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Abstract

The sliced Wasserstein metric Wp and more recently max-sliced Wasserstein metric
Wp have attracted abundant attention in data sciences and machine learning due to
their advantages to tackle the curse of dimensionality, see e.g. [15], [6]. A question of
particular importance is the strong equivalence between these projected Wasserstein
metrics and the (classical) Wasserstein metric Wp. Recently, Paty and Cuturi have
proved in [14] the strong equivalence of W2 and W2. We show that the strong
equivalence also holds for p = 1, while the sliced Wasserstein metric does not share
this nice property.
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1 Introduction

The Wasserstein metric arising in the optimal transport theory forms a distance
function between probability measures. In mathematical language, the Wasserstein
distance of order p ≥ 1 between probability measures µ and ν on Rd is defined as

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x− y|pγ(dx, dy)

)1/p

,

where Γ(µ, ν) is the set of probability measures γ on Rd ×Rd having the marginal dis-
tributions µ and ν. Theoretical advances in the last fifty years characterize existence,
uniqueness, representation and smoothness properties of optimizers forWp(µ, ν) under
different settings and computeWp(µ, ν) by adopting tools and methods in PDE, linear
programming and computational geometry, see e.g. [16], [19], and applications are
various throughout most of the applied sciences including economics, geography and
biomedical sciences, see e.g. [17], [18]. Recently, it has attracted abundant attention in
data sciences and machine learning due to its theoretical properties and applications
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on many domains, see e.g. Wasserstein GAN (Generative Adversarial Network) in [2].
While the Wasserstein metric brings new perspectives and principled ways to formalize
problems, the related methods usually suffer from high computational complexity as
evaluating Wasserstein distance for d � 1 is numerically intractable in general. This
important computational burden is a major limiting factor in the application of Wasser-
stein metric to large-scale data analysis. An appealing path to overcome the curse of
dimensionality is the recently introduced sliced Wasserstein metricWp, which is based
on the average Wasserstein distance of the projections of two distributions, see e.g.
[15], [3], [18]. Very recently, in order to reduce the projection complexity of the sliced
Wasserstein, [6] introduced the so-called max-Wasserstein metrics, which we will denote
byWp, as a fix. The same paper also points out that both of these projected versions of
the Wasserstein distance enjoy the so-called generalizability over the Wasserstein metric.
For further recent results please refer to [13], [14].

Paty and Cuturi showed in [14] that the max-sliced distanceW2 is strongly equivalent
to W2. This paper aims to prove this result for p = 1. The proof of our result is based
on the dual formulation of W1, constructing a tailor-made topology τ on the space of
Lipschitz functions on Rd, and some functional analytic arguments. This is reminiscent
of the universal approximation result in e.g. [5], i.e. any arbitrary Lipschitz function
can be recovered from functional evaluation of projections. Although in the same spirit,
our result here is different. In Theorem 3.5, we prove there exists Cd > 0 such that the
collection of functions as below ∑

1≤k≤n

akfk(vk · x) (1.1)

is dense, endowed with τ , in the absorbing and convex set of 1−Lipschitz functions
Lip1(Rd), where n ∈ N, ak ≥ 0, vk ∈ Sd−1, fk ∈ Lip1(R) for 1 ≤ k ≤ n and

∑
1≤k≤n ak ≤ Cd.

Roughly speaking, any 1−Lipschitz function on Rd can be approximated by a sequence
of Cd−Lipschitz functions of form (1.1).

We show further that the strong equivalence is not shared by the sliced Wasserstein
metric using the recent results of [1], hence promoting the max-sliced metric over the
sliced one.

The structure of the rest of the paper is simple. In the next section, after introducing
some preliminaries we will give our main results in Theorem 2.3. Section 3, on the other
hand, is devoted to the proof of these results. A technical lemma is presented in the
Appendix.

2 Main results

2.1 Preliminaries on the Wasserstein metric

We start by reviewing the preliminary concepts and formulations needed to introduce
the main results. For p ≥ 1, let Pp(Rd) be the set of probability measures on Rd admitting
finite pth moment, i.e. µ ∈ Pp(Rd) if and only if

Mp(µ) :=

(∫
Rd

|x|pµ(dx)

)1/p

<∞. (2.1)

For µ, ν ∈ Pp(Rd), denote by Γ(µ, ν) ⊂ Pp(Rd×Rd) the collection of probability measures
γ on Rd ×Rd, also known as couplings or transport plans, such that

γ
[
E ×Rd

]
= µ[E] and γ

[
Rd × E

]
= ν[E], for all measurable sets E ⊂ Rd.
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The Wasserstein metric of order p is a distance function Wp : Pp(Rd) × Pp(Rd) → R+

defined by

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x− y|pγ(dx, dy)

