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Bayesian Causal Inference with Bipartite
Record Linkage

Sharmistha Guha∗, Jerome P. Reiter†, and Andrea Mercatanti‡

Abstract. In some scenarios, the observational data needed for causal inferences
are spread over two data files. In particular, we consider scenarios where one
file includes covariates and the treatment measured on a set of individuals, and
a second file includes responses measured on another, partially overlapping set
of individuals. In the absence of error-free direct identifiers like social security
numbers, straightforward merging of separate files is not feasible, so that records
must be linked using error-prone variables such as names, birth dates, and de-
mographic characteristics. Typical practice in such situations generally follows a
two-stage procedure: first link the two files using a probabilistic linkage technique,
then make causal inferences with the linked dataset. This does not propagate un-
certainty due to imperfect linkages to the causal inference, nor does it leverage
relationships among the study variables to improve the quality of the linkages. We
propose a joint model for simultaneous Bayesian inference on probabilistic linkage
and causal effects that addresses these deficiencies. Using simulation studies and
theoretical arguments, we show that the joint model can improve the accuracy of
estimated treatment effects, as well as the record linkages, compared to the two-
stage modeling option. We illustrate the joint model using a constructed causal
study of the effects of debit card possession on household spending.

Keywords: treatment, matching, observational, fusion, propensity.

1 Introduction

In some scenarios, researchers seek to make causal inferences from variables spread over
two datasets. For example, a social scientist seeks to link records from a survey and
an administrative database to assess the effect of some policy on economic outcomes.
Similarly, a health researcher seeks to link patients’ electronic health records and Medi-
care claims data to assess the effect of some medical intervention. As a final example,
a researcher seeks to link records from a study done in the past to records in a current
database to make inferences about long-term effects of a treatment, without having to
incur the substantial costs of collecting new primary data.

When perfectly measured, unique identifiers like social security numbers or Medi-
care patient IDs are available in the two files, it is reasonably straightforward to link
individuals across the files (based on these identifiers). However, in some circumstances,
direct identifiers may be missing from one or more files, or may not be made available
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due to privacy restrictions. In such situations, data files have to be linked based on
indirect identifiers, such as individuals’ names, birth dates, addresses and demographic
information. These are inherently imperfect, e.g., they could be recorded differently on
the files. This introduces uncertainty in linkages that should be propagated to the causal
inferences.

Historically, record linkage and causal inference have been carried out as a two-
stage process. The researcher first links records using a probabilistic record linkage
model based on indirect identifiers, not taking into account available information on
the outcome, covariate or treatment status. Subsequently, the researcher uses the set of
linked records in a causal inference procedure. This two-stage approach suffers from two
drawbacks. First, it does not propagate uncertainty from imperfect linkages. Second, it
does not take advantage of relationships among the study variables that could enhance
the accuracy of the linkages.

In this article, we propose a Bayesian joint modeling framework for simultaneous
causal inference and record linkage in observational studies. In particular, we consider
scenarios where one file includes the treatment indicator and causally relevant covariates
measured on a set of individuals, and the other file includes outcomes measured on a
partially overlapping set of individuals. We follow the Bayesian paradigm for causal
inference and posit models for the missing potential outcomes, conditional on the linking
status and known covariates. We couple these outcome models with a probabilistic model
for the unknown linkage statuses, i.e., which record pairs are links and which are not.
For the outcome models, we consider both parametric and semi-parametric forms, with
the latter based on a regression of the outcome on a flexible function of the propensity
scores (Rosenbaum and Rubin, 1983). For the record linkage model, we use the Bayesian
version of the Fellegi and Sunter (1969) model proposed by Sadinle (2017). As part of
the model estimation, we generate plausible values of the missing potential outcomes,
which we then use to estimate posterior distributions of causal effects.

Our work adds to a body of literature that uses Bayesian methods for simultaneous
record linkage and statistical inference, including regression modeling (Gutman et al.,
2013; Dalzell and Reiter, 2018) and population size estimation (Domingo-Ferrer, 2011;
Tancredi and Liseo, 2011; Sadinle et al., 2018; Tancredi et al., 2018). It also adds to
the literature on non-Bayesian methods for simultaneous record linkage and estimation
(e.g., Scheuren and Winkler, 1991; Lahiri and Larsen, 2005; Chipperfield et al., 2011;
Solomon and O’Brien, 2019). None of these Bayesian and non-Bayesian works consider
causal inference as the analysis goal. Wortman and Reiter (2018) introduced the concept
of allowing the causal model to inform the linkage model. Their (non-Bayesian) approach
uses point estimates of average causal effects to determine the thresholds at which record
pairs are declared links in a Fellegi and Sunter (1969) algorithm. It does not use the
causal estimates to determine the record pairs to consider as possible links in the first
place, which our Bayesian approach does. Further, their approach does not provide
uncertainty quantification.

The remainder of the article proceeds as follows. In Section 2 we discuss the back-
ground, notations and the formulation of the Bayesian joint model. We also present
theoretical results arguing for improved inference on record linkage from a joint model
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compared to a two-stage model. In Section 3 we describe posterior computation for
the model. In Section 4, we provide results from simulation studies used to assess the
effectiveness of the joint model, both for causal inference and for linkage quality. In
Section 5 we apply the joint model to data from an Italian household survey to link
records between different files and assess the effect of debit card possession on household
spending. Finally, in Section 6 we conclude with an eye towards future work.

2 Model and Prior Formulation

We define a few key concepts and assumptions related to causal inference in Section 2.1,
and describe probabilistic record linkage in Section 2.2. We propose the Bayesian joint
modeling approach in Section 2.3.

2.1 Background and Notation for Bayesian Causal Inference

We assume a binary treatment, wi ∈ {0, 1}, with wi = 1 and wi = 0 indicating treatment
and control assignment to individual i, respectively. Let xi be the p×1 covariate vector
and yi be the (continuous) outcome for individual i. Each individual is assumed to
have two potential outcomes (Rubin, 1974), one under each value of the treatment. We
denote yi(1) and yi(0) as the potential outcomes for individual i when wi = 1 or wi = 0,
respectively. The treatment effect for the ith individual is given by Ti = yi(1) − yi(0).
Other treatment effects can be defined as well, such as yi(1)/yi(0), although here we
consider effects in the form of Ti.

In reality, for each individual i, we can observe only one of yi(1) and yi(0); that is,
we can observe yi = wiyi(1) + (1 − wi)yi(0). Bayesian approaches to causal inference
essentially treat the unobserved potential outcomes as missing data (Rubin, 2005; Hill,
2011; Ding et al., 2018). One can impute the missing values repeatedly by sampling
from posterior predictive distributions, and use the resulting draws of each Ti to make
statements about causal effects. For example, one can compute the posterior distribution
of the average of the causal effects for the n individuals in the study, T̄ =

∑
i Ti/n.

Following convention, we make the following assumptions to facilitate causal infer-
ences.

