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Power-Expected-Posterior Priors as Mixtures of
g-Priors in Normal Linear Models

Dimitris Fouskakis∗ and Ioannis Ntzoufras†

Abstract. One of the main approaches used to construct prior distributions for
objective Bayes methods is the concept of random imaginary observations. Under
this setup, the expected-posterior prior (EPP) offers several advantages, among
which it has a nice and simple interpretation and provides an effective way to
establish compatibility of priors among models. In this paper, we study the power-
expected-posterior prior as a generalization to the EPP in objective Bayesian
model selection under normal linear models. We prove that it can be represented
as a mixture of g-prior, like a wide range of prior distributions under normal linear
models, and thus posterior distributions and Bayes factors are derived in closed
form, keeping therefore its computational tractability. Following this result, we can
naturally prove that desiderata (criteria for objective Bayesian model comparison)
hold for the PEP prior. Comparisons with other mixtures of g-prior are made and
results are presented in simulated and real-life datasets.

Keywords: Bayesian model comparison, expected-posterior priors, imaginary
training samples, mixtures of g-priors, objective priors.

1 Introduction

Let y = (y1, . . . , yn)
T denote some available observations. Under the objective Bayesian

perspective, suppose we wish to compare the following two models (or hypotheses):

model M0 : f(y|θ0,M0), θ0 ∈ Θ0,

model M1 : f(y|θ1,M1), θ1 ∈ Θ1, (1)

where θ0 and θ1 are unknown, model specific, parameters. Let further suppose that
M0 is nested in M1. By πN

� (θ�), for � ∈ {0, 1}, we denote the baseline prior of θ�

under model M�. Here, as a baseline prior we consider any prior that will express low
information, for example the reference prior; see Berger et al. (2009). These reference
priors are typically improper, resulting in a Bayes factor when comparing M0 to M1

which typically cannot be determined due to the unknown normalizing constants of
these improper priors.

In order to specify these unknown normalizing constants, Pérez and Berger (2002)
developed priors through utilization of the device of “imaginary training samples”. If
we denote by y∗ the imaginary training sample, of size n∗, they defined the expected-
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posterior prior (EPP) for the parameter vector θ�, of model M�, as

πEPP
� (θ�) =

∫
πN
� (θ�|y∗)m∗(y∗) dy∗, (2)

where πN
� (θ�|y∗) is the posterior of θ� for model M� using the baseline prior πN

� (θ�) and
data y∗ and m∗(y∗) is a reference predictive distribution generating sets of imaginary
data. A usual choice of m∗ is m∗(y∗) = mN

0 (y∗) ≡ f(y∗|M0), i.e. the marginal likeli-
hood, evaluated at y∗, for the simplest model M0 under the baseline prior π

N
0 (θ0). Then

model M0 is called the reference model. EPP offers several advantages, among which
it has a nice interpretation and also provides an effective way to establish compatibil-
ity of priors among models (Consonni and Veronese, 2008). Furthermore this selection
makes the EPP approach essentially equivalent to the arithmetic intrinsic Bayes factor
approach of Berger and Pericchi (1996) since it is straightforward to prove that the EPP
can be written equivalently as

πEPP
� (θ�) = πN

� (θ�)E
M�

Y ∗

[
mN

0 (y∗)

mN
� (y∗)

]
= πN

� (θ�)

∫
mN

0 (y∗)

mN
� (y∗)

f(y∗|θ�,M�)dy
∗.

When information on covariates is also available, under the EPP methodology, imag-
inary design matrices X∗ with n∗ rows should also be introduced. The selection of a
minimal training sample size n∗ has been proposed by Berger and Pericchi (2004), to
make the information content of the prior as small as possible, and this is an appeal-
ing idea. Then X∗ can be extracted from the original design matrix X, by randomly
selecting n∗ from the n rows.

To diminish the effect of training samples, Fouskakis et al. (2015), generalized
the EPP approach, by introducing the power-expected-posterior (PEP) priors, com-
bining ideas from the power-prior approach of Ibrahim and Chen (2000) and the unit-
information-prior approach of Kass and Wasserman (1995). As a first step, the likeli-
hoods involved in the EPP formula are raised to the power 1/δ (δ ≥ 1) and then are
density-normalized; for a discussion on the density-normalization and different versions
of the PEP priors when this normalization leads to no standard forms see Fouskakis
et al. (2018). This power parameter δ could be then set equal to the size of the training
sample n∗, to represent information equal to one data point. In Fouskakis et al. (2015)
the authors further set n∗ = n; this choice gives rise to significant advantages, for exam-
ple when covariates are available it results in the automatic choice X∗ = X and therefore
the selection of a training sample and its effects on the posterior model comparison is
avoided, while still holding the prior information content at one data point.

Specifically, for the model selection problem (1), the PEP prior is defined as

πPEP
� (θ�|δ) ≡ πPEP

� (θ�) =

∫
πN
� (θ�|y∗, δ)m∗(y∗|δ)dy∗, (3)

with

πN
� (θ�|y∗, δ) ∝ f(y∗|θ�, δ,M�)π

N
� (θ�), (4)
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f(y∗|θ�, δ,M�) =
f(y∗|θ�,M�)

1/δ∫
f(y∗|θ�,M�)1/δdy∗ . (5)

As before we choose

m∗(y∗|δ) = mN
0 (y∗|δ) =

∫
f(y∗|θ0, δ,M0)π

N
0 (θ0)dθ0, (6)

where f(y∗|θ0, δ,M0) is given by (5) for � = 0 (i.e. the null/reference model).

In this work we show, using sufficient statistics (see Fouskakis, 2019 for the equiv-
alent definitions of EPP and PEP prior using sufficient statistics), that the PEP prior
(and therefore also the EPP), in normal linear model comparison, can be expressed as
a mixture of g-priors, centred around null models. This has the advantage that pos-
terior distributions, as well as, marginal likelihoods are available in closed form and
desiderata (criteria for objective Bayesian model comparison), see Bayarri et al. (2012),
hold. We compare the PEP prior with other scale normal mixture priors, we present
prior summaries for model parameters and we derive posterior distributions as well
as marginal likelihoods. Emphasis is given to the Bayesian inference of the shrinkage
parameter which is also involved in Bayesian model averaging estimation. Finally we
present results from a simulation study, as well as from a real-life dataset.

2 PEP Prior as a Mixture of Normal Distribution in
Normal Linear Model Comparison

Let y = (y1, . . . , yn)
T be a random sample. We would like to compare the nested models:

H0 : model M0 : Normal(y|X0β0, σ
2
0), πN

0 (β0, σ0) = c0π
U
0 (β0, σ0) = c0σ

−(1+d0)
0

vs. H1 : model M1 : Normal(y|X1β1, σ
2
1), πN

1 (β1, σ1) = c1π
U
1 (β1, σ1) = c1σ1

−(1+d1)

where c0 and c1 are the unknown normalizing constants of πU
0 (β0, σ0) and πU

1 (β1, σ1)
respectively, X0 is an (n× k0) design matrix under model M0, X1 is an (n× k1) design
matrix under model M1, k0 < k1 < n and M0 is nested in M1. Furthermore let β1 =(
βT
0 ,β

T
e1

)T

, X1 = [X0|Xe1 ], P0 = X0

(
X0

TX0

)−1
X0

T and P1 = X1

(
X1

TX1

)−1
X1

T .