)1/p

, for all µ, ν ∈ Pp(Rd). (2.2)

It is known that Pp(Rd) endowed with Wp is a Polish space, i.e. separable completely
metrizable space, see e.g. Theorem 6.18 of [19]. In particular, an explicit expression of
Wp(µ, ν) is given for d = 1:

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣pdt)1/p

, (2.3)

where F−1
µ (t) := inf{x ∈ R : µ[(−∞, x]] > t} and F−1

ν (t) := inf{x ∈ R : ν[(−∞, x]] > t},
see e.g. Chapter 2 of [18]. We note also that Wp is depending on d, i.e. Wp ≡ Wp,d.
Nevertheless, we will not emphasize this dependency in the rest and write simplyWp

without any danger of confusion.

2.2 Projected Wasserstein metrics

While approaches based on the Wasserstein metric have been successful in several
complex tasks, estimating the Wasserstein distance often suffers from the curse of
dimensionality from the complexity/algorithmic perspective. To tackle the issue of
complexity, a sliced version of the Wasserstein distance was studied and employed,
which only requires estimating distances of projected uni-dimensional distributions and
is, therefore, more efficient, see e.g. [3], [6], [13].

Let Sd−1 ⊂ Rd be the unit sphere, i.e. Sd−1 := {v ∈ Rd : |v| = 1}. For µ ∈ Pp(Rd) and
v ∈ Sd−1, set µv := µ ◦ v−1

∗ to be the image measure of µ by v∗, where v∗ : Rd → R is the
map defined by v∗(x) := v · x. Then µv ∈ Pp(R) since∫

R

|x|pµv(dx) =

∫
Rd

|v · x|pµ(dx) ≤
∫
Rd

|x|pµ(dx).

Hence, we may define the sliced Wasserstein metric Wp and max-sliced Wasserstein
metricWp as follows.

Definition 2.1. For µ, ν ∈ Pp(Rd), set

Wp(µ, ν) :=

(∮
Sd−1

Wp(µv, νv)
pdv

)1/p

and Wp(µ, ν) := sup
v∈Sd−1

Wp(µv, νv),

where
∮

denotes the surface integral over Sd−1.

For d = 1, one has by definition Wp(µ, ν) = 2−1/pWp(µ, ν) = Wp(µ, ν). Further,
Proposition 2.2 ensures thatWp,Wp are well defined metrics on Pp(Rd).
Proposition 2.2. (i) Fix µ, ν ∈ Pp(Rd). The maps Sd−1 3 v 7→ µv ∈ Pp(R) and Sd−1 3
v 7→ Wp(µv, νv) ∈ R+ are both Lipschitz, with respectively Lipschitz constants Mp(µ) and
Mp(µ) +Mp(ν). In particular, the supremum over Sd−1 can be attained andWp(µ, ν) =

maxv∈Sd−1Wp(µv, νv).

(ii)Wp andWp form two distance functions on Pp(Rd).

Proof. (i) For all u, v ∈ Sd−1, let u∗ ⊗ v∗ : Rd × Rd → R2 be the map defined by u∗ ⊗
v∗(x, y) := (u · x, v · y). Taking γ(dx, dy) := µ(dx) ⊗ δx(dy) ∈ Γ(µ, µ), one has γu,v :=
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γ ◦ (u∗ ⊗ v∗)
−1 ∈ Γ(µu, µv) and thus

Wp(µu, µv) ≤
(∫

R2

|x− y|pγu,v(dx, dy)

)1/p

=

(∫
Rd×Rd

|u · x− v · y|pγ(dx, dy)

)1/p

≤ |u− v|Mp(µ).

Further, the triangle inequality yields
∣∣Wp(µu, νu) − Wp(µv, νv)

∣∣ ≤ ∣∣Wp(µu, µv)
∣∣ +∣∣Wp(νu, νv)

∣∣ ≤ |u − v|
(
Mp(µ) + Mp(ν)

)
, which yields the Lipschitz continuity and fur-

therWp(µ, ν) = maxv∈Sd−1Wp(µv, νv).

(ii) The symmetry and sub-additivity are trivial by definition. Denote by Ad the surface
area of Sd−1, i.e.

Ad :=

∮
Sd−1

dv =
2πd/2

Γ(d/2)
, (2.4)

where Γ : R→ R is the Gamma function given as

Γ(x) :=

∫ ∞
0

tx−1e−tdt.

Then one has Wp(µ, ν) ≤ A
1/p
d Wp(µ, ν) for all µ, ν ∈ Pp(Rd) and it suffices to show the

identity of indiscernibles forWp. LetWp(µ, ν) = 0, which implies by (i) that µv = νv for
all v ∈ Sd−1. Consider the characteristic functions of µ, ν defined by

µ̃(z) :=

∫
Rd

eiz·xµ(dx) and ν̃(z) :=

∫
Rd

eiz·xν(dx).