1. Stable unit treatment value assumption (SUTVA): The SUTVA contains two sub-
assumptions, no interference between units (i.e., the treatment applied to one
unit does not affect the outcome for another unit) and no different versions of any
treatment (Rubin, 1974).

2. Strong ignorability : Strong ignorability stipulates that (yi(0), yi(1)) ⊥ wi|xi for
all i, which means that there is no unobserved confounding, and that 0 < P (wi =
1|xi) < 1.

We also make use of propensity scores (Rosenbaum and Rubin, 1983). For any in-
dividual i, let the propensity score e(xi) = P (wi = 1|xi), i.e., the probability of being
assigned to treatment given the covariate xi. Rosenbaum and Rubin (1983) show that
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the treatment assignment is independent of xi given e(xi) under strong ignorability.
Typically, propensity scores are estimated using binary regressions of the treatment on
causally-relevant covariates (Rosenbaum and Rubin, 1983). Analysts can use the result-
ing estimate in a variety of ways, for example, to create subsets of matched treated and
control records (Stuart, 2010).

2.2 Background and Notation for Probabilistic Record Linkage

We consider the scenario where we seek to link two files, File A and File B, comprising
nA and nB records, respectively. Without loss of generality, we assume that nA ≥ nB .
We suppose each individual or entity is recorded at most once within each file, i.e., each
file contains no duplicates. Under this setting, the goal of record linkage is to identify
which records in File A and File B refer to the same subject. This setting is known as
bipartite record linkage (Sadinle, 2017).

A corollary to the no-duplicates assumption comes in the form of a maximum one-
to-one restriction in the linkage, i.e., a record in one file can be linked with a maximum
of one record in the other file. Most commonly, the one-to-one linkage is enforced as
a post-processing step after identifying a set of potentially many-to-one links (e.g.,
Fellegi and Sunter, 1969; Jaro, 1989; Winkler, 1993; Belin and Rubin, 1995; Larsen and
Rubin, 2001; Herzog et al., 2007). Alternatively, one can embed the bipartite matching
constraint into a Bayesian model (Fortini et al., 2002; Tancredi and Liseo, 2011; Larsen,
2010; Gutman et al., 2013; Sadinle, 2017; Dalzell and Reiter, 2018), as we do here.

Following Sadinle (2017), we introduce z = (z1, . . . , znB
)′ for the records in File B

to encode a particular linking status between the two files. Specifically, let

zj =

{
i, if record i in File A and record j in File B belong to same individual,

nA + j, if record j in File B has no link in File A.

In the context of bipartite matching, one enforces zj �= zj′ whenever j �= j′.

Suppose the two files include F variables in common that can be used to link records
across the files. We call these the linking variables or fields. For each pair of records
(i, j) in File A × File B, we define a F -dimensional vector γij = (γ1,ij , . . . , γF,ij)

′,
where γf,ij is a score reflecting the similarity in field f for the record pair. In this
article, for categorical variables (e.g., birth year, birth date), we set γf,ij = 1 when
the values of field f for records i and j are equal, and set γf,ij = 0 otherwise. For
string fields (e.g., names) we take into account partial agreement using the normalized
Levenshtein Similarity (LS) metric (Winkler, 1990). This metric ranges between 0 (no
agreement) and 1 (full agreement). We obtain it using the “levenshteinSim” function
in the RecordLinkage package in R. We convert the LS metric into a binary γf,ij by
setting γf,ij = 1 when the LS metric exceeds a predetermined threshold – we use 0.95
in the simulations – and γf,ij = 0 otherwise. One can convert the LS metric into a
multinomial variable for more refined comparisons (Sadinle et al., 2018; Wortman and
Reiter, 2018).

Following Fellegi and Sunter (1969) and related literature, we assume that γij is a
random realization from a mixture of two distributions, one for true links and the other
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for nonlinks. We have

γij |(zj = i)
iid∼ g(θm), γij |(zj �= i)

iid∼ g(θu), (2.1)

where θm = (θ1,m, . . . , θF,m)′ and θu = (θ1,u, . . . , θF,u)
′ comprise probabilities of agree-

ment for each field specific to each mixture component. For computational convenience
we assume conditional independence across fields, so that

g(θm) = P (γij |zj = i) =

F∏
f=1

P (γf,ij |zj = i) =

F∏
f=1

θ
γf,ij

f,m (1− θf,m)1−γf,ij ,

g(θu) = P (γij |zj �= i) =

F∏
f=1

P (γf,ij |zj �= i) =

F∏
f=1

θ
γf,ij

f,u (1− θf,u)
1−γf,ij . (2.2)

As a prior distribution on the set of zj , such that zj �= zj′ for any j �= j′, we
follow a construct used in the bipartite record linkage literature, including Fortini et al.
(2002), Larsen (2010) and Sadinle (2017). Specifically, let I(zj ≤ nA) ∼ Ber(π), where
π represents the proportion of matches expected a priori as a fraction of the smaller file.
Here and throughout, I(E) = 1 when its argument E is true, and I(E) = 0 otherwise. We
assume π is distributed according to a Beta(απ, βπ) a priori. Marginalizing over π, the
total number of links between File A and File B, given by nAB(z) =

∑nB

j=1 I(zj ≤ nA),
is distributed according to a Beta-binomial (nB , απ, βπ) distribution. Conditioning on
the number of records in File B with a link, all possible bipartite pairings are taken
as equally likely. The final form of the prior distribution of z, marginalizing over π, is
given by

P (z|απ, βπ) =
(nA − nAB(z))!

nA!

B(nAB(z) + απ, nB − nAB(z) + βπ)

B(απ, βπ)
. (2.3)

The choice of the hyper-parameters απ and βπ provides prior information on the number
of overlapping records between the two files. We discuss the specific choices of απ and
βπ in Section 3. Finally, the parameters θf,m and θf,u follow i.i.d. Beta(a = 1, b = 1)
distributions for all f = 1, . . . , F .

2.3 Joint Model for Bayesian Causal Inference and Record Linkage

We now present the joint model for Bayesian causal inference and record linkage for
the setting where the outcomes y are in File A, and the covariates x and the treatment
status w are in File B. We presume that the sets of covariates and linking variables are
disjoint. This is the case, for example, when the linking variables comprise only string
variables like names, addresses, or phone numbers. We discuss relaxing this assumption
after presenting the model.

