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Abstract

We introduce and analyze a generalization of the blocks spin Ising (Curie-Weiss)
models that were discussed in a number of recent articles. In these block spin models
each spin in one of s blocks can take one of a finite number of q ≥ 3 values or colors,
hence the name block spin Potts model. We prove a large deviation principle for the
percentage of spins of a certain color in a certain block. These values are represented
in an s× q matrix. We show that for uniform block sizes there is a phase transition. In
some regime the only equilibrium is the uniform distribution of all colors in all blocks,
while in other parameter regimes there is one predominant color, and this is the same
color with the same frequency for all blocks. Finally, we establish log-Sobolev-type
inequalities for the block spin Potts model.
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1 Introduction

Mean-field models as the Curie–Weiss model are approximations of lattice models.
They often show qualitatively interesting results (see [13] for a survey). Mean-field block
models have been proposed as an approximation of lattice models for meta-magnets, see
e. g. [24]. To describe them, assume that we have N interacting particles that carry a
spin. Also assume that we can group these particles into several groups. The interaction
is such that particles within the same group interact with one interaction strength, while
particles in different groups have another, usually smaller, interaction strength. In a
sequence of papers the statistical mechanics of such models was studied from various
points of view, see [17, 15, 9, 30, 25, 27, 26]. In particular they were discussed as models
for social interactions between several groups, e. g. in [16, 2, 34, 32] (the latter paper
studies a combination of Ising models on Erdös–Rényi graphs as in [7, 21, 22] and block
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Large deviations in the block spin Potts model

models). Recently, block models have also been studied in a statistical context (see [3],
[31]). Here the task is to exactly recover the block structure from a given number of
realizations of the model. It turns out that this can be done surprisingly effectively.

However, all the literature cited above deals with Ising spins, i. e. the spins take two
values (usually ±1). Of course, the physics literature knows many more spin models than
just the Ising model, in particular models with a continuous spin as Heisenberg models
and XY-models.

On the discrete side Potts models (cf. e. g. [38, 23, 14, 10]) are the most natural
generalization of Ising models. For them each particle carries a spin from a finite set
(of cardinality 3 or larger). The aim of the present note is to investigate block spin
Potts models as a natural generalization of block spin Ising models. We will basically
concentrate on models where the blocks have approximately identical size and where
the interaction is purely ferromagnetic, i. e. particles tend to have the same spin, no
matter, whether they are in the same block or in different ones. Similar to [30] and [27]
our main tool are large deviation techniques. Indeed, as we will see in Section 3, it is
not too difficult to establish a large deviation principle for the “block magnetizations”.
However, to derive a limit theorem with an explicit limit law from there turns out to be
more complicated than in the case of Ising spins (which is quite a common feature in
Potts models).

The rest of this note is organized in the following way. In the next section we will
describe the block spin Potts model. Section 3 contains a large deviation analysis of this
model. In Section 4, we will concentrate on a version with blocks of asymptotically equal
size and compute the possible limit laws for such models. Finally, in Section 5 we prove
and briefly discuss (modified) logarithmic Sobolev inequalities for the block spin Potts
model.

Let us mention at this point that, while we were finishing the current manuscript we
learned that in [29] the author studies a very similar model: Here the number of blocks is
restricted to two, but they may be of different size. His techniques, however are different
from ours. Moreover, extending his results, we prove a large deviation principle, are able
to locate the minima of the rate functions and show logarithmic Sobolev inequalities.

2 The model

In the sequel we will consider the following model. Take the set S = {1, . . . , N} and
partition S into s sets S1, . . . , Ss. These sets will, of course, depend on N and we assume
that the limits γk := limN→∞

|Sk|
N ∈ (0, 1) exist (and, of course,

∑s
k=1 γk = 1). Moreover,

take an integer q ≥ 3 and for ω ∈ {1, . . . , q}S and 0 < α < β introduce the Hamiltonian
HN,α,β(ω) := HN (ω) := − β

2N

∑
i∼j 1ωi=ωj −

α
2N

∑
i6∼j 1ωi=ωj . Here i ∼ j means that the

indices i and j belong to the same block Sk (where the case i = j is included) for some
k ∈ {1, . . . , s}, while we write i 6∼ j, if this is not the case. With HN,α,β we will associate
the Gibbs measure

µN,α,β(ω) := µN (ω) :=
exp(−HN (ω))

ZN,α,β

where, of course, ZN,α,β := ZN :=
∑
ω′ exp(−HN (ω′)). For k ∈ {1, . . . , s} and c ∈

{1, . . . , q} denote by mk,c the relative number of spins of “color” c in the block Sk, i. e.

mk,c := mk,c(ω) :=
1

|Sk|
∑
i∈Sk

1ωi=c,

and set MN := (mk,c) ∈M(s× q). Note that MN is an order parameter of the model in
the sense that the Hamiltonian is a function of MN rather than ω.
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Large deviations in the block spin Potts model

