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Abstract

Balls are sequentially allocated into n bins as follows: for each ball, an independent,
uniformly random bin is generated. An overseer may then choose to either allocate
the ball to this bin, or else the ball is allocated to a new independent uniformly random
bin. The goal of the overseer is to reduce the load of the most heavily loaded bin
after Θ(n) balls have been allocated. We provide an asymptotically optimal strategy

yielding a maximum load of (1 + o(1))
√

8 logn
log logn

balls.
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1 Introduction and results

Fix ρ > 0 and consider an online model in which an overseer is monitoring the
sequential allocation of bρnc balls into n bins. Each ball is assigned a primary allocation,
i.e., an independent, uniformly chosen random bin. Then, the overseer is given the
choice to reject this primary allocation, in which case the ball is assigned a secondary
allocation instead, that is, a new, independent, uniformly chosen random bin. The
overseer’s decision may depend on all past allocations, but not any future information.
The resulting sequence allocations is called a two-thinning of the balls-and-bins process.

A two-thinning strategy is a function determining whether to accept or reject each
suggested allocation, depending on all previous allocations (See formal definition in
Section 2). Denote by MaxLoadft ([n]) the load of the most heavily loaded bin after
the player allocates btc balls into n bins, following the strategy f . A strategy f is
asymptotically optimal if, for any strategy g with probability tending to one as n→∞
we have MaxLoadfρn([n]) ≤ (1 + o(1)) MaxLoadgρn([n]).

Here we describe and analyse an optimal two-thinning strategy which we call the
`-threshold strategy. This is the two-thinning strategy which rejects a ball whenever the
number of primary allocations to the suggested bin at the allocation time is at least `.
Our main result is the following,
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The power of thinning in balanced allocation

Theorem 1.1. Let f be the
√

2 logn
log logn -threshold strategy for the allocation of bρnc balls

into n bins. Then f is asymptotically optimal and, with probability tending to one as
n→∞,

MaxLoadfρn([n]) = (1 + o(1))

√
8 log n

log log n
.

1.1 Discussion

Balls-and-bins, two-choices and two-thinning. It is well known that if each of
bρnc balls is allocated independently to a uniformly chosen random bin in [n] = {1, . . . , n},
then the most heavily loaded bin contains logn

log logn +O(1) balls with high probability (see
[8, Lemma 5.1 and Lemma 5.12]). In their seminal paper, Azar, Broder, Karlin and Upfal
[3] have shown that a significantly lower maximum load of log2 log n+O(1) balls could be
achieved, with high probability, in a two-choices setting, i.e., if the allocation of each ball
is governed by an overseer who is offered a choice between two independent, uniformly
chosen random bins. Moreover, the overseer can achieve this simply by following a naïve
strategy of always selecting the less loaded of the two bins. Slight variations of this
model, where the maximum load could be improved by a constant factor have also been
considered, see [2, 12].

The two-thinning setting, considered in this paper, is intermediate between two-
choices and no-choice, as it is equivalent to a two-choices setting in which the overseer
is oblivious of the location of one of the two available bins. The name “two-thinning”
is due to yet another point of view on this setting. According to this view, an infinite
sequence of allocations has been drawn independently and uniformly at random, and
the overseer is allowed to thin it on-line (i.e., delete some of the allocations depending
only on the past), as long as at most one of every two consecutive entries is deleted (for
a more thorough discussion of the model see joint work with Ramdas and Dwivedi [6],
where the model was introduced).

From Theorem 1.1 we see that the optimal maximum load under two-thinning is
indeed intermediate between the maximum load without thinning and the maximum load
in the two-choices setting.

Threshold strategy in other settings. The threshold strategy has been considered
in additional settings. In [1], Adler, Chakrabarti, Mitzenmacher and Rasmussen applied
this strategy to a model of parallel allocation with limited communications in the k-

choices model. Their upper bound is O
(

(log n/ log log n)
1/(k+1)

)
– of the same order of

magnitude as in Theorem 1.1. We remark that it appears that neither model is stronger
than the other.

More choice. Already in [3], Azar et al. showed that allowing the overseer choice
between k > 2 choices, reduces the asymptotic maximal load by a factor of log(k). The
expected counterpart in the k-thinning setting, where we allow the overseer to iteratively
reject up to k suggested allocations for each ball, is the following conjecture.