With this setting, we must specify the distribution of yi in File A depending on
whether or not it is linked to any record’s covariates and treatment in File B. For linked
records, we specify the conditional distribution of yi|(xj , wj) using a regression of our
choice. For records without a link, we specify a model for the marginal distribution of
yi. We couple these with the model for record linkage in (2.1)–(2.3).
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More specifically, the contribution to the likelihood function from the ith record in
File A is f1(yi |xj , wj ,θc) when zj = i, and is f2(yi |θd) when zj �= i, for any j. Here, θc

and θd represent parameters in the regression and in the marginal model for outcomes,
respectively. Let y = (y1, . . . , ynA

)′ and w = (w1, . . . , wnB
)′ be the nA × 1 vector of

outcomes in File A and nB × 1 vector of treatment statuses in File B, respectively, and
X = [x′

1 : · · · : x′
nB

]′ be a nB × p dimensional matrix of covariates obtained from File
B. The joint likelihood is given by

L(θd,θc,θm,θu, z|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y,w,X)

∝
∏
(i,j):
zj=i

f1(yi |xj , wj ,θc)×
∏

i:zj �=i
∀j

f2(yi|θd)

×
∏
i,j

⎧⎨
⎩

F∏
f=1

θf,m
γf,ij (1− θf,m)

1−γf,ij

⎫⎬
⎭

I(zj=i)

×

⎧⎨
⎩

F∏
f=1

θf,u
γf,ij (1− θf,u)

1−γf,ij

⎫⎬
⎭

I(zj �=i)

× I(zj �= zj′ , whenever j �= j′). (2.4)

Here, as frequently done in record linkage models, we assume that x does not affect
the distribution for z. When this is not plausible, analysts may want to condition on
features of x when modeling z in (2.2). Additionally, analysts may want to include a
model for x in the likelihood when the covariates suffer from missing values; otherwise, it
is not necessary to specify a model for x. More broadly, we assume that the distributions
in (2.2) are the same across individuals, e.g., mismatches in the linking variables across
files occur randomly. This is typically done for record linkage algorithms (Christen,
2012). When this is not the case, the joint model may not perform as effectively.

We can adapt the model to settings where analysts use some variables as both
linkage variables and covariates. When such variables are recorded identically across
the two files, this presents no issue for the modeling framework. In such cases we can
view them as blocking variables—i.e., records are required to have the same values of
these variables, or else they are not linked—rather than treat them as linkage variables
having some γf,ij . We then replace f2 with a regression of y on this subset of variables.
When these variables are not recorded identically across files, one can use the values
in both files as linking variables and select one set, presumably those in File B with
the rest of x, to include among the covariates in the model for y. We illustrate this
approach in the debit card analysis as well as in a simulation in the supplementary
material (Guha et al., 2022). For the remainder of this section, we assume that the
covariates and linking variables are disjoint.

To illustrate the potential benefit of joint modeling over two-stage modeling, we
examine the likelihood ratio that any pair of records is linked versus not linked. Under
the joint model, the likelihood ratio of i ∼ j (i.e., record i is linked to record j) and
i �∼ j is given by

RatioJoint =
L(θd,θc,θm,θu, z|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y,w,X, i ∼ j)

L(θd,θc,θm,θu, z|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y,w,X, i �∼ j)
. (2.5)
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Notably, (2.5) depends on a contribution to the likelihood from the outcome model. In
contrast, the likelihood ratio for linking records in the traditional two-stage model only
involves the likelihood from the assumed probabilistic record linkage model. For this
model, we have

Ratio2Stage =
F∏

f=1

(
θf,m
θf,u

)γf,ij
(
1− θf,m
1− θf,u

)1−γf,ij

. (2.6)

Theorem 2.1 offers insight into the behavior of RatioJoint and Ratio2Stage.

Theorem 2.1. Assuming
f1(yi|xj ,wj ,θc)

f2(yi|θd)
is bounded away from 0 and ∞ in its support,

we have
(a) Ei∼j [RatioJoint] ≥ Ei∼j [Ratio2Stage],
(b) Ei �∼j [RatioJoint] ≤ Ei �∼j [Ratio2Stage].

Proof. The likelihood ratio under the joint model, RatioJoint, can be expressed as
∏

(k,l):zk=l,k �=j
l �=i

f1(yl|xk, wk,θc)× f1(yi|xj , wj ,θc)×
∏

l:zk �=l f2(yl|θd)

∏
(k,l):zk=l,k �=j

l �=i

f1(yl|xk, wk,θc)× f2(yi|θd)×
∏

l:zk �=l f2(yl|θd)

×
∏F

f=1 θf,m
γf,ij (1− θf,m)

1−γf,ij

∏F
f=1 θf,u

γf,ij (1− θf,u)
1−γf,ij

=
f1(yi|xj , wj ,θc)

f2(yi|θd)

F∏
f=1

(
θf,m
θf,u

)γf,ij
(
1− θf,m
1− θf,u

)1−γf,ij

. (2.7)

The likelihood ratio under the two-stage model, Ratio2Stage, is given by (2.6), which
we abbreviate as h(θf,m, θf,u). Thus, log(RatioJoint) = log(h(θf,m, θf,u)) +

log
[
f1(yi|xj ,wj ,θc)

f2(yi|θd)

]
, and log(Ratio2Stage) = log(h(θf,m, θf,u)). Therefore, we have

Ei∼j [log(RatioJoint)− log(Ratio2Stage)]

=

∫ ∫ ⎡
⎣ F∏
f=1

θf,m
γf,ij (1− θf,m)

1−γf,ij

⎤
⎦ f1(yi|xj , wj ,θc) log

[
f1(yi|xj , wj ,θc)

f2(yi|θd)

]
≥ 0

as a consequence of this expression being a Kullback-Leibler divergence. And, we have

Ei �∼j [log(RatioJoint)− log(Ratio2Stage)]

=

∫ ∫ ⎡
⎣ F∏
f=1

θf,u
γf,ij (1− θf,u)

1−γf,ij

⎤
⎦ f2(yi|θd) log

[
f1(yi|xj , wj ,θc)

f2(yi|θd)

]
≤ 0,

where the last inequality follows from the fact that the expression is (−1) times the
Kullback-Leibler divergence between the two densities f1 and f2.
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Theorem 2.1 indicates that the likelihood ratio for the joint model is more extreme
than the likelihood ratio for the two stage model, which facilitates more accurate iden-
tification of a link or no link between records i and j.

Outcome Models

Naturally, one should specify f1(yi|wj ,xj ,θc) and f2(yi|θd) to describe the distribution
of outcomes as faithfully as possible. In this article, we specify models for yi ∈ R and
assume f2(yi|θd) = N(yi|μ2, σ

2
2); setting a more complicated distributional form for f2

or extending to a categorical yi is relatively straightforward. For f1(yi|wj ,xj ,θc), we
use a general mean-zero additive error form,

yi = m(xj , wj) + εi, εi ∼ N(0, σ2). (2.8)

The specification for m(xj , wj) could be a simple linear form, although often in obser-
vational studies it is advantageous to use more flexible modeling (Hill, 2011).

