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Abstract

We consider branching random walk in random environment (BRWRE) and prove the
existence of deterministic subsequences along which their maximum, centered at its
mean, is tight. This partially answers an open question in [3]. The method of proof
adapts an argument developed by Dekking and Host for branching random walks with
bounded increments. The question of tightness without the need for subsequences
remains open.
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1 Introduction, model and main result

We consider branching random walk in (spatial, time independent) random environ-
ment and focus on the study of its maximum. From [2], which proves a shape theorem for
a BRWRE on Zd, d ≥ 1, one can infer that the maximum satisfies a law of large numbers.
Further, a functional central limit theorem for the maximum is proven in [3]. The goal
of this paper is to prove tightness along a subsequence for the maximum recentered
around its quenched mean. This is motivated by, and partially answers, the third open
question in [3]. We only consider the case of a single starting particle.

We begin by introducing the model given in [3] in some more detail. Let (ξ(x))x∈Z
be an i.i.d. collection of random variables on a probability space (Ω,F ,P) with 0 <

ei := ess inf ξ(0) < ess sup ξ(0) =: es < ∞. We use EP to denote the expected value
corresponding to P. Given a realization of ξ and an initial condition x0 ∈ Z start with
one particle at site x0. All particles move independently according to a continuous-time
simple random walk with jump rate 1. While at site x a particle splits into two at rate ξ(x)

independently of everything else. These particles then evolve independently according
to the same mechanism. We write P ξx and Eξx (the quenched law and expectation
respectively) for the law of the process conditioned on starting with a single particle at
x. Alternatively, we write P ξ, Eξ and give our random variables a superscript x, which
we suppress if x = 0. In case ξ(x) = ξ(0) for all x ∈ Z we use P ξ(0)x , Eξ(0)x instead of P ξx ,
Eξx. We use P⊗ P ξx , P⊗ P ξ or just Px or P to denote the annealed law of the process.
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Subsequential tightness for BRWRE

LetN(t) denote the set of particles alive at time t, for Y ∈ N(t) we denote by (Ys)s∈[0,t]
the trajectory of the particle and its ancestors up to time t; this is called the genealogy
of Y . We are interested in Mt := maxY ∈N(t) Yt.

We use the notation NL,η := N/L+ η with L ∈ N, η ∈ [0, 1/L).
The main result of this paper is the following

Theorem 1.1. Fix L ∈ N, η ∈ [0, 1/L) and δ > 0. Then, there exists a deterministic subse-
quence (tδ,ηk )k∈N ofNL,η with lim supk→∞ tδ,ηk /k ≤ (1+δ)/L so that (Mtδ,ηk

−Eξ[Mtδ,ηk
])k∈N)

is tight with respect to the annealed measure.

The proof of Theorem 1.1 yields, with minimal changes, the following quenched
result.

Theorem 1.2. Fix L ∈ N, η ∈ [0, 1/L) and δ > 0. For P-a.e. ξ there exists a sub-
sequence (tδ,ηk (ξ))k∈N of NL,η with lim supk→∞ tδ,ηk (ξ)/k ≤ (1 + δ)/L so that (Mtδ,ηk (ξ) −
Eξ[Mtδ,ηk (ξ)])k∈N is tight with respect to P ξ.

Remark 1.3. We do not know whether it is possible to choose a deterministic subse-
quence (tk)k∈N of NL,η such that (Mtk − Eξ[Mtk ])k∈N is tight for P-a.e. ξ. In particular,
Theorems 1.1 and 1.2 do not imply each other.

To prove Theorem 1.1 we adapt the Dekking-Host argument [4], which we now briefly
recall in the classical context of deterministic branching random walk in discrete time,
that is when ξ(x) = 1 for all x, P-a.s. In that case, we have from the branching structure
that, with Mn,M

′
n two independent copies of Mn and W , W ′ two independent copies of

a Ber(1/2) random variable taking the values ±1,

Mn+1
d
= max(Mn +W,M ′n +W ′).

Taking expectation and using that max(a, b) = (a+ b)/2 + |a− b|/2, we obtain that

E[Mn+1] ≥ E[max(Mn,M
′
n)] = E[Mn] + E[|Mn −M ′n|]/2

≥ E[Mn] + E[|Mn − E[Mn]|]/2

and therefore
E[|Mn − E[Mn]|] ≤ 2(E[Mn+1]− E[Mn]). (1.1)

Since Mn+1 −Mn ≤ 1, Dekking and Host conclude, that E[Mn+1] − E[Mn] ≤ 1, which
then implies the tightness of (Mn − E[Mn])n∈N using (1.1).

The Dekking-Host argument generalizes to continuous time walks in deterministic
environment, with asynchronous jumps and branching; we note that in that case, Mn+1−
Mn is not deterministically bounded. However, E[Mn]/n converges by the subadditive
ergodic theorem, and then moving to subsequences using the argument presented in [6,
p. 9], which originated in [1], yields the analogue of Theorem 1. The case of random
environments presents a genuine new difficulty, in that information on ξ is embedded
in the law of the configuration at time 1, and in that (quenched) shift invariance is lost.
This requires a considerably more involved argument, that we now describe.