Indeed, since 1ωi=ωj =
∑q
c=1 1ωi=c1ωj=c we have

−2NHN (ω) = β

q∑
c=1

s∑
k=1

∑
i∈Sk

∑
j∈Sk

1ωi=c1ωj=c + α

q∑
c=1

∑
k 6=k′

∑
i∈Sk

∑
j∈Sk′

1ωi=c1ωj=c

= tr(BtAB)

(2.1)

where Aα,β := A ∈ M(s × s) is the symmetric matrix with entries β on and α off the
diagonal (the block interaction matrix) and B ∈M(s× q) has entries

bk,c =
∑
i∈Sk

1ωi=c = |Sk|mk,c. (2.2)

Now A is positive definite for 0 < α < β due to xtAx = (β − α)x2 + α(
∑
k xk)2 for

x ∈ Rs. So using the (unique) positive definite symmetric matrix
√
A we see that

tr(BtAB) = tr
(
(
√
AB)t(

√
AB)

)
= [
√
AB,

√
AB] denoting by [ , ] the Frobenius scalar

product. Hence the Hamiltonian is a positive definite quadratic form of the matrix B and
we will write tr(BtAB) = 〈B,B〉A. Now introducing the diagonal matrix ΓN ∈M(s× s)
given by (ΓN )k,k = |Sk| we finally rewrite (2.1) as

HN (ω) = − 1

2N
〈ΓNMN ,ΓNMN 〉A. (2.3)

It is therefore natural to study the distribution of MN under the Gibbs measure µN .

3 A Large Deviation Principle for MN

In this section we prove a Large Deviation Principle (LDP) for the matrix MN . The
analysis of the corresponding rate function will help us to determine the limiting behavior
of MN and to prove the existence of a phase transition. Let us briefly recall the definition
of a large deviation principle (cf. [12] and [11] for a rich survey): For a Polish space
X and an increasing sequence of non-negative real numbers (an)n∈N a sequence of
probability measures (νn)n on X is said to satisfy an LDP with speed an and rate function
I : X → R (a lower semi-continuous function with compact level sets {x : I(x) ≤ L} for
all L > 0), if for all Borel sets B ∈ B(X ) we have

− inf
x∈int(B)

I(x) ≤ lim inf
n→∞

log νn(B)

an
≤ lim sup

n→∞

log νn(B)

an
≤ − inf

x∈cl(B)
I(x).

Here int(B) and cl(B) denote the topological interior and closure of a set B, respectively.
A sequence of random variables Xn : Ω → X satisfies an LDP with speed an and rate
function I : X → R under a sequence of measures µn if the push-forward sequence
νn := µn ◦Xn does.

Now if MN (k) denotes the row k of MN for a fixed k, then under the uniform measure
ρ on {1, . . . , q} the vector MN (k) is the empirical vector of a |Sk|-fold drawing from the
alphabet {1, . . . , q}. Thus, under the uniform measure ρ|Sk| the vector MN (k) obeys
an LDP with speed |Sk| and a rate function that is given by the relative entropy of a
probability measure ν ∈ M1({1, . . . , q}) with respect to ρ, H(ν|ρ) :=

∑q
c=1 ν(c) log ν(c)

ρ(c)

(see e. g. [11, Th. 2.1.10] for a reference). Note that

H(ν|ρ) =

q∑
c=1

ν(c) log ν(c) +

q∑
c=1

ν(c) log q =: H(ν) + log q,

where H(ν) is the entropy of ν and we adopt the convention that 0 log 0 = 0.
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Now MN (k), k = 1, . . . , s are independent random vectors. Consequently, for ρN :=⊗s
k=1 ρ

|Sk|,

1

N
log ρN (MN ∈ B) =

1

N

s∑
k=1

log ρ|Sk|(MN (k) ∈ Bk).

for any set B =
∏s
k=1Bk with Borel sets Bk ⊆ Rq (here we associate probabilities ν on

the set {1, . . . , q} with vectors in Rq and define H(ν|ρ) = H(ν) =∞, if ν ∈ Rq does not
have non-negative components summing to 1). Together with the above mentioned LDP
for the components MN (k) and the assumption that |Sk|/N converges to γk as N →∞,
this observation implies that the matrix MN under ρN obeys an LDP with speed N and
rate function

I(ν) :=

s∑
k=1

γkH(νk|ρ) = log q +

s∑
k=1

γkH(νk) (3.1)

Here ν := (νk)1≤k≤s ∈M(s× q) and the νk are probabilities on {1, . . . , q}, otherwise I(ν)

is defined to be∞. Thus we have seen

Proposition 3.1. Under the measure ρN the matrix valued random variable MN obeys
an LDP with speed N and rate function I given by (3.1).

Proposition 3.1 together with the representation of our Hamiltonian in terms of the
matrix MN (2.3) immediately yields an LDP for MN under the Gibbs measure µN .

