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Abstract

We derive an invariance principle for the lift to the rough path topology of stochastic
processes with delayed regenerative increments under an optimal moment condition.
An interesting feature of the result is the emergence of area anomaly, a correction
term in the second level of the limiting rough path which is identified as the average
stochastic area on a regeneration interval. A few applications include random walks in
random environment and additive functionals of recurrent Markov chains. The result
is formulated in the p-variation settings, where a rough path version of Donsker’s
Theorem is available under the second moment condition. The key renewal theorem
is applied to obtain an optimal moment condition.
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1 Introduction

Donsker’s invariance principle states that a diffusively rescaled centered random walk
on Rd with jumps of finite variance converges in distribution to a Brownian motion in the
Skorohod topology. Regenerative processes are a more general class: they are assumed
to contain an infinite subsequence of times on which the induced process is a random
walk. The natural strategy to prove an invariance principle here is to first prove it for that
subsequence, and then to show that the fluctuations of the original process coincide with
the ones of the approximating sequence in the limit. However, when lifting regenerative
processes to the rough path space a surprising feature appears in the limiting rough
path. The first level is naturally, the Brownian motion defined by the covariance matrix
achieved in the classical case, whereas the second level (see Section 1.1 for more details)
does not coincide with the iterated integral of the Brownian motion, but should be
corrected by a deterministic process which is called ‘area anomaly’. The latter is linear
in time and can be identified in terms of the stochastic area on a regeneration time
interval, see for example (1.5) below. This provides non-trivial and new information
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on the limiting path which is not captured in the classical invariance principle. This
information is crucial in order to describe the limit of stochastic differential equations
(SDE) of the form

Y
(n)
t = Y0 +

∫ t

0

b(Y (n)
s )ds+

∫ t

0

σ(Y (n)
s )dX(n)

s , t ∈ [0, T ],

where the driver X(n) is a linearly interpolated rescaled regenerative process, b and σ
are smooth functions and the integral is in the sense of Riemann-Stieltjes. Even though
X(n) converges weakly to a Brownian motion B, the limit of Y (n) does not satisfy the
SDE with b and σ driven by B, but there is an additional drift which is explicit in terms
of the area correction of the second level of the limiting rough path (denoted by Γ in
(1.5) below), see e.g line (1.1) of [6] and the discussion below it.

In this work the moment condition on regeneration intervals that was assumed in
[22] is optimized. The main obstacle of [22] is that it relies on the rough path extension
of Donsker’s Theorem [2] which is based on Kolmogorov’s tightness criterion on Hölder
rough paths. As mentioned already in [2], this was costly and therefore the assumed
moment condition was not optimal. Instead of considering the somewhat heavy algebraic
framework in the formalism of Hölder rough path, we consider the parametrization-free
p-variation setting which fits better to jump processes and discrete-time processes.

Recently, a new machinery was introduced to deal with regularity for jump processes
in the rough path topology. The main tool is the Lépingle Burkholder-Davis-Gundy
(BDG) inequality lifted to the p-variation rough path settings. The latter provides an
equivalence between the (2q)-th moment of the p-variation norm of a local martingale
and the q-th moment of its quadratic variation, and allows to obtain the rough path
version of Donsker’s Theorem under the second moment condition, as in the classical
case. The proof is by now standard, however for completeness we sketch it in the proof
of our main result.

In order to optimize the moment condition on a regeneration interval for processes
with regenerative increments so that the rough path version of Donsker’s Theorem is
used under not more than the second moment, we apply the key renewal theorem. This
theorem roughly says that the mass function of the process in a regeneration interval
around a fixed time (also called ‘age’ in the renewal theory jargon) is approaching a
density which is proportional to the uniform measure of an independent copy of the
interval, namely, its size-biased version. This result is sharp and in particular guarantees
that in the limit as time goes to infinity the m-th moment of a regeneration interval
around a deterministic time, and the (m+ 1)-st moment of a fixed regeneration interval
are equal up to a constant. The result extends the Donsker’s classical theorem for these
processes with no extra regularity assumption.

There has been some progress related to random walks in the rough topology in
the past two decades. The closest works, generalized in this paper are [22, 24, 23]. In
the context of semimartingales and rough paths with jumps [3, 8, 4], CLT on nilpotent
covering graphs and crystal lattices [16, 25, 17], additive functional of Markov process
and random walks in random environment [6]. For homogenization in the continuous
settings [5, 19, 20], and for additive functionals of fractional random fields [12, 13, 14].

