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Bayesian Decision-Theoretic Design of
Experiments Under an Alternative Model”

Antony Overstalll and James McGree?

Abstract. Traditionally Bayesian decision-theoretic design of experiments pro-
ceeds by choosing a design to minimise expectation of a given loss function over
the space of all designs. The loss function encapsulates the aim of the experi-
ment, and the expectation is taken with respect to the joint distribution of all
unknown quantities implied by the statistical model that will be fitted to ob-
served responses. In this paper, an extended framework is proposed whereby the
expectation of the loss is taken with respect to a joint distribution implied by an
alternative statistical model. Motivation for this includes promoting robustness,
ensuring computational feasibility and for allowing realistic prior specification
when deriving a design. To aid in exploring the new framework, an asymptotic
approximation to the expected loss under an alternative model is derived, and
the properties of different loss functions are established. The framework is then
demonstrated on a linear regression versus full-treatment model scenario, on es-
timating parameters of a non-linear model under model discrepancy and a cubic
spline model under an unknown number of basis functions.

Keywords: cubic spline basis, expected loss function, full-treatment model,
model discrepancy, non-linear model, normal linear model.

1 Introduction

The Bayesian decision-theoretic approach (Chaloner and Verdinelli, 1995) is a natural
framework to plan experiments in many fields of science and engineering. It starts with
specification of a loss function representing the aim of the experiment. A Bayesian design
then minimises the expectation of the loss over the space of all possible designs where
expectation is with respect to a probability distribution over all unknown quantities
implied by the statistical model that will be fitted upon observation of the experimental
responses.

The approach is scientifically appealing since the precise aim of the experiment is
encoded by the loss function and, through specification of a probability distribution
over all unknown quantities, pre-experimental (lack of) knowledge is incorporated. In
practice, finding a Bayesian design by minimising the expected loss is a challenging
computational problem (Ryan et al., 2016b). The expected loss is typically analytically
intractable and the space of all designs potentially high-dimensional. However, recently
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there has been significant progress in the development of novel computational method-
ology for finding Bayesian designs originating in diverse fields of study (e.g. Long et al.,
2013; Ryan et al., 2016b; Foster et al., 2019; Beck et al., 2020, and references therein).

In this paper, we propose an extended framework for Bayesian decision-theoretic
design of experiments. This is achieved by defining the expected loss by taking ex-
pectation with respect to a probability distribution implied by an alternative statistical
model (termed a designer model). Etzioni and Kadane (1993) considered the case where
the fitted and designer prior distributions were different but the joint distributions for
the responses were identical. We extend this by considering the case where both the
prior and distribution for responses can be different. There are several reasons why a
design may be sought under a different model to the fitted model. For example, the
fitted model may emulate a partially observed process, but by considering the whole
data-generating process, robustness is introduced into the design procedure. Assuming
a simpler fitted model can also be used to induce robustness to model misspecification
(Joseph et al., 2009) or may be necessary to ensure computational feasibility of finding
Bayesian designs (Ryan et al., 2016a). Conversely, reliable prior specification can be
assisted by the designer model being simpler than the fitted model. Accordingly, we
provide the framework and supporting methodology to enable Bayesian design within
such settings, and apply these methods to typical design problems found in the litera-
ture.

The outline of the paper is as follows. In Section 2, the extended framework for
Bayesian design of experiments under an alternative model is described and justified,
and the choice of loss function considered. In Section 3, an asymptotic approximation
to the expected loss under the extended framework is developed to explore the con-
sequences of designing under an alternative model. Under the traditional approach,
designs found under a loss, and its posterior expectation, are equivalent. This is no
longer the case under the proposed extended framework. We consider the choice be-
tween these pairs of loss functions and show that there is essentially a bias-variance
trade off to be made. To demonstrate the extended framework, three examples are con-
sidered in Section 4 and Section SM6 in the Supplementary Material (Overstall and
McGree, 2021). The first considers a linear regression versus full-treatment model sce-
nario where application of the extended framework results in objective functions sharing
properties of classical design criteria that promote increased replication (Gilmour and
Trinca, 2012). The second considers estimating parameters of non-linear models un-
der model discrepancy, and finds that the resulting designs resemble a compromise of
designs found under the traditional Bayesian decision-theoretic framework and space-
filling designs. Finally, the third (in the Supplementary Material), considers estimation
of the parameters of a model formed using cubic splines, with an unknown number of
basis functions.