With r := |z| and v := z/r, it follows that∫
Rd

eiz·xµ(dx) =

∫
R

eirxµv(dx) =

∫
R

eirxνv(dx) =

∫
Rd

eiz·xν(dx),

which implies µ̃(z) = ν̃(z) for all z ∈ Rd and finally µ = ν.

2.3 Main results

Given the active theoretical interest of Wasserstein metric, as well as its importance
for applications in practice, the investigation of Wp and Wp is gaining popularity in
machine learning, with several applications to data sciences. A question of particular
importance is the equivalence between Wp,Wp and Wp. Recently, Paty and Cuturi
proved in [14] the strong equivalence ofW2 andW2. Namely,

W2(µ, ν) ≤ W2(µ, ν) ≤
√
dW2(µ, ν), for all µ, ν ∈ P2(Rd).

In this paper, we show the (topological) equivalence between Wp,Wp and Wp as well
as the strong equivalence betweenW1 andW1, which are summarized in Theorem 2.3
below.

Theorem 2.3. (i)Wp,Wp andWp are equivalent for all p ≥ 1, i.e.

lim
n→∞

Wp(µ
n, µ) = 0 ⇐⇒ lim

n→∞
Wp(µ

n, µ) = 0 ⇐⇒ lim
n→∞

Wp(µ
n, µ) = 0

for any sequence (µn)n≥1 ⊂ Pp(Rd) and µ ∈ Pp(Rd).
(ii)W1 andW1 are strongly equivalent for all d ≥ 1, i.e. there exists Cd ≥ 1 such that

W1(µ, ν) ≤ W1(µ, ν) ≤ CdW1(µ, ν), for all µ, ν ∈ P1(Rd). (2.5)

(iii)W1 andW1 are not strongly equivalent for all d ≥ 2.
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Remark 2.4. 1 For every R > 0, denote by P(BR) ⊂ P1(Rd) the subset of probability
measures supported in BR := {x ∈ Rd : |x| ≤ R}. Then one must have 0 < C∗d ≤ Cd such
that

W1(µ, ν) ≤ C∗dW1(µ, ν), for all µ, ν ∈ P(B1).

Let µ ∈ P(BR) for some R > 0 and X ∼ µ. Denote by µR the distribution of X/R, then
clearly µR ∈ P(B1). Further, for µ, ν ∈ P(BR), one has W1(µ, ν) = RW1(µR, νR) and
W1(µ, ν) = RW1(µR, νR), which implies

W1(µ, ν) ≤ C∗dW1(µ, ν), for all µ, ν ∈
⋃
R>0

P(BR).

and furtherW1 ≤ C∗dW1 on P1(Rd) as
⋃
R>0 P(BR) is dense in P1(Rd) underW1 andW1.

3 Proof of the main results

3.1 Proof of Theorem 2.3 (i)

Given u, v ∈ Sd−1, let u∗ ⊗ v∗ : Rd ×Rd → R2 be the map defined by

u∗ ⊗ v∗(x, y) := (u · x, v · y). (3.1)

For µ, ν ∈ Pp(Rd), let γ ∈ Γ(µ, ν) be an optimizer for Wp(µ, ν). Then, by definition,
γu,v := γ ◦ (u∗ ⊗ v∗)

−1 ∈ Γ(µu, νv). Taking in particular u = v, one has

Wp(µv, νv)
p ≤

∫
R2

|x− y|pγv,v(dx, dy) =

∫
Rd×Rd

|v · x− v · y|pγ(dx, dy) ≤ Wp(µ, ν)p,

which yields the trivial inequality as follows:

1

A
1/p
d

Wp(µ, ν) ≤ Wp(µ, ν) ≤ Wp(µ, ν), (3.2)

where Ad is defined in (2.4). Therefore, it remains to show the equivalence betweenWp

andWp.
For the sake of presentation, we use the following notation for the fact that random

variable X is distributed according to probability measure µ:

X ∼ µ or L(X) = µ,

where L(X) denotes the law of X.

of Theorem 2.3 (i). It suffices to prove that limn→∞Wp(µ
n, µ) = 0 implies limn→∞Wp(µ

n,

µ) = 0. We proceed as follows.