All matrices are assumed to be of full rank. Usual choices for d0 and d1 are d0 = d1 = 0
(resulting to the reference prior) or d0 = k0 and d1 = k1 (resulting to the dependence
Jeffreys prior).

In the above comparison we assume that model M0 is nested in model M1, so that

k0 < k1 and thus we henceforth assume that β1 =
(
βT
0 ,β

T
e1

)T

, so that β0 is a parameter

“common” between the two models, where βe1 is model specific. The use of a “common”
parameter β0 in nested model comparison is often made to justify the employment of the
same, potentially improper, prior on β0 across models. This usage is becoming standard,
see for example Bayarri et al. (2012) and Consonni et al. (2018). It can be justified if,
without essential loss of generality, we assume that the model has been parametrized
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in an orthogonal fashion, so that XT
0 X1 = 0. In the special case where M0 is the “null”

model, with only the intercept, this assumption can be justified, if we assume, again
without loss of generality, that the columns of the design matrix of the full model have
been centred on their corresponding means, which makes the covariates orthogonal to
the intercept, and gives the intercept an interpretation that is “common” to all models.
Regarding the error variance, although it is also standard to be treated as a “common”
parameter across models, in this paper we follow the “intrinsic prior methodology” (see
for example Moreno and Girón, 2008) and we treat it as a model specific parameter. As
we will see later in this Section, this causes no issues about the indeterminacy of Bayes
factors due to the “intrinsification”.

In variable selection problems we are interested in posterior model probabilities,
which, nevertheless, are functions of posterior odds (and the corresponding Bayes fac-
tors) of pairwise model comparisons. Under the usual case where the reference model
M0 is the null (with only the intercept), we could perform all pairwise comparisons
between any model M1 and the null model M0, in order to derive the corresponding
posterior model probabilities under the null based approach; see for example in Liang
et al. (2008). Moreover, the posterior odds of any two non-nested models is simply the
ratio of the null based posterior odds.

In the following theorem, we prove (see Section 1 of the Appendix (Fouskakis and
Ntzoufras, 2021)) that the PEP prior, for comparing models M0 and M1, can be rep-
resented as a mixture of g-prior, in a similar way as a variety of prior distributions
under normal linear models (see Section 3), and thus posterior distributions and Bayes
factors are readily available in closed formed expressions (see Sections 4 and 5), keeping,
therefore, its computational tractability.

Theorem 1. The PEP priors (or EPPs for δ = 1) for comparing models M0 and M1

are {
πPEP
0 (β0, σ0) = πN

0 (β0, σ0), π
PEP
1 (β1, σ1)

}
,

with

πPEP
1 (β1, σ1) = πPEP

1 (β0, σ1)

∫ 1

0

πPEP
1

(
βe1 , t|σ1,β0

)
dt

∝ σ
−(d0+1)
1

∫ 1

0

fN

(
βe1 ;0,

δσ2
1

t Ve1

)
fB

(
t; n∗+d0−k1

2 , n∗+d1−d0−k1

2

)
dt.

From Theorem 1 we see that, conditionally on (β0, σ1), the PEP prior is a beta
mixture of a multivariate normal prior and overall can be written using the following
hierarchical structure

βe1 |t, σ1,β0 ∼ Nk1−k0

(
0,

δσ2
1

t Ve1

)
, t|σ1 ∼ Beta

(
n∗+d0−k1

2 , n∗+d1−d0−k1

2

)
, (7)

(β0, σ1) ∼ πPEP
1 (β0, σ1) ∝ σ

−(d0+1)
1 .

The EPP is directly available for δ = 1.
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In the above expression, πPEP
1

(
βe1 , t|σ1,β0

)
= πPEP

1

(
βe1 |t, σ1,β0

)
πPEP
1 (t) is

proper and πPEP
1 (β0, σ1) ∝ σ

−(d0+1)
1 ; i.e. the reference prior for the baseline model M0.

Therefore there are no issues about the indeterminacy of the Bayes factor, when com-
paring model M0 to M1, since after the “intrinsification” the unknown constants of the
imposed priors will be the same for the two competing models; see Section 2 of the
Appendix for a detailed explanation.

Under the usual case where the reference model M0 is the null model (with only the
intercept), we have that the prior variance-covariance matrix of the model coefficients

is given by Ve1 = (Z∗T

e1 Z
∗
e1)

−1, where Z∗
e1 is the matrix of the centred (at the mean)

imaginary covariates. In practice, when using the PEP prior with centred covariates and
imaginary design matrices equal to actual ones, as in Fouskakis et al. (2015), then the
induced approach results in a mixture of g-priors (Liang et al., 2008) with a different
hyper-prior on g = δ/t.

π1(β1, σ1) ∝ σ
−(d0+1)
1

∫ 1
0
fN

(
βe1

; 0, a
σ2
1
t Ve1

)
fB (t; b1, b2) dt

V (βe1
|β0, σ1) = aE[t−1]Ve1σ

2
1

Approx. V (βe1
|β0, σ1)

a b1 b2 E[t−1] (for large n∗)
EPP PEP EPP/PEP EPP/PEP EPP/PEP EPP PEP

For any n∗ 1 δ
n∗+d0−k1

2
n∗+d1−d0−k1

2
2n∗+d1−2k1−2

n∗+d0−k1−2
2Ve1σ

2
1 2δVe1σ

2
1

Minimal n∗

(n∗ = k1 + 1) 1 δ
d0+1

2
d1−d0+1

2
d1

d0−1
d1

d0−1Ve1σ
2
1 δ

d1
d0−1Ve1σ

2
1

Table 1: EPPs and PEP priors, under the alternative hypothesis, for the normal linear
case, for any n∗ and for n∗ = k1 + 1 (minimal training sample size).