Theorem 3.2. Under the Gibbs measure µα,β,N the matrix valued random variable MN

obeys an LDP with speed N and rate function J = Jα,β

J(ν) := −
[1
2
〈Γν,Γν〉A − I(ν)

]
+ sup

µ

[1
2
〈Γµ,Γµ〉A − I(µ)

]
= −

[β
2

q∑
c=1

s∑
k=1

γ2kν
2
k,c +

α

2

q∑
c=1

∑
k 6=k′

γkγk′νk,c νk′,c − I(ν)
]

+ sup
µ

[β
2

q∑
c=1

s∑
k=1

γ2kµ
2
k,c +

α

2

q∑
c=1

∑
k 6=k′

γkγk′µk,c µk′,c − I(µ)
]
.

(3.2)

Here Γ is the s × s diagonal matrix with (Γ)kk = γk, ν := (νk)k and µ := (µk)k are
s×q–matrices, and the νk and µk are probabilities on {1, . . . , q}, otherwise J(ν) is defined
to be∞.

Proof. Starting from (2.3) we write HN (ω) = −N2 〈(N
−1ΓN )M, (N−1ΓN )M〉A and so the

assumption that |Sk|/N → γk ∀k, Proposition 3.1, together with Varadhan’s Lemma ([12,
Th. III.13]) and the tilted LDP ([12, Th. III.17]) in the version of [27, Lemma 2.1] show
the result.

It may be more convenient to reformulate the LDP above in terms of an LDP for
the matrix M ′N with entries m′k,c := m′k,c(ω) := 1

N

∑
i∈Sk 1ωi=c, so that asymptotically,

M ′N ≈ ΓMN . Then, of course, the relevant matrices are the matrices ν′ := Γν =

(γkνkc)kc where ν are the matrices appearing in Theorem 3.2. Using (3.1) and calculating∑s
k=1

∑q
c=1 ν

′
k,c log ν′k,c = I(ν) − log q + H(γ) where of course γ = (γk), we can identify

the new rate function. Indeed, as the term H(γ) − log q is independent of ν′, we can
reformulate the LDP as follows.

Theorem 3.3. Under the Gibbs measure µα,β,N the matrix valued random variable M ′N
obeys an LDP with speed N and rate function

J ′(ν) =


−
[
1
2 〈ν, ν〉A −

∑s
k=1

∑q
c=1 νk,c log νk,c

]
+ supµ∈C(γ)

[
1
2 〈µ, µ〉A −

∑s
k=1

∑q
c=1 µk,c logµk,c

]
ν ∈ C(γ)

∞ ν /∈ C(γ)
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where C(γ) = {µ = (µkc) ∈M(s× q) : µkc ≥ 0 and
∑q
c=1 µk,c = γk for all k}.

Note that every matrix µ ∈ C(γ) can actually be considered as a probability distri-
bution on [sq] and the term −

∑
k∈[s]

∑
c∈[q] µk,c log(µk,c) is its entropy. However, the set

C(γ) places restrictions on the mass that can be placed on every block.

4 Equilibria for uniform block sizes

An LDP as in Theorem 3.2 or Theorem 3.3 is, in principle, able to determine the limit
distributions of the matrix valued random variables MN and M ′N under the sequence of
Gibbs measure µα,β,N . Indeed, they are given by the minima of the corresponding rate
functions.

Corollary 4.1. The weak limit points of the sequence (MN ) under the measures µN,α,β
are given by the minima of J(·) and the weak limit points of the sequence (M ′N ) under
the measures µN,α,β are given by the minima of J ′(·)

Proof. This is folklore in large deviation theory and not difficult to prove, when realizing
that the upper bound in an LDP implies that any measurable subset of R whose closure
does not contain a minimum of the rate function has a probability that converges to 0.

We will, in the sequel, determine the minima of J ′ which will also give us the minima
of J . We start with the observation that the minimum points of J ′ are the maximum
points of

G(µ) :=
1

2
〈µ, µ〉A −

s∑
k=1

q∑
c=1

µk,c logµk,c

= =

q∑
c=1

s∑
k=1

β

2
µ2
kc +

q∑
c=1

s∑
k′ 6=k

α

2
µkcµk′c −

q∑
c=1

s∑
k=1

µkc logµkc, (4.1)

where µ = (µkc) ∈ C(γ) and we have set 0 log 0 := 0.

Lemma 4.2. G attains its maximum on the set

C+(γ) := {µ ∈ C(γ) : 0 < µkc < 1 for all 1 ≤ k ≤ s, 1 ≤ c ≤ q}.

Proof. Suppose one of µ’s entries equals 0, without loss of generality µ11 = 0. Then,
there is 2 ≤ i ≤ q such that µ1i ≥ γ1/(q − 1). Note that G is the sum of a polynomial of
degree two in the µkc’s and −

∑s
k=1

∑q
c=1 µkc logµkc. Now −t log t has derivative infinity

at 0. Hence, for ε > 0 small enough, we have G(µ) < G(µ′) where µ′ is the matrix that
we obtain from µ, if we replace µ11 by µ′11 = ε, µ1i by µ′1i = µ1i − ε and leave the other
entries unaltered.