Step 1. For each n ≥ 1, let Xn be a random variable with Xn ∼ µn, and by definition,
v ·Xn ∼ µnv holds for all v ∈ Sd−1. As

lim
n→∞

∮
Sd−1

Wp(µ
n
v , µv)

pdv = lim
n→∞

Wp(µ
n
v , µv)

p = 0,

the functions Sd−1 3 v 7→ Wp(µ
n
v , µv)

p ∈ R+ converge in measure to zero. Namely,
for almost every v ∈ Sd−1, limn→∞Wp(µ

n
v , µv) = 0. We can further conclude that the

1This observation is suggested the anonymous referee and provides a tractable schema to approximate C∗
d

by solving an optimization problem over the compact subset P1(B1).
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sequence
(
|v ·Xn|p

)
n≥1

is uniformly integrable. Pick a finite set {v1, . . . , vI} ⊂ Sd−1 such
that

lim
n→∞

Wp(µ
n
vi , µvi) = 0 for 1 ≤ i ≤ I and |x|/2 ≤ max

1≤i≤I
|vi · x| for all x ∈ Rd.

Hence, |Xn|p ≤ 2p
∑I
i=1 |vi ·Xn|p yields the uniform integrability of

(
|Xn|p

)
n≥1

and in
particular

sup
n≥1

Mp(µ
n) = sup

n≥1

(∫
Rd

|x|pµn(dx)

)1/p

= sup
n≥1

(
E
[
|Xn|p

])1/p
=: C <∞.

In view of the proof of Proposition 2.2, the maps Sd−1 3 v 7→ Wp(µ
n
v , µv)

p ∈ R+ are
equi-Lipschitz with a uniform Lipschitz constant C +Mp(µ), and thus

lim
n→∞

Wp(µ
n
v , µv) = 0, for all v ∈ Sd−1. (3.3)

Step 2. Consider the characteristic function of µ given by

µ̃(z) :=

∫
Rd

eiz·xµ(dx), for all z ∈ Rd.

Define similarly µ̃n for all n ≥ 1. For every z ∈ Rd, with r := |z| and v := z/r, it holds

lim
n→∞

∫
Rd

eiz·xµn(dx) = lim
n→∞

∫
R

eirxµnv (dx) =

∫
R

eirxµv(dx) =

∫
Rd

eiz·xµ(dx),

where the second equality follows from (3.3). We conclude thus (µn)n≥1 converges
weakly to µ.

Step 3. Using the Skorokhod representation theorem, we may assume without loss of
generality that the sequence (Xn)n≥1 converges almost surely. Denote by X ∼ µ its limit.
Combining with the uniform integrability of

(
|Xn|p

)
n≥1

, one has

lim
n→∞

Wp(µ
n, µ)p ≤ lim

n→∞
E
[
|Xn −X|p

]
= 0,

which fulfils the proof.

3.2 Proof of Theorem 2.3 (ii)

Our proof is based on the dual formulation of W1 and inspired by the proof of the
universal approximation theorem. Let L0(Rd) be space of Lebesgue measurable functions
f : Rd → R and Lip(Rd) ⊂ L0(Rd) be the subspace consisting of Lipschitz functions
vanishing at the origin, i.e. f ∈ Lip(Rd) if and only if f(0) = 0 and

‖f‖lip := sup
x6=y∈Rd

|f(x)− f(y)|
|x− y|

<∞.

For each L > 0, denote by LipL(Rd) ⊂ Lip(Rd) the subset of functions f with ‖f‖lip ≤ L.
Then it follows by Kantorovich’s duality that, see e.g. Remark 6.5 in [19],

W1(µ, ν) = sup
f∈Lip1(Rd)

{∫
Rd

f(x)µ(dx)−
∫
Rd

f(x)ν(dx)

}
, for all µ, ν ∈ P1(Rd).(3.4)

In what follows, (3.4) will be used in the proof of Theorem 2.3. It is known from [12],
‖ · ‖lip defines a norm on Lip(Rd) and

(
Lip(Rd), ‖ · ‖lip

)
is a Banach space. Next we endow
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Lip(Rd) with an alternative topology. Set

L1(Rd) :=

{
f ∈ L0(Rd) : ‖f‖1 :=

∫
Rd

|f(x)|dx <∞
}

L∞(Rd) :=

{
f ∈ L0(Rd) : ‖f‖∞ := ess sup

x∈Rd

|f(x)| <∞
}
,

then
(
L1(Rd), ‖ · ‖1

)
and

(
L∞(Rd), ‖ · ‖∞

)
are both Banach spaces. Denote further by

L1(Rd)d (resp. L∞(Rd)d) the d−product of L1(Rd) (resp. L∞(Rd)d). Note in particular
that every f ∈ Lip(Rd) is a.e. differentiable and ∇f ∈ L∞(Rd)d with ‖∇f‖∞ = ‖f‖lip, see
e.g. Exercise 6.14 of [11]. Finally we define L1

(
Rd, (1 + |x|)dx

)
⊂ L1(Rd) by

L1
(
Rd, (1 + |x|)dx

)
:=

{
f ∈ L1(Rd) :

∫
Rd

(1 + |x|)|f(x)|dx <∞
}
.