In the remaining part of this section we shall present the model and the main result,
Theorem 1.5, after introducing the necessary rough path theory elements in Section 1.1.
In Chapter 2 we shall mention some examples to which our main result applies, whereas
its proof is given in Chapter 3. We also included two short appendices which might be
useful in other context.
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1.1 Preliminaries on rough paths

For two families (ai)i∈I , (bi)i∈I of real numbers indexed by I, we write ai . bi if
there is a positive constant c so that ai 6 cbi for all i ∈ I. We write an ≈ bn whenever
an− bn → 0 as n→∞. Set N = {1, 2, ...}, N0 = N∪{0} and ∆T := {(s, t) : 0 6 s < t 6 T}
for T > 0. For a function X : [0, T ] → Rd we set Xs,t := Xt −Xs. We interpret X also
as a function on ∆T given by (s, t) 7→ Xs,t. For a metric space E we write C([0, T ], E)

resp. D([0, T ], E)) for the E-valued continuous resp. càdlàg functions on [0, T ]. We
write C(∆T , E) resp. D(∆T , E)) for the space of E-valued functions X : ∆T → E so that
t 7→ Xs,t is continuous resp. càdlàg on [s, T ], for every s ∈ [0, T ]. By convention, whenever
E = Rd, we write | · | for the d-dimensional Euclidean norm. Also, the expectation of a
vector (or matrix) valued random variable is understood coordinate- (or entry-) wise. For
x, y ∈ Rd we write x⊗y ∈ Rd×d for the tensor product (x⊗y)i,j = xiyj , i, j = 1, . . . , d, and
x⊗2 for x⊗ x. Whenever (xn)n is a sequence of elements in Rd we write xin, i = 1, ..., d,
for their components.

For brevity, we shall focus on the necessary objects needed for introducing our results.
We follow closely Chapter 2 of [6]. The reader is referred to Section 5 of [8] for details
on Itô p-variation rough paths with jumps and to [9] and [10] for an extensive account of
the theory of rough paths.

For a normed space (E, ‖ · ‖E), and a function X ∈ C([0, T ], E) or X ∈ C(∆T , E) we
write ‖X‖∞,[0,T ] := sup(s,t)∈∆T

‖Xs,t‖E to denote the uniform norm of X, and for any

p ∈ (0,∞), we write ‖X‖p,[0,T ] :=
(

sup
∑

[s,t]∈P ‖Xs,t‖pE
)1/p

, where the supremum is over

all finite partitions P of [0, T ], to denote its p-variation norm. A continuous rough path is
a pair of functions (X,X) ∈ C([0, T ],Rd)× C(∆T ,R

d×d) satisfying Chen’s relation, that
is

Xs,t −Xs,r −Xr,t = Xs,r ⊗Xr,t for all 0 6 s < r < t 6 T. (1.1)

Definition 1.1 (p-variation rough path space). For p ∈ [2, 3), Cp([0, T ],Rd ×Rd×d) is the
space of all continuous rough paths (X,X) such that

9 (X,X)9p,[0,T ] := |X0|+ ‖X‖p,[0,T ] + ‖X‖p/2,[0,T ] <∞. (1.2)

The (uniform) p-variation distance σp,[0,T ] is defined by taking the norm of the path
defined by the differences increment-wise:

σp,[0,T ]((X,X), (Y,Y)) := 9(X − Y,X−Y) 9p,[0,T ] .

We refer to X as the first level of the rough path (X,X) and to X as its second
level. We shall now state a simple and useful sufficient condition for convergence in
p-variation based on the convergence in the uniform topology together with tightness of
the p-variation norms, see Lemma 2.3 in [6] and which is based on Theorem 6.1 of [8].

Lemma 1.2 (Sufficient condition for convergence in p-variation). Assume that
(Zn,Zn)n∈N is a sequence of continuous rough paths and let p0 ∈ (2, 3). Assume also
that there exists a continuous rough path (Z,Z) such that (Zn,Zn) → (Z,Z) in dis-
tribution in the uniform topology and that the family of real valued random variables
(‖(Zn,Zn)‖p0,[0,T ])n∈N is tight. Then (Zn,Zn)→ (Z,Z) in distribution in the p0-variation
uniform topology Cp([0, T ],Rd ×Rd×d) for all p ∈ (p0, 3).