Let us now apply the method of Lagrange multipliers to find the maximum points
of G. Let λ = (λ1, λ2, . . . , λs). We then need to find the critical points of L(µ, λ) =

G(µ) −
∑s
k=1 λk (

∑q
c=1 µkc − γk). Differentiating with respect to the µkc, 1 ≤ k ≤ s,

1 ≤ c ≤ q gives the following set of equations

0 = ∂µkcG(µ)− λk = βµkc + α

s∑
k′=1
k′ 6=k

µk′c − logµkc − 1− λk. (4.2)

Summing these equations over all c yields q(1 + λk) = βγk + α
∑s

k′=1
k′ 6=k

γk′ −
∑
c logµkc,

and plugging this into (4.2) we finally arrive at our system of critical equations

β
(
µkc −

γk
q

)
+ α

s∑
k′=1
k′ 6=k

(
µk′c −

γk′

q

)
= log

µkc
q
√∏

d µkd
. (4.3)
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that any maximum point has to solve. Let us rephrase the value of G in critical points by
multiplying (4.3) by µkc and summing over c:∑
c

(βµ2
kc + α

s∑
k′=1
k′ 6=k

µkcµk′c − 2µkc logµkc) =
γk
q

(βγk + α(1− γk))−
∑
c

(γk
q

+ µkc

)
logµkc.

Hence, if µcrit is a critical point of G, we can write G(µcrit) as

G(µcrit) =
1

2q
((β − α)‖γ‖2 + α)− 1

2q

s∑
k=1

q∑
c=1

(γk + qµcrit
kc ) logµcrit

kc . (4.4)

Next we will see that of all critical points only those where all rows of µ have the
same, e. g. an increasing order, are relevant.

Lemma 4.3. For µ ∈ C+(γ) with increasing rows µk1 ≤ . . . ≤ µkq, 1 ≤ k ≤ s, we have

∑
k′ 6=k

q∑
c=1

µkcµk′c ≥
∑
k′ 6=k

q∑
c=1

µkσk(c)µk′σk′ (c) (4.5)

for all s–tuples (σk)k of permutations σk ∈ Sq.
In particular, for α > 0, the function G can only be maximal in a point µ′, if the rows

of µ′ are ordered in the same way, i. e. if there is a σ ∈ Sq such that µ′kσ(1) ≤ . . . ≤ µ
′
kσ(q)

for all 1 ≤ k ≤ s.

Proof. Recall the rearrangement inequality [20, Th. 368]: When x1 ≤ . . . ≤ xn and
y1 ≤ . . . ≤ yn are sequences of real numbers, then for every permutation π ∈ Sn one has

n∑
i=1

xiyπ(i) ≤ x1y1 + x2y2 + . . . xnyn

and the inequality is strict if there are indices j < j′ with xj < xj′ and yπ(j) > yπ(j′).
Applying this to row k and k′ of µ gives

∑q
c=1 µkcµk′c ≥

∑q
c=1 µkσk(c)µk′σk′ (c) for every

two permutations σk, σk′ ∈ Sq. Summing over all k′ 6= k yields (4.5). In particular, µ′ is
not a maximum point, if we have two rows k 6= k′ and indices j < j′ with µ′kj < µ′kj′ and
µ′k′j > µ′k′j′ .

So we can and will assume in the following, that all rows of a critical point µ of G are
increasing. The next lemma determines the structure of a critical µ.

Lemma 4.4. Let µ be a critical point of G.

1. If µkc = µkc′ for a k and c 6= c′ then µk′c = µk′c′ for all 1 ≤ k′ ≤ s.
2. Each row of µ has at most two different entries.

Proof. Substracting (4.3) for c from the equation for c′ yields α
∑
k′ 6=k µk′c = α

∑
k′ 6=k µk′c′

and thus, by increasing order, µk′c = µk′c′ for all 1 ≤ k′ ≤ s. This is the first claim.
For two different columns c 6= c′ we obtain from (4.3)

(β − α)(µkc′ − µkc) + α

s∑
k′=1

(µk′c′ − µk′c) = logµkc′ − logµkc.

Now if we had three columns c < c′ < c′′ with µkc < µkc′ < µkc′′ for one row k (and hence
for all due to the first part of this lemma) we would have

1

α
=

s∑
k=1

µkc′ − µkc
α
∑s
k′=1(µk′c′ − µk′c)

=

s∑
k=1

( logµkc′ − logµkc
µkc′ − µkc

− (β − α)
)−1

(4.6)
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and the same equation for the pair c, c′′. However, every summand on the right of that
latter equation would be larger (and positive) than the corresponding summand in (4.6)
by concavity of the logarithm. Hence we have a contradiction.