Now we are ready to introduce the topology, denoted by τ , on Lip(Rd) for which(
Lip(Rd), τ

)
is a locally convex space. Let τo be a collection of subsets O(u,w)(f ; ε) ⊂

Lip(Rd) defined as follows:

O(u,w)(f ; ε) :=

{
g ∈ Lip(Rd) :

∣∣∣∣∫
Rd

[
(g − f)(x)u(x) +∇(g − f)(x) · w(x)

]
dx

∣∣∣∣ < ε

}
,

where f ∈ Lip(Rd), ε > 0 and (u,w) ∈ L1
(
Rd, (1 + |x|)dx

)
× L1(Rd)d. Then we define τ to

be the topology generated by τo.
(
Lip(Rd), τ

)
is a locally convex space, as the origin has

a local base of absolutely convex absorbent sets, see e.g. Proposition 1.15 in Chapter 4
of [4]. Under the topology τ , (fn)n≥1 ⊂ Lip(Rd) converges to f ∈ Lip(Rd) if and only if

lim
n→∞

∫
Rd

[
(fn − f)(x)u(x) +∇(fn − f)(x) · w(x)

]
dx = 0

holds for all (u,w) ∈ L1
(
Rd, (1 + |x|)dx

)
× L1(Rd)d.

Remark 3.1. (i) In view of [9], Lip(Rd) is is the dual space of some closed quotient space
of L1(Rd)d and τ turns to be the weak* topology. Hence,

(
Lip(Rd), τ

)
is not metrizable

and thus not a Fréchet space as this quotient space is infinite dimensional, see e.g.
Chapter 5 of [4]. However, Proposition 3.4 shows that τ , restricted to LipL(Rd) ⊂ Lip(Rd)

for any L > 0, is metrizable.

(ii) For any sequence (gn)n≥1 ⊂ Lip(Rd) with limn→∞ ‖gn‖lip = 0, one has for any (u,w) ∈
L1
(
Rd, (1 + |x|)dx

)
× L1(Rd)d

lim
n→∞

∣∣∣∣∫
Rd

gn(x)u(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
Rd

(∫ 1

0

x · ∇gn(tx)dt

)
u(x)dx

∣∣∣∣
≤ lim

n→∞
‖gn‖lip

∫
Rd

|x|u(x)dx = 0

and

lim
n→∞

∣∣∣∣∫
Rd

∇gn(x) · w(x)dx

∣∣∣∣ ≤ lim
n→∞

‖gn‖lip
∫
Rd

|w(x)|dx = 0.

Therefore, the topology under ‖ · ‖lip is strictly stronger than τ .

The lemma below characterizes the space of τ−continuous linear functions on
Lip(Rd).
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Lemma 3.2. Any τ−continuous linear functions T : Lip(Rd)→ R must be of the form

T (f) =

∫
Rd

[
f(x)u(x) +∇f(x) · w(x)

]
dx,

for some (u,w) ∈ L1
(
Rd, (1 + |x|)dx

)
× L1(Rd)d.

Let C ⊂ Lip1(Rd) be the subset of functions f of the form:

f(x) =
∑

1≤k≤n

akfk(vk · x),

where n ∈ N, ak ∈ R+, vk ∈ Sd−1, fk ∈ Lip1(R) for 1 ≤ k ≤ n and
∑

1≤k≤n ak = 1. Define
further mC := {af : |a| ≤ m and f ∈ C} for each m ≥ 1 and D :=

⋃
m≥1mC. We denote by

D the τ−closure of D in Lip(Rd). Similarly, we define by mC the τ−closure of mC. Then
one has the following proposition.

Proposition 3.3. (i) D is dense in Lip(Rd) with respect to τ , i.e. D = Lip(Rd).

(ii) Further, Lip(Rd) =
⋃
m≥1mC holds.

Proof. (i) If D 6= Lip(Rd), then by the Hahn–Banach theorem, see e.g. Corollary 3.15 in
Chapter 4 of [4], there exists a non-zero τ−continuous linear function T : Lip(Rd)→ R

such that T (f) = 0 for all f ∈ D, where

T (f) =

∫
Rd

[
f(x)u(x) +∇f(x) · w(x)

]
dx, for some (u,w) ∈ L1

(
Rd, (1 + |x|)dx

)
× L1(Rd)d.

