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Abstract

Generalizing the realized variance, the realized skewness (Neuberger, 2012) and
the realized kurtosis (Bae and Lee, 2020), we construct realized cumulants with
the so-called aggregation property. They are unbiased statistics of the cumulants
of a martingale marginal based on sub-period increments of the martingale and its
lower-order conditional cumulant processes. Our key finding is a relation between
the aggregation property and the complete Bell polynomials. For an application we
give an alternative proof and an extension of a cumulant recursion formula recently
obtained by Lacoin et al. (2019) and Friz et al. (2020).
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1 Introduction

A square-integrable martingale M = {Mt}t∈[0,T ] satisfies

E[(MT −M0)n] = E

 N∑
j=1

(Mtj −Mtj−1
)n

 (1.1)

for n = 2 with an arbitrary time partition 0 = t0 < · · · < tN = T . On one hand
this is a crucial property to develop a theory of martingale (see e.g., [4]) and on the
other hand, after the seminal work [2], this has played an important role in financial
econometrics, where the sum of the squared increments is called the realized variance
and has been used as an accurate measure of the volatility of an asset price modelled by
M . Unfortunately (1.1) does not hold for n ≥ 3, which causes a difficulty in estimating
higher order moments based on high frequency data; see [10] for the details.

For a Borel function g on Rd and an Rd-valued adapted process X on a filtered proba-
bility space (Ω,F , P, {Ft}t∈[0,T ]), the aggregation property introduced by Neuberger [10]
refers to that

E [g(Xu − Xs)|Fs] = E [g(Xu − Xt)|Fs] + E[g(Xt − Xs)|Fs] (1.2)

for any s ≤ t ≤ u ≤ T . The identity (1.1) with n = 2 can be seen as a consequence of the
aggregation property of g(x) = x2 and X = M . An interesting finding by Neuberger [10]
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Realized cumulants for martingales

is that the aggregation property is met by g(x, y) = x3 + 3xy and X = (M,M (2)) for any

L3-martingale M , where M (n)
t = E[(MT −Mt)

n|Ft]. Observing that this implies

E[(MT −M0)3] = E[g(XT − X0)] = E

 N∑
j=1

g(Xtj − Xtj−1)

 ,
Neuberger [10] named the high-frequency statistic

N∑
j=1

g(Xtj − Xtj−1) =

N∑
j=1

{
(Mtj −Mtj−1)3 + 3(Mtj −Mtj−1)(M

(2)
tj −M

(2)
tj−1

)
}

the realized skewness, and conducted an econometric analysis with it. Bae and Lee [3]
further extended the idea to construct the realized kurtosis, by finding that the aggre-
gation property is met by g(x, y, z) = x4 + 6x2y + 3y2 + 4xz and X = (M,M (2),M (3)).
Neuberger [10] and Bae and Lee [3]’s approach to find those polynomials is rather
brute force. Indeed, they showed also that there is no other analytic function (up to
linear combinations) g satisfying the aggregation property with X = (M,M (2),M (3)). An
extension to the higher order cumulants (or moments) has been left open.

The aim of this paper is to unveil this mysterious property. Our finding is that

gn(x1, . . . , xn) = Bn+1(x1, . . . , xn, 0)

satisfies the aggregation property with

X(n) = (X(1), . . . , X(n))

for any n ∈ N, where Bn+1 is the (n+ 1)-th complete Bell polynomial and X(i) is the ith
conditional cumulant process of an Ln+1 integrable random variable X (see Section 4
for the details). When X = MT , then X(3) = (M,M (2),M (3)) and we have

X
(n+1)
t = E

 N∑
j=1

gn(X(n)
tj − X(n)

tj−1
)

∣∣∣∣Ft
 (1.3)

for any partition t = t0 < · · · < tN = T of [t, T ]. The cases n = 1, 2 and 3 correspond
to the realized variance, Neuberger’s realized skewness and Bae and Lee’s realized
kurtosis respectively.

Taking high-frequency limit in (1.3), we have

X
(n+1)
t = E

 ∑
s∈(t,T ]

gn(∆X(n)
s ) +

1

2

n∑
j=1

(
n+ 1

j

)∫ T

t

d〈X(n+1−j),c, X(j),c〉
∣∣∣∣Ft
 ,

where X(j),c is the continuous local martingale part of the semimartingale X(j). This
extends a cumulant recursion formula recently obtained by Lacoin et al. [9] and Friz et
al. [5].