So far we have proved, that according to Lemma 4.2, Lemma 4.3 and Lemma 4.4 we
can constrain our search for maximum points of G to matrices µ with positive entries,
increasingly ordered rows and having at most two different columns. Taking into account
that the entries in row k sum up to γk we see that the largest column µ+ (component
by component) of µ together with the number 1 ≤ r ≤ q of columns equal to µ+ is all
the information we need to build up µ. So either µ has q identical columns γ/q or (the
increasingly ordered) µ reads

µ = (µ− . . . µ−︸ ︷︷ ︸
q−r

µ+ . . . µ+︸ ︷︷ ︸
r

)

with µ− = (γ − rµ+)/(q − r) for some 1 ≤ r ≤ q − 1 and µ+
k > γk/q > µ−k for all k. At this

stage we do not know how to proceed with the case of an arbitrary γ. However, a proof
for the case of asymptotically equal block sizes γk = 1/s for all k is readily accomplished.

Proposition 4.5. Let γk = 1/s for all 1 ≤ k ≤ s and Q ∈M(s× q) with identical entries
1/sq. If a critical µ with G(Q) ≤ G(µ) does not have identical rows then µ is not a
maximum point.

Proof. Recall that the system of critical equations (4.3) reads

α

s∑
k′=1

(
µ+
k′ −

1

sq

)
=
q − r
q

log
s(q − r)µ+

k

1− srµ+
k

− (β − α)
(
µ+
k −

1

sq

)
and regard the right hand side of this equation as a function of µ+

k , say ψ(µ+
k ). Now if the

largest entry of the vector µ+ occurs in line K (and perhaps somewhere else) but not in

every line, then ψ(µ+
K)−α

(
sµ+

K −
1
q

)
< 0. Since ψ(t) diverges to +∞ when t approaches

1/sr from below we can find a t0 > µ+
K with ψ(t0) = α(st0 − 1/q). Now building a matrix

ν by taking instead of r columns equal to µ+ just r columns with identical entries t0 and
completing the matrix with q − r columns with identical entries (1− srt0)/(s(q − r)) then
clearly ν is (well defined and) a critical point. So we just have to prove that G(µ) < G(ν).

To that end observe that according to (4.4) the value of G in critical points p is given
up to constants as

∑
k w(p+k ) with w : (0, 1/(sr))→ R

w(x) = −((q − r) + q(1− srx)) log
1− srx
s(q − r)

− r(1 + sqx) log x.

Calculating w′(x) = srq log 1−srx
s(q−r)x + r sqx−1

x(1−srx) and w′′(x) = r(sqx−1)(2srx−1)
x2(srx−1)2 we see that

if q > 2r then the graph of w, coming from +∞ at the vertical asymptotic line x = 0,
has a saddle point at x = 1/sq changing from bending to the left to bending to the
right. It decreases to the second inflection point at x = 1/(2sr), passes, now bending to
the left again, the unique minimum point at say ξ and disappears to +∞ approaching
the vertical line at x = 1/(sr). In this case clearly w(µ+

k ) ≤ max(w(µ+
K), w(1/sq)) for

all k since 1/sq < µ+
k ≤ µ+

K . Now w(µ+
K) < w(1/sq) would imply the contradiction

G(µ) =
∑
k w(µ+

k ) < sw(1/sq) = G(Q), so we have w(1/sq) ≤ w(µ+
K) and therefore

µ+
K > ξ. This means w(t0) > w(µ+

K) and thus G(ν) = sw(t0) > sw(µ+
K) ≥ G(µ). If q ≤ 2r

then w is strictly increasing on [1/sq, 1/sr) so that G(ν) = sw(t0) >
∑
k w(µ+

k ) = G(µ).

Wrapping up what we have seen, we state
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Large deviations in the block spin Potts model

Proposition 4.6. Let γ ∈ Rs have identical entries 1/s. The function G =: GbP in
the block spin Potts model is maximal on C(γ) if its rows are identical and equal to a
maximizer of the corresponding target function

GP(v) =
1

2s
(β + (s− 1)α)

q∑
c=1

v2c −
q∑
c=1

vc log vc (4.7)

on the set V := {v = (v1, . . . , vq) |
∑
c vc = 1, vc > 0} in the Potts model.

Proof. The maximum of GbP on C(γ) is attained on the subset of matrices with identical
rows taken from {v/s | v ∈ V } and the value is equal to β+(s−1)α

2s

∑q
c=1 v

2
c −
∑q
c=1 vc log vc

s .
However, up to a minus sign and ignoring the summand log s this is the free energy
functional in a Potts model at inverse temperature (β + (s− 1)α)/s.

The following theorem hence follows from the results in [23, 14], where the critical
temperature and the behaviour of the Potts model is computed.

Theorem 4.7. Consider the block spin Potts model in the asymptotically uniform case
γk = s−1. Denote by ζq := 2 q−1q−2 log(q − 1) the critical inverse temperature in the q-color

Potts model, and let g := β+(s−1)α
s . Then the q-color block spin Potts model has a phase

transition. More precisely, if g < ζq, then the distribution of M ′N under the Gibbs measure
µN,α,β concentrates in a unique point, the matrix with all entries identical to 1/(sq).