We denote the time of the first split by τs and the time of the first move of any particle
with τm. We then define τ := τs ∧ τm ∧ (1/L) and consider 1{τs<τm∧ 1

L}
Mt+τ . As in the

Dekking-Host argument, this has the same distribution as the maximum of two copies
Mt,1,Mt,2 of Mt, which, given the environment, are independent of each other and also
of τs and τm. We use this setup in subsection 2.1 to derive the inequality

E[|Mt,1 −Mt,2|] ≤ c−1
(
E[Mt+ 1

L
−Mt] + E[1{τ 6=τs}(Mt,1 −Mt+τ )]

)
. (1.2)

In order to obtain (1.2), we prove that E[1{τs<τm∧1/L}|Mt,1 −Mt,2|] ≥ cE[|Mt,1 −Mt,2|],
for which ei > 0 is essential.
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Subsequential tightness for BRWRE

We then derive bounds for the two summands in (1.2) along suitable, arbitrarily
dense, subsequences of NL,η in the subsections 2.2 and 2.3 respectively.

For the summand E[Mt+ 1
L
−Mt] this is analogous to Corollary 1 in [6, p. 9] and uses

only that lim supt→∞E[Mt]/t <∞ (see Lemma 2.4):
Remember that we write Mx

t for the maximum at time t starting with a single particle
in x. We will sometimes use random variables as starting position. For the summand

E[1{τ 6=τs}(Mt,1 − Mt+τ )] we use that on {τ = τm} we have that Mt+τ
d
= MS1

t , S1 ∼
Unif({−1, 1}), which reduces the matter to bounding E[1{τ=τm}(Mt,1 −My

t )], y ∈ {±1}.
For this let σy be the time at which any particle of the process with a single starting

particle in y hits 0. We can then use the descendants of the starting particle for Mt,1 as
descendants, after time σy, of the particle which hits 0. This yields a coupling of Mt,1

and My
t for which 1{σy≤t}1{τm=τ}M

y
t ≥ 1{σy≤t}1{τm=τ}Mt−σy,1, and it mainly remains to

control E[1{σy≤t}(Mt,1 −Mt−σy,1)].
To do this we use the fact that there exist constants c, C1 > 0 for which P ξ[σy ≥ z] ≤

ce−C1z (see Lemma 2.5). We also utilize the bound

E[1{σy≤t}(Mt,1 −Mt−σy,1)]

≤
bL·tc∑
k=1

E[1{σy∈[ k−1
L , kL ]}(Mt,1 −Mt− k

L ,1
)] + E[1{σy∈[t−η,t]}Mt,1]. (1.3)

Because σy has exponential tails, it suffices to find subsequences along which E[Mt,1 −
Mt−j/L,1], j ∈ {1, . . . , bL · tc}, are bounded by c · ec′(j−1) with c, c′ constants, which are
specified below. We first do this separately for each fixed j and get in Corollary 2.8
that we can achieve such a bound along arbitrarily dense subsequences. We then
intersect these subsequences to get a, arbitrarily dense, subsequence along which
E[1{τ 6=τs}(Mt,1 −Mt+τ )] is bounded (see Lemma 2.9, Lemma 2.10 and Corollary 2.11).
One important observation for this argument is that for fixed t ∈ NL,η, we only need
E[Mt,1 −Mt−j/L,1] to be controlled for j ≤ c log(t), with c a suitable constant specified
below. The reason for this is that σy has exponential tails and E[Mt,1] grows at most
linearly. This implies that in (1.3) for all summands with k ≥ c log t we get a good enough
upper bound even if we ignore the −Mt− k

L ,1
term.

In subsection 2.4 we combine Lemma 2.4 and Corollary 2.11 to prove Theorem 1.1,
by intersecting suitably dense subsequences obtained in the aforementioned lemmata.

2 Details

2.1 Deriving Inequality (1.2)

Let τm be the time of the first movement of any particle. Furthermore let τs be the
the time of the first split, τs := inf{t ∈ R≥0 : |N(t)| = 2}. Both τs and τm are stopping

times with respect to the filtration generated by (|N(t)|, (Y (v)
t )v∈N(t))t≥0.

Let L ∈ N be arbitrary but fixed and set τ := τs∧ τm∧ (1/L). Then τ is also a stopping
time with respect to that filtration.