1.2 Main result

Let X = (Xn)n∈N0
be a discrete time stochastic process onRd defined on a probability

space (S,F ,P) and let E be the corresponding expectation. Assume that X has a delayed
regenerative increments, that is there exists a sequence 0 =: τ0 < τ1 < τ2 <... of
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F -measurable N0-valued random variables so that (Tk, {Xτk,τk+m, 0 6 m 6 Tk})k∈N is
an i.i.d. family independent of (T0, {X0,m, 0 6 m 6 τ1}) under P, where Tk = τk+1 − τk
are the regeneration intervals and X`,k := Xk −X` are the increments. Assume that
E[Xτ1,τ2 ] = 0 and that gcd{j : pj > 0} = d for some d ∈ N, where pj = P(T1 = j), that is,
T1 is d-arithmetic. For any sequence (Xk)k∈N0

of elements in Rd we define

X
(n)
t :=

1√
n
Xbntc +

nt− bntc√
n

(Xbntc+1 −Xbntc) and

X
(n)
s,t :=

1

n
IStr
bnsc,bntc(X) +

n(t− s)− bntc+ bnsc
n

(
IStr
bnsc,bntc+1(X)− IStr

bnsc,bntc(X)
)
, (1.3)

where for positive integers M < N

IStr
M,N (X) :=

∑
M+16k6N

(
XM,k−1 ⊗Xk−1,k −

1

2
Xk−1,k ⊗Xk−1,k

)
.

Remark 1.3. Note that

X
(n)
s,t :=

∫
(s,t]

∫
(s,u)

dX(n)
v ⊗ dX(n)

u ,

where the integration with respect to dX
(n)
v is in the sense of Riemann-Stieltjes.

We shall now formulate the main regularity assumption. We remind the reader that
for Y ∈ Rd we write Y ik for the i-th component of Y , i ∈ {1, ..., d}.
Assumption 1.4. For all i ∈ {1, ..., d}, m ∈ {0, 1} and p ∈ {0, 2}

0 < E

[(
Ξim
)p
Tk

]
<∞,

where Ξim := sup{|Xi
τm,τm+k| : 0 6 k 6 Tm}.

Theorem 1.5. Let X be a discrete time stochastic process satisfying Assumption 1.4.
Assume that E[Xτk,τk+1

] = 0 for every k ∈ N0. Then, (X(n),X(n))n∈N converges in
distribution to (B,B+ ·Γ) in Cp([0, T ],Rd ×Rd×d) for every p > 2, where B is a centered
Brownian motion with covariance

[B,B]t =
E[X⊗2

τ1,τ2 ]

E[T1]
t, (1.4)

B is the Stratonovich iterated integral of B, that is Bs,t =
∫

(s,t]
Bs,u⊗◦dBu and Γ ∈ Rd×d

is given by

Γ =
E[Aτ1,τ2(X)]

E[T1]
, (1.5)

where AM,N (X) = Antisym(X
(1)
M,N ) is the antisymmetric part of the matrix X(1)

M,N . The

abbreviation B+ ·Γ stands for
(
Bs,t + (t− s)Γ

)
(s,t)∈∆T

.

Remark 1.6. Note that the positivity condition for the moment in Assumption 1.4 is
assumed in order to avoid degeneracies. Indeed, it can be omitted if we accept a
degenerate formulation of the invariance principle. More accurately, if this is violated,
then Xi

n = 0 for all times for some coordinate i, for which one can say that the invariance
principle holds with a singular covariance matrix. Note also that Assumption 1.4 holds
whenever τ1 has a third moment and |X`,k|

k−` are uniformly bounded from above by a

constant a.s., for example, whenever the process X has values in Zd, with nearest-
neighbor jumps.

ECP 26 (2021), paper 37.
Page 4/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP406
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Rough invariance principle for delayed regenerative processes

Remark 1.7 (Optimality of the result). Let Xn =
∑n
k=1 ξk be a centered random walk

on Rd, that is E[ξik] = 0, i = 1, . . . , d, where ξk = (ξ1
k, . . . , ξ

d
k) are Rd-valued i.i.d random

variables. Then X = (Xn)n∈N0
has, trivially, delayed regenerative increments: here

Tk = 1 and Ξik = |ξik|, i = 1, . . . , d, k = 0, 1, . . . Therefore Assumption 1.4 is equivalent

in this case to E
[∑d

i=1 |ξi1|2
]
< ∞, which is a necessary and sufficient condition for

the classical central limit theorem, cf. Theorem 4 in [15, Chapter 7]. In this case
Γ = E[A1,2(X)] = 0.

2 Examples

Positive recurrent countable Markov chains. Assume that (Yk)k∈N is a positive
recurrent irreducible Markov chain taking values in some measurable space S, that is

P(T+
x <∞|X0 = x) = 1 for somex ∈ S

where T+
x = inf{k ∈ N : Yk = x}. Assume moreover that E[(T+

x )3|X0 = x] <∞. Then the
conditions of Theorem 1.5 hold under P(·|X0 = x) for the sequence

Xn :=

n∑
k=0

f(Yk)− n E[D|Y0 = x]

E[T+
x |Y0 = x]

, n ∈ N0,

where D =
∑T+

x −1
k=0 f(Yk), and f : S → Rd is any bounded measurable function.