To describe the “low temperature” behavior define the function ϕ : [0, 1]→ Rq:

ϕ(t) :=
(1 + (q − 1)t

sq
,

1− t
sq

, . . . ,
1− t
sq

)
and let u(g) be the largest solution of the equation u = 1−e−gu

1+(q−1)e−gu . Let n1(g) := ϕ(u(g))

and ni(g) be n1(g) with the i′th and the first coordinate interchanged, i = 2, . . . , q. Let
νi(g) be the matrix with all rows identical to ni(g) and Q be the matrix with all entries
identical to 1/(qs).

Then, if g > ζq the distribution of M ′N under the Gibbs measure µN,α,β concentrates
in a (uniform) mixture of the Dirac measures in ν1(g), . . . νq(g).

At g = ζq the limit points of M ′N under the Gibbs measure µN,α,β are Q and
ν1(g), . . . νq(g).

5 Logarithmic Sobolev inequalities

In this section, we present logarithmic Sobolev inequalities(LSIs) for block spin Potts
models. LSIs are frequently used e. g. in concentration of measure theory, where they
form the core of the well-known entropy method (cf. the monographs [28, 6]). Recently,
LSIs for various type of finite spin systems have been established ([18, 35]), a line
of research we continue by considering block spin Potts models. For ω = (ωi)i∈S ∈
{1, . . . , q}S and i ∈ S, let ωic := (ωj)j 6=i. Moreover, for any function f : {1, . . . , q}S → R,
we define a certain “difference operator” by

|df |(ω) =
(∑
i∈S

∫
(f(ω)− f(ωic , ω

′
i))

2dµN (ω′i | ωic)
)1/2

,

where µN (· | ωic) denotes the regular conditional probability. The integrals may be
regarded as a kind of “local variance” in the i-th coordinate. The difference operator d is a
well-known object, and

∫
|df |2dµN can be regarded as a Dirichlet form (cf. [18, Rem. 2.2]).

Finally, for any non-negative function f , EntµN (f) :=
∫
f log(f)dµN −

∫
fdµN log(

∫
fdµN )

denotes the entropy.
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Theorem 5.1. Assume that 2qβeβ < 1.

1. For N large enough, µN satisfies an LSI with respect to d, i. e. for any f : {1, . . . , q}S
→ R,

EntµN (f2) ≤ 2σ2
1

∫
|df |2dµN . (5.1)

2. For N large enough and any function f : {1, . . . , q}S → R we have

EntµN (ef ) ≤ σ2
2

∑
i∈S

∫
Covµ(·|ωic )(f(ωic , ·), ef(ωic ,·))dµ(ω). (5.2)

3. For N large enough and any function f : {1, . . . , q}S → R we have

EntµN (ef ) ≤ σ2
3

2

∫
|df |2efdµN . (5.3)

Here, σ1, σ2, σ3 > 0 are constants which depend on β and q only.

See Remark 5.3 for explicit values for σ1, σ2, σ3 and some notes about the condition
on N . Both (5.2) and (5.3) are also known as modified logarithmic Sobolev inequalities.

To see how Theorem 5.1 implies concentration results, note that based on (5.1) we
obtain Lp norm inequalities and concentration bounds for any f ∈ L∞(µN ), cf. [18,
Prop. 2.4, Th. 1.5]. Moreover, (5.3) implies subgaussian tails for Lipschitz functions f
(i. e. |df | ≤ 1) via the Herbst argument, see e. g. [36] (including some more advanced
situations, cf. Section 2.4). Recently, in [1] it has been established that (5.3) gives rise to
Lp bounds (via Beckner inequalities) as well. Especially for spin systems and Glauber
dynamics, cf. the discussion in Section 4.3 therein.

As a simple example, let Tk,c(ω) :=
∑
i∈Sk 1ωi=c denote the number of vertices in the

block Sk which have colour c. Using |dTk,c|2 ≤ |Sk| and [36, Eq. (1.2)], we immediately

obtain that µN (|Tk,c − µN (Tk,c)| ≥ t) ≤ 2 exp
(
− t2

2|Sk|σ2
3

)
, where µN (Tk,c) :=

∫
Tk,cdµN .

Note that for N large, this probability approaches 2 exp(−t2/(2Nγkσ2
3)). A class of non-

Lipschitz functions for which concentration bounds based on inequalities of type (5.1)
and (5.3) have been established are multilinear (i. e. affine in each variable) polynomials,
cf. e. g. [19, Th. 5], [1, Cor. 5.4].

Finally, note that (5.2) is frequently used in the context of Markov processes, and it
is equivalent to exponential decay of the relative entropy along the Glauber semigroup
(cf. e. g. [4, 8]). It moreover implies that the associated Glauber dynamics is rapidly
mixing, i. e. its mixing time is O(N logN), see [35, Th. 2.2]. This complements [5], where
a different situation was considered (the usual Potts model without blocks but on graphs
with fixed maximal degree).