For t ∈ R≥0 we have by definition that 1{τs<τm∧ 1
L}
Mt+τ

d
= 1{τs<τm∧ 1

L}
max2

k=1Mt,k,
where Mt,1, Mt,2 are copies of Mt, which are independent of each other and of τs and τm
given the environment. Taking expectation and using that a ∨ b = (a+ b+ |a− b|)/2 this
yields that

E[1{τs<τm∧ 1
L}
Mt+τ ] =

1

2
E
[
1{τs<τm∧ 1

L}
(Mt,1 +Mt,2 + |Mt,1 −Mt,2|)

]
= E[1{τs<τm∧ 1

L}
Mt,1] +

1

2
E[1{τs<τm∧ 1

L}
|Mt,1 −Mt,2|].
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Subsequential tightness for BRWRE

By reordering the terms we conclude that

E[1{τs<τm∧ 1
L}

(Mt+τ −Mt,1)] ≥ 1

2
E[1{τs<τm∧ 1

L}
|Mt,1 −Mt,2|]. (2.1)

Since given the environment 1{τs<τm∧ 1
L}

is independent of Mt,1 and Mt,2 it is also
independent of |Mt,1 −Mt,2| given the environment and we have that

E[1{τs<τm∧ 1
L}
|Mt,1 −Mt,2|] = EP

[
P ξ
[
τs < τm ∧

1

L

]
Eξ [|Mt,1 −Mt,2|]

]
. (2.2)

Lemma 2.1. We have for all ξ that P ξ[τs < τm ∧ 1
L ] = (1−e−

1
L

(ξ(0)+1))ξ(0)
ξ(0)+1 =: cξ(0),L.

Proof. Given ξ we have that min{τs, τm} ∼ Expo(ξ(0) + 1). Thus

P ξ
[
τs < τm ∧

1

L

]
= P ξ

[
τs ∧ τm <

1

L

]
· P ξ[τs < τm]

= P ξ
[
τs ∧ τm <

1

L

]
· ξ(0)

ξ(0) + 1

=
(1− e− 1

L (ξ(0)+1))ξ(0)

ξ(0) + 1
.

Since cξ(0),L is increasing in ξ(0) and strictly positive for ξ(0) > 0 Lemma 2.1 and
(2.2) imply that E[1{τs<τm∧ 1

L}
|Mt,1 −Mt,2|] ≥ cei,LE[|Mt,1 −Mt,2|].

Together with (2.1) this implies that

E[|Mt,1 −Mt,2|] ≤ c−1ei,LE[1{τs<τm∧ 1
L}

(Mt+τ −Mt,1)]

= c−1ei,L

(
E[Mt+τ −Mt] + E[1{τ 6=τs}(Mt,1 −Mt+τ )]

)
. (2.3)

Next we aim to simplify this upper bound by replacing E[Mt+τ −Mt] with E[Mt+ 1
L
−Mt].

For this we prove that Eξ[Mt] is increasing in t.

Lemma 2.2. The expression Eξ[Mt] is monotonically increasing in t for all ξ. In particu-
lar E[Mt+τ −Mt] ≤ E[Mt+ 1

L
−Mt] and E[Mt] is monotonically increasing in t.

Proof. Let s ≥ 0 and V ∈ Nt with Vt = Mt. Define V 0 := V . Given V k define V k+1 as
follows. If the particle V k splits before time t+ s choose one of its direct descendants
uniformly at random independently of everything else as V k+1. Iterate this process, until
V k doesn’t split before time t+ s, which will happen almost surely. We then have that
V kt = Mt and Mt+s ≥ V kt+s, which implies that Mt+s −Mt ≥ V kt+s − V kt =: ∆s. Since we
have chosen the descendants uniformly at random independently of their displacement,
(∆r)r≥0 is a time-continuous simple random walk. This implies that Eξ[∆s] = 0 for all
ξ. This in turn yields that Eξ[Mt+s −Mt] ≥ Eξ[∆s] = 0. Thus we conclude that Eξ[Mt] is
monotonically increasing.

The second statement follows, since τ ≤ 1
L , which implies

E[Mt+τ −Mt] = EP[Eξ[Mt+τ −Mt]] ≤ EP[Eξ[Mt+ 1
L
−Mt]] = E[Mt+ 1

L
−Mt].

Finally, the monotonicity of E[Mt] in t follows by using E[Mt] = EP[Eξ[Mt]] and the
monotonicity of Eξ[Mt] in t.

Using Lemma 2.2 the inequality (2.3) can be rewritten as

E[|Mt,1 −Mt,2|] ≤ c−1ei,L

(
E[Mt+ 1

L
−Mt] + E[1{τ 6=τs}(Mt,1 −Mt+τ )]

)
. (2.4)

This proves (1.2).
We will handle the two summands in (1.2) separately and find arbitrarily dense subse-

quences of NL,η, η ∈ [0, 1/L), along which the summands are bounded. By intersecting
the subsequences we will be able to conclude the proof of Theorem 1.1.
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Subsequential tightness for BRWRE

2.2 On E[Mt+ 1
L
−Mt]

Before we can proceed we need to establish that there exists an x∗ ∈ R≥0 such that
lim supt→∞E[Mt]/t ≤ x∗.
Lemma 2.3. There exists an x∗ ∈ R such that lim supt→∞E[Mt]/t ≤ x∗.

Proof. By a coupling argument we know Eξ[Mt] ≤ Ees[Mt] and it suffices to prove that
lim supt→∞Ees[Mt]/t <∞.

Since the branching rates are constant this is a known result for branching random
walks, compare Exercise 1 in [6, p. 8].