All the examples considered in Section 5 of [22] are applicable here. In particular, the
result applies to Random walks in periodic environment ([22], Section 5.2), where
the periodicity assumption can be easily relaxed. For example, it can include i.i.d.
impurities, as long as the regenerative structure is kept. It applies also to Random
walks on covering graphs and hidden Markov chains, (Chapter 5.2 of [22]). The
examples there immediately satisfy Assumption 1.4. Moreover, these can be extended,
allowing infinite modulating systems and covering graphs with infinite structure. Also, to
make the connection to the results on covering graphs in the framework of [16, 25, 17],
the regeneration interval Tk in the present paper coincide with the number of vertices
in the quotient graphs. Another application is to the so-called Ballistic random walks
in random environment (Section 5.1 of [22]). Lastly, for the example of Random
walks in Dirichlet environments, the rough invariance principle, Theorem 5.5 of
[22] is shown in the ballistic regime (more accurately, whenever a condition which is
denoted by (T )γ holds for some γ ∈ (0, 1), see Chapter 6.1 of [27] for the definition and
more details) in the sense of Hölder rough paths only whenever the trap parameter
κ satisfies κ > 8 in the α-Hölder rough path topology for all α < 1

2 −
1

(κ/2)∗ , where

(κ/2)∗ = min{bκ/2c, 2bκ/4c}. The improvement in the present work is that the rough
invariance principle – Theorem 1.5 below – applies already whenever the trap parameter
satisfies κ > 3, and moreover it holds for all p > 2, which corresponds to holding for all
α < 1/2 in the α-Hölder settings.

3 Proof of Theorem 1.5

Set Zk := Xτk =
∑k−1
`=0 Y` for k ≥ 0, where Y` := Xτ`,τ`+1

. Then Z = (Zk)k∈N0
is a

random walk with square integrable jumps. Therefore,

(Z(n),Z(n)) converges in distribution to (BZ ,BZ) in Cp([0, T ],Rd) (3.1)

for all p > 2, where BZ is a centered Brownian motion with covariance

[BZ , BZ ]t = E[Y2 ⊗ Y2]t
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and BZ is the Stratonovich iterated integral of BZ . Indeed, this is a rough path version
of Donsker’s Theorem and for completeness, we now sketch the proof. By Lemma
1.2 it is enough to prove first convergence in distribution in the uniform topology and
then to show tightness for the sequence of p-variation norms. The convergence in the
uniform topology for the path is Donsker’s Theorem, cf. [7, 1], whereas for the iterated
integral it follows by Theorem 2.2 of Kurtz-Protter [18] (with the slight modification to
Stratonovich’s integral rather then Itô’s). To show tightness, for the first level we have
one can show that

E[‖Z(n)‖2p,[0,T ]] . 1, (3.2)

using Lépingle’s p-variation inequality [21] combined with the BDG inequality. For the
second level

E[‖Z(n)‖p/2,[0,T ]] . 1 (3.3)

by Theorem 1.1 of [28], which is an off-diagonal version to the Lépingle p-variation BDG
inequality (alternatively, one can also use [11] or Proposition 3.8 of [6]).

Next, we treat the rescaled lift (X(n),X(n))n∈N. We shall work on each level separately.
Let us first identify the limit by proving the convergence of the finite-dimensional
distributions. For ease of notation we shall only show the one-dimensional distributions,
proving the convergence for higher dimensions is done similarly. For any u > 0 let κ(u)

be the unique random integer k so that τk 6 u < τk+1. Note that κ(u) is measurable with
respect to σ(Tk : k < u), since τk =

∑k−1
`=0 T`. Observe that

|X(n),i
t − Z(n),i

κ(nt)/n| =
∣∣∣∣ 1√
n
Xi
bntc +

nt− bntc√
n

(Xi
bntc+1 −X

i
bntc)−

1√
n
Xi
τκ(nt)

∣∣∣∣ 6 1√
n
|Ξiκ(nt)|.

Next, note that as τκ(nt) 6 nt < τκ(nt)+1

κ(nt)

κ(nt) + 1

κ(nt) + 1

τκ(nt)+1
6
κ(nt)

nt
6
κ(nt)

τκ(nt)
.

The weak law of large numbers for (τk)k∈N0
implies that

κ(nt)

nt
−−−−→
n→∞

E[T1]−1 =: β (3.4)

in probability with respect to P, where we used the fact that 1 6 E[T1] <∞ by assump-
tion. In particular, P(κ(n) > 2βn) −−−−→

n→∞
0 and therefore for every ε > 0

P(‖X(n),i − Z(n),i
κ(n·)/n‖∞,[0,T ] > ε) 6 P

(
‖Ξiκ(n·)‖∞,[0,T ] > ε

√
n
)

6 P

(
max

06m6nT2β
Ξim > ε

√
n

)
+ o(1).