The Supplementary Material includes proofs and derivations of the results, and the
cubic spline model example.
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2 Bayesian design under an alternative model

2.1 Internal and external expected loss

Suppose the ultimate aim of the experiment is to learn the relationship between k
controllable variables and a response. The experiment consists of n runs where, for
i =1,...,n, the ith run involves specifying a treatment-level combination, i.e. values
for the k controllable variables A; = (A;1,...,A)", and subsequent observation of a
response y;. Let A denote the design; the n x k matrix with ith row given by AT and
let y = (y1,-..,yn)" denote the n x 1 vector of observed responses.

On the completion of the experiment, a statistical model is assumed describing the
relationship between the controllable variables and response. That is, y is assumed to
be a realisation from a multivariate probability distribution with density /mass function
m(y|B3, F, A) completely known up to a p x 1 vector of unknown parameters 3 with prior
density 7w(B|F, A). We refer to n(y|3, F, A) and w(B8|F,A) as the fitted likelihood and
prior, respectively, and collectively as the fitted model, where the conditioning on F' is
to make it clear that this is under the fitted model. Using Bayes’ theorem, the fitted
posterior distribution is w(8ly, F,A) x n(y|3, F, A)n(8|F,A). Note that 3 refers to
parameters of interest. There may be additional nuisance parameters present but these
have been marginalised, with respect to a prior distribution, to obtain 7(y|3, F, A).

Since, apart from the values of 3, the fitted model completely specifies the rela-
tionship between the controllable variables and response, the experimental aim reduces
to determining the value of 3. This aim can manifest itself in various different ways.
Bayesian decision-theoretic design of experiments starts by encoding the exact aim in
a loss function, \(B,y, F,A), giving the loss of estimating 3 via the fitted posterior
distribution conditional on y. The choice of loss function is considered in more detail in
Section 2.2.

Prior to experimentation, the aim is to specify A to best estimate 3 as measured
by the loss function. Traditionally, a Bayesian design minimises the expected loss over
the space of all designs, where expectation is with respect to the joint distribution of 3
and y as implied by the fitted model (e.g. Lindley, 1972). Mathematically, the expected
loss is

LFF(A) = EB,y\F,A [)‘(ﬂv Yy, F, A)] (1)
and referred to, in this paper, as the internal expected loss under the fitted model. Unless
otherwise specified; if referring to internal expected loss, it is under the fitted model.

Instead, consider minimising the expectation of the loss with respect to an alternative
model: the designer model. Here we suppose that y is a realisation of a probability
distribution with density/mass 7(y|0, D, A), where 0 is a pg x 1 vector of parameters
with prior density 7(0]|D,A). We refer to 7(y|0, D,A) and w(0|D,A) as the designer
likelihood and prior, respectively, and the conditioning on D is to make it clear that
this is under the designer model. Similar to the fitted model, any additional nuisance
parameters have been marginalised to obtain 7(y|@, D, A).

Let 8 = (v%,0")", where v is a py X 1 vector of parameters only present in the
fitted model and @ are parameters common to both models. If the fitted and designer



1024 Bayesian Design Under an Alternative Model

models share no common parameters, i.e. 3 = =, then the two models are referred to
as disjoint. Conversely, if all parameters of interest are common to both models, i.e.
B = 0, then the models are referred to as compatible. As such, prior to marginalisation,
the fitted model can be nested within the designer model, vice-versa, or no nesting may
be present.