Take the bump function ϕ : Rd → R+ defined by

ϕ(x) :=

{
c exp

(
1/(|x|2 − 1)

)
if |x| ≤ 1

0 otherwise,

where c > 0 is chosen such that
∫
Rd ϕ(x)dx = 1. Define further the sequence (ϕt)t>0 with

ϕt(x) := ϕ(x/t)/td. For every f ∈ D, one has the convolution ϕt ∗ f ∈ D and thus

0 =

∫
Rd

[
u(x)(ϕt ∗ f)(x) + w(x) · ∇(ϕt ∗ f)(x)

]
dx

=

∫
Rd

[
u ∗ ϕt(x)− div(w ∗ ϕt)(x)

]
f(x)dx, (3.5)

where the integration by parts can be applied thanks to the convolution. Taking respec-
tively f(x) = cos(2πz · x) and f(x) = sin(2πz · x) for z ∈ Rd, one deduces that the Fourier
transform of u ∗ ϕt − div(w ∗ ϕt) is identically equal to zero, i.e.∫

Rd

[
u ∗ ϕt(x)− div(w ∗ ϕt)(x)

]
e−2iπz·xdx = 0, for all z ∈ Rd,

and thus u ∗ ϕt − div(w ∗ ϕt) ≡ 0. Therefore, (3.5) holds for any f ∈ Lip(Rd). Further,∣∣∣∣∫
Rd

[
u(x)

(
(ϕt ∗ f)(x)− f(x)

)
+ w(x) ·

(
∇(ϕt ∗ f)(x)−∇f(x)

)]
dx

∣∣∣∣
≤

∫
Rd

|u(x)|
(∫

Rd

ϕ(y)
∣∣f(x− ty)− f(x)

∣∣dy) dx
+

∫
Rd

|w(x)|
∣∣∣∣∫
Rd

ϕ(y)∇f(x− ty)dy −∇f(x)

∣∣∣∣ dx.
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Using the dominated convergence theorem, and the Lebesgue-Besicovitch differentiation
theorem, see e.g. page 43 of [7], for the second term, one has T (f) = 0 for any
f ∈ Lip(Rd), contradicting the fact that T is not null.

(ii) Let f ∈ Lip(Rd). Then there exists a net (fλ)λ ⊂ D such that fλ converges to f under
τ . Hence, the continuous linear functions Fλ : L1(Rd)d → R defined by

Fλ(w) :=

∫
Rd

∇fλ(x) · w(x)dx

are pointwise bounded. By the uniform boundedness principle, it holds supλ ‖fλ‖lip =

supλ ‖∇fλ‖∞ = supλ ‖Fλ‖ <∞. Thus f ∈ mC for any m ≥ supλ ‖fλ‖lip.

Proposition 3.4. C is closed with respect to the norm ‖ · ‖lip.

Proof. First, we show that the topology τ restricted to Lip1(Rd) ⊂ Lip(Rd) is metrizable.
Since L1

(
Rd, (1 + |x|)dx

)
and L1(Rd)d are separable, we may take two dense subsets

(ui)i≥1 and (wj)j≥1 and define ρui,wj
: Lip(Rd)× Lip(Rd)→ R+ by

ρui,wj
(f, g) :=

∣∣∣∣∫
Rd

[
(f − g)(x)ui(x) +∇(f − g)(x) · wj(x)

]
dx

∣∣∣∣ .
Then by a straightforward verification, the distance ρ : Lip(Rd)× Lip(Rd)→ R+ given by

ρ(f, g) :=
∑
i,j≥1

1

2i+j
ρui,wj (f, g)

1 + ρui,wj
(f, g)

is consistent with the topology τ restricted on Lip1(Rd). Second, we prove C ⊂ Lip1(Rd).
For any f ∈ C, one has a sequence (fn)n≥1 ⊂ C converging to f as τ is metrizable on C.
For any w ∈ L1(Rd)d, it follows that

lim
n→∞

∫
Rd

∇fn(x) · w(x)dx =

∫
Rd

∇f(x) · w(x)dx,

which means that ∇fn converges to ∇f under the weak* topology of L∞(Rd)d. Note also,
in view of the Banach-Alaoglu theorem, (∇fn)n≥1 belongs to the unit ball B∞1 ⊂ L∞(Rd)d

which is relatively compact with respect to the weak* topology. Then the uniqueness of
the weak* limit yields ∇f ∈ B∞1 , and thus f ∈ Lip1(Rd). Hence C ⊂ Lip1(Rd).

Let f be in the closure of C with respect to ‖ · ‖lip. Let (fn)n≥1 ⊂ C satisfying
limn→∞ ‖∇(fn − f)‖∞ = limn→∞ ‖fn − f‖lip = 0, which implies in particular
limn→∞ ρ(fn, f) = 0 as |fn(x) − f(x)| ≤ ‖fn − f‖lip|x| for all x ∈ Rd. For each n ≥ 1,
since fn ∈ C, there exists gn ∈ C such that ρ(gn, fn) ≤ 1/n. Then limn→∞ ρ(gn, f) ≤
limn→∞

(
ρ(gn, fn) + ρ(fn, f)

)
= 0, which concludes the proof.