But since the maximum of order n i.i.d random variables with a finite second moment is
sub-diffusive in probability the first term also vanishes in probability. Indeed,

P

(
max

06m6cn
Ξim > ε

√
n

)
= 1−

(
1− P

(
Ξi0 > ε

√
n
)) (

1− P
(
Ξi1 > ε

√
n
))bcnc

≈ 1−
(
1− P

(
Ξi1 > ε

√
n
))bcnc

≈ 1− exp
(
−cnP

(
Ξi1 > ε

√
n
))
,

which tends to 0 as n → ∞. This holds since P(|Ξi1|2 > ε2n) 6 P(|Ξi1|2 > ε2j) for every
j 6 n and so

(n− k)P(|Ξi1|2 > ε2n) 6
n∑

j=k+1

P(|Ξi1|2 > ε2j), k 6 n.
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Therefore,

lim sup
n→∞

nP
(
Ξi1 > ε

√
n
)

= lim sup
n→∞

(n− k)P(|Ξi1|2 > ε2n) 6
∞∑

j=k+1

P(ε−2|Ξi1|2 > j) −−−−→
k→∞

0,

since the right hand side is summable as E[|Ξi1|2] <∞.
Next, since the maximum of linear interpolations of any finite sequence on any

bounded interval is obtained on the end points, we have

‖Z(n),i
κ(n·)/n − Z

(n),i
·β ‖∞,[0,T ] 6

1√
n

max
06m6Tβn

|Ziκ(m/β) − Z
i
m|

6
1√
n

max
06m6Tnβ

|Ξim| max
06m6Tnβ

|κ(m/β)−m|.

Thus for R > 0

P(‖Z(n),i
κ(n·)/n − Z

(n),i
·β ‖∞,[0,T ] > ε)

6 P

(
max

06m6Tβn
|Ziκ(m/β) − Z

i
m| > ε

√
n, max

06m6Tnβ
|κ(m/β)−m| 6 R

√
n

)
+ P

(
max

06m6Tβn
|Ziκ(m/β) − Z

i
m| > ε

√
n, max

06m6Tnβ
|κ(m/β)−m| > R

√
n

)
6 P

(
max

06k,m6Tβn,|k−m|6R
√
n
|Zik − Zim| > ε

√
n

)
+ P

(
max

06m6Tnβ
|κ(m/β)−m| > R

√
n

)
6 3Tβ

√
nP

(
max
k6R

√
n
|Zik| > ε

√
n

)
+ P

(
max

06m6Tnβ
|κ(m/β)−m| > R

√
n

)
.

To deal with the first term we use a standard two pairs estimate (see Example 10.1 of
Billingsley [1]), to find some K > 0 and Ψ(λ) −−−−→

λ→∞
0 so that for any fixed R > 0

√
nP

(
max
k6R

√
n
|Zik| > ε

√
n

)
6
√
n

K(
εn1/4/

√
R
)4 +

√
n

Ψ
(
ε
√
n√
R

)
(
εn1/4/

(
2
√
R
))2 (3.5)

=
KR2

ε4
√
n

+
4R

ε2
Ψ

(
ε
√
n√
R

)
−−−−→
n→∞

0.

By the central limit theorem for renewal processes with finite variance [1, Theorem 17.3]

P

(
max

06m6Tnβ
|κ(m/β)−m| > R

√
n

)
−−−−→
n→∞

P( max
06t6T

c|Wt| > R),

where W is a Brownian motion and c > 0 is some constant. As R can be chosen arbitrarily
large, lim supn→∞P(‖Z(n),i

κ(n·)/n − Z
(n),i
·β ‖∞,[0,T ] > ε) = 0. Therefore,

‖X(n),i − Z(n),i
·β ‖∞,[0,T ] −−−−→

n→∞
0 in probability .

Applying Slutsky’s Theorem in the Skorohod topology, Theorem B.1, to

X(n) = X(n) − Z(n)
β· + Z

(n)
β· (3.6)

we deduce that X(n) −−−−→
n→∞

BZβ· =: B in distribution with respect to P, so that B is a

d-dimensional Brownian motion with a covariance matrix given in (1.4), as desired.