Table 1 summarizes the EPP and PEP priors, under the alternative hypothesis,
for minimal training sample size (n∗ = k1 + 1) as well as for any training sample size
n∗ ∈ [k1 + 1, n]. Concerning the prior distribution of βe1 |β0, σ1 (after integrating out
the hyper-parameter t), for large n∗, its corresponding variance will be equivalent to the
variance of a g-prior with g = 2 and g = 2δ for the EPP and PEP prior, respectively.
Clearly, the PEP prior is more dispersed accounting for information equivalent to n∗/2δ
additional data points, while EPP will account for n∗/2 additional data-points. When
we consider the EPP, with the minimal training sample, that is n∗ = k1 + 1, then
V (βe1 |β0, σ1) is similar to the variance of a g-prior with g = d1/(d0 − 1). This means
that it can be defined only for choices of d0 > 1. On the other hand, V (βe1 |β0, σ1)
can be defined without any problem when we consider any training sample of size
n∗ > k1 − d0 + 2. Finally, under the PEP prior, the variance of βe1 |β0, σ1 is further
multiplied by δ making larger the spread of the prior and overall the imposed prior
less informative. For this reason, the corresponding posterior summaries will be more
robust to the specific choices of d1 and d0, especially when δ = n∗ = n and n is
large.
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3 A General Framework for Scale Normal Mixtures
Priors

Generally, a wide range of prior distributions for variable selection in regression can be
written with the following form of a normal scale mixture distribution:

π1(βe1 ,β0, σ1) = σ
−(d0+1)
1

∫ +∞

0

fNk1−k0

(
βe1 ; 0, gσ

2
1Σe1

)
π1(g)dg, (8)

where fNd
(y; μ, Σ) denotes the density of the d-dimensional Normal distribution with

mean μ and covariance matrix Σ, evaluated at y and π1(g) denotes the prior distribution
of the parameter g under model M1. Under the PEP prior, the hyper-prior π1(g) for g
is given by

g ∼ SGBP
(
a = n∗+d0−k1

2 , b = n∗+d1−d0−k1

2 , p = 1, q = δ, s = δ
)
,

where SGBP stands for the shifted generalized beta prime (SGBP) distribution with
density

f(g; a, b, p, q, s) =
p
(

g−s
q

)bp−1 (
1 +

(
g−s
q

)p)−a−b

qB(a, b)
, g ≥ s. (9)

The beta prime distribution is a special case of (9) with p = q = 1 and s = 0. Further-
more, the generalized beta prime distribution is a special case of (9) with s = 0.

The prior expectation of g is given by

E(g) = q
Γ
(
a− 1

p

)
Γ
(
b+ 1

p

)
Γ(a)Γ(b)

+ s, if ap > 1.

Under the PEP prior, since p = 1 and q = s = δ, the density of the hyper-prior for
g simplifies to

f(g; a, b, δ) ∝ (g − δ)b−1g−a−b, g ≥ δ, (10)

where a = n∗+d0−k1

2 and b = n∗+d1−d0−k1

2 and the expectation is given by

E(g) = δ × a+ b− 1

a− 1
= δ × 2n∗ + d1 − 2k1 − 2

n∗ + d0 − k1 − 2
.

From the above expression, it is evident that the PEP prior implements an indirect
averaging approach across all values of g ≥ δ. For the recommended setup; see Fouskakis
et al. (2015), of δ = n∗ = n, this might look quite dramatic at the first sight. But in
practice, it is reasonable, under lack of prior information, to consider at most a value of g
that will correspond to one unit of information. Moreover, in such cases, the shrinkage
w given by g

g+1 = δ
δ+t (see Section 5) should approach the value of one, such that

most of the posterior information comes from the data. In the case where the likelihood
mass supports values of g lower than δ, this means that the data do not have enough
information in order to estimate sufficiently the model coefficients. An unrestricted
prior for g leads to greater shrinkage towards the prior mean of model coefficients β.
The truncation avoids over-shrinkage and the posterior of g will be concentrated at the
value of δ ensuring a minimum value of shrinkage towards the prior.
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Parameters of the SGBP distribution
Prior hyper-prior a b p q s
PEP

(General) SGBP n∗−k1
2

n∗−k1
2

1 δ δ

(Recommended) SGBP n−k1
2

n−k1
2

1 n n
EPP

(General) SGBP n∗−k1
2

n∗−k1
2

1 1 1
(Recommended) SGBP 1/2 1/2 1 1 1

Intrinsic SGBP 1/2 1/2 1 n
k1+1

n
k1+1

Robust

(General) SGBP ar 1 1 br+n

ρ−1
1,r

br+n

ρ−1
1,r

− br

(Recommended) SGBP 1/2 1 1 n+1
k0+k1

n+1
k0+k1

− 1

MG∗

(General) Beta′ amg + 1 bmg + 1 1 1 0

(Recommended) Beta′ 1/4
n−qmg−5

2
+ 3

4
1 1 0

Hyper-g
(General) Beta′ ah

2
− 1 1 1 1 0

(Recommended) Beta′ 1/2 1 1 1 0
Hyper-g/n

(General) GBP ah
2

− 1 1 1 n 0
(Recommended) GBP 1/2 1 1 n 0

Benchmark∗∗

(General) Beta′ cb cb max(n, p2) 1 1 0
(Recommended) Beta′ 0.01 0.01 max(n, p2) 1 1 0
∗ Maruyama and George (2011) prior but only for the case where qmg < n − 1; where qmg is the
dimension of an orthogonal matrix which diagonalizes XTX.
∗∗Under the Benchmark prior, p = k − 1 denotes the total number of regressors.
SGBP: Shifted generalized beta prime distribution.
GBP: Generalized beta prime distribution.
Beta′: Beta prime distribution.

Table 2: Mixing distributions of g under different prior setups (g ≥ s).

3.1 Comparisons

Most of the known priors used for variable selection assume that Σ−1
e1 = X

T

e1(In−P0)Xe1

in (8). This is also the case for the PEP prior if we consider X∗
e1 = Xe1 as in Fouskakis

et al. (2015). Similarly, the benchmark prior (Ley and Steel, 2012), the robust prior
(Bayarri et al., 2012), the hyper-g and hyper-g/n priors (Liang et al., 2008) can be
written as in (8) with the hyper-prior for g to be as in (9); details are provided in
Table 2, under the usual choice of d1 = d0 = 0 for simplicity reasons. Additionally,
the EPP, as shown above (and also in Womack et al., 2014) can be written as in (8),
but using imaginary design matrices in Σ−1

e1 , with number of rows usually equal to the
minimal training sample (n∗ = k1 + 1). Also, the intrinsic prior of Casella and Moreno
(2006) can be viewed as an EPP. In their approach, as an approximation, using ideas
from the arithmetic intrinsic Bayes factor approach, they used the original design matrix
in Σ−1

e1 , with all n rows, using an additional multiplicator in the covariance matrix of
the normal component in (8) given by n

k1+1 ; see for example Womack et al. (2014).
Therefore, this intrinsic prior can be viewed as a PEP prior, with (a) X∗

e1 = Xe1 ; (b)
n∗ = k1 + 1 (minimal training sample) and (c) a model dependent power parameter
δ = n

k1+1 ; in the rest of the paper will call this prior intrinsic. Finally the prior by
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Maruyama and George (2011) is also closely related, where in the normal component
in (8) the rotated coordinates are used, while the Zellner and Siow prior (Zellner and
Siow, 1980) is as in (8) with the hyper-prior for g to be an inverted Gamma distribution
with parameters 1/2 and n/2.