We use a computationally favorable yet flexible specification for m(xj , wj). In par-
ticular, we assume

m(xj , wj) = m1(ê(xj)) +m2(ê(xj))wj , (2.9)

where ê(xj) is the estimated propensity score. Here, one can determine ê(xj) using the
covariates and treatment statuses for all the records in File B. Alternatively, one can
determine ê(xj) for just linked records, so as to facilitate modeling over the specific
region of the propensity score distribution relevant for (2.8). We illustrate the second
strategy in the simulations of Section 4, with ê(xj) = ρ−1(x′

j η̂), where ρ(·) is the logit
link function and η̂ is the maximum likelihood estimate of η obtained by fitting a logistic
regression of wj on xj for all j ∈ B = {j : zj = i, for some i, 1 ≤ i ≤ nA}. We note that,
in our simulations and illustration with the debit card study, estimating propensity
scores with all of File B did not change results meaningfully.

To afford model flexibility, we propose a semi-parametric choice for m1(·) and m2(·)
using penalized splines (Ruppert et al., 2003). Let κ1 < κ2 < · · · < κm be a set of m
fixed knot points in (0, 1). The functions m1(·) and m2(·) are represented using spline
basis functions,

m1(ê(xj)) = β0 +

s∑
l1=1

βl1 ê(xj)
l1 +

m∑
l2=1

βs+l2(ê(xj)− κl2)
l2
+,

m2(ê(xj)) =

s∑
l1=1

γl1 ê(xj)
l1 +

m∑
l2=1

γs+l2(ê(xj)− κl2)
l2
+. (2.10)

So, the parameters are θc = (β0, β1, . . . , βs, βs+1, . . . , βs+m, γ1, . . . , γs, γs+1, . . . , γs+m,
σ2)′. This modeling framework is motivated by the penalized spline regression ap-
proaches in the Bayesian survey sampling literature (Zheng and Little, 2003, 2005),
with survey weights replaced by propensity scores. Penalized splines are also used in
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causal inference (Myers and Louis, 2012; Gutman and Rubin, 2013, 2015; Zhou et al.,
2019). Some of these articles also recommend adjusting for covariates along with the
propensity score to remove any residual imbalance. This is straightforward to implement
in the joint modeling framework; we add the desired covariates to f1. We illustrate this
approach in the supplementary material.

We suggest placing a large number of knots to estimate the semi-parametric func-
tions accurately. We recommend and use a fixed set of knots chosen on a regular grid
that remains unchanged for all iterations of the Markov chain Monte Carlo (MCMC)
sampler. Even a moderately large choice of m may result in model over-fitting. We
therefore regularize the spline coefficients, βs+1, . . . , βs+m and γs+1, . . . , γs+m, using
Bayesian Lasso shrinkage priors. Following Park and Casella (2008), a scale-mixture
representation of the Bayesian Lasso shrinkage prior is given by

βs+k|τ21,k ∼ N(0, σ2τ21,k), γs+k|τ22,k ∼ N(0, σ2τ22,k),

τ21,k
iid∼ Exp(λ2

1), τ22,k
iid∼ Exp(λ2

2), k = 1, . . . ,m,

λ2
1 ∼ Gamma(r1, δ1), λ2

2 ∼ Gamma(r2, δ2). (2.11)

We assign β1, . . . , βs
i.i.d.∼ N(0, 1) and γ1, . . . , γs

i.i.d.∼ N(0, 1) priors. We also assign
β0 ∼ N(0, 1) and σ2 ∼ IG(aσ, bσ) priors. The prior specification is completed by setting
prior distributions on θd = (μ2, σ

2
2)

′ as μ2 ∼ N(0, 1) and σ2
2 ∼ IG(aσ2 , bσ2) a priori. We

discuss the choice of hyper-parameters further in Section 3.

For comparisons, we also consider a parametric outcome regression. In this model, we
setm1(ê(xj)) = β0+ê(xj)β1 andm2(ê(xj)) = α, so that θc = (β0, β1, α, σ

2)′. We assign
β = (β0, β1)

′ and α a multivariate normal prior distribution. We let (β, α)′ ∼ N(0, I),
and let σ2 follow an IG(aσ, bσ) prior.

Estimation of the Causal Effect

As the causal effect of interest, we define the average treatment effect for the linked
records, which we abbreviate as ATEL.

ATEL =

∑
i∈A

(yi(1)− yi(0))

nAB
=

∑
i∈A

Ti

nAB
, (2.12)

where A = {i : jth record in File B is linked to the ith record in File A, for some j ≤
nB} = {i : zj = i, for some j ≤ nA}, and nAB denotes the cardinality of A. When each
record in File B has a link in File A, the ATEL is defined over and is an average treatment
effect for the full study population in File B. When some records in File B do not have
links in File A, the ATEL is defined over a subset of the study population in File B. If
the cases that have links can be viewed as a random sample of the study population, in
expectation the ATEL equals the average treatment effect for the study population in
File B. When this is not the case, the study population that comprises the ATEL does
not readily map onto populations typically used to define average treatment effects. This
can complicate the task of generalizing the ATEL to the study or broader populations,
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although the latter can be difficult in general with observational studies (Hill, 2011).
When seeking to generalize results beyond the linked records, analysts should examine
the distributions of x in the linked and not linked cases. When substantial differences
exist, it is prudent to be cautious in generalizing the ATEL to the study population
in File B. One special case where the ATEL readily generalizes is when the individual
treatment effect yi(1) − yi(0) = T for all i in File B, i.e., a constant treatment effect.
Then, the ATEL is an average treatment effect for the study population in File B.

As an extension of the Bayesian joint model, analysts could impute plausible values
of (yi(0), yi(1)) for cases in File B that do not have links. This would allow analysts
to compute average treatment effects for the population of records in File B. We leave
comparison of this estimator to the ATEL for future research.

3 Posterior Computation

Incorporating the prior information, the full posterior for the model with the semi-
parametric outcome regression is proportional to

L(θm,θu,θd,θc, z|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y,w,X)× P (z |απ, βπ)

×
F∏

f=1

θa−1
f,m (1− θf,m)b−1 ×

F∏
f=1

θa−1
f,u (1− θf,u)

b−1 × IG(σ2|aσ, bσ)×N(β0|0, 1)

×
s∏

k=1

N((βk, γk)
′|0, I)×

m∏
k=1

[
N(βk+s|0, σ2τ21,k)×N(γk+s|0, σ2τ22,k)

]

×
m∏

k=1

[
Exp(τ21,k|λ2

1)× Exp(τ22,k|λ2
2)
]
×Gamma(λ2

1|r1, δ1)×Gamma(λ2
2|r2, δ2)

×N(μ2|0, 1)× IG(σ2
2 |aσ2 , bσ2). (3.1)

Similarly, the full posterior for the model with the parametric outcome regression is
proportional to

L(θm,θu,θd,θc, z|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y,w,X)× P (z |απ, βπ)

×
F∏

f=1

θa−1
f,m (1− θf,m)b−1 ×

F∏
f=1

θa−1
f,u (1− θf,u)

b−1 × IG(σ2|aσ, bσ)×N ((β, α)′|0, I)