ECP 26 (2021), paper 37.
Page 7/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP406
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Rough invariance principle for delayed regenerative processes

Next, we shall show tightness of the p-variation norms for p > 2. Note that κ(u) 6 u

for any u > 0. Indeed, Ti ∈ N for all i ∈ N by assumption and therefore κ(u) 6 τκ(u) 6 u.
Now, since

|X(n),i
s,t − Z

(n),i
κ(ns)/n,κ(nt)/n| 6

1√
n

(|Ξiκ(ns)|+ |Ξ
i
κ(nt)+1|),

for any partition 0 = t0 < t1 < · · · < tm = T , we have

m∑
r=1

|Xi
ntr−1,ntr − Z

i
κ(ntr−1),κ(ntr)|

2.
∑

06k<nT

#{16r6m : κ(ntr)=k}|Ξik|26
∑

06k<nT

Tk|Ξik|2.

Hence,

E[‖X(n) − Z(n)
κ(n·)/n‖

2
2,[0,T ]] .

1

n
((n− 1)E[T1|Ξ1|2] + E[T0|Ξ0|2]) . 1.

Next, since κ(nT ) 6 nT we have that
(

1√
n
Ziκ(`)

)
`6nT

is a subsequence of
(

1√
n
Zik

)
k6nT

and therefore E[‖Z(n),i
κ(n·)/n‖

2
p,[0,T ]] 6 E[‖Z(n),i‖2p,[0,T ]] . 1, see (3.2).

Using the triangle inequality together with the fact that the p-variation norms are
monotonically decreasing in p,

E[‖X(n)‖2p,[0,T ]] . E[‖X(n) − Z(n),i
κ(n·)/n‖

2
2,[0,T ]] + E[‖Z(n),i

κ(n·)/n‖
2
p,[0,T ]] . 1.

We shall now treat the second level. Let us show first convergence in the Skorohod
topology. Note that for ` < k we have the following decomposition which is a consequence
of Chen’s relation (1.1)

IStr
τ`,τk

(X) = IStr
`,k (Z) +

∑
`+16u6k

Aτu−1,τu(X). (3.7)

Indeed, IStr
τu−1,τu(X) = sym(IStr

τu−1,τu(X)) + Aτu−1,τu(X), and by a direct computation

sym(IStr
τu−1,τu(X)) = 1

2Zu−1,u ⊗ Zu−1,u. Therefore,

IStr
τ`,τk

(X) = IStr
`,k (Z) +

∑
`+16u6k

IStr
τu−1,τu(X)− 1

2

∑
`+16u6k

Zu−1,u ⊗ Zu−1,u

= IStr
`,k (Z) +

∑
`+16u6k

Aτu−1,τu(X).

By Remark 2.2 of [6], it is enough to prove the convergence of X(n)
t := X

(n)
0,t . By (3.7),

we have for any t > 0

1

n

∣∣∣∣∣∣X(1)
nt −Zκ(nt) −

∑
16u6κ(nt)

Aτu−1,τu(X)

∣∣∣∣∣∣ =
1

n
|X(1)

τκ(nt),nt
+X0,τκ(nt) ⊗Xτκ(nt),nt|

6
1

n
|Ξ⊗2
κ(nt)|+

1

n
|Zκ(nt)| ⊗ |Ξκ(nt)|.

Therefore

sup
06s,t6T

1

n

∣∣∣∣∣∣X(1)
ns,nt −Zκ(ns),κ(nt) −

∑
κ(ns)<u6κ(nt)

Aτu−1,τu(X)

∣∣∣∣∣∣
6 2 sup

06t6T

1

n
(|Ξ⊗2

κ(nt)|+ |Zκ(nt)| ⊗ |Ξκ(nt)|).
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But sup06t6T
1
n (|Ξ⊗2

κ(nt)|+|Zκ(nt)|⊗|Ξκ(nt)|) −−−→
n→0

0 in probability. Indeed, we have already

seen that P
(
‖Ξiκ(n·)‖∞,[0,T ] > ε

√
n
)
→ 0 for any ε > 0 and for the second term

P( sup
06t6T

|Zκ(nt) ⊗ Ξκ(nt)| > εn) 6 P
(
‖Zn·‖∞,[0,T ] > R

√
n
)

+ P

(
max

06k6nT
|Ξk| > ε

√
n/R

)
.

But for any R > 0 the right term vanishes as n→∞, whereas the left term converges to
P(max06t6T |cWt| > R), where W is a Brownian motion and c > 0 is a constant, which
vanishes as R→∞. By Slutsky’s Theorem the convergence of X(n) in distribution holds
if

1

n
Zκ(n·) +

1

n

∑
16u6κ(n·)

Aτu−1,τu(X) −−−−→
n→∞

B0,· + Γ·

in distribution in the uniform topology. To achieve the last convergence, first note
that (Aτu−1,τu(X))u∈N are independent random matrices with the same law for u > 2.
Note also that |Aτu−1,τu(X)| 6 4|Ξu−1|⊗2Tu−1 which implies that E[|Aτu−1,τu(X)|] < C for
u = 1, 2 by Assumption 1.4. Hence the weak law of large numbers for the sum yields

1

n

∑
16k6n

Aτk−1,τk(X) −−−−→
n→∞

E[Aτ1,τ2(X)]

in probability. Together with the convergence in probability κ(nt)
nt −−−−→n→∞

E[T1]−1 which is

the consequence of Assumption 1.4. with α = 0, we deduce that

1

n

∑
16k6κ(nt)

Aτk−1,τk(X) −−−−→
n→∞

E[Aτ1,τ2(X)]

E[T1]
=: Γ almost surely .