3.2 Criteria

Bayarri et al. (2012) developed criteria (desiderata) to be satisfied by objective prior
distributions for Bayesian model choice. Obviously PEP prior satisfies the basic cri-
terion (C1 ). Furthermore Fouskakis and Ntzoufras (2016) proved that the PEP prior
leads to a consistent model selection procedure (criterion C2 ). Fouskakis and Ntzoufras
(2017) showed that the PEP prior satisfies the information consistency criterion (C3 ).
Additionally, as shown here, for d0 = 0, the PEP prior belongs to a more general class
of conditional priors

π1(βe1 ,β0, σ1) ∝ σ
−1−(k1−k0)
1 h1

(βe1

σ1

)
, (11)

where h1(·) is a proper density with support Rk1−k0 . Bayarri et al. (2012) prove that the
group invariance criterion (C7 ) hold if and only if π1(βe1 ,β0, σ1) has the form of (11).
Additionally, if h1(·) is symmetric around zero, which is the case under the PEP prior,
predictive matching criterion (C5 ) also holds. When, finally X∗

e1 = Xe1 , the conditional

scale matrix has the form Σ−1
e1 = X

T

e1(In − P0)Xe1 and then null predictive matching,
dimensional predictive matching and the measurement invariance criterion (C6 ) hold,
according to Bayarri et al. (2012).

3.3 Effective Sample Size

The effective sample size of the prior distribution of a mixture prior of type (8), with
Σe1 = (ZT

e1Ze1)
−1, is given by ESS = n/E(g) or alternatively by the expected ESS =

nE(g−1); see Section 3 of the Appendix for details.

For the PEP prior we have

ESS =
n

δE(t−1)
=

n

δ
× n∗ + d0 − k1 − 2

2n∗ + d1 − 2k1 − 2
.

For the default choices, δ = n, n∗ = n and d1 = d0 = 0

ESS =
n− k1 − 2

2n− 2k1 − 2
≈ 1/2, for large n/k1.

Hence, the PEP prior’s effective sample size will be approximately equal to 1/2 data
point, as n goes to infinity and for fixed k1. This means that the PEP prior is on average
less informative than the unit information prior and this justifies why PEP supports
slightly more parsimonious solutions than other competitive methods (see for example
Section 7). Similar are the results if we consider the expression for the expected effective
sample size.
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Table 3 presents the asymptotic values of the effective sample size, under the PEP
prior (with n∗ = n and d1 = d0 = 0), for various choices of the parameter δ and for
k1 = O(1) or k1 = O(n) (such that r = lim

n,k1→∞
n
k1

> 1).

Asymptotic behavior of ESS, as n → ∞
Prior parameter ESS(r) k1 = O(1) k1 = O(n)

r → ∞ 1 < r < ∞
δ = n N0(r, k1)

1
2

1
2

δ = n− k1
r

r−1
N0(r, k1)

1
2

r
2(r−2)

δ = k1 rN0(r, k1) ∞ r
2

δ = δ0 (fixed) n
δ0

N0(r, k1) ∞ ∞
r = n

k1
and N0(r, k1) =

r−1−2/k1
2(r−1)−2/k1

Table 3: Asymptotic values of the effective sample size (ESS), under the PEP prior,
for various choices of the parameter δ.

4 Posterior Distributions of Model Parameters

In this Section we the present posterior distributions of model parameters, under the
PEP approach. For compatibility with the mixtures of g-prior, we work with the hyper-
parameter g = δ/t.

4.1 Full Conditional Posteriors and Gibbs Sampling

Under the PEP approach, the full conditional posterior distribution of βe1 is a multi-
variate normal distribution of the form

βe1 |g, σ1,β0,y,M1 ∼ Nke1

(
We1 β̃e1 ,We1(X

T
e1Xe1)

−1σ2
1

)
, (12)

where ke1 = k1 − k0 and

β̃e1 = (XT
e1Xe1)

−1XT
e1(y −XT

0 β0) = β̂e1 − (XT
e1Xe1)

−1XT
e1X

T
0 β0,

We1 =
(
wXT

e1Xe1 + (1− w)V−1
e1

)−1 (
wXT

e1Xe1

)
,

w =
g

g + 1
=

δ

δ + t
;

for δ = 1 ⇒ EPP; for δ > 1 ⇒ PEP.

The matrix We1 plays the role of a multivariate shrinkage factor which penalizes each
coefficient locally, while w is a global shrinkage factor which affects uniformly the pos-
terior mean and posterior variance-covariance matrix. For example, if w → 0 all the
conditional posterior information is taken from the prior, while for w → 1 the condi-
tional posterior information will be derived from the data.



1082 PEP Priors as Mixtures of g-Priors

Similarly we can obtain the full conditional posterior distributions of β0, σ
2
1 and g

by

β0|βe1 , σ1, g,y,M1 ∼ Nk0

(
β̂0 − (XT

0 X0)
−1XT

0 X
T
e1βe1 , (X

T
0 X0)

−1σ2
1

)
, (13)

σ2
1 |β0,βe1 , g,y,M1 ∼ IG

(
n+ ke1 + d0

2
,
RSS1 + βT

e1V
−1
e1 βe1

2

)
, (14)

u|β0,βe1 , σ1,y,M1 ∼ CH

(
b, a+

k1 − k0
2

+ 2, − 1

2δσ2
1

βT
e1V

−1
e1 βe1

)
,

g = δ/(1− u),

where CH(p, q, s) is the confluent hypergeometric distribution with density function

fCH(x; p, q, s) ∝ xp−1(1− x)q−1e−sx for 0 ≤ x ≤ 1.

The above conditional distributions can be easily used to implement a full Gibbs sampler
in order to obtain any posterior estimates of interest for any specific model. Similarly,
it can be used to build a Gibbs based variable selection sampler; see for example in
Dellaportas et al. (2002), to obtain estimates of the posterior model weights. We can
further simplify the Gibbs sampler by combining the posterior distributions of β0 and
βe1 given in (12) and (13). Finally, the full conditional posterior distribution of βT

1 =

(βT
0 ,β

T
e1) is given by

β1|σ1, g,y,M1 ∼ Nk1

(
W1β̂1,W1(X

T
1 X1)

−1σ2
1

)
,

W1 =
(
wXT

1 X1 + (1− w)T1

)−1
wXT

1 X1,

T1 =

(
0k0×k0 0k0×ke1

0ke1×k0 V−1
e1

)
,

where 0�1×�2 is a matrix of dimension �1 × �2 with zeros, w = g/(g+1) is the shrinkage

parameter while β̂1 is the MLE for β1 of model M1 given by β̂1 = (XT
1 X1)

−1XT
1 y.