For the proof of Theorem 5.1, recall that for product measures µ = ⊗ni=1µi, the
entropy functional tensorizes, i. e. Entµ(f) ≤

∑N
i=1

∫
Entµi(f)dµ, and therefore, proving

LSIs reduces to controlling each coordinate separately, i. e. a “one-dimensional” case.
For non-product measures, if the dependencies are sufficiently weak, an analogue can be
shown which is called an approximate tensorization property. A criterion for approximate
tensorization in probability spaces with finitely many atoms was introduced in [33], which
we will exploit in the sequel.

Proposition 5.2. Assume that 2qβeβ < 1. For N large enough, the approximate ten-
sorization property of entropy holds, i. e.

EntµN (f) ≤ C
∑
i∈S

∫
EntµN (·|ωic )(f(ωic , ·))dµN (ω)

with C depending on β and q only.
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Proof. We shall apply Marton’s approximate tensorization result [33] in the slightly
rewritten and corrected form stated in [35, Th. 4.1]. Essentially, we need to control
the conditional probabilities µN (·|ωic), which we rewrite in the sequel, generalizing the
case of the usual Potts model without blocks as in [37, Prop. 2.16]. Recalling the matrix
B = (bk,c) from (2.2), we fix two sites i, j ∈ S and define bk,ij,c :=

∑
ν∈Sk
ν /∈{i,j}

1ων=c. Then,

we may decompose

−HN (ω) =
β

2N

q∑
c=1

s∑
k=1

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)
2

+
α

2N

q∑
c=1

s∑
k=1

∑
k′:k′ 6=k

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)

(bk′,ij,c + 1i∈Sk′ ,ωi=c + 1j∈Sk′ ,ωj=c).

Now, writing

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)
2 = b2k,ij,c + 2bk,ij,c(1i∈Sk,ωi=c + 1j∈Sk,ωj=c)

+ 1i∈Sk,ωi=c + 1j∈Sk,ωj=c + 2 · 1i∈Sk,ωi=c1j∈Sk,ωj=c

and summing over c and k, we obtain

q∑
c=1

s∑
k=1

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)
2

=

q∑
c=1

s∑
k=1

b2k,ij,c + 2

s∑
k=1

bk,ij,ωi1i∈Sk + 2

s∑
k=1

bk,ij,ωj1j∈Sk + 2 + 2 · 1i∼j,ωi=ωj .

Similarly,

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)(bk′,ij,c + 1i∈Sk′ ,ωi=c + 1j∈Sk′ ,ωj=c})

= bk,ij,cbk′,ij,c + bk,ij,c(1i∈Sk′ ,ωi=c + 1j∈Sk′ ,ωj=c) + bk′,ij,c(1i∈Sk,ωi=c + 1j∈Sk,ωj=c)

+ (1i∈Sk,ωi=c + 1j∈Sk,ωj=c)(1i∈Sk′ ,ωi=c + 1j∈Sk′ ,ωj=c),

leading to

q∑
c=1

s∑
k=1

∑
k′:k′ 6=k

(bk,ij,c + 1i∈Sk,ωi=c + 1j∈Sk,ωj=c)(bk′,ij,c + 1i∈Sk′ ,ωi=c + 1j∈Sk′ ,ωj=c)

=

q∑
c=1

s∑
k=1

∑
k′:k′ 6=k

bk,ij,cbk′,ij,c + 2

s∑
k=1

bk,ij,ωi1i/∈Sk + 2

s∑
k=1

bk,ij,ωj1j /∈Sk + 2 · 1i�j,ωi=ωj .

Altogether, we arrive at the representation

−HN (ω) =
β

2N

q∑
c=1

s∑
k=1

b2k,ij,c +
β

N

s∑
k=1

bk,ij,ωi1i∈Sk +
β

N

s∑
k=1

bk,ij,ωj1j∈Sk +
β

N

+
β

N
1i∼j,ωi=ωj +

α

2N

q∑
c=1

s∑
k=1

∑
k′:k′ 6=k

bk,ij,cbk′,ij,c

+
α

N

s∑
k=1

bk,ij,ωi1i/∈Sk +
α

N

s∑
k=1

bk,ij,ωj1j /∈Sk +
α

N
1i�j,ωi=ωj .
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In particular, the conditional probabilities given ωic can be written as

µN (c|ωic) =
exp(−HN (ωic , c))∑q

c′=1 exp(−HN (ωic , c′))
=

1

1 +
∑
c′:c′ 6=c exp(HN (ωic , c)−HN (ωic , c′))

= h
( ∑
c′:c′ 6=c

exp(HN (ωic , c)−HN (ωic , c
′))
)
,

where h(x) = 1/(1 + x), which is 1-Lipschitz. Using the representation derived above,
we have

HN (ωic , c)−HN (ωic , c
′) =

β

N

s∑
k=1

(bk,ij,c′ − bk,ij,c)1i∈Sk +
β

N
(1ωj=c′ − 1ωj=c)1i∼j

+
α

N

s∑
k=1

(bk,ij,c′ − bk,ij,c)1i/∈Sk +
α

N
(1ωj=c′ − 1ωj=c)1i�j

=
1

N

s∑
k=1

(bk,ij,c′ − bk,ij,c)(β1i∈Sk + α1i/∈Sk) +
1

N
(1ωj=c′ − 1ωj=c)(β1i∼j + α1i�j).