Lemma 2.4. Fix δ > 0 and η ∈ [0, 1/L). Then, there exists a deterministic subsequence
(tδ,ηj )j≥1 of NL,η so that lim supj→∞ tδ,ηj /j ≤ (1 + δ)/L and (E[Mtδ,ηj + 1

L
− Mtδ,ηj

])j≥1 is

bounded.

Proof. By Lemma 2.3 there exists an x∗ ∈ R such that lim supt→∞Mt/t ≤ x∗. Now fix
δ ∈ (0, 1). Define tδ,η0 := 0 and

tδ,ηj+1 := inf

{
t ∈ NL,η : t > tδ,ηj , E[(Mt+ 1

L
−Mt)] ≤

2x∗

Lδ

}
.

We have that tδ,ηj+1 <∞, since else we would have that E[Mtδ,ηj +(k+1)/L −Mtδ,ηj +k/L] ≥
2x∗

δL for all k ∈ N and thus that

E[Mtδ,ηj +k/L] =

k−1∑
n=0

E[Mtδ,ηj +(n+1)/L −Mtδ,ηj +n/L] + E[Mtδ,ηj
] ≥ 2x∗k

δL
+ E[Mtδ,ηj

],

which implies that lim supt→∞E[Mt]/t ≥ 2x∗/δ > x∗, which contradicts the choice of x∗.
By definition we have that E[Mtδ,ηj + 1

L
−Mtδ,ηj

] ≤ 2x∗/(δL) for all j ∈ N and we are left

with proving that lim supj→∞ tδ,ηj /j ≤ (1 + δ)/L.

For this purpose, let Kn := |{t ∈ NL,η : t < n/L + η, t 6∈ {tδ,ηj }|. By Lemma 2.2 we
have that E[Mt+1/L −Mt] ≥ 0 for all t. Thus by definition of Kn we have that

E[Mη+n/L] ≥ 2Knx
∗/(δL). (2.5)

Lemma 2.3 gives that

lim sup
n→∞

E[Mη+n/L]

η + n/L
≤ x∗,

plugging this into (2.5) gives that

lim sup
n→∞

Kn

n
≤ lim sup

n→∞

δ

2x∗
E[Mη+n/L]

n/L
≤ δ

2
.

This implies that

lim inf
n→∞

|{t ∈ NL,η : t < n/L+ η, t ∈ {tδ,ηj }j∈N|}
n

≥
(

1− δ

2

)
which in turn yields that lim supn→∞ tδ,ηd(1− δ2 )ne/(n/L) ≤ 1 and thus that

lim sup
n→∞

tδ,ηn
n
≤ L−1

(
1− δ

2

)−1 δ∈(0,1)
≤ 1 + δ

L
.
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Subsequential tightness for BRWRE

2.3 On E[1{τ 6=τs}(Mt,1 −Mt+τ )]

By definition we have that 1{τ 6=τs} = 1{τ=1/L} + 1{τ=τm}.

On {τ = 1/L} we have that Mt+τ = M ′t with M ′t independent of 1{τ=1/L} and dis-
tributed like Mt and thus

E[1{τ=1/L}(Mt,1 −Mt+τ )] = E[1{τ=1/L}(Mt,1 −M ′t)] = 0.

Remember that we write Mx
t for the maximum starting with a single particle at

location x and allow x to be a random variable. Using this notation we have that

E[1{τ=τm}(Mt,1 −Mt+τ )] = E[1{τ=τm}(Mt,1 −MS1
t )]

with MS1
t independent of 1{τ=τm} and S1 ∼ Unif({−1, 1}) independent of everything.

This implies that

E[1{τ=τm}(Mt,1 −Mt+τ )] =
E[1{τ=τm}(Mt,1 −M1

t )] + E[1{τ=τm}(Mt,1 −M−1t )]

2
. (2.6)

Let y ∈ {±1}. Let σy := inf{t ≥ 0 : ∃V ∈ Ny(t) with V yt = 0}. Then we can couple
Mt,1 and My

t in a way such that

1{σy≤t}1{τm=τ}M
y
t ≥ 1{σy≤t}1{τm=τ}Mt−σy,1.

This implies that

E[1{τ=τm}(Mt,1 −My
t )]

≤ E[1{τ=τm}1{σy≤t}(Mt,1 −Mt−σy,1)] + E[1{τ=τm}1{σy>t}(Mt,1 −My
t )]

≤ E[1{σy≤t}(Mt,1 −Mt−σy,1)] + E[1{τ=τm}1{σy>t}(Mt,1 −My
t )], (2.7)

where the last inequality uses that Eξ[1{σy≤t}(Mt,1 −Mt−σy,1)] ≥ 0, which follows from
the monotonicity of Eξ[1{σy≤t}Ms,1] = P ξ[σy ≤ t]Eξ[Ms,1] in s, see Lemma 2.2.

We will handle the two summands in (2.7) separately, starting with the second one.
However, for both summands, we will need a bound for the tail of σy which the next
lemma provides.

Lemma 2.5. There exist c, C1 > 0 so that P ξ[σy ≥ z] ≤ ce−C1z for all z ≥ 0 and P-a.e. ξ.