×N(μ2|0, 1)× IG(σ2
2 |aσ2 , bσ2). (3.2)

Summaries of these posterior distributions cannot be computed in closed form. Thus,
posterior computation proceeds through MCMC algorithms. In each iteration, we up-
date the outcome regression parameters using the current set of model-determined links.
We also re-estimate propensity scores based only on those records in File B that have
been linked to File A in that iteration. The full posterior conditionals can be found in
the supplementary material.
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For either model, we let the MCMC chain run until apparent convergence (2000

iterations in our simulations) and discard an appropriate burn-in. Let z
(1)
j , . . . , z

(L)
j be

the L post burn-in MCMC iterates of zj , where j = 1, . . . , nB . For each j, we empirically
estimate P (zj = q|−) using the proportion of post burn-in samples where zj takes the

value q, i.e., P̂ (zj = q|−) = #{l : z(l)j = q}/L, for q ∈ Jj = {1, . . . , nA, nA+j}. The most

likely link for record j in File B is the record q satisfying 1 ≤ q∗ = argmaxq∈Jj P̂ (zj =
q|−) ≤ nA. We denote this record as ẑj = q. When q∗ = nA + j, we declare it most
likely that record j does not have a link in File A. The posterior distributions of each
zj characterize the uncertainties associated with the links.

To draw posterior inferences on the ATEL, define ymiss,i = (1− wi)yi(1) + wiyi(0)
as the counterfactual outcome for the ith record in File A, where i = 1, . . . , nA. At the

l-th post burn-in iteration, we impute the counterfactual outcomes y
(l)
miss,i for all linked

individuals, i.e., all i ∈ A(l) = {i : z
(l)
j = i, for some j ≤ nA}, from their posterior

predictive distributions,

p(ymiss,i|y1, . . . , ynA
,xj , wi, zj = i) =∫
f1(ymiss,i|wi = 1− wj ,xj ,θc)p(θc|y1, . . . , ynB

)dθc. (3.3)

In (3.3), we sample y
(l)
miss,i using a treatment indicator that is opposite of what is

observed for its linked record, i.e., we set wi = (1−wj). We obtain the l-th post burn-in

iterate for the ATEL using (2.12) with (yi, y
(l)
miss,i) for all i ∈ A(l).

In the simulations in Section 4 and analyses in Section 5, we choose the values
of the hyperparameters as aσ = 1, bσ = 1, απ = 1, βπ = 1, aσ2 = 1, bσ2 = 1,
r1 = r2 = δ1 = δ2 = 1. Moderate perturbations of the hyperparameter values lead to
practically indistinguishable results.

4 Simulation Studies

We assess the performance of the Bayesian joint model using simulation studies. We
consider scenarios in which we vary (a) the proportion of records in common between
the two files and (b) the data generation model for the outcomes. Within these, we
consider scenarios with the correctly specified and a mis-specified outcome regression
model. Finally, we present results from a simulation with missing outcome values.

4.1 Simulated Data Generation

We work with the RLdata10000 data from the R package, RecordLinkage (Sariyar
and Borg, 2010). These data comprise an artificial population of 10000 records with
first names, last names, birth years and birth dates, which we use as linking variables.
Among these records, there are 1000 individuals whose values of these variables have
been duplicated and then randomly perturbed, introducing errors into these potential
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linking variables; see Sariyar and Borg (2010) for details. The RLdata10000 dataset is
widely used as benchmark data for record linkage methods (Binette and Steorts, 2020).

The RLdata10000 data do not include covariates, treatments, or outcomes. Thus,
we generate values of these for each of the 9000 unique individuals in the RLdata10000
file. For each individual j, we generate p = 2 covariates, x1,j and x2,j , sampled i.i.d.
from standard normal distributions. We generate each individual’s binary treatment
assignment wj from a Bernoulli distribution with probability given by

e(xj) = P (wj = 1|xj) =
eα0+

∑p
l=1 αlxl,j

(1 + eα0+
∑p

l=1 αlxl,j )
, (4.1)

where (α0, α1, α2) = (1, 1.5,−1). We generate each individual’s outcome yj from

yj = m0
1(xj) +m0

2(xj)wj + εj , εj ∼ N(0, 1), (4.2)

where the superscript 0 indicates the true data generating mechanism. We examine
results for two choices of (m0

1,m
0
2). The first uses linear functions in e(xj): m

0
1(xj) =

1+2e(xj) and m0
2(xj) = 4. We call this Scheme L. The second uses nonlinear functions

in e(xj): m
0
1(xj) = 0.58 − 1.5 e(xj) and m0

2(xj) = exp(−0.8 + 2.6 e(xj)). We call this
Scheme N. In both schemes, the true regression function can be viewed as a nonlinear
function of the covariates.

We construct File A and File B by putting subsets of these records into two files. For
any record, File A includes the outcome information, while File B includes the covariate
and treatment information; both files include the imperfect linking variables. For ease
of simulation, we set the sizes of File A and File B to be nA = nB = 1000.

In any simulation, we randomly sample a subset of the 1000 individuals with dupli-
cates. We put these records in File A and their duplicates in File B. The number of these
overlapping individuals is denoted by OAB , which is varied to be 100, 500, or 900. For the
remaining (nA−OAB) records in File A, we randomly choose (nA−OAB) records from
the 8000 individuals without duplicates, discarding their treatments and covariates and
keeping their outcomes and the linking variables. To ensure that the non-overlapping
records of File A and File B correspond to different individuals, we set aside these
(nA −OAB) records from the 8000 records. To add the remaining (nB −OAB) records
to File B, we randomly choose (nB−OAB) records from the remaining (8000−nA+OAB)
records, discarding their outcomes and keeping the treatments, covariates, and linking
variables. This method of selection results in the same distributions of all variables for
linked and not linked records. This matches an implied assumption of the model and
is a condition for the validity of typical estimation tasks with linked data (Christen,
2012).

For comparisons, we consider the performance of two alternatives. The first is a two-
stage model in which we fit the bipartite Bayesian record linkage method as described
in Section 2.2, without using the covariates, treatments, or outcomes. For each of the
L post burn-in MCMC samples of z, we estimate the outcome model using a Bayesian
regression. Using this model, we take a sample from the posterior predictive distribution
of the missing potential outcomes. Thus, we have L draws of each missing potential
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outcome, which we use for inferences about the ATEL. Comparisons with this approach
reveal if the sharing of information between the record linkage and outcome models
offers any inferential advantages. We also consider using the known links, that is, we
make causal inferences with the true links. Although this approach is not feasible in
practice, as one does not know the true links in genuine scenarios, we consider it a
benchmark for the best we can do in these simulation scenarios.