Moreover, since
E[|Aτ1,τ2 (X)|]

E[T1] <∞ we have moreover∥∥∥∥∥∥ 1

n

∑
16k6κ(n·)

Aτk−1,τk(X)− Γ·

∥∥∥∥∥∥
∞,[0,T ]

−−−→
n→0

0 in probability .

Using Slutsky’s Theorem again together with (3.1) it is left to show that

‖Z(n)
κ(n·)/n −Z

(n)
·β ‖∞,[0,T ] −−−−→

n→∞
0 in probability.

As for the case of the first level we use (3) to reduce the last convergence to showing that
‖Z(n)

κ(n·)/n −Z
(n)
·β ‖∞,[0,T ]1{max06m6Tn |κ(m)−mβ|6R

√
n} −−−−→n→∞

0 in probability. Fix ε > 0.

P

(
max

06k,m6Tβn,|k−m|6R
√
n
|Zi,j0,m −Z

i,j
0,k| > εn

)
. P

(
max

06k,m6Tβn,|k−m|6R
√
n
|Zik,m · Z

j
0,k| > εn

)
6 P

(
max

06k,m6Tβn,|k−m|6R
√
n
|Zik,m| >

√
εn/R

)
+ P

(
max

06k6nT
|Zj0,k| >

√
εnR

)
6

√
n

R
P

(
max

06k6R
√
n
|Zi0,k| >

√
εn/R

)
+ P

(
max

06k6nT
|Zj0,k| >

√
εnR

)
.

Now, for any fixed R the first term converges to zero by (3.5) whereas the limsup of
the right term is bounded by P (max06t6T |cWt| >

√
εR), which tends to zero as R→∞.

Therefore we have proved the convergence is the uniform topology.
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To end, we shall now prove tightness of the p/2-variation norms, p > 2. As in
the estimate for the first level, we observe that for 0 = t0 < t1 < · · · < tm = T and
coordinates 1 6 i, j 6 d we have

m∑
r=1

|Ai,jntr−1,ntr | =
∑

06u<nT

∑
06r6m:κ(ntr)=u

|Ai,jntr−1,ntr |

.
∑

06u<nT

#{1 6 r 6 m : κ(ntr) = u}|ΞiuΞju|

6
∑

06u<nT

Tu|ΞiuΞju|,

which implies that E

[
1
n

∥∥∥∥(∑κ(ns)6u6κ(nt)Aτu−1,τu(X)
)

06s<t6T

∥∥∥∥
1,[0,T ]

]
. 1. Also,

∣∣∣∣∣∣X(1)
ns,nt −Zκ(ns),κ(nt) −

∑
κ(ns)6u6κ(nt)

Aτu−1,τu(X)

∣∣∣∣∣∣
6 |Ξ⊗2

κ(ns),κ(nt)|+ |Zκ(ns),κ(nt)| ⊗ |Ξκ(ns),κ(nt)|,

and so

E

 1

n

∥∥∥∥∥∥
X(1)

ns,nt −Zκ(ns),κ(nt) −
∑

κ(ns)6u6κ(nt)

Aτu−1,τu(X)


06s<t6T

∥∥∥∥∥∥
1,[0,T ]

 . 1.

Remember that E[‖Z(n)‖p/2,[0,T ]] . 1 by (3.3). Using the triangle inequality together with
the fact that the p-variation norms are monotonically decreasing E[‖X(n)‖p/2,[0,T ]] . 1,
as desired. 2

A Key renewal theorem

In this section we show that the moment condition of Assumption 1.4 is asymptotically
equivalent to a second moment condition on Ξκ(n). We first formulate the well-known
Key Renewal Theorem (see e.g., [26, Chapter 3.8.]).