After recalling the complete Bell polynomials and their properties in Section 2, we
introduce conditional cumulants in Section 3. Then, we give our main results in Section 4.
The application to the cumulant recursion formula is given in Section 5.

2 The complete Bell polynomials

Here, we recall the complete Bell polynomials and some of their properties we use in
this work. This section does not contain any new results but we include proofs for the
readers’ convenience.
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Realized cumulants for martingales

Definition 2.1 (The complete Bell polynomials). Let n ∈ N. For (x1, . . . , xn) ∈ Rn, the
nth complete Bell polynomial Bn(x1, . . . , xn) is defined by

Bn(x1, . . . , xn) =
∂n

∂zn
exp

(
n∑
i=1

xi
zi

i!

)∣∣∣∣
z=0

(2.1)

with B0 = 1.

Example 2.2. Here are some examples of the complete Bell polynomials.

B1(x1) = x1,

B2(x1, x2) = x21 + x2,

B3(x1, x2, x3) = x31 + 3x1x2 + x3,

B4(x1, x2, x3, x4) = x41 + 6x21x2 + 4x1x3 + 3x22 + x4,

Bn(x1, 0, . . . , 0) =
∂n

∂zn

∞∑
k=0

1

k!
(x1z)

k

∣∣∣∣∣
z=0

=
∂n

∂zn
1

n!
(x1z)

n

∣∣∣∣
z=0

= (x1)n,

Bn(0, . . . , 0, xn) =
∂n

∂zn

∞∑
k=0

1

k!

(
xn
zn

n!

)k∣∣∣∣∣
z=0

=
∂n

∂zn

(
xn
zn

n!

)∣∣∣∣
z=0

= xn.

Proposition 2.3 (The generating function). If one of

∞∑
n=1

xn
zn

n!
and

∞∑
n=0

Bn(x1, . . . , xn)
zn

n!

is absolutely convergent on a neighbourhood of z = 0, then so is the other and

exp

( ∞∑
n=1

xn
zn

n!

)
=

∞∑
n=0

Bn(x1, . . . , xn)
zn

n!
(2.2)

on a neighborhood of z = 0.

Proof. If, for example, the first series is absolutely convergent on a neighborhood of
z = 0, then the left hand side of (2.2) is analytic on the neighborhood and so, admits the
Taylor expansion around z = 0. The coefficients are determined as

∂n

∂zn

∞∑
k=0

1

k!

( ∞∑
i=1

xi
zi

i!

)k ∣∣∣∣
z=0

=
∂n

∂zn

∞∑
k=0

1

k!

(
n∑
i=1

xi
zi

i!

)k ∣∣∣∣
z=0

= Bn(x1, . . . , xn).

Proposition 2.4 (A binomial type relation). Let n ∈ N and (x1, . . . xn), (y1, . . . , yn) ∈ Rn.
Then,

Bn(x1 + y1, . . . , xn + yn) =

n∑
j=0

(
n

j

)
Bn−j(x1, . . . , xn−j)Bj(y1, . . . , yj). (2.3)

Proof. By the Leibniz rule, we have

Bn(x1 + y1, . . . , xn + yn) =
∂n

∂tn
exp

(
n∑
i=1

(xi + yi)
ti

i!

)∣∣∣∣∣
t=0

=

 n∑
j=0

(
n

j

)
∂n−j

∂tn−j
exp

(
n∑
i=1

xi
ti

i!

)
∂j

∂tj
exp

(
n∑
i=1

yi
ti

i!

)∣∣∣∣∣∣
t=0

=

n∑
j=0

(
n

j

)
Bn−j(x1, . . . , xn−j)Bj(y1, . . . , yj).
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Example 2.5. By (2.3) and the last identity of Example 2.2, for n ≥ 2,

Bn(x1, . . . , xn−1, xn) = Bn(x1, . . . , xn−1, 0) +Bn(0, . . . , 0, xn)

= Bn(x1, . . . , xn−1, 0) + xn.
(2.4)

Proposition 2.6. Let n ∈ N and (x1, . . . xn), (y1, . . . , yn) ∈ Rn. If

Bk(x1, . . . , xk) = Bk(y1, . . . , yk)

for all k ≤ n. Then (x1, . . . xn) = (y1, . . . , yn).