Conjecture 1.2. In the k-thinning setting, the asymptotically optimal maximum load is

Ω

((
log n

log log n

)1/(k+1)
)
.

Indeed, a matching upper bound has already been verified in [1].
More balls. Berenbrink, Czumaj, Steger and Vöcking [4] have considered the power

of two choices in the heavily loaded case of the balls and bins model, that is, when
ω(n) balls are allocated into n bins. They showed that in this case under the power of
k-choices, the deviation of the maximum load from the average load is asymptotically
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The power of thinning in balanced allocation

almost surely logk log n + O(1) (see Talwar and Wieder [11], for a simpler proof). We
wonder whether the same phenomenon will occur for two-thinning. Namely,

Problem 1.3. In the two-thinning setting, where m = Ω(n) balls are two-thinned, is the

asymptotically optimal maximum load m
n + Θ

(√
logn

log logn

)
?

1+β-thinning. In his thesis [7], Mitzenmacher suggested considering a variant of
the power of two-choices in which, for each allocation independently, there is some
small probability that a decision opposite to that made by the overseer will be executed.
This notion was recently formulated and studied by Peres, Talwar and Wieder [9],
viewing it as having two-choices with probability β and no-choice with probability (1−β),
independently for every ball. Once errors of this nature are introduced to the model,
two-choices and one-retry are equivalent up to a parameter change, and in lightly loaded
case of bρnc balls allocated into n bins, both offer no improvement over having no-choice
at all (see [6] for more details).

2 Definitions & notation

A strategy f is a collection of functions {ft}t∈N where

ft : [n]t × [n]t−1 × {0, 1}t−1 → {0, 1}

which, given the sequence of primary allocations up to time t, the sequence of final
allocations up to time t− 1, and the sequence of previous decisions of whether to retry
or not (up to time t− 1), decides whether to accept the primary allocation (indicated by
0) or reject it (indicated by 1).

Given a thinning strategy f , generate {Dt}t∈N, {Zt}t∈N, the sequence of allocations,
in the following way. Let {Z0

t }t∈N and {Z1
t }t∈N be two independent sequences of inde-

pendent random variables uniformly distributed in [n]. Here Z0
t represents the primary

allocation of the t-th ball, while {Z1
t }t∈N is used as a pool of secondary allocations.

Denote by rt the number of rejections among the first t primary allocations.

Set r0 = 0 and, for the t-th allocation, inductively set

Dt = ft({Z0
s}s∈[t], {Zs}s∈[t−1], {Ds}s∈[t−1]),

rt = rt−1 +Dt,

Zt =

{
Z0
t Dt = 0,

Z1
rt Dt = 1.

In other words, we look at the history of the process up to time (t − 1) and at Z0
t and

apply f to determine whether to accept or reject the primary allocation. If we reject
it, we allocate the ball to the next unused secondary allocation from our pool, which is
{Z1

rt}.
We introduce the following notation. For any t ≤ ρn, m ∈ [n] denote

Lt(m) = |{1 ≤ i ≤ t : Zi = m}|,
At(m) = |{1 ≤ i ≤ t : Z0

i = m}|,
Bt(m) = |{1 ≤ i ≤ t : Z1

i = m}|.

Thus, Lt(m) is the load of the m-th bin at time t, At(m) describes how many times bin
m is suggested as a primary allocation among the first t allocations and Bt(m) describes
how many of the first t secondary allocations are into bin m.
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The power of thinning in balanced allocation

Finally, denote

MaxLoadft (S) = max
m∈S

Lt(m)

MaxLoadft = MaxLoadft ([n]).

3 Preliminaries

We take advantage of a comparison lemma of Mitzenmacher and Upfal, which we
reproduce here, relating the balls-and-bins model with independent Poisson random
variables. Denote by N0 the set of natural numbers together with 0. Given two vectors
x, y ∈ (N0)n we write x ≤ y if xi ≤ yi for all i ∈ [n]. A set S ⊂ (N0)n is called monotone
decreasing (increasing) if x ∈ S implies y ∈ S for all y ≤ x (y ≥ x).