Theorem 3.5. There exists a constant Cd > 0 such that Lip1(Rd) ⊂ CdC.

Proof. In view of Propositions 3.3 and 3.4, Lip(Rd) =
⋃
m≥1mC and mC is closed with

respect to ‖ · ‖lip for each m ≥ 1. Now it follows from Baire’s theorem that there must
exist m∗ ≥ 1 such that m∗C has non-empty interior, i.e.{

f ∈ Lip(Rd) : ‖f − f∗‖lip < ε∗
}
⊂ m∗C, for some f∗ ∈ Lip(Rd) and ε∗ > 0.

By the proof of Proposition 3.3, there exists m0 ≥ 1 such that f∗ ∈ m0C. Thus one has{
f ∈ Lip(Rd) : ‖f‖lip < ε∗

}
⊂ (m∗ +m0)C.

and further Lip1(Rd) ⊂ CdC with Cd := 2(m∗ +m0)/ε∗.
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Remark 3.6. Proposition 3.3 and Theorem 3.5 form the basis to prove (ii) of Theorem
2.3. It is worth pointing out that, with a suitable adaptation, the proof of the universal
approximation theorem allows to show the density of

⋃
m≥1mC in Lip(Rd) with respect

to τ . However, we cannot prove something similar to Proposition 3.3 (ii) under the
uniform norm. Therefore, Theorem 3.5, which proves that for the convex absorbing
subset Lip1(Rd) there exists m large enough such that mC is also dense in Lip1(Rd),
needs additional arguments.

Now we have all the ingredients to prove Theorem 2.3 (ii).

of Theorem 2.3 (ii). We assume first µ, ν have densities u, v ∈ L1
(
Rd, (1 + |x|)dx

)
with

respect to the Lebesgue measure. Recall Kantorovich’s dual formulation (3.4), and one
has

W1(µ, ν) = sup
f∈Lip1(Rd)

∫
Rd

f(x)
(
u(x)− v(x)

)
dx

≤ sup
f∈CdC

∫
Rd

f(x)
(
u(x)− v(x)

)
dx

= Cd sup
f∈C

∫
Rd

f(x)
(
u(x)− v(x)

)
dx,

where Cd is the constant in Theorem 3.5. As C is the collection of convex combinations
of functions f(v · x) with v ∈ Sd−1 and f ∈ Lip1(R), it follows that

W1(µ, ν) ≤ Cd sup
f∈C

∫
Rd

f(x)
(
u(x)− v(x)

)
dx

= Cd sup
f∈Lip1(R),v∈Sd−1

∫
Rd

f(v · x)
(
u(x)− v(x)

)
dx

= Cd sup
v∈Sd−1

W1(µv, νv) = CdW1(µ, ν).

Hence, (2.5) is established in view of Lemma 3.7.

Lemma 3.7. The subset of probability measures admitting a density is dense in P1(Rd)

underW1 andW1.

Proof. Fix an arbitrary µ ∈ P1(Rd) and take the density function ϕ : Rd → R+ given by

ϕ(x) :=

{
c exp

(
1/(|x|2 − 1)

)
if |x| ≤ 1

0 otherwise,

where c > 0 is chosen such that
∫
Rd ϕ(x)dx = 1. Define the sequence of convolutions of

measures (µt)t>0 by µt := µ ∗ νt, where the probability measure νt is identified by its
density function ϕt(x) := ϕ(x/t)/td. By construction µt admits a density, and it remains
to estimateW1(µt, µ) according to (3.4). For each f ∈ Lip1(Rd), it holds∫

Rd

f(x)µt(dx)−
∫
Rd

f(x)µ(dx) :=

∫
Rd×Rd

f(x + y)µ(dx)ϕt(y)dy −
∫
Rd

f(x)µ(dx)

=

∫
Rd×Rd

(
f(x + tz)− f(x)

)
µ(dx)ϕ(z)dz

≤ t

∫
Rd

zϕ(z)dz ≤ t,

which impliesW1(µt, µ) ≤ t and thus the desired density underW1. The density under
W1 follows immediately from the inequalityW1(µt, µ) ≤ W1(µt, µ).
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3.3 Proof of Theorem 2.3 (iii)

To complete the proof of Theorem 2.3, we need an auxiliary result. Given a generic
probability measure µ ∈ Pp(Rd), µ̂n is said to be its empirical measure (of order n) if

µ̂n(dx) =
1

n

n∑
k=1

δXk(dx),

where (Xk)k≥1 is a sequence of i.i.d. random variables such that Xk ∼ µ for all k ≥ 1.
By Theorem 1 of [8], there exist C

(
p, d,Mp(µ)

)
> 0 and χp,d : N→ R+ such that

E
[
W1(µ, µ̂n)

]
≤ C

(
p, d,Mp(µ)

)
χp,d(n), for all n ≥ 1.