4.2 Marginal Likelihoods

The marginal likelihood conditionally on a value of g is given by the usual marginal
likelihood of the normal inverse gamma prior. Thus

f(y|g,M1) = C1 × (g + 1)
n+d0−k1

2 (1 + g R10)
−n+d0−k0

2 , (15)

with R10 =
1−R2

1

1−R2
0
; where R2

� is the coefficient of determination of model M� (� ∈ {0, 1}),
and C1 being constant for all models (assuming that the covariates of X0 are included
in all models) given by

C1 = 2
d0
2 −1π

k0−n
2 |XT

0 X0|−1/2Γ

(
n+ d0 − k0

2

)
(1−R2

0)
−n+d0−k0

2 ||y − y 1n||−
n+d0−k0

2 .
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The full marginal likelihood f(y|M1) is given by

f(y|M1)

= C1

δB

(
n∗+d0−k1

2 ,
n∗+d1−d0−k1

2

)

× δ1−bδa+b

∫ ∞

δ

(1 + g)
n+d0−k1

2 (g − δ)b−1g−a−b (1 + gR10)
−n+d0−k0

2 dg

= C1

δB

(
n∗+d0−k1

2 ,
n∗+d1−d0−k1

2

) × δ1−bδa+bδ−a(δ + 1)
n+d0−k1

2 [1 + δR10]
−n+d0−k0

2

×
∫ 1

0

ub−1(1− u)
k1−k0

2 +a−1
(
1− u

δ+1

)n+d0−k1
2

(
1− u

1−R2
0

1−R2
0+δ(1−R2

1)

)−n+d0−k0

2
du

= C1 ×
B
(
k1−k0

2 + a, b
)

B (a, b)
× (δ + 1)

n+d0−k1
2 (1 + δR10)

−n+d0−k0
2 × F̃1(0) (16)

with F̃1(0) = F1

(
b, n+d0−k0

2 , −n+d0−k1

2 ,
ke1

2 + a+ b; 1
1+δR10

, 1
δ+1

)
;

where in the above ke1 = k1 − k0, a = n∗+d0−k1

2 , b = n∗+d1−d0−k1

2 (reminder from
10) and F1(a

′, b′1, b
′
2, c

′;x, y) is the hypergeometric function of two variables or Appell
hypergeometric function given by

F1(a
′, b′1, b

′
2, c

′;x, y) =
1

B(a′, c′ − a′)

∫ 1

0

ta
′−1(1− t)c

′−a′−1(1− xt)−b′1(1− yt)−b′2dt.

Note that the marginal likelihood of the reference model M0 is f(y|M0) = C1.

4.3 Marginal Posterior Distribution of g

The marginal posterior distribution of g, under model M1, is given by

π1(g|y) ≡ π(g|y,M1) = C2 × (1 + g)
n+d0−k1

2 (1 + g R10)
−n+d0−k0

2 (g− δ)b−1g−a−b (17)

for g ≥ δ with the normalizing constant C2 given by

C2 =
δa(δ + 1)−

n+d0−k1

2 (1 + δ R10)
n+d0−k0

2

B
(
b,

ke1

2 + a
)
F1

(
b, n+d0−k0

2 ,−n+d0−k1

2 ,
ke1

2 + a+ b; 1
1+δR10

, 1
δ+1

) . (18)

The κ posterior moment of g is given by

E(gκ|y,M1) = δκ
B
(
b,

ke1

2 + a− κ
)

B
(
b,

ke1

2 + a
) F̆1(κ)

F̆1(0)
,

where
F̆1(κ) = F1

(
b, n+d0−k0

2 ,−n+d0−k1

2 ,
ke1

2 + a+ b− κ; 1
1+δR10

, 1
δ+1

)
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for κ ∈ {0, 1, 2, . . . }. Note that F̆1(0) = F̃1(0).

The posterior expectation and variance of g are now given by

E(g|y,M1) = δ
ã+ b

ã

F̆1(1)

F̆1(0)
,

V (g|y,M1) = δ2
ã+ b

ã
× 1

F̆1(0)
×

(
ã+ b− 1

ã− 1
F̆1(2)−

ã+ b

ã

F̆1(1)
2

F̆1(0)

)
,

where ã =
ke1

2 + a− 1.

5 Bayesian Inference of the Shrinkage Parameter

5.1 Prior distribution of w

Under model M1, the imposed hyper-prior (or mixing) distribution for w = δ/(δ+ t) =
g/(g + 1) is induced via the beta hyper-prior for t (see 7) with parameters given in
Table 1. Hence, the resulted prior for w is

w ∼ BTPD
(
a = n∗+d0−k1

2 , b = n∗+d1−d0−k1

2 , θ =
δ

δ + 1
λ = 1, κ = 1

)
,

where BTPD(a, b, θ, λ, κ) is the Beta truncated Pareto distribution (Lourenzutti et al.,
2014) with parameters a, b, θ, λ, κ and density function

f(w; a, b, θ, λ, κ) =
1

B(a, b)

κθκw−κ−1

1−
(
θ
λ

)κ
[
1−

(
θ
w

)κ
1−

(
θ
λ

)κ
]a−1 [

1−
1−

(
θ
w

)κ
1−

(
θ
λ

)κ
]b−1

,

for θ < w < λ. The prior mean and variance of w are now given by

E(w) = 2F1(1, a, a+ b; −1/δ), and

V ar(w) = 2F1(2, a, a+ b; −1/δ)− 2F1(1, a, a+ b; −1/δ)2,

where 2F1(a0, b0, c0; z) is the Gauss hyper-geometric function (Abramowitz and Stegun,
1970) given by

2F1(a0, b0, c0; z) =
1

B(a0, c0 − b0)

∫ 1

0

xb0−1(1− x)c0−b0−1(1− zx)−a0dx.

Equivalently we can show that the complementary shrinkage factor u = 1 − w =
1/(1 + g) follows the truncated Compound Confluent Hypergeometric distribution; i.e.

u ∼ tCCH
(
t = a = n∗+d0−k1

2 , q = b = n∗+d1−d0−k1

2 , s = 0, r = a+ b, s = 0,

v = δ + 1, κ = δ+1
δ

)
,
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with density expressed as

f(u; t, q, r, s, v, κ)=
vt exp(s/v)

B(t, q)Φ1(q, r, t+q, s/v, 1−κ)

ut−1(1− vu)q−1 exp(−su)

[κ+ (1− κ)vu]
r 1{0<u< 1

v },

where Φ1() is the Humbert series (Humbert, 1920). Thus the PEP prior is a type of
a “Confluent Hypergeometric Information Criterion” (CHIC) g-prior introduced by Li
and Clyde (2018). For a comparison with other CHIC g-priors, that have been appeared
in literature, see Li and Clyde (2018, Table 1).