Lemma 3.1 (Mitzenmacher and Upfal [8, Corollary 5.11]). Let (Xm)m∈[n] be the number
of balls in the m-th bin when t balls are independently and uniformly allocated into n
bins. Further let (Ym)m∈[n] be independent Poisson( tn ) random variables, and let S be a
monotone set (either increasing or decreasing). Then

P
(

(X1, . . . , Xn) ∈ S
)
≤ 2P

(
(Y1, . . . , Yn) ∈ S

)
.

We prove two useful corollaries of this lemma.

Lemma 3.2. Let (Xm)m∈[n] be the number of balls in the m-th bin when bθnc-balls are
independently and uniformly allocated into n-bins, for θ ∈ [0, 1]. Then, for any a ∈ [θn]

and S ⊂ [n] we have

P

(
max
m∈S

(Xm) < a

)
≤ 2 exp

(
−θ

a|S|
ea!

)

Proof. Let {Ym}m∈[n] be i.i.d. Poisson(θ) random variables. By Lemma 3.1 we have

P

(
max
m∈S

(Xm) < a

)
≤ 2P

(
max
m∈S

(Ym) < a

)
= 2P (Y1 < a)

|S| ≤ 2

(
1− e−θ θ

a

a!

)|S|
≤ 2

(
1− θa

ea!

)|S|
≤ 2 exp

(
−θ

a|S|
ea!

)
.

Lemma 3.3. Let (Xm)m∈[n] be the number of balls in the m-th bin when (θn)-balls are
independently and uniformly allocated into n-bins, for θ ∈ [0, 1]. Then, for any S ⊂ [n] we
have

P

(
|{m ∈ S : Xm > 0}| ≤ θ|S|

2e

)
≤ 2 exp

(
−θ

2|S|
2e2

)
.

Proof. Let {Ym}m∈[n] be i.i.d. Poisson(θ) random variables. By Lemma 3.1

P

(
|{m ∈ S : Xm > 0}| ≤ θ|S|

2e

)
≤ 2P

(
|{m ∈ S : Ym > 0| ≤ θ|S|

2e

)
.

We observe that P(Y1 > 0) ≥ θ
e . Using Chernoff-Okamoto bound for the tail of binomial

distributions (see, e.g. [5, Equation 1.3.10]), we obtain,

P

(
|{m ∈ S : Ym > 0}| ≤ |S|θ

2e

)
≤ exp

(
−2|S|

(
θ

e
− θ

2e

)2
)

= exp

(
−θ

2|S|
2e2

)
.
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4 Upper bound on MaxLoadfρn([n])

For n ≥ 3, denote L =
⌈√

2 log n/ log log n
⌉
. Let f be the L-threshold strategy, i.e.,

that rejects the primary allocation of the t-th ball if and only if At−1(Z0
t ) ≥ L. The main

statement of this section is the following.

Proposition 4.1. For any n ≥ n0(ρ) sufficiently large and any η > 0 the strategy f

satisfies
P
(

MaxLoadfρn > (2 + η)L
)
≤ 2n−

η
4+

2 log log logn
log logn + 2e−

√
n.

Let us begin by reducing the upper bound in Theorem 1.1 to this proposition.

Proof of the upper bound in Theorem 1.1. We apply Proposition 4.1 with η = 9 log log logn
log logn .

Observe that η = o(1) and by the proposition we have

P
(

MaxLoadρn > (2 + η)L
)
≤ exp

(
− log n

4 log log n

)
+ 2e−

√
n = o(1).

Proof of Proposition 4.1. Denote r = rbρnc. Our strategy f guarantees that number of
accepted primary allocations to bin m is at most L for all m ∈ [n]. Hence, under this
strategy

P
(

MaxLoadρn ≥ (2 + η)L
)
≤ P (Er) , (4.1)

where Ek is the event that there is a bin m for which Bk(m) ≥ (1 + η)L. Notice that if Er
occurs then for any 0 ≤ k ≤ ρn, either r > k or Ek occurs. Hence, for any 0 ≤ k ≤ ρn we
get

P (Er) ≤ P (r > k) + P (Ek) . (4.2)

We now bound the two probabilities on the right hand side.
To bound P(r > k), notice that under the L-threshold strategy, the number of rejec-

tions before time t is
rt =

∑
m∈[n]

max(At(m)− L, 0).