The function χp,d is specified in [8], while we need to refer to [10] for the explicit
expression of C

(
p, d,Mp(µ)

)
. For d = 1 and p = 3, one has

E
[
W1(µ, µ̂n)

]
≤

17280
(
M3(µ)3 + 1

)
√
n

, for all n ≥ 1. (3.6)

of Theorem 2.3 (iii). We argue by contradiction. Assume that there exists C > 0 such
that Wp(µ, ν) ≤ CWp(µ, ν) for all µ, ν ∈ Pp(Rd). Let `d ∈ Pp(Rd) be the Lebesgue
measure concentrated on [0, 1]d. Let

(
Gn ≡ (Gn1 , . . . , G

n
d )
)
n≥1

be a sequence of i.i.d.

random variables distributed according to `d. Define µ̂n to be the empirical measure
given by

µ̂n(dx) :=
1

n

n∑
k=1

δGk(dx).

For any two sequences (an)n≥1, (bn)n≥1 ⊂ R+, we say an ≈ bn if there exists a constant
c > 0 such that

an
c
≤ bn ≤ can, for all n ≥ 1.

Then it follows by [1] that

E
[
W1(`d, µ̂n)

]
≈

{(
log(n)/n

)1/2
if d = 2

n−1/d if d ≥ 3.
(3.7)

On the other hand, one has by assumption

E
[
W1(`d, µ̂n)

]
≤ CE

[
W1(`d, µ̂n)

]
= C

∮
Sd−1

E
[
W1(`dv , µ̂

n
v )
]
dv,

where we recall that `dv and µ̂nv are the projections of `d and µ̂n along the direction
v = (v1, . . . , vd). Substituting `dv and µ̂nv into (3.6), one has

E
[
W1(`dv , µ̂

n
v )
]
≤

17280
(
M3(`dv )3 + 1

)
√
n

≤ 17280(d3 + 1)√
n

, for all v ∈ Sd−1,

where the second inequality follows from M3(`dv )3 ≤M3(`d)3 ≤ d3. This yields

E
[
W1(`d, µ̂n)

]
≤

17280CAd
(
M3(`dv )3 + 1

)
√
n

,

and further, combined with (3.7), yields a contradiction for d ≥ 2 and concludes the
proof.
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A

We start by recalling some elementary ingredients from functional analysis. Given a
topological vector space E , we denote by E∗ its dual space in separating duality via a
bilinear form. The weak∗ convergence, denoted by w∗, is the convergence on E∗ induced
by the elements of E , i.e. (e∗n)n≥1 ⊂ E∗ converges to e∗ ∈ E under w∗ if and only if

lim
n→∞

〈e∗n, e〉 = 〈e∗, e〉, for all e ∈ E .

Endowed with w∗, the dual space of E∗ is isometric to E . In the following, we set
E = L1(Rd)d+1 and E∗ = L∞(Rd)d+1 which are respectively the (d + 1)−product of
L1(Rd) and L∞(Rd).

of Lemma 3.2. Note that Lip(Rd) embeds into the space L∞(Rd)d+1 via the map L :

Lip(Rd)→ L∞(Rd)d+1 defined by

L(f) :=

(
f

1 + |x|
,∇f :=

(
∂1f, . . . , ∂df

))
.

For each function T : Lip(Rd)→ R, define T ◦ L−1 : L
(
Lip(Rd)

)
→ R by

T
(
L(f)

)
:= T (f).

Then by definition, T is τ−continuous linear if and only if T ◦L−1 is w∗−continuous linear.
Following the arguments of Lemma 2.2 in [9], L

(
Lip(Rd)

)
⊂ L∞(Rd)d+1, presented by

weak equations

L
(
Lip(Rd)

)
=

{
(g, w) ∈ L∞(Rd)d+1 : ∂i

(
(1 + |x|)g

)
= wi, ∂iwj = ∂jwi, for 1 ≤ i, j ≤ d

}
is a w∗−closed subspace. Then the dual spaces of L

(
Lip(Rd)

)
is included in the dual

space of L1(Rd)d+1, see e.g. page 129 in [4]. The proof is fulfilled by the fact that the
elements (g, w) of L1(Rd)d+1 represent all τ−continuous linear functions on L

(
Lip(Rd)

)
via

L
(
Lip(Rd)

)
3 L(f) 7→

∫
Rd

g(x)
f(x)

1 + |x|
dx +

∫
Rd

∇f(x) · w(x)dx ∈ R.
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