In order to get more insight about the behavior of the prior distribution of w, we
can obtain approximations of the prior mean and variance by using the first terms of a
Taylor expansion given by

E[w(t)] ≈ w(μt) +
1

2

d2w(μt)

dt2
σ2
t and V[w(t)] ≈

[
dw(μt)

dt

]2
σ2
t , (19)

where μt and σ2
t are the prior mean and variance of the hyper-parameter t. By im-

plementing the above approach, we obtain the approximations summarized in Table 4;
for the PEP prior we restrict attention on the choice of δ = n∗. Note that for small
training samples, the dimensions k0 and k1 may influence the imposed prior, making it
sometimes more informative than intended.

Prior Mean of w Prior St. Deviation of w
EPP PEP (δ = n∗) EPP PEP (δ = n∗)

For large n∗ 2n∗−2k1+d1
3n∗−3k1+d1+d0

1− 1
2n∗

2

9n∗1/2
1

2n∗3/2

Minimal n∗ (n∗ = k1 + 1)

Reference (d0 = d1 = 0) 0.704 1 0.158 1/
√
8k1

(for all k1) (for large k1) (for all k1) (for large k1)
Jeffreys (d0 = k0, d1 = k1)

k0 = 1, k1 = 2 0.691 0.86 0.128 0.071

Large k0, fixed k = k1 − k0 1/2 1

√
k + 1

8k20

√
2(k + 1)

k40

Fixed k0, large k = k1 − k0 1 1

√
2(k0 + 1)

k2

√
2(k0 + 1)

k4

Table 4: Approximate prior means and variances of the shrinkage parameter w.

From Table 4 it is evident that when considering the usual EPP setup with the
minimal training sample, then the prior mean of the shrinkage is far away from the
value of one for specific cases (e.g. for the reference prior or for the Jeffreys’ dependence
prior when k0 = 1 and k1 = 2). This is not the case for the PEP prior for which the prior
mean of the shrinkage is close to one even for models of small dimension; for example,
under the reference prior and for k0 = 1 and k1 = 2 we obtain a prior mean of the
shrinkage equal to 0.86 and a prior standard deviation of the shrinkage equal to 0.071.
Generally the global shrinkage parameter w under the PEP prior is close to the value of
one implying that the prior is generally non-informative since most of the information
is taken from the data.
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5.2 Marginal Posterior Distribution of w

Under model M1, the marginal posterior distribution of the shrinkage parameter w can
directly derived by (17) resulting in

π1(w|y) ≡ π(w|y,M1)

= C2 × (1 + δ)b−1

× (1− w)
ke1

2 +a−1w−a−b
(
w − δ

δ+1

)b−1 {
1− w (1−R10)

}−n+d0−k0

2 ,

for δ
δ+1 ≤ w ≤ 1,

where the constant C2 given by (18).

The posterior κ moment is given by

E(wκ|y,M1) = C2 × (1 + δR10)
−n+d0−k0

2 δ−a+κ(δ + 1)
n+d0−k1

2 −κB
(
b,

ke1

2 + a
)
F̃1(κ)

=

(
δ

δ + 1

)κ

× F̃1(κ)

F̃1(0)
, (20)

where

F̃1(κ) = F1

(
b, n+d0−k0

2 , −n+d0−k1

2 + κ,
ke1

2 + a+ b; 1
1+δR10

, 1
δ+1

)
,

for κ ∈ {0, 1, 2, . . . }. Therefore the posterior expectation and variance of w are directly
derived as

E(w|y,M1) =
δ

δ + 1
× F̃1(1)

F̃1(0)
, (21)

V (w|y,M1) =

(
δ

δ + 1

)2
F̃1(2)F̃1(0)− F̃1(1)

2

F̃1(0)2
.

6 Bayesian Model Averaging, Computation and Model
Search

Details about the implementation of Bayesian model averaging (BMA) for PEP priors
using the mixture representation are provided in Section 4 of the Appendix. Moreover,
in Section 5 of the Appendix we present three alternative MCMC schemes for imple-
menting model search, model averaging and computation of the parameters of interest
under the PEP prior using the mixture representation. Specifically, we provide details
about: (a) a vanilla MC3 algorithm (Madigan and York, 1995); (b) an MC3 algorithm
conditional on g; and (c) an MCMC variable selection scheme based on the Gibbs vari-
able selection of Dellaportas et al. (2002). All these three schemes are summarized in
Algorithms 2–4 at Section 5 of the Appendix.
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7 Simulation Study

In this Section we illustrate the proposed methodology in simulated data. We compare
the performance of PEP prior and the intrinsic prior, the latest as presented in Section 3.
We consider 100 data sets of n = 50 observations with p = 15 covariates. We run two
different scenarios. Under Scenario 1 (independence) all covariates are generated from a
multivariate Normal distribution with mean vector 0 and covariance matrix I15, while
the response is generated from

Yi ∼ N
(
4 + 2Xi1 −Xi5 + 1.5Xi7 +Xi,11 + 0.5Xi,13, 2.5

2
)
, (22)

for i = 1, . . . , 50. Under Scenario 2 (collinearity), the response is generated again
from (22), but this time only the first 10 covariates are generated from a multivari-
ate Normal distribution with mean vector 0 and covariance matrix I10, while

Xij ∼ N
(
0.3Xi1 + 0.5Xi2 + 0.7Xi3 + 0.9Xi4 + 1.1Xi5, 1

)
, (23)

for j = 11, . . . , 15; i = 1, . . . , 50.

With p = 15 covariates there are only 32,768 models to compare; we were able to
conduct a full enumeration of the model space, obviating the need for a model-search
algorithm in this example.

Regarding the prior on model space we consider the uniform prior on model space
(uni), as well as the uniform prior on model size (BB), as a special case of the beta-
binomial prior (Scott and Berger, 2010); thus in what follows we compare the following
methods: PEP-BB, PEP-Uni, I-BB and I-Uni; the first two names denote the PEP prior
under the uniform prior on model space and the uniform prior on model size respectively
and the last two names the intrinsic prior under the uniform prior on model space and
the uniform prior on model size respectively.