We compare the performances of the joint model and two-stage model in terms
of record linkage as well as causal inference. For the former, we examine the positive
predictive value (PPV) and the negative predictive value (NPV), defined as follows.
After running the record linkage procedure on the two files, e.g., as we do for each
simulation replication, let ẑ be the posterior mode of z. Let A1,j = {ẑj = zj , zj ≤ nA}
and A2,j = {ẑj = zj , zj = nA + j}. Let I(Ak,j) be the indicator function corresponding
to set Ak,j , where k = 1, 2 and j = 1, . . . , nB . The PPV is the proportion of links that
are actual matches, that is,

∑nB

j=1 I(A1,j)/
∑nB

j=1 I(zj ≤ nA). The NPV is the proportion

of non-links that are actual non-matches; that is,
∑nB

j=1 I(A2,j)/
∑nB

j=1 I(zj = nA + j).
A perfect record linkage procedure would result in PPV = NPV = 1.

To assess the quality of causal inference for all three methods in any simulation
replication, we use the mean squared error (MSE) of the L post burn-in causal effects,

i.e., MSE =
∑L

l=1(ATEL
(l) − ATEL0)

2/L, where ATEL0 is the true causal effect and

ATEL(l) is the lth post burn-in estimate of ATEL.

4.2 Results

We begin with results with no missing outcomes and with correct outcome model spec-
ifications. That is, we specify parametric or semi-parametric outcome regressions that
match the choices of m1(·) and m2(·) in the data generation models in Section 4.1.
We estimate the joint model and the two-stage model using four linking variables: first
name, last name, birth date and birth year. We treat birth dates and years as categor-
ical variables, setting each γf,ij = 1 when they match across files and each γf,ij = 0
otherwise. We compute LS metrics for first and last names, and for each set γf,ij = 1
when the LS metrics are at least 0.95 and γf,ij = 0 otherwise. We note that, in these
and all other simulation studies, the effective sample sizes for all regression parameters
are greater than 400, among the L = 500 post burn-in samples. Convergence happens
quickly for both models, producing practically uncorrelated post burn-in samples.

Table 1 summarizes the average PPVs and NPVs for the joint model and two-
stage model over 100 independent replications—enough to generate sufficiently small
Monte Carlo errors—when using the correct outcome model specifications. For both
data generation schemes, the PPVs and the NPVs of the joint model decrease as the
percentage of overlap between File A and File B decrease. The two-stage model follows
a similar pattern. Comparing the two models, we see that the joint model tends to have
a higher PPV than the two-stage model. The improved performance of the joint model
becomes increasingly apparent as the amount of overlap decreases. The joint model also
tends to have a higher NPV than the two-stage model, although the differences are
negligible in the scenario with 10% overlap under Scheme N.
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True Percentage PPV NPV PPV NPV
Model of Overlap (Joint) (Joint) (Two-Stage) (Two-Stage)

90 0.99 0.98 0.97 0.94
(0.001) (0.001) (0.002) (0.002)

Scheme L 50 0.99 0.97 0.94 0.91
(0.003) (0.002) (0.003) (0.003)

10 0.92 0.93 0.85 0.90
(0.003) (0.003) (0.003) (0.003)

90 0.99 0.96 0.97 0.94
(0.001) (0.001) (0.001) (0.001)

Scheme N 50 0.97 0.96 0.94 0.91
(0.002) (0.001) (0.002) (0.002)

10 0.96 0.91 0.86 0.91
(0.002) (0.002) (0.002) (0.003)

Table 1: Positive predictive values (PPV) and negative predictive values (NPV) for
the joint model and the two-stage model for different overlap levels when using correct
outcome model specifications. The known link model uses the true links and hence is
not included. Monte Carlo standard errors are in parentheses.

The improvements in the linkages when using the joint model have benefits for
the estimation of the causal effect. As evident in Table 2, the joint model performs
significantly better on MSE than the two-stage model. Because the two-stage method
makes fewer correct linkages than the joint model, the posterior distributions of its
parameter estimates tend to be centered away from the true values, which results in
less accurate imputations of the missing potential outcomes. Additionally, the variability
of the estimated mean regression function tends to be larger for the two-stage method
than the joint method. Among these two reasons, the bias tends to represent a larger
portion of the MSE. For example, under the two-stage model under scheme L and with
10% overlap, the squared bias of the posterior mean is around 10.9, whereas the variance
is around 0.7. The corresponding squared bias and variance for the joint model are 1.53
and 0.19. We also observe that the performance gap in MSE becomes more substantial
as the percentage of overlap decreases, especially under Scheme L. Notably, the results
from the joint model are similar to those from the gold-standard Known Link model in
the 50% and 90% overlap scenarios.

We next examine performance when the outcome model does not exactly match
the data generating model. In particular, we fit an outcome regression that is linear
in the propensity score even though the outcomes are generated using Scheme N; and,
we fit an outcome regression that uses the penalized splines even though the outcomes
are generated using Scheme L. Here, we only consider the scenario with 90% overlap,
which gives both methods the best chance to perform well. As evident in Table 3,
not surprisingly performances of both models deteriorate substantially compared to
the results in Table 1 and Table 2. We are imputing potential outcomes from mis-
specified models, after all. When fitting the semi-parametric model to data generated
under Scheme L, we observe higher PPV and NPV, as well as a lower MSE, for the
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True Percentage True Causal Joint Two-Stage Known Link
Model of Overlap Effect (ATEL0) Model Model Model

90 10.01 0.02 0.12 0.01
(0.001) (0.002) (0.001)

Scheme L 50 9.98 0.11 7.41 0.09
(0.001) (0.254) (0.001)

10 10.02 1.74 11.62 0.68
(0.042) (0.271) (0.024)

90 3.12 0.01 0.03 0.01
(0.001) (0.001) (0.001)

Scheme N 50 3.09 0.02 0.56 0.02
(0.001) (0.032) (0.001)

10 3.11 0.46 1.58 0.16
(0.031) (0.059) (0.002)

Table 2: MSE of estimating the true causal effect (ATEL0) for the joint model, the two-
stage model, and using the known links for different overlap levels when using correct
outcome model specifications. Monte Carlo standard errors are in parentheses. The true
causal effect is averaged over 100 replications.

True Fitted PPV NPV MSE
Model Model Joint Two-Stage Joint Two-Stage Joint Two-Stage

Scheme L Splines 0.99 0.97 0.96 0.94 0.83 1.23
(0.004) (0.003) (0.003) (0.003) (0.031) (0.048)

Scheme N Linear 0.98 0.97 0.95 0.94 0.56 0.61
(0.003) (0.003) (0.002) (0.003) (0.015) (0.013)

Table 3: PPV, NPV, and MSE for the joint model and the two-stage models under
model mis-specification. Monte Carlo standard errors for PPV, NPV and MSE values
are presented in parentheses. Results based on 90% overlap of records between File A
and File B. The true causal effects averaged over 100 replications for Scheme L and
Scheme N for 90% overlap are given in Table 2.

joint model compared to the two-stage model. This is also the case when fitting the
parametric model to data generated under Scheme N; however, in this scenario the
differences are practically modest. Taken together, these results suggest that, even with
some model mis-specification, it may be advantageous to use the joint model over the
two-stage model.