This is clearly monotone in At(m) so we can apply Lemma 3.1. Letting {Ym}m∈[n] be
i.i.d. Poisson(ρ) random variables and writing

Y :=
∑
m∈[n]

max(Ym − L, 0),

we have
P(r > k) ≤ 2P

(
Y > k

)
. (4.3)

For a single Poisson(ρ) random variable and for n large enough so that L > 2ρe, we have

E
(
emax(Y1−L,0)

)
≤ 1 + e−ρ

∞∑
`=1

ρL+`e`

(L+ `)!
≤ 1 +

ρL

L!
< exp

(
ρL

L!

)
.

Hence, by Markov’s inequality, for k ≥ 2nρL

L! we have, for n sufficiently large,

P
(
Y > k

)
= P

(
eY > ek

)
≤ exp

(
nρL

L!
− k
)
< exp

(
− n

L!

)
< e−

√
n, (4.4)

where the last inequality follows from the definition L and the fact that for sufficiently
large n we have L! < LL <

√
n.

Putting together (4.3) and (4.4) we obtain

P(r > k) < 2e−
√
n. (4.5)
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The power of thinning in balanced allocation

Next we bound P(Ek). Let {Ym}m∈[n] be i.i.d. Poisson(k/n) random variables. By
Lemma 3.1 we have,

P(Ek) ≤ 2P
(

max
m∈[n]

(Ym) > (1 + η)L
)
.

For k ≤ 3nρL

L! and n sufficiently large we have

P
(
Y1 > (1 + η)L

)
≤ e−k/n

∞∑
`=d(1+η)Le

(k/n)`

`!
≤ 1

2

∞∑
`=d(1+η)Le

(
3ρL

L!

)`
≤
(

3ρL

L!

)d(1+η)Le
.

Taking a union bound, we obtain

P(Ek) ≤ 2n

(
3ρL

L!

)d(1+η)Le
. (4.6)

By Stirling’s approximation for all L > 1 we have L! > 3
(
L
e

)L
. Hence,

P(Ek) ≤ 2n

(
3ρL

L!

)d(1+η)Le
≤ 2n

(
L

eρ

)−(1+η)L2

= 2 exp
(

log n− (1 + η)L2
(

logL− 1− log ρ
))

≤ 2 exp

(
log n− (1 + η)

2 log n

log log n

(
1

2
log log n− 1

2
log log log n− 1− log ρ

))
= 2 exp

(
−η log n+ (1 + η)

2 log n

log log n

(
1

2
log log log n+ 1 + log ρ

))
≤ 2 exp

(
−η log n+ (1 + η)

2 log n log log log n

log log n

)
≤ 2n−

η
4+

2 log log logn
log logn , (4.7)

for any n ≥ n0(ρ) sufficiently large. Putting (4.5) and (4.7) into (4.2), the proposition
follows.

5 Lower bound on MaxLoadgρn([n]) for any strategy g

Let ` = `(n) =
⌊√

2 log n/ log log n
⌋
. In this section we prove the following proposition,

from which the optimality of the threshold strategy in Theorem 1.1 is an immediate
corollary.

Proposition 5.1. Let ε, ρ > 0 and n sufficiently large (depending on ρ and ε). For any
strategy g we have

P
(

MaxLoadgρn < (2− ε)`
)
≤ exp

(
−nε/5

)
.

To prove Proposition 5.1 we use the following lemma, whose contra-positive, roughly
speaking, says the following. For any “large” set of bins S, under any strategy, after
allocating ρn/2` balls, with relatively high probability the allocations will either include
many bins in S (the event Ec) or quite a few of them will fall in the same bin in S (the
event F c). By iterating this lemma 2` times we’ll be able to guarantee that, with high
probability, either one of these iterations caused high load, or they piled up to cause it.

Lemma 5.2. Let ε, ρ > 0 and n sufficiently large (depending on ρ and ε) and denote
ζ = ρ/8e`. For any 1 ≤ k ≤ 2`, t > ρn/2` and S ⊂ [n] such that |S| ≥ nζk and any strategy
g, we have

P
(
E ∩ F

)
≤ exp(−nε/4),
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where

E = {|{m ∈ S : Lt(m) ≥ 1}| < nζk+1},
F = {MaxLoadgt (S) < (2− ε)`− k}.