Under Scenario 1, the size of the posterior covariate inclusion probabilities for the
non-zero effects (see Figure 1), for each method, is in agreement with the size each co-
variate’s effect as expected. Hence the posterior inclusion probabilities for X1 (β1 = 2)
are equal to one, with almost zero sampling variability, followed by X7 (β7 = 1.5) with
posterior inclusion probabilities close to one, but with almost all values over 80%. For
covariates X5 and X11, the picture for their posterior inclusion probabilities is almost
identical due to the same magnitude of the effects in absolute values (equal to one).
Moreover, we observe large sampling variability within and across methods. Finally,
all methods fail to identify X13 (β13 = 0.5) as an important covariate of the model,
with the intrinsic approaches giving higher inclusion probabilities on average (around
40%). Nevertheless, the posterior inclusion probabilities for X13 are slightly higher on
average and more dispersed across different samples, than the zero effects (see Figure 2
for a representative example). Due to the independence of the covariates, we get sim-
ilar results as the ones presented in Figure 2 for the remaining zero effect covariates,
and therefore plots are omitted for brevity reasons. Concerning the comparison of the
different methods we observe that: (a) PEP is systematically more parsimonious than
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Figure 1: Simulation Scenario 1: Marginal Inclusion Probabilities for Non-Zero Effects.

intrinsic, as previously reported in bibliography (see for example Fouskakis et al., 2020);

(b) PEP-BB is more parsimonious than PEP-Uni; (c) I-BB supports slightly more par-

simonious solutions than I-Uni. The last finding seems, at a first glance, surprising since

the BB prior on model space is promoted in bibliography as a multiplicity adjustment

prior. Nevertheless, in this example, the mean of the inclusion probabilities, under the

uniform prior, in each data set is around 0.46, which is slightly reduced after the BB

implementation to 0.44, leaving the results virtually unchanged. This is in accordance

with what is expected by this prior, since it places a U shaped distribution on the prior

probabilities of each model depending on its dimensionality. This results in: (a) shrink-

age of the inclusion probabilities when the observed proportion of variables and the

average of posterior inclusion probabilities under the uniform prior is small (resulting

in good sparsity properties in large p problems); (b) inflation of the inclusion probabil-

ities when the observed proportion of variables and the average of posterior inclusion

probabilities under the uniform prior is high (leading to posterior support of over-fitted

models; a case which is largely neglected in the bibliography); and finally (c) leaving

virtually unchanged the posterior inclusion probabilities when the observed proportion
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Figure 2: Simulation Scenario 1: Marginal Inclusion Probabilities for X2 representing
Covariates with Zero Effects.

of variables and the average of posterior inclusion probabilities under the uniform prior
are close to 0.5. The latter is the case here, where the number of true effects is 5 out
of 15 (33%) and the average of the posterior inclusion probabilities under the uniform
prior on the model space is equal to 0.46.

Under Scenario 2, the posterior inclusion probabilities for X1 and X13 (see Figure 3),
have similar picture as the ones in Scenario 1. For variable X7 we observe again high
inclusion probabilities, but this time with higher uncertainty. Due to collinearity, the
posterior inclusion probabilities for covariates X5 and X11 are not longer similar, with
the later being close to one (similar picture with the posterior inclusion probabilities
for covariate X7 with true effect equal to 1.5), while the first one (X5) demonstrates
posterior inclusion probabilities around 0.4, or lower, depending on the method. In
Figure 4, the posterior inclusion probabilities for all the zero effects are presented. In
all cases those are lower under the PEP prior, with the PEP-BB to behave the best.
Moreover, they are differences across covariates, depending on collinearities, mainly in
the variability across samples.
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Figure 3: Simulation Scenario 2: Marginal Inclusion Probabilities for non-zero Effects.

8 SDM Dataset

In this Section we consider the SDM data that contains p = 67 potential regressors for
modelling annual GDP growth per capita between 1960 and 1996 for n = 88 countries.
More details about this dataset can be found in Ley and Steel (2012).

We compare the performance of the PEP prior (with δ = n∗ = n) with that of other
scale normal mixtures priors, as presented in Table 2. Specifically, we implement the
methods based on: (a) the PEP prior with δ = n∗ = n; (b) the intrinsic prior (Womack
et al., 2014); (c) the hyper-g and the hyper-g/n priors (Liang et al., 2008) with ah = 3;
(d) the robust prior (Bayarri et al., 2012) with ar = 0.5; (e) the benchmark prior (Ley
and Steel, 2012) with cb = 0.01. For comparative reasons we have also included the
g-prior (Zellner, 1976) with g = n.

All methods have been implemented in MultiBUGS and R2MultiBUGS (Goudie et al.,
2020), using the Gibbs variable selection sampler (Dellaportas et al., 2002); see Section 5
of the Appendix for details (Algorithm 4). The obtained results have been generated
using 100K MCMC iterations and a 10K burnin period and were additionally compared
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Figure 4: Simulation Scenario 2: Marginal Inclusion Probabilities for Covariates with
Zero Effects.

and validated using an MC3 based algorithm, as described in Section 5 of the Appendix,
for the PEP and the intrinsic priors, the BAS package in R (Clyde, 2020) for the g, hyper-
g and hyper-g/n priors and the BayesVarSel package in R (Garcia-Donato and Forte,
2018) for the robust prior.

Regarding the prior on model space we consider, as before, the uniform prior on
model space (uni), as well as the uniform prior on model size (BB), as a special case of
the beta-binomial prior (Scott and Berger, 2010).

Posterior variable inclusion probabilities and posterior distributions of the model
dimension across all visited models are presented in Figures 1–2, respectively, at Section
6.1 of the Appendix, along with detailed discussion and comparison of the related results
obtained by all competing methods under consideration using the two prior distributions
on the model space.

An interesting point of discussion is the fact that the lower bound imposed on g
seems to drive the final results, under the PEP prior. For the recommended PEP prior
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Figure 5: SDM Dataset: Posterior densities of log(g) for each method (100K MCMC
iterations).

specification (δ = n), the posterior density function of g is zero if g < δ = n. Of course
we can still specify the PEP prior with smaller values of δ in order to consider different
weighting of the imaginary data. By this way, the bound (via the choice of δ) can be
lower and thus we might leave g to take values in a wider range. In Figure 5 we present
the posterior densities of log(g) for each competing method (except the g-prior, where
g is fixed and equal to n), under both priors on model space, based on the MCMC runs.
The vertical dashed lines are referring to the vertical line of x = log(n). We do not
observe any noticeable differences when we move from the uniform prior on the model
space to the uniform prior on model size; in the latter case the posterior densities, under
each competing method, have a slightly larger variance. On the other hand, there are
differences on the posterior distributions of log(g) when applying different priors on the
model parameters. The posterior distributions of log(g) for all priors, except for the
ones under the PEP prior, look similar, with the ones under the hyper-g/n and the
benchmark priors to be slightly shifted to the right. Under the PEP prior the posterior
distributions of log(g) are centred on larger values and have smaller standard deviations.
Still, the mode of the posterior distribution of log(g), under the PEP prior, is away from
the lower bound, while the posterior standard deviations are high enough to allow for a
satisfactorily posterior uncertainty for g. On the other hand, using other hyper-priors for
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g without restricting the range of values, like the hyper-g and hyper-g/n, results on high
posterior standard deviations of g, which in combination with low posterior modes, may
result in a “waste” of valuable posterior probability in informative prior choices (within
each model) and to the inflation of the posterior probability of irrelevant models with
low practical usefulness. This behaviour has two side effects: (a) the posterior probability
of the MAP model is considerably lower than the one obtained by methods with fixed
prior choices for g, and (b) the posterior inclusion probabilities for the non-important
covariates will be inflated towards 0.5; see Dellaportas et al. (2012) for an empirical
illustration within the hyper-g setup.