Proof. By coupling we have that P ξ[σy ≥ z] ≤ P ei[σy ≥ z] for P-a.e. ξ. For τy := inf{t ≥
0 : ∃V ∈ N(t) with Vt = −y} one has that P ei[σy ≥ z] = P ei[τy ≥ z]. Furthermore, by
symmetry we have that P ei[τy ≥ z] = P ei[τ−1 ≥ z]. By definition of τy we have that

P ei[τ−1 ≥ z] ≤ P ei[Mz ≤ 1].

Let ε > 0. We know that positive constants c∗, c′ exist for which

P ei

[
min

Y ∈N(εz)
Yεz ≤ −c∗εz

]
≤ e−c

′εz,

compare the upper bound derived in [6, p. 5], applied to maxY ∈N(εz)(−Yεz).
With respect to P ei we have that (|N(t)|)t≥0 is a birth-process with birth rate ei. This

implies that |N(t)| ∼ Geo(e−ei·t) see Example 6.8 in [5, p. 385/386]. Thus we have that

P ei
[
|N(εz)| > eei

εz
2

]
≥ 1− e−ei εz2 .

Finally, we know that there exists a pε > 0, such that

P ei

[
M(1−ε)z ≥

c∗(1− ε)z
2

]
≥ pε.
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Subsequential tightness for BRWRE

Now choose ε := 1/12 then for z ≥ 3/c∗ we have that c∗(1 − ε)z/2 − c∗εz ≥ 1. This
implies that by independence of the particles starting at time εz

P ei[Mz ≤ 1] ≤ P ei[ min
Y ∈N(εt)

Yz ≤ −c∗εz] + P ei
[
N(εz) ≤ eei εz2

]
+ (1− pε)e

ei εz
2

≤ e−c
′εz + e−ei

εz
2 + (1− pε)e

ei εz
2 ,

for z ≥ 3/c∗. This suffices to conclude Lemma 2.5

Armed with Lemma 2.5 we can handle the second summand in (2.7).

Lemma 2.6. The sequence (E[1{τ=τm}1{σy>k/L+η}(Mk/L+η,1−My
k/L+η)])k∈N is bounded.

Proof. We have that Mt,1 is independent of 1{τ=τm}1{σy>t}. Additionally because of
lim supt→∞Eξ[Mt,1]/t ≤ x∗ by Lemma 2.3, there exists a c∗ ∈ R so that Eξ[Mt,1] ≤ c∗t

for all t ∈ NL,η and P-a.e. ξ. Combining these yields that

E[1{τ=τm}1{σy>t}Mt,1] = EP[P ξ[τ = τm, σ
y > t]Eξ[Mt,1]]

≤ EP[P ξ[τ = τm, σ
y > t]c∗ · t]

≤ c∗ · tEP[P ξ[σy > t]]

≤ c · e−C1t · c∗ · t.

This converges to 0 for t→∞, and in particular is bounded by a constant for t ∈ NL,η.
Now handle −E[1{τ=τm}1{σy>t}M

y
t ]. We have, using Cauchy-Schwarz in the last

inequality, that

−E[1{τ=τm}1{σy>t}M
y
t ] ≤ E[1{τ=τm}1{σy>t}|M

y
t |]

≤ E[1{σy>t}|My
t |]

≤ P [σy > t]
1
2 ·
√
E[(My

t )2].

We have E[(My
t )2] ≤ Ees[(My

t )2] by coupling and thus know that there exists a c∗ ≥ 0,

such that lim
t→∞

E[(My
t )2]/t2 ≤ c∗. Since P [σy > t]

1
2 ≤ ce−

C1t
2 this does imply that

lim sup
t→∞

(−E[1{τ=τm}1{σy>t}M
y
t ]) ≤ 0,

which in turn gives that the expression in the statement of Lemma 2.6 is bounded.

Now we proceed with the first summand in (2.7). For this fix η ∈
[
0, 1

L

)
. We have for

t ∈ NL,η that

E[1{σy≤t}(Mt,1 −Mt−σy,1)] ≤
bL·tc∑
k=1

E[1{σy∈[ k−1
L , kL ]}(Mt,1 −Mt−σy,1)]

+ E[1{σy∈[t−η,t]}(Mt,1 −Mt−σy,1)]

≤
bL·tc∑
k=1

E[1{σy∈[ k−1
L , kL ]}(Mt,1 −Mt− k

L ,1
)]

+ E[1{σy∈[t−η,t]}Mt,1]

=

bL·tc∑
k=1

EP

[
P ξ
[
σy ∈

[
k − 1

L
,
k

L

]]
Eξ[Mt,1 −Mt− k

L ,1
]

]
+ EP[Eξ[σy ∈ [t− η, t]]Eξ[Mt,1], (2.8)
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where in the second inequality we use that by Lemma 2.2 Eξ[1{σy∈[(k−1)/L,k/L]}Ms,1] =

P ξ[σy ∈ [(k − 1)/L, k/L]Eξ[Ms,1] is monotonously increasing in s.
Lemma 2.5 and (2.8) imply that