Proof. Write T = nζk+1 and denote

E′ = {|{m ∈ S : At(m) ≥ 1}| < 2T},
F ′ = {∀m∈S : BT (m) < (2− ε)`− k} ,

so that E′ is the event that less than 2T bins in S were suggested as primary allocations
until time T , while F ′ is the event that no bin in S would received (2− ε)`− k secondary
allocations among the first T secondary allocations.

By applying Lemma 3.3 with θ = ρ
2` and observing that 2T ≤ 2ζ|S| ≤ θ|S|

2e , we obtain

P (E′) ≤ 2 exp

(
−θ

2|S|
2e2

)
≤ 2 exp

(
− 8nρk+2

(8e`)k+2

)
≤ 2 exp

(
− n1+o(1)

)
,

Where in the rightmost inequality we used the fact that k < 2`. By applying Lemma 3.2
with a = (2− ε)`− k and θ = ζk+1,

P(F ′) ≤ 2 exp

(
−ζ

(k+1)a|S|
ea!

)
≤ 2 exp

(
−ζ

(k+1)aζkn

eaa

)
≤ 2 exp

(
−ζ

(k+1)(a+1)n

eaa

)
.

Letting n be large enough, and observing that for such nwe have (a+1)(k+1) ≤ (1−ε/2)`2

we obtain

P(F ′) ≤ 2 exp

(
− (ρ/8e`)(1−ε/2)`

2

n

e(2`)2`

)
≤ 2 exp

(
− n

`(1−ε/3)`2

)
≤ 2 exp(−nε/3),

where the two rightmost inequalities use the fact that ``
2 ≥ n, while c`

2

and `` are both
sub-polynomial in n for any c > 0.

We claim that E′ c ∩ F ′ c ⊆ Ec ∪ F c. Indeed, notice that if the number of retries is at
most T and there are at least 2T bins in S which were chosen as the primary allocation,
then there are at least T nonempty bins in S. Thus, {rt ≤ T} ∩ E′ c ⊂ Ec. Also, if the
number of retries is more then T , and the first T secondary allocations cause a load of at
least (2− ε)`− k in some bin in S, then this bin has a load of at least (2− ε)`− k. Thus,
{rt > T} ∩ F ′ c ⊂ F c. Hence, E ∩ F ⊂ E′ ∪ F ′. From our bounds on P(E′) and P(F ′) the
proposition follows.

Proof of Proposition 5.1. Fix ε, ρ > 0 and let g be a thinning strategy. We divide our
process into s = d(2− ε)`e stages each consisting of the allocation of w =

⌈
ρn
2`

⌉
balls so

that the k-th stage process consists of Z(k−1)w+1, . . . , Zkw. These are followed by a final
stage in which the remaining balls are allocated.

Denote Sk = {m ∈ [n] : Akw(m) ≥ k}. For ζ = ρ/8e`, we define Ek = {|Sk| < nζk}
and Lk = {MaxLoadgkw < (2− ε)`}.

By applying Lemma 5.2 to the k-th stage process with S = Sk we obtain that

P(Ek+1 ∩ Lk+1 | Eck) ≤ exp(−nε/4).

The see this, observe that the size of Sk+1 is at least the number of bins in Sk which were
allocated at least one ball in the k-th stage process and that MaxLoadg(k+1)w is at least
k plus the maximum number of balls that were allocated in the k-th stage process to a
single bin in Sk.
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Observe that Lk+1 ⊆ Lk we use the law of total probability to obtain

P(Ek+1∩Lk+1) = P(Ek+1∩Lk+1∩Ek)+P(Ek+1∩Lk+1∩Eck) ≤ P(Ek∩Lk)+P(Ek+1∩Lk+1 |Eck)

Since E0 ∩ L0 = ∅, we may use induction to deduce that for sufficiently large n we
have,

P (Es ∩ Ls) ≤
s∑

k=1

P(Ek ∩ Lk | Eck−1) ≤ s exp(−nε/4) ≤ exp(−nε/5).

Since {MaxLoadgρn < (2− ε)`} ⊂ Es ∩ Ls, this concludes the proof.
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