From this representation, we now derive two facts: first,

min
i∈S

min
ω∈{1,...,q}S

µN (ωi|ωic) ≥ γ1 (5.4)

for some γ1 > 0 which only depends on β but not on N (here we have used that α < β).
Moreover, we need to control the operator norm ‖J‖2→2 of the N ×N matrix J whose

entries Jij are given by Jij = sup dTV(µN (·|ωic), µN (·|σic)), where the sup is taken over
all configurations ω, σ which differ at site j only. Obviously, this can be upper bounded
by the `∞ → `∞ norm ‖J‖∞→∞. Fixing two such configurations, i. e. ωj 6= σj , ωjc = σjc ,
it follows that for any i 6= j,

dTV(µN (·|ωic), µN (·|σic)) =
1

2

q∑
c=1

|µN (c|ωic)− µN (c|σic)|

=
1

2

q∑
c=1

∣∣∣h( ∑
c′:c′ 6=c

exp(HN (ωic , c)−HN (ωic , c
′))
)

− h
( ∑
c′:c′ 6=c

exp(HN (σic , c)−HN (σic , c
′))
)∣∣∣

≤ 1

2

q∑
c=1

∣∣∣ ∑
c′:c′ 6=c

(
exp(HN (ωic , c)−HN (ωic , c

′))− exp(HN (σic , c)−HN (σic , c
′))
)∣∣∣

≤ 1

2

q∑
c=1

∑
c′:c′ 6=c

exp
( 1

N

s∑
k=1

(bk,ij,c′ − bk,ij,c)(β1{i∈Sk} + α1{i/∈Sk})
)

∣∣∣ exp
( 1

N
(1ωj=c′ − 1ωj=c)(β1i∼j + α1i�j)

)
− exp

( 1

N
(1σj=c′ − 1σj=c)(β1i∼j + α1i�j)

)∣∣∣
≤ 1

2
eβ

q∑
c=1

∑
c′:c′ 6=c

∣∣∣ exp
( 1

N
(1ωj=c′ − 1ωj=c)(β1i∼j + α1i�j)

)
− exp

( 1

N
(1σj=c′ − 1σj=c)(β1i∼j + α1i�j)

)∣∣∣
=: eβ

q∑
c=1

∑
c′:c′ 6=c

I(c, c′).
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Here, in the first inequality we have used the Lipschitz property, in the second one that
bk,ij,c(ω) = bk,ij,c(σ) for all c since ωjc = σjc , and in the last one α < β once again. Note
that if {c, c′} ∩ {ωj , σj} = ∅, we have I(c, c′) = 0. It follows that the right-hand side can
be written as

eβ
( ∑
c′ 6=ωj

I(ωj , c
′) +

∑
c′ 6=σj

I(σj , c
′) +

∑
c6=ωj

I(c, ωj) +
∑
c 6=σj

I(c, σj)
)
.

By Taylor expansion, assuming i ∼ j it is not hard to see that

I(ωj , σj) = I(σj , ωj) ≤
2β

N
+ o((β/N)2), and

I(ωj , c
′) = I(σj , c

′) = I(c, ωj) = I(c, σj) ≤
β

N
+O((β/N)2),

where c, c′ /∈ {ωj , σj}. The same bounds with β replaced by α hold if i � j. Altogether,

‖J‖∞→∞ = max
i∈S

∑
j∈S
|Jij | ≤

4(N − 1)

2
eβ
(

(q − 2)
β

N
+ 2

β

N
+Oβ(N−2)

)
≤ 2qβeβ +Oβ(N−1).

In particular, if N is sufficiently large, then for any γ2 < 1− 2qβeβ,

‖J‖2→2 ≤ 1− γ2. (5.5)

Finally, combine (5.4) and (5.5) and apply [35, Th. 4.1] (which requires γ2 ∈ (0, 1)).

Proof of Theorem 5.1. Use Proposition 5.2 in [35, Proof of Th. 4.1] and [36, (2.10)–
(2.12)].

Remark 5.3. By a closer look at the proofs, one can give explicit values for the constants
in Theorem 5.1 and Proposition 5.2 depending on γ1 and γ2 as in (5.4) and (5.5), namely
C = (γ1γ

2
2)−1, σ2

2 = σ2
3 = C, σ2

1 = log(γ−11 )C/ log(4). Moreover, requiring N to be large
enough means that N must be so large that 2qβeβ + Oβ(N−1) < 1 in the asymptotics
leading to (5.5).
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