Proof. The result follows by induction. Indeed, x1 = B1(x1) = B1(y1) = y1. If xi = yi for
all i ≤ k − 1, then, by (2.4),

xk = Bk(x1, . . . , xk−1, xk)−Bk(x1, . . . , xk−1, 0)

= Bk(y1, . . . , yk−1, yk)−Bk(y1, . . . , yk−1, 0) = yk.

Proposition 2.7. Let p ≥ 1 and X be an Lp integrable random variable on a probability
space (Ω,F , P ). For a positive integer n ≤ p, define the nth cumulant κn of X by

κn = (−
√
−1)n

∂n

∂zn
logE[e

√
−1zX ]

∣∣∣∣
z=0

. (2.5)

Then,
E[Xn] = Bn(κ1, . . . , κn). (2.6)

Proof. First note that

E[Xn] = (−
√
−1)n

∂n

∂zn
E[e
√
−1zX ]

∣∣∣∣
z=0

.

From this and (2.5), it is clear that κn is a polynomial of E[Xm], m ≤ n. Note also
that Ln 3 X 7→ E[Xm] ∈ R is continuous for m ≤ n. Therefore Ln 3 X 7→ κm ∈ R is
continuous for m ≤ n. Since X can be approximated by bounded random variables in
Ln, in order to show (2.6), it is then sufficient to consider bounded X. For a bounded
random variable X, z 7→ E[ezX ] is analytic and so,

∞∑
n=0

E[Xn]
zn

n!
= E[ezX ] = exp

( ∞∑
n=1

κn
zn

n!

)
on a neighborhood of z = 0, which implies (2.6) in the light of (2.2).

See [11] for combinatorial aspects of the Bell polynomials and cumulants.

3 The conditional cumulants

Here we introduce conditional cumulants that play a key role in this work. Let p ≥ 2

and X be an Lp integrable random variable on a probability space (Ω,F , P ). Let G be
a sub σ-algebra of F . If there exists a regular conditional probability measure given G,
then it is natural to define the nth conditional cumulant X(n)

G of X given G by

X
(n)
G = (−

√
−1)n

∂n

∂zn
logEG [e

√
−1zX ]

∣∣∣∣
z=0

(3.1)

for a positive integer n ≤ p, where EG denotes the expectation with respect to the
regular conditional probability measure. Then, it is clear from Proposition 2.7 that

E[Xn|G] = Bn(X
(1)
G , . . . , X

(n)
G ). (3.2)
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However in general, a regular conditional probability measure might not exist and there
might be no event of probability one on which z 7→ E[e

√
−1zX |G] is differentiable, since

the conditional expectation is defined only up to a null set for each z. We therefore
take another route. In light of Proposition 2.6, we use (3.2) as the defining property of
conditional cumulants.

Proposition 3.1. Define X(i)
G , i = 1, . . . , [p] by

X
(1)
G = E[X|G],

X
(n)
G = E[Xn|G]−Bn(X

(1)
G , . . . , X

(n−1)
G , 0) for n ≥ 2.

Then, X(i)
G ∈ Lp/i and (3.2) holds for n ≤ p. Further, Lp 3 X 7→ X

(i)
G ∈ Lp/i is continuous.

Proof. It is clear that X(1)
G ∈ Lp and that Lp 3 X 7→ X

(1)
G ∈ Lp is continuous. By

Lemma 3.2 below, it follows by induction that X(i)
G ∈ Lp/i and that Lp 3 X 7→ X

(i)
G ∈ Lp/i

is continuous. (3.2) is clear from (2.4).

Lemma 3.2. Let n ∈ N and p ≥ n. For (X1, X2, . . . , Xn) ∈ Lp × Lp/2 × · · · × Lp/n,
Bn(X1, X2, . . . , Xn) ∈ Lp/n. Further, the map

Lp × Lp/2 × · · · × Lp/n 3 (X1, X2, . . . , Xn) 7→ Bn(X1, X2, . . . , Xn) ∈ Lp/n

is continuous.

Proof. Bn(x1, . . . , xn) is a linear combination of terms of the form
∏k
j=1 xij , where ij ∈

{1, . . . , n} with
∑k
j=1 ij = n. Therefore it suffices to show that

∏k
j=1Xj ∈ Lp/n for

(X1, . . . , Xk) ∈ Lp/i1 × · · · × Lp/ik and that

Lp/i1 × · · · × Lp/ik 3 (X1, . . . , Xk) 7→
k∏
j=1

Xj ∈ Lp/n

is continuous. By the Hölder inequality,∥∥∥∥∥∥
k∏
j=1

|Xj |p/n
∥∥∥∥∥∥
1

≤
k∏
j=1

‖|Xj |p/n‖n/ij =

k∏
j=1

‖Xj‖p/np/ij
,

which implies the result.

