemma gives an upper bound on the moments of the auxiliary random
matrix Yr.

Lemma 2.2. For Yr defined in Proposition 2.1, there exists an absolute constant C, such
that for any positive integer p ≥ 2, there holds

ETr
[
Y 2p
r

]
≤ r(2

√
r + C

√
p)2p. (2.4)

Proof. Since
ETr

[
Y 2p
r

]
≤ rE

[
‖Yr‖2p

]
,

we only need to show that there exists an absolute constant C, such that for p ≥ 2,

E
[
‖Yr‖2p

]
≤ (2
√
r + C

√
p)2p. (2.5)

The proof of (2.5) is contained in the proof of Theorem 4.8 in [LvHY18], so we do not
repeat it here. The main steps of the proof are a norm bound for Wigner matrices with
non-symmetrically distributed entries followed by Talagrand’s concentration inequality.

Proof of Theorem 1.3. By Proposition 2.1 and Lemma 2.2, assuming σ∗ ≤ 1, we know
that for any positive integer p ≥ 2,

E‖A(k,π)‖ ≤
(
ETr

[
(A(k,π))2p

])1/2p

≤
(

kn

dσ2e+ p
ETr

[
Y 2p
dσ2e+p

])1/2p

≤ (kn)1/2p
(

2
√
dσ2e+ p+ C

√
p
)
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If kn ≥ 3, for α ≥ 1 choosing p = dα log(kn)e ≥ 2 yields

E‖A(k,π)‖ ≤ e1/2α
(

2
√
dσ2e+ dα log(kn)e+ C

√
dα log(kn)e

)
≤ e1/2α

(
2σ + 2

√
α log(kn) + 2 + C

√
α log(kn) + 1

)
.

Denote e1/2α = 1 + ε. Since n ≥ 2, k ≥ 1, and ε ≤ 1/2 implies α ≥ 1, we have
2 < 3 log 2 ≤ 3α log(kn), so

E‖A(k,π)‖ ≤ 2(1 + ε)σ + (1 + ε)(4 + 2C)

√
log(kn)

2 log(1 + ε)
.

The remaining case kn < 3 can only happen when n = 2 and k = 1. In this case π is
supported on [−1, 1], and we can directly estimate

E‖A(k,π)‖ ≤ E‖A(k,π)‖F ≤ 2 < 2
√

2 log(kn).

The spectral bound of random k-lifts of graphs follows as an immediate corollary.

Proof of Theorem 1.5. Denote Perm(k) the collection of all k × k permutation matrices,
and

Gk := {Π− 1

k
Jk : Π ∈ Perm(k)}

where Jk is the k × k matrix with all entries 1. It is easy to verify that ‖X‖ ≤ 1 for any
X ∈ Gk. Moreover, the adjacency matrix A has σ2 ≤ ∆ and σ∗ ≤ 1 by definition. Thus it
follows from Theorem 1.3 that

E‖A(k) − EA(k)‖ = E‖A(k,Unif(Gk))‖

≤ 2(1 + ε)
√

∆ +
C√

log(1 + ε)

√
log(kn).

Remark 2.3. In the above proof, we applied Theorem 1.3 on π = Unif(Gk), where Gk is
the centered version of Perm(k). One may expect that, under the setting of Theorem 1.3
without assuming π is centered, there still holds

E‖A(k,π) − EA(k,π)‖ ≤ C
(
σ + σ∗

√
log(kn)

)
. (2.6)

Though we do not have a counterexample for (2.6), we must point out that (2.6) only
follows from Theorem 1.3 when ‖X − EπX‖ ≤ 1 for every X ∈ supp(π).

We note that the proof of Theorem 1.3 is not exploiting any potential structure of
the “lifting matrices” Πij . In fact, this may explain why Theorem 1.5 is worse than the
result in [BC19] by an additive

√
log(kn) factor in the large k limit for d-regular base

graphs. One may be able to obtain a stronger result, for instance E‖A(k,π) − EA(k,π)‖ ≤
2
√

∆ + ok(1), with a more careful analysis considering that Πij are permutation matrices.
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