Figure 6: SDM Dataset: BMA posterior boxplots of R2,(t), t = 1, . . . , T , for each method
(T = 100K MCMC iterations).

In the following, we further focus on the implementation of a selection of measures
concerning the fit and the predictive ability of the models. Figure 6 presents boxplots
of the Bayesian version of the coefficient of determination, for each model M�, given
by R2

� = 1− σ2
� /S

2
y , where S2

y is the unbiased sample variance, while Figure 7 presents
boxplots of the root mean square error of the predictive values, of each model M�, given
by RMSE� = 1

n

∑n
i=1(Yi − Y pred

i,M�
), where Y pred

i,M�
were generated from the predictive

distribution of each model M�. These quantities have been calculated for each iteration
t of our Gibbs based variable selection algorithm. Therefore, Figures 6 and 7 present
the BMA posterior distribution of these quantities; see also Tables 1–2, at Section 6.2
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Figure 7: SDM Dataset: BMA posterior boxplots of RMSE(t), t = 1, . . . , T , for each
method (T = 100K MCMC iterations).

of the Appendix, respectively, for the BMA point estimate of these quantities based
on the posterior mean. Both of these quantities evaluate the in-sample overall fit of
the models supported by each method. Overall we observe that the PEP and the g-
prior under the uniform prior on model space achieve higher posterior R2 values. On
the other hand, all methods when combined with the beta-binomial (uniform on model
dimension) prior support models with lower R2 values. It is notable, that under the
BB setup, the PEP prior supports models with lower R2 values compared to other
competing methods, which suggests that the BB prior in combination with PEP over-
penalize the inclusion of covariates in sparse problems. Similar is the picture for the
RMSE with the inverted relations between methods since lower RMSE values indicate
better fitted models. Moreover, the variances of RMSE are now higher since the results
are based on the predictive distribution rather than the posterior distribution of the
error variance parameter.

Additionally we calculate the BMA–log predictive score (BMA–LPS); see for example
Fernandez et al. (2001). Specifically, we perform κ-fold cross-validation with κ = 8,
placing 11 randomly selected observations in each fold. We select κ − 1 = 7 of the
folds to form the modelling subsample and the remaining fold to form the validation
subsample. We denote by M = {yM,XM} the modelling subsample, of size nM = 77,
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and by V = {yV,XV} the validation subsample, of size nV = 11, where n = nM + nV.
The BMA–LPS then is given by

BMA–LPS = − 1

nV

nV∑
i=1

log f(yVi |yM,XV), (24)

where

f(yVi |yM,XV) =

∑
M�∈M f(yVi ,y

M|M�)π(M�)∑
M�∈M f(yM|M�)π(M�)

, (25)

with π(M�) denoting the prior probabilities of model M�. Smaller values of BMA-LPS
indicate better performance.

In this section we estimate f(yVi |yM,XV) from the output of the Gibbs variable
selection sampler (see Algorithm 4 at Section 5 of the Appendix) using as an estimate
the posterior mean of the normal density evaluated at the model parameter values over
the visited model at iteration t; for t = 1, . . . , T . This automatically averages across all
visited models.

Prior on models Prior on model parameters
Uniform PEP Intrinsic g-prior Hyper-g Hyper-g/n Robust Benchmark

on models 1.89 (0.31) 1.95 (0.71) 1.75 (0.40) 1.69 (0.25) 1.70 (0.27) 1.70 (0.14) 1.94 (0.35)
on dimension 1.75 (0.37) 1.70 (0.31) 1.84 (0.45) 1.72 (0.31) 1.82 (0.31) 1.75 (0.28) 1.80 (0.40)

Table 5: SDM Dataset: Mean (Standard Deviations) over 8-fold CV of BMA estimates
of log-predictive scores obtained using Gibbs based variable selection samplers.

Table 5 presents the means and the standard deviations of the BMA log-predictive
score over the eight different modelling and validation combinations of subsamples
(folds); see also Figure 3 at Section 6.3 of the Appendix for boxplots of these BMA
predictive log-scores. BMA based on hyper-g, hyper-g/n and the robust priors outper-
form the rest of the methods under the uniform prior on model space for this example.
The rest of the methods (g-prior, PEP, intrinsic and the benchmark prior) have higher
means and medians (see Figure 3 at Section 6.3 of the Appendix) of log-predictive
scores under the uniform prior on model space. Nevertheless, standard deviations do
not support important differences between the log-predictive scores of all methods un-
der comparison; note that the log-predictive score for the robust prior has much smaller
variability than the corresponding scores for the rest of the methods while for the in-
trinsic prior the corresponding standard deviation is much higher due to the presence of
one outlier. The picture is different when the uniform prior on model dimension is used.
In this case, the intrinsic prior seems to perform better than the rest of the methods,
followed by the hyper-g prior while the PEP and the robust priors are tied performing
slightly worse on average than the two previously mentioned methods. Note that, in
terms of medians, the PEP prior performs better than all methods under consideration
when the uniform prior on the model dimension is used; see Figure 3 at Section 6.3 of
the Appendix. The rest of the methods (g-prior, hyper-g/n and robust) perform slightly
worse in terms of mean log-predictive score. The variability of the log-predictive scores
is similar for all methods and does not clearly suggest one of the methods as the best.



1096 PEP Priors as Mixtures of g-Priors

9 Discussion

In this article we have shown that the power-expected posterior prior, a generalization
of the expected-posterior prior in objective Bayesian model selection, under normal
linear models can be represented as a mixture of g-prior. This has the great advantage
of being able to derive posterior distributions and marginal likelihoods in closed form,
permitting fast calculations even when exploring high-dimensional model spaces.

Our results imply that the PEP prior is more parsimonious than its competitors.
We do not claim that this property is always the best practice in variable selection
problems. The choice of parsimony or sparsity depends on the problem at hand. When
we have a sparse dataset, where the important covariates are very few, then the PEP
prior will act probably in a better way than other competitors, which may spend a big
portion of the posterior probability to models that are impractical in terms of dimension
and sparsity.

Additional future extensions of our method include the introduction of two different
power parameters in order to derive a family of prior distributions, with members all
the prior distributions for variable selection in regression that are written as mixtures of
g-priors, that can be derived using either fixed or random imaginary data. Furthermore,
we plan to extend the applicability of PEP prior in cases where k > n. This can be done
by (a) using shrinkage type of baseline priors, such as Lasso or Ridge; (b) assigning zero
prior probability to models with dimension larger than n; and (c) mimicking formal
approaches to use g-priors in situations where k > n, such as Maruyama and George
(2011), based on different ways of generalizing the notion of inverse matrices.

Supplementary Material

Electronic Appendix of the “Power-Expected-Posterior Priors as Mixtures of g-Priors
in Normal Linear Models”. (DOI: 10.1214/21-BA1288SUPP; .pdf).
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