E[1{σy≤t}(Mt,1 −Mt−σy,1)] ≤
bL·tc∑
k=1

ce−C1
k−1
L E[Mt,1 −Mt− k

L ,1
] + ce−C1(t−η)E[Mt,1]. (2.9)

In particular we can handle the cases y = 1 and y = −1 at once.
Let j ∈ N be arbitrary but fixed and δ ∈ (0, 1). Furthermore, take x∗ such that

lim supt→∞E[Mt,1]/t ≤ x∗ which exists by Lemma 2.3. Define t(j,δ,η)0 := (j − 1)/L+ η,

t
(j,δ,η)
k+1 := inf

{
t ∈ NL,η : t > t

(j,δ,η)
k , E[Mt,1 −Mt− j

L ,1
] ≤ 2

Lδ
x∗ · j · e

C1
2L (j−1)

}
.

In the following, we prove that this is well defined and that (2.9) is bounded along a
suitable subsequence of the sequences (t

(j,δ,η)
k )k∈N.

We have that t(j,δ,η)k+1 <∞, since otherwise we would have that

E[M
t
(j,δ,η)
k +nj

L

] =

n∑
l=1

E[M
t
(j,δ,η)
k + lj

L

−M
t
(j,δ,η)
k +

(l−1)j
L

] + E[M
t
(j,δ,η)
k

]

≥ 2

Lδ
x∗nje

C1
2L (j−1) + E[M

t
(j,δ,η)
k

]

which would yield lim supt→∞E[Mt]/t ≥ x∗ · 2e
C1
2L (j−1)/δ > x∗ contradicting the choice of

x∗. Set

A(j,δ,η)
n :=

{
t ∈ NL,η : t < n/L+ η, t 6∈ {t(j,δ,η)k }k∈N

}
, K(j,δ,η)

n := |A(j,δ,η)
n |.

We want to estimate K(j,δ,η)
n . For this define

Ã(j,δ,η)
n :=

{
t ∈ NL,η : t < n/L+ η,E[Mt,1 −Mt−1/L,1] >

2

Lδ
x∗e

C1
2L (j−1)

}
,

K̃(j,δ,η)
n := |Ã(j,δ,η)

n |.

The following lemma compares K(j,δ,η)
n with K̃(j,δ,η)

n .

Lemma 2.7. We have that
K(j,δ,η)
n ≤ jK̃(j,δ,η)

n + j.

Proof. Let t ∈ NL,η with j/L + η ≤ t < n/L + η such that t, t − 1
L , . . . , t −

j−1
L 6∈ Ã(j,δ,η)

n .
This implies that for k ∈ {0, . . . , j − 1}

E[Mt−k/L,1 −Mt−(k+1)/L,1] ≤ 2

Lδ
x∗e

C1
2L (j−1).

Summing these inequalities gives that

E[Mt,1 −Mt−j/L,1] ≤ j 2

Lδ
x∗e

C1
2L (j−1),

i.e. t 6∈ A(j,δ,η)
n . So for j/L+η ≤ t ∈ A(j,δ,η)

n , there exists a ϕ(t) ∈
{
t− j−1

L , . . . , t
}
∩ Ã(j,δ,η)

n .
If there are multiple elements in the intersection, ϕ(t) is chosen minimal. Also let

ϕ
(
η + 1

L

)
= · · · = ϕ

(
η + j−1

L

)
=: †, since η + 1

L , . . . , η + j−1
L are always in A

(j,δ,η)
n . This

then yields a map
ϕ : A(j,δ,η)

n → Ã(j,δ,η)
n ∪ {†}, t 7→ ϕ(t).
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We have that |ϕ−1(t′)| ≤ j for all t′ ∈ Ã(j,δ,η)
n ∪ {†} as well as that

A(j,δ,η)
n = ϕ−1(Ã(j,δ,η)

n ∪ {†}) =
⋃

t′∈Ã(j,δ,η)
n ∪{†}

ϕ−1(t′)

by definition. This implies that

K(j,δ,η)
n = |A(j,δ,η)

n | ≤
∑

t′∈Ã(j,δ,η)
n ∪{†}

|ϕ−1(t′)| ≤ |Ã(j,δ,η)
n ∪ {†}| · j = jK̃(j,δ,η)

n + j.

Corollary 2.8. We have that

lim sup
n→∞

K
(j,δ,η)
n

n
≤ jδ

2e
C1
2L (j−1)

.

Proof. By Lemma 2.2 we have that E[Mt,1 −Mt−1/L,1] ≥ 0 for all t ≥ 1/L. Together with

the definition of K̃(j,δ,n)
n this yields that E[Mη+n/L] > 2(Lδ)−1x∗e

C1
2L (j−1)K̃

(j,δ,η)
n . Using

Lemma 2.3 this implies that

lim sup
n→∞

K̃
(j,δ,η)
n

n
≤ δ

2e
C1
2L (j−1)

.

With Lemma 2.7 this yields the statement.