The following property will be often used in the sequel.

Proposition 3.3. If X is G-measurable, then X(1)
G = X and X(n)

G = 0 for n ≥ 2.

Proof. It is clear that X(1)
G = X. Since Bn(x, 0, . . . , 0) = xn as seen in Example 2.2,

X
(2)
G = X2 −B2(X, 0) = 0. If X(n)

G = 0, then X(n+1)
G = Xn+1 −Bn+1(X, 0, . . . , 0) = 0.

4 The aggregation property of the conditional cumulant processes

Here we give our main results. Let (Ω,F , P, {Ft}t≥0) be a filtered probability space
satisfying the usual conditions. For a process F = {Ft} and s ≤ t, Fs,t denotes Ft−Fs. Let

p ≥ 2 and X ∈ Lp. For n ≤ p, define the nth conditional cumulant process X(n) = {X(n)
t },

where X(n)
t = X

(n)
Ft

defined as in Proposition 3.1 with G = Ft. This construction allows to

take a cadlag version. Let X(n) = (X(1), . . . , X(n)).
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Example 4.1 (Brownian motion). Let X = WT for T > 0 and an {Ft}-Brownian motion
{Wt}. Then, logE[e

√
−1zX |Ft] =

√
−1zWt∧T − z2(T − t)+/2. Therefore (3.1) implies

X
(1)
t = Wt∧T , X(2)

t = (T − t)+ and X(n) = 0 for n ≥ 3. In order to see this follows also
from (3.2), recall first a defining equation for the Hermite polynomials Hn(x):

exp

{
tx− t2

2

}
=

∞∑
n=0

Hn(x)
tn

n!

and its two consequences

Hn(x) =

∫
R

(x+
√
−1z)nφ(z)dz, n = 0, 1, 2, . . . ,

where φ is the standard normal density, and

Bn(x, y, 0, . . . , 0) =

√
yn

√
−1

nHn

(√
−1x
√
y

)
for x ∈ R y > 0 and n ≥ 2. Then, it suffices to observe

E[Xn|Ft] =

∫
(Wt∧T +

√
(T − t)+z)nφ(z)dz =

√
(T − t)+

n

√
−1

n Hn

(√
−1Wt∧T√
(T − t)+

)
.

Here we give a key lemma.

Lemma 4.2. For any positive integer n ≤ p and for any stopping times τ ≤ υ,

E[Bn(X(n)
τ,υ)|Fτ ] = 0.

Proof. By Proposition 3.1 and Lemma 3.2,

Lp 3 X 7→ E[Bn(X(n)
τ,υ)|Fτ ] ∈ Lp/n

is continuous. Therefore it suffices to consider X ∈ L∞ as L∞ is dense in Lp. If X ∈ L∞,
then by Proposition 2.3 and (3.2), we have

1

E[ezX |Fτ ]
=

( ∞∑
n=0

E[Xn|Fτ ]
zn

n!

)−1
= exp

(
−
∞∑
n=1

X(n)
τ

zn

n!

)
=

∞∑
n=0

Bn(−X(n)
τ )

zn

n!

on a neighborhood of z = 0. This implies

1 =

( ∞∑
n=0

E[Xn|Fτ ]
zn

n!

)( ∞∑
n=0

Bn(−X(n)
τ )

zn

n!

)
=

∞∑
n=0

n∑
j=0

(
n

j

)
E[Xn−j |Fτ ]Bj(−X(j)

τ )
zn

n!

and so for n ≥ 1,

0 =

n∑
j=0

(
n

j

)
E[Xn−j |Fτ ]Bj(−X(j)

τ ) = E

 n∑
j=0

(
n

j

)
E[Xn−j |Fυ]Bj(−X(j)

τ )

∣∣∣∣Fτ
 .

The right hand side coincides with E[Bn(X(n)
υ −X(n)

τ )|Fτ ] by Proposition 2.4 and (3.2).

Now we give the main result of this paper.
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Theorem 4.3. For a positive integer n ≤ p− 1, define gn : Rn → R by

gn(x1, . . . , xn) = Bn+1(x1, . . . , xn, 0).