Theorem A.1 (Key renewal theorem). Assume that pj > 0, j ∈ N0, p0 = 0,
∑
j∈N0

pj = 1

so that gcd{j : pj > 0} = d ∈ N. If (bn)n∈N0 is a summable sequence of non-negative real
numbers, then the equation

an =

n∑
m=0

bn−mum (A.1)

has a unique solution satisfying

lim
n→∞

an =

∑
m∈N0

bm∑
j∈N0

jpj
, (A.2)

where um =
∑
k∈N0

p∗k(m) is the k-fold convolution of p evaluated at m, that is

p∗k(m) = P
(∑k

j=1 Tj = m
)

, where (Tk)k>2 is a sequence of independent random vari-

ables so that Tk, k > 2 all have the same probability mass function p. Moreover, this to
be understood even when

∑
j∈N0

jpj = ∞, in which case the limit on the right side of
(A.2) is 0.
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Lemma A.2. Let Ξk as defined in Assumption 1.4, then for r, ` ∈ N0

E[|Ξκ(n)|⊗rT `κ(n)] −−−−→n→∞

E[|Ξ2|⊗rT `+1
2 ]

E[T2]
,

whenever the right hand side is finite.

Proof. Let bn = E[|Ξ2|⊗rT `21T2>n], then∑
n∈N0

bn =
∑
n∈N0

∑
k>n

E[|Ξ2|⊗rT `21T2=k] =
∑
k∈N

kE[|Ξ2|⊗rk`1T2=k] = E[|Ξ2|⊗rT `+1
2 ].

By the key renewal theorem there is a unique solution (an)n∈N0
to the equation (A.1),

and it satisfies the limit in (A.2). By the last computation the right hand side of (A.2)
is exactly the one in the wanted assertion. It is therefore enough to show that an =

E[|Ξκ(n)|⊗rT `κ(n)]. Indeed,

E[|Ξκ(n)|⊗rT `κ(n)] =
∑
k∈N0

E[|Ξk|⊗rT `k1κ(n)=k] =
∑
k∈N0

E[|Ξk|⊗rT `k1τk6n,τk+Tk>n]

=
∑
k∈N0

n∑
m=0

E[|Ξk|⊗rT `k1Tk>n−m1τk=m] =
∑
k∈N0

n∑
m=0

E[|Ξk|⊗rT `k1Tk>n−m]P[τk = m]

=

n∑
m=0

E[|Ξ2|⊗rT `21T2>n−m]
∑
k∈N0

P[τk = m] =

n∑
m=0

bn−mum = an,

where in the fourth equality we used independence.

Note that the argument works for bn = E[f({Xτ1, τ1 + k}06k6T1)g(T1)], where f, g are
real functions, as long as (bn) is an absolutely summable sequence of real numbers.

B Slutsky’s Theorem in the Skorohod topology

Theorem B.1. Let Xn, Y n ∈ D([0, T ],R), the Skorohod space of càdlàg functions (or
Xn, Y n ∈ C([0, T ],R))) so that Xn → X in distribution in D([0, T ],R), X ∈ C([0, T ],R)

and ‖Y n − f‖∞,[0,T ] → 0 in probability, for a deterministic continuous function f . Then
Xn + Y n → X + f in distribution in D([0, T ],R) (or in C ([0, T ] ,R), resp.).

Sketch of proof. We shall show the case D = D([0, T ],R). Let Φ ∈ Cb(D,R). Since
g 7→ Φ(g + f) is bounded and continuous in D by the continuity of f , we have

|E[Φ(Xn + Y n)− Φ(X + f)]| = |E[Φ(Xn + Y n)− Φ(Xn + f)]|+ o(1) as n→∞.

However, since the Skorohod distance d on D is controlled by the uniform distance which
is homogeneous, d(g + h, f + h) 6 ‖f − g‖∞,[0,T ] for any h ∈ D and therefore

|E[Φ(Xn + Y n)− Φ(Xn + f)]|
6 2‖Φ‖∞P[‖Y n − f‖∞,[0,T ] > ε] + |E[(Φ(Xn + Y n)− Φ(Xn + f))1d(Xn+Y n,Xn+f)<ε]|
≈ |E[(Φ(Xn + Y n)− Φ(Xn + f))1d(Xn+Y n,Xn+f)<ε]|.

Fix η > 0. Tightness of Xn implies that P(Xn 6∈ Kη) < η
4‖Φ‖∞ for some compact Kη.

Since Φ is continuous and K̃η := Kη + f := {g + f : g ∈ Kη} is compact,

|E[(Φ(Xn + Y n)− Φ(Xn + f))1d(Xn+Y n,Xn+f)<ε]|
6 2‖Φ‖∞|P(Xn 6∈ Kη)|+ |E[(Φ(Xn + Y n)− Φ(Xn + f))1d(Xn+Y n,Xn+f)<ε,Xn+f∈K̃η ]|

< η/2 + η/2P(d(Xn + Y n, Xn + f) < ε,Xn + f ∈ K̃η) < η

for all ε > 0 small enough. We conclude that limn→∞ |E[Φ(Xn +Y n)−Φ(X+ f)]| = 0.
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