Now define A(j,δ,η) := {t ∈ NL,η : t 6∈ {t(j,δ,η)k }k∈N} and

Bδ,η :=

t ∈ NL,η : t 6∈

⌈
2L
C1

log(t)
⌉⋃

j=1

A(j,δ,η)

 .

In the next two lemmata we bound E[1{σy≤t}(Mt,1 −Mt−σy,1)] for t ∈ Bδ,η and examine
how dense Bδ,η ⊆ NL,η is.

Lemma 2.9. For t ∈ Bδ,η we have that E[1{σy≤t}(Mt,1 −Mt−σy,1)] ≤ C, with C indepen-
dent of t.

Proof. For t ∈ Bδ,η and all j ∈
{

1, . . . ,
⌈
2L
C1

log(t)
⌉}

we have, by definition, that E[Mt,1 −

Mt−j/L,1] ≤ 2x∗je
C1
2L (j−1)/(δL). Furthermore, we know that there exists a c∗ ≥ 0 such

that E[Mt,1 −Mt−j/L,1] ≤ E[Mt,1] ≤ c∗ · t for all t ∈ NL,η, since lim supt→∞E[Mt]/t ≤ x∗
by Lemma 2.3. These inequalities as well as (2.9) imply that for t ∈ Bδ,η

E[1{σy≤t}(Mt,1 −Mt−σy,1)] ≤
bL·tc∑
k=1

ce−C1
k−1
L [Mt,1 −Mt−k/L,1] + ce−C1(t−η)E[Mt,1]

≤
d 2L
C1

log(t)e∑
k=1

ce−C1
k−1
L

2

δL
x∗ke

C1
2L (k−1)

+

bL·tc∑
k=d 2L

C1
log(t)e+1

ce−C1
k−1
L c∗ · t+ ce−C1(t−η)c∗ · t

≤
∞∑
k=1

ce−
C1
2L (k−1) 2

δL
x∗k +

bL·tc∑
k=d 2L

C2
log(t)e+1

ce−C1
k−1
L c∗e

C1
2L k + c′
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≤ c̃2x∗

δL
+

∞∑
k=1

ce−
C1
2L k+

C1
L c∗ + c′

≤ c̃
(

2x∗

δ
+ c∗

)
+ c′,

where the exact value of c̃ changes from line to line and c′ is just a constant, which
bounds ce−C1(t−η)c∗t for all t ≥ 0. This proves Lemma 2.9.

Lemma 2.10. Let (tδ,ηk )k∈N be a monotonically increasing enumeration of Bδ,η and

δe
C1
L /(e

C1
2L − 1)2 ∈ (0, 1). Then, one has that

lim sup
n→∞

tδ,ηn
n
≤ 1

L
+ δ

e
C1
L

L(e
C1
2L − 1)2

.

Proof. Consider Aδ,ηn :=
{
t ∈ NL,η : t < n/L+ η, t 6∈ Bδ,η

}
, Kδ,η

n := |Aδ,ηn |. Then

Aδ,ηn ⊆

⌈
2L
C1

log(n)
⌉⋃

j=1

A(j,δ,η)
n

which implies that Kδ,η
n ≤

∑⌈
2L
C1

log(n)
⌉

j=1 |A(j,δ,η)
n |. This gives that

Kδ,η
n

n
≤

⌈
2L
C1

log(n)
⌉∑

j=1

K
(j,δ,η)
n

n
=

∞∑
j=1

1{
j≤

⌈
2L
C1

log(n)
⌉}K(j,δ,η)

n

n
.

We now want to apply Fatou’s lemma and for this need to bound the summands for
constant j. Thus let n, j ∈ N. We know, by Lemma 2.7, that K(j,δ,η)

n ≤ jK̃
(j,δ,η)
n + j and,

by the calculation in Corollary 2.8, that

K̃(j,δ,η)
n ≤ E[M n

L+η] · Lδ

2x∗e
C1
2L (j−1)

.

By Lemma 2.3 there is a c∗ such that E[Mt] ≤ c∗(t− η) for all t ∈ NL,η, this implies that

K
(j,δ,η)
n

n
≤ jc∗δ

2x∗e
C1
2L (j−1)

+
j

n
.

This implies that

1{
j≤

⌈
2L
C1

log(n)
⌉}K(j,δ,η)

n

n
≤ jc∗δ

2x∗e
C1
2L (j−1)

+
j

e
C1
2L (j−1)

.

Since the right hand side is summable, this implies, by Fatou’s Lemma, that

lim sup
n→∞

Kδ,η
n

n
≤
∞∑
j=1

lim sup
n→∞

1{
j≤

⌈
2L
C1

log(n)
⌉}K(j,δ,η)

n

n

≤
∞∑
j=1

jδ

2e
C1
2L (j−1)

=
δ

2
· e

C1
L

(e
C1
2L − 1)2

,
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where the second to last inequality uses Corollary 2.8.
This implies that

lim inf
n→∞

|{t ∈ NL,η : t < n/L+ η, t ∈ Bδ,η}|
n

≥

(
1− δ

2
· e

C1
L

(e
C1
2L − 1)2

)
=: cδ.