Then,
E[gn(X(n)

τ,υ)|Fτ ] = −E[X(n+1)
τ,υ |Fτ ] (4.1)

for any stopping times τ ≤ υ. In particular, gn satisfies the aggregation property with
X(n), that is,

E[gn(X(n)
σ,υ)|Fσ] = E[gn(X(n)

σ,τ )|Fσ] + E[gn(X(n)
τ,υ)|Fσ] (4.2)

for any stopping times σ ≤ τ ≤ υ. If X is Fυ measurable for a stopping time υ, then

E[gn(X(n)
τ,υ)|Fτ ] = X(n+1)

τ (4.3)

for any stopping time τ ≤ υ.

Proof. (4.1) is clear from (2.4) and Lemma 4.2. (4.2) is clear from (4.1). If X is Fυ
measurable, then E[Xm|Fυ] = Xm for any m and so X(n+1)

υ = (X, 0, . . . , 0) by the second
last identity in Example 2.2, which implies (4.3) together with (4.1).

Actually we have a stronger property than (4.2):

Theorem 4.4. For any positive integer n ≤ p− 1 and for any stopping times σ ≤ τ ≤ υ,

E[gn(X(n)
σ,υ)|Fτ ] = gn(X(n)

σ,τ ) + E[gn(X(n)
τ,υ)|Fτ ]

Proof. By (2.3),

Bn+1(X(n+1)
σ,υ ) =

n+1∑
j=0

(
n+ 1

j

)
Bj(X(j)

σ,τ )Bn+1−j(X(n+1−j)
τ,υ ).

Lemma 4.2 then implies

E[Bn+1(X(n+1)
σ,υ )|Fτ ] = Bn+1(X(n+1)

σ,τ ). (4.4)

The result then follows from (2.4) and (4.1).

Remark 4.5. From (4.4), we have that Bn(X(n)
0,t ) is a martingale. This should be distin-

guished from the fact that Bn(X(n)
t ) = E[Xn|Ft] is a martingale (see (3.2)).

Example 4.6. For an application, here we give an alternative proof for a well-known fact
(see e.g., Proposition IV.3.8 of [12]) that Hn(M, 〈M〉) is a continuous local martingale for
any continuous local martingale M with M0 = 0 and for any n = 0, 1, 2, . . . , where

Hn(x, t) =
√
t
n
Hn

(
x√
t

)
and Hn(x) is the nth Hermite polynomial (see Example 4.1). By localization, we can
assume without loss of generality that 〈M〉 is bounded, say, by a constant T > 0. By
the Dambis-Dubins-Schwarz theorem (Theorem 3.4.6 of [8]), M = W〈M〉 for a Brownian
motion W (with respect to a time-changed filtration). As seen in Example 4.1, for
X = WT , we have for any stopping time (with respect to the time-changed filtration)
τ ≤ T ,

Bn(X(n)
0,τ ) = Hn(Wτ , τ).

Lemma 4.2 then implies E[Hn(Wτ , τ)] = 0 and so, E[Hn(Mτ , 〈M〉τ )] = 0 for any stop-
ping time (with respect to the original filtration) τ . This means that Hn(M, 〈M〉) is a
martingale; see e.g., Problem 1.3.26 of [8].
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Example 4.7. Let M = {Mt}t∈[0,T ] is an Lp martingale. Taking X = MT , we have

X(1) = M and X(n)
T = 0 for n ≥ 2. As is well-known, the second cumulant is the variance

and so, we have X(2) = M (2), where M (n)
t = E[(Mt,T )n|Ft] as in Introduction. For n = 1,

since gn(x1) = B2(x1, 0) = x21, (4.1) means E[(Mt,u)2|Ft] = E[(Mt,T )2|Ft]−E[(Mu,T )2|Ft].
For a partition 0 = t0 < · · · < tN = T ,

N∑
j=1

g1(X(1)
tj−1,tj ) =

N∑
j=1

(Mtj−1,tj )2

is the so-called realized variance. The aggregation property implies

E

 N∑
j=1

(Mtj−1,tj )2

 = E

 N∑
j=1

g1(X(1)
tj−1,tj )

 = E[g1(X(1)
0,T )] = E[(M0,T )2].