Finally, we examine the performance of the joint model and two-stage model in the
presence of missing outcomes in File A. We blank either 5% or 10% of the values of
yi in File A using a missing completely at random mechanism. We examine the cases
of correct model specifications with 90% overlap of records between File A and File B.
To handle the missing values in the joint model, we sample the missing observations
from their posterior predictive distributions in each MCMC iteration. For the two-stage
model, based on the posterior modes of z, we impute the missing values from their
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True Missing PPV NPV MSE
Model % Joint Two-Stage Joint Two-Stage Joint Two-Stage

Scheme L 5% 0.99 0.97 0.97 0.94 0.11 0.16
(0.001) (0.002) (0.001) (0.002) (0.003) (0.003)

Scheme L 10% 0.98 0.97 0.96 0.94 0.16 0.19
(0.001) (0.002) (0.002) (0.002) (0.003) (0.004)

Scheme N 5% 0.99 0.97 0.97 0.95 0.02 0.05
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Scheme N 10% 0.99 0.97 0.95 0.94 0.05 0.07
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Table 4: PPV, NPV, and MSE for the joint and the two-stage models with 5% and
10% missing outcomes in File A. Results based on 90% overlap of records between File
A and File B. The true causal effects averaged over 100 replications for Scheme L and
Scheme N for 90% overlap are given in Table 2.

posterior predictive distributions after fitting the outcome model on the linked dataset.

Table 4 summarizes results over 100 independent simulation runs. The performance
of the joint model worsens as the percentage of missing data increases, although not by
much in these scenarios.

A similar trend is observed for the two-stage model. We continue to see advantages
of the joint model over the two-stage model.

In the supplementary material, we describe results from additional simulation sce-
narios. In particular, we find that the relative performances of the joint model and
two-stage model remain qualitatively unchanged when using correlated (rather than in-
dependent) covariates (Supplement A). We lower the signal to noise ratio by increasing
the regression variance (Supplement B). Not surprisingly, the performance gap between
the joint model and the two-stage model closes as the variance increases. We study
the performance of the two models when a subset of the predictors are also used as
linking variables (Supplement C). The joint model continues to offer improved per-
formance over the two-stage model. Finally, we present a simulation study when the
true regression function is not entirely a function of e(xj) and the fitted spline model
also adjusts for covariates along with the propensity score (Supplement D). Using the
covariate adjustments, the joint model offers lower MSEs than the two-stage model.

We next turn to demonstrating the joint model with data from an observational
study, which concerns the causal effect of possession of debit cards on household con-
sumption. As we describe, we have true links in these data. Thus, the analysis serves
primarily to illustrate the methodology.

5 Causal Study of Debit Cards

As context, we begin with background on the motivation for the causal question of
interest. The past few decades have seen a steadily increasing global trend in the use of
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non cash payment instruments like credit, debit and prepaid cards. Thaler (1985) and
Thaler (1999) argue that the form of payment instruments can have a significant impact
on consumer decisions via mental accounting, a set of cognitive operations used by
individuals and households to keep track of financial activities. Indeed, there is evidence
that consumers who have cards would spend more than ones who do not (Cole, 1998). A
comprehensive causal study carried out by Mercatanti et al. (2014) in this regard focuses
on the effect of debit cards on spending. Mercatanti et al. (2014) argue that debit cards,
unlike credit cards, do not allow consumers to incorporate additional long-term sources
of funds in their spending decisions, thus eliminating any confounding intertemporal
reallocations of wealth from the psychological effects on spending (Soman, 2001), and
hence are more appropriate to look at for this kind of a causal study.

5.1 Data Description and Background

We use data from the Italy Survey on Household Income and Wealth (SHIW). The
SHIW is a nationally representative survey, run by the Bank of Italy once in every two
years since 1965, with the only exception being that the 1997 survey was delayed to
1998. The purpose of this survey is to collect information on several aspects of Italian
households’ economic and financial behavior. Since the data contain information related
to household characteristics, spending and payment instruments, the SHIW can provide
a useful opportunity to evaluate the causal effect of debit card possession on spending
in Italian households.

We link two files comprising data collected during the years 1995 and 1998. A number
of the same households participated in both years. In particular, our target population
is the set of households having at least one current bank account but no debit cards
before 1995. The treatment w = 1 if the household (all members combined) possesses
one and only one debit card at 1998, and w = 0 if the household does not possess any
debit cards at 1998. Households with more than one debit card are excluded from our
sample. Ideally, we would perform the analysis with units being individuals that possess
debit cards, because debit cards are typically issued to individuals. However, the SHIW
survey only has this information at the household level. Our strategy to limit the sample
of treated units to households possessing only one debit card ensures that a possible
effect on household spending will be due to a certain individual possessing this card.
Though we do not have exact information on the ownership of the card, we make the
(reasonable) assumption that the head of the household has possession of the sole debit
card.

The outcome on which we evaluate the treatment effect is the monthly average
spending of the household on all consumer goods, measured in the latter survey (1998).
For data quality control, we delete 15 observations which have either negative values of
the outcome (monthly spending) or unusually high ratios (greater than 5 and going up
to 900) of monthly spending to monthly income. Upon implementing such data quality
control measures, the data file corresponding to 1995 contains 589 observations with
information on the treatment (debit card possession) and covariates, while the data
file corresponding to 1998 (3919 observations) contains information on the outcome
(monthly average household spending).
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Both files contain a common set of imperfect linking variables, including the geo-
graphical area of residence of the household, the number of inhabitants in the town of
the household, the number of members in the household, and the gender, birth year,
marital status, region of birth and highest educational qualification of the head of the
household. Fortunately, we also have a unique ID that we can use to perfectly link
households across years. We use this ID variable to assess how well our model has linked
observations in the two files, based on the other imperfect linking variables noted above.
Using the unique matching ID, we observe that the file contains 191 observations in the
treatment group (who possess a debit card) and 398 observations in the control group.
An initial check on the spending distribution for the treatment and control groups (see
Figure 1(a)) hints at a positive effect of acquiring a debit card on household spending.

The covariates (possible confounders) we consider in this study are all measured in
the initial survey (1995), and consist of the monthly average spending of the household
on consumer goods in the initial survey year (lagged outcome), the net wealth of the
household, the household net disposable income, the monthly average cash inventory
held by the household, the number of members in the household, the marital status
of the head of the household, the average interest rate and the number of banks in
the municipality where the household is located. The choice of these confounders ap-
pears to satisfy the strong ignorability condition, as we discuss in the online supplement
(Supplement F). The lagged outcome is generally indicated in the economic literature
as a fundamental confounder (Angrist and Pischke, 2009; Frölich and Sperlich, 2019).
The cash inventory held by the household was introduced in the specific context by
Mercatanti et al. (2014). The net wealth and the net disposable income are impor-
tant indicators of the household economic condition. The last two covariates have been
suggested by Attanasio et al. (2002), who have shown in non-causal contexts that the
interest rate and the number of banks in the municipality where the household lives had
a significant contribution to the probability of acquiring debit card in Italy. Moreover,
the number of banks is a good indicator of the size of the municipality. We note that
the number of members in the household and the marital status of the household head
are used both as covariates and linking variables.