This in turn implies for δe
C1
L /(e

C1
2L − 1)2 ∈ (0, 1) that lim supn→∞ tδ,ηdcδ·nen/L) ≤ 1 and thus

we have that

lim sup
n→∞

tδ,ηn
n
≤ L−1c−1δ ≤

1

L
+ δ

e
C1
L

L(e
C1
2L − 1)2

.

Summed up we have

Corollary 2.11. Fix δ > 0 and η ∈ [0, 1/L). Then, there exists a deterministic sub-
sequence (sδ,ηk )k∈N of NL,η such that (E[1{τ 6=τs}(Msδk,1

−Msδk+τ
)])k∈N is bounded and

lim supk→∞ sδ,ηk /k ≤ (1 + δ)/L.

Proof. Let δ̃ := δ(e
C1
2L − 1)2/e

C1
L . Consider (sδ,ηk )k∈N an increasing enumeration of Bδ̃,η.

By Lemma 2.10 we have that

lim sup
k→∞

sδ̃,ηk
k
≤ L−1

1 + δ̃
e
C1
L(

e
C1
2L − 1

)2
 =

1 + δ

L
.

By equations (2.6), (2.7) and (2.9) and Lemmata 2.6 and 2.9 as well as sδ,ηk ∈ NL,η for all
k we know that (E[1{τ 6=τs}(Msδk,1

−Msδk+τ
)])k∈N is bounded.

2.4 Proof of Theorem 1.1

Let (t
δ
2 ,η

k )k∈N be a subsequence according to Lemma 2.4 and (s
δ
2 ,η

k )k∈N a subsequence
according to Corollary 2.11. Now, consider

Aδ,η :=

{
t ∈ NL,η : t ∈

{
t
δ
2 ,η

k

}
k∈N
∩
{
s
δ
2 ,η

k

}
k∈N

}
and let Kδ

n := |{t ∈ NL,η : t < n/L+ η, t 6∈ Aδ,η}|. We have that

Kδ,η
n ≤

∣∣∣{t ∈ NL,η : t < n/L+ η, t 6∈
{
t
δ
2 ,η

k

}}∣∣∣+
∣∣∣{t ∈ NL,η : t < n/L, t 6∈

{
s
δ
2 ,η

k

}}∣∣∣
=: Kδ

n,1 +Kδ
n,2.

By the construction of the sequences (t
δ/2,η
k )k∈N, (s

δ/2,η
k )k∈N we know that for j ∈ {1, 2}

lim supn→∞Kδ,η
n,j/n ≤ δ/4, j ∈ {1, 2}. This implies that lim supn→∞Kδ,η

n /n ≤ δ/2. As in

Lemma 2.4 and Corollary 2.11 this implies that for (tδ,ηk )k∈N an increasing enumeration

of Aδ,η we have that lim supk→∞ tδ,ηk /k ≤ (1 + δ)/L.

Furthermore, since tδ,ηk ∈ {t
δ/2,η
k }k∈N ∩ {sδ/2,ηk }k∈N we have by Lemma 2.4 and Corol-

lary 2.11 as well as (2.4) that for all k ∈ N

E[|Mtδ,ηk ,1 −Mtδ,ηk ,2|] ≤ c
−1
ei,L(E[Mtδ,η+ 1

L
−Mtδ,η ] + E[1{τ 6=τs}(Mtδ,η,1 −Mtδ,η+τ )]) ≤ C

with C independent of k. This implies that (Mtδ,ηk
− Eξ[Mtδ,ηk

])k∈N is tight with respect to
the annealed measure.
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3 Quenched tightness-Proof of Theorem 1.2

We now sketch which changes to the argument are necessary to get Theorem 1.2.
The analogue to inequality (1.2) is

Eξ[|Mt,1 −Mt,2|] ≤ c−1ξ(0),L
(
Eξ[Mt+1/L −Mt] + Eξ[1{τ 6=τs}(Mt,1 −Mt+τ ]

)
.

Since Lemma 2.3 is proven by comparing Eξ with Ees we can derive that there is a

x∗ ∈ R with lim supt→∞
Eξ[Mt]

t ≤ x∗ for P-a.e. ξ. This allows us to replace E by Eξ in

Lemma 2.4 and no further changes are needed. Note that tδ,ηk will be ξ dependent, since
the condition Eξ[Mt+1/L −Mt] ≤ 2x∗

Lδ depends on ξ.
In section 2.3, replacing E and P by Eξ and P ξ everywhere suffices and Lemma 2.5

is already stated for P-a.e. ξ. Again the condition Eξ[Mt,1 −Mt−j/L,1] ≤ 2
Lδx

∗je
C1
2L (j−1)

being ξ dependent forces the sδ,ηk in Corollary 2.11 to be ξ dependent.
Combining these ingredients to prove Theorem 1.2 is parallel to subsection 2.4, one

only needs to replace E by Eξ in the last display.
We have not managed to find a deterministic subsequence (tk)k∈N of NL,η such that

(Mtk − Eξ[Mtk ])k∈N is tight for P-a.e. ξ.
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