The third cumulant is known to be the centered third moment, that is, X(3) = M (3). For
n = 2, gn(x, y) = B3(x, y, 0) = x3 + 3xy. Therefore

N∑
j=1

gn(X(n)
tj−1,tj ) (4.5)

with n = 2 is Neuberger’s realized skewness. Its expectation is −E[X
(3)
0,T ] = E[X

(3)
0 ] =

E[(M0,T )3] by the aggregation property. For n = 3, gn(x, y, z) = B4(x, y, z, 0) = x4 +

6x2y + 4xz + 3y2. Therefore (4.5) with n = 3 is Bae and Lee’s realized kurtosis. Its
expectation is −E[X

(4)
0,T ] = E[X

(4)
0 ] by the aggregation property.

Based on Theorem 4.3 and Example 4.7, we suggest to call the high-frequency
statistic of the form (4.5) the realized (n+ 1)-th cumulant of the martingale X(1). It is

an unbiased estimator of the (n+ 1)-th cumulant X(n+1)
0 of X when X is FT measurable

and F0 consists of null sets and their complements.
We conclude this section with a brief explanation on how the realized cumulants

can be used in financial econometrics. Suppose that X represents an asset price at
time T and there is a market of call and put options with maturity T written on the
asset. The market prices of the options determine a probability measure (called a risk
neutral measure) under which each option price is expressed as the expectation of its
option payoff. The moments and hence cumulants of X under the risk neutral measure
at any time t < T can be therefore computed from the option market prices at time t.
See e.g., [7] for some formulas. The realized nth cumulant is an ex-post value based
on time series of those conditional cumulant processes, whose expectation under the
risk neutral measure at time 0 coincides with X

(n)
0 . Any systematic deviation of the

realized nth cumulant value from X
(n)
0 is due to the difference between the risk neutral

measure and the physical probability measure, and is interpreted as a risk premium. See
Neuberger [10] and the references therein for analyses of variance risk premium and
skewness risk premium.

5 Application to a cumulant recursion formula

It is clear from definition that X(n) is an Lp/n semimartingale. The high-frequency
limit of the realized (n+ 1)-th cumulant on [t, T ] is

∑
s∈(t,T ]

gn(∆X(n)
s ) +

1

2

n∑
j=1

(
n+ 1

j

)
〈X(n+1−j),c, X(j),c〉t,T ,
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where X(j),c is the continuous local martingale part of X(j). Here, the convergence is in
probability. The second term comes from the fact that the quadratic terms contained in
Bn+1(x1, . . . , xn+1) are

1

2

n∑
j=1

(
n+ 1

j

)
xn+1−jxj

since

exp

( ∞∑
i=1

xi
zi

i!

)
= 1 +

∞∑
i=1

xi
zi

i!
+

1

2

( ∞∑
i=1

xi
zi

i!

)2

+ . . . .

If X ∈ Lp for any p > 1, then so is X(n). Then, an application of Itô’s formula to gn(Xs,t)
shows that the above high-frequency convergence is also in L1. The aggregation property
then implies

E[gn(X(n)
t,T )|Ft] = E

 ∑
s∈(t,T ]

gn(∆X(n)
s ) +

1

2

n∑
j=1

(
n+ 1

j

)
〈X(n+1−j),c, X(j),c〉t,T

∣∣∣∣Ft
 .

In case X is FT measurable, by (4.3), we obtain a recursion formula

X
(n+1)
t = E

 ∑
s∈(t,T ]

gn(∆X(n)
s ) +

1

2

n∑
j=1

(
n+ 1

j

)
〈X(n+1−j),c, X(j),c〉t,T

∣∣∣∣Ft
 . (5.1)

Moreover if the filtration is continuous, then ∆X(n) = 0 and so,

X
(n+1)
t =

1

2

n∑
j=1

(
n+ 1

j

)
E

[
〈X(n+1−j), X(j)〉t,T

∣∣∣∣Ft]

or equivalently, for Y (j) = X(j)/j!,

Y (n+1) =
1

2

n∑
j=1

Y (n+1−j) � Y (j),

where � is the diamond operation introduced by Alòs et al. [1]. This last formula has
been recently obtained by Lacoin et al. [9] in their study of Quantum Field Theory. The
assumption of X ∈

⋂
p>1 L

p can be relaxed; see Friz et al. [5]. See [5] also for several
nice applications of this recursion formula. More recently (after the initial submission
of this paper, independently from this work), the extension (5.1) is also given in Friz et
al. [6] by a different approach.
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