5.2 Results

We implement the joint model with the semi-parametric outcome regression specification
discussed in Section 2.3. We also include the two-stage model and the results using the
known-links for comparisons. We use the same prior hyperparameter values as in the
simulation studies; moderate perturbation of them leads to practically indistinguishable
results. For the outcome models, we re-estimate the propensity scores using the linked
records at each MCMC iteration. Results based on outcome models with propensity
scores computed from all records in the 1995 data are presented in Supplement I; they
are essentially identical to what we present here. We let the MCMC chains run for
2000 iterations and discard the first 1500 as burn-in, and draw inferences on both
the ATEL and record linkage based on the post burn-in iterates. The effective sample
sizes averaged over all parameters are 411 and 428, for the 500 post burn-in iterates
corresponding to the joint and two-stage models, respectively. The post burn-in iterates
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Figure 1: Figure 1(a) shows the average per month spending distribution of the treat-
ment and control groups. The vertical lines indicate the means of the two distributions.
Figure 1(b) shows the distribution of the ATEL for the joint, two-stage and the known-
link models. The numbers are in per thousand Italian Liras.
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Fitted Model PPV NPV ATEL
2.5% 50% 97.5%

Known-Link – – 125.49 230.99 329.66
Joint 0.874 0.978 101.57 248.84 393.44
Two-Stage 0.841 0.885 82.08 188.99 297.16

Table 5: PPV and NPV for linking the 1995 and 1998 files in the SHIW causal study.
Also included are the 2.5%, 50% and 97.5% quantiles of the posterior distribution of
the ATEL (in thousand Italian Liras) for all methods.

are reasonably uncorrelated for both models. Additionally, we present trace-plots for
a few representative parameters in Supplement G that show rapid convergence of the
MCMC chains for both models. Finally, as shown in Supplement H, the covariate means
for linked and non-linked records in the 1995 data, as determined by the joint model, are
reasonably similar. This offers some support to interpreting the ATEL as approximately
the same as a treatment effect for the study population.

Table 5 presents the PPV and NPV values, along with the posterior median and
95% credible intervals of the estimated ATEL (in thousand Italian Liras) for all models.
Consistent with the simulation results, the joint model offers a noticeably better PPV
and NPV than the two-stage model. Using the results from the known links as a bench-
mark, we find that the posterior inferences for the joint model seem more plausible than
those from the two-stage model. First, the posterior medians for the joint model and the
known link model are more similar to one another than are the posterior medians for the
known-link model and two-stage model. Second, the 95% credible interval for the joint
model is wider than the interval for the known-links model, which is sensible in that
it reflects additional uncertainty from imperfect linkages. On the other hand, the 95%
credible interval from the two-stage model actually is practically the same length as the
interval for the known-links model, effectively portraying no propagation of uncertainty
from imprecise linkages.

Figure 1(b) displays the posterior distributions of the ATEL. The results suggest
that, on average, the effect of possession of a single debit card for a household leads
to more monthly consumption than households that do not possess any debit card
during the study period. Our analysis largely eliminates any potential confounding
effect of intertemporal reallocation of wealth, since debit cards do not allow for long-
term fund sources (Soman and Cheema, 2002). Hence, the significant estimated effects of
debit card possession on spending may be attributed to psychological reasons (increased
perceived amount of money) (Soman, 2001) and easier accessibility to financial resources
(Morewedge et al., 2007). The estimated ATEL is higher than the average treatment
effect on the treated (∼ 200 thousand Italian Liras) in Mercatanti et al. (2014). This
result is interpretable in the light of some recent economic models for the use of debit
cards (e.g., see Kim and Lee, 2010 and references therein), which imply that people
with less economic resources adopt debit cards later than the rest of the population.
This is confirmed by Mercatanti et al. (2014) who show that households with debit cards
generally have members with higher levels of income, wealth and education compared to
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households without debit cards. Therefore, our estimated ATEL values indicate larger
psychological effects on spending for people in disadvantageous social and economic
conditions.

6 Discussion and Future Work

The Bayesian approach to causal inference and record linkage offers interesting future
directions. For example, some data applications have predictors and treatment status
residing in different files. This requires significant modifications of the approach pre-
sented here, as one needs a model for the covariates as well as the outcomes. Another
important future direction is to extend this approach to other flexible outcome mod-
els. In fact, to address outcome model mis-specification, it may be possible to adopt a
doubly robust approach to causal inference (Graham et al., 2016; Saarela et al., 2016).

When one or more files have large numbers of records, Bayesian probabilistic record
linkage techniques, including our joint modeling approaches, are likely to face compu-
tational challenges. These models may require comparing very large numbers of record
pairs in each MCMC iteration (Binette and Steorts, 2020). In such cases, it may be
possible to leverage techniques such as blocking, filtering and indexing (Murray, 2016;
Steorts et al., 2014) to reduce computational burdens. Nonetheless, efficient computa-
tion with joint models is an important topic for research.

We conclude with a connection to the philosophy of causal inference. Performing
causal inference and record linkage simultaneously allows the values of the outcome
variables to influence which records are used in the causal estimator. This is in conflict
with the often followed advice that the design of the observational study should proceed
separately from the analysis (Imbens and Rubin, 2015). As suggested by Wortman and
Reiter (2018), if one seeks the potential gains in accuracy from using the relationships
among the variables, this is the price to pay for working with imperfect linkages.

Supplementary Material

Supplementary Material: Bayesian Causal Inference with Bipartite Record Linkage
(DOI: 10.1214/21-BA1297SUPP; .pdf). Supplement A includes additional simulations
where the predictors are correlated. Supplement B includes additional simulations by
varying the signal to noise ratio. Supplement C includes additional simulations that
incorporate overlap between linking variables and covariates. Supplement D includes
additional simulations with a different data generation scheme, and with the spline
model adjusting for covariates along with the propensity score. Supplement E contains
full conditional distributions for implementing the Gibbs sampler. Supplement F exam-
ines the plausibility of the strong ignorability assumption for the debit card usage data.
Supplement G looks at convergence diagnostics for the MCMC chains for the compet-
ing methods. Supplement H provides additional descriptive analysis for the debit card
study. Supplement I provides additional analysis for the debit card study, where the
propensity score is computed only once from the full 1995 file, rather than in every

https://doi.org/10.1214/21-BA1297SUPP
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iteration. Supplement J re-analyzes the real data using the ratio of spending to income
as the outcome.
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