A design found under the proposed extended framework is given by minimising the
external expected loss defined as

LDF(A) = Eg,y‘D)A {E'y\e,y,F,A [)‘(67Ya Fa A)]} . (2)

The external expected loss is formed by assuming that once responses are observed, we
proceed as if the fitted model represents the true data-generating process, i.e. under
the M-closed paradigm (Bernardo and Smith, 1994, page 384). Initially, expectation is
taken with respect to the fitted posterior distribution of « conditional on 6. This is
because these parameters are only present in the fitted model (if the models are non-
compatible). Then expectation is taken with respect to the remaining unknowns under
the designer model.

Note that if the fitted and the designer models are the same, then the external and
internal expected loss functions are equal, i.e. Lpp(A) = Lpr(A).

There are several reasons to consider finding a design under an alternative model.
These can be separated into two cases: when the designer model is simpler than the
fitted model and the vice-versa. In Section 4 and Section SM6 in the Supplementary
Material we provide examples of both cases.

First consider the case where the fitted model actually represents the, a-priori,
current best representation of the data-generating process, and the designer model is
actually a proxy simplification. This can occur when the fitted model is complex with
a large number of parameters and it is necessary to use a fitted prior distribution
representing weak prior information. It is known (e.g. Ryan et al., 2016b) that in these
cases, the vaguery of the fitted prior distribution combined with the large number of
parameters leads to the internal expected loss being relatively flat and, therefore, non-
trivial to (numerically) minimise. However it may be possible to elicit a prior distribution
for a simpler designer model and use this to take expectation of the loss function formed
under the fitted model.

Now consider the case where the designer model actually represents the best repre-
sentation of the data-generating process and the fitted model is a simplification. In this
case, it initially would make sense to find a design by minimising the internal expected
loss under the designer model, i.e.

Lpp(A) =Egyp,a [AO,y,D,A)]. (3)

For certain models it may not be possible to represent the experimental aim by a
suitable loss function, A(8,y, D, A), depending on the designer posterior distribution.
Instead, an alternative fitted model is used for which it is possible to form a suitable loss
function. However it is prudent to take expectation under the original designer model
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since this is the best representation of the data-generating process. For example, suppose
the designer model is a full-treatment model (e.g. Gilmour and Trinca, 2012) with each
unique treatment-level combination permitting a unique mean response. This represents
a plausible data-generating process but for convenience and interpretability a regression
model (positing a relationship between the numerical values of the controllable variables
and mean response) is usually assumed as the fitted model.

Alternatively, suppose the designer model is based on scientific reasoning through a
mechanistic or phenomenological model. Again it would make sense to find the design
via the internal expected loss under the designer model (3). Assuming the fitted and
designer models are compatible, consider Monte Carlo approximations to the external
and internal expected loss functions given by Lpp(A) = B! 25:1 A(Op, ¥, F, A) and
I:DD(A) = B! Zle A(Op,yp, D, A), respectively, where {6y, yb}bB:1 is a sample gener-
ated from the joint distribution of 8 and y under the designer model. There are models,
e.g. so-called intractable likelihood models, for which it is straightforward to generate
such a sample but extremely difficult to evaluate the designer posterior distribution and
hence the loss function A (8y,ys, D, A), for b = 1,..., B. However by forming an ap-
proximating fitted model it becomes computationally feasible to find a Bayesian design
via the external expected loss (e.g., see the indirect inference approach of Ryan et al.,
2016a). In Section 2.2, we show, under a certain class of loss function, that the external
expected loss is an upper bound on the internal expected loss under the designer model,
providing formal justification for using such approaches.

2.2 Loss functions

In Section 2.1, the loss function is given informally by A(3,y, F, A), stating that it gives
the loss of estimating 3 via the fitted posterior (conditional on y). We now consider
the specification of the loss and the implications of such a choice when designing an
experiment under an alternative model. For this, we consider two exemplar loss functions
as defined in Table 1 (left-hand column); self-information and squared error. Note that
VI3, 4 = v" Av and I, is the px p identity matrix. These loss functions have been chosen
since under a normal linear model with non-informative prior distributions, the internal
expected loss reduces to the objective function under D- and A-optimality, respectively;
two widely-studied classical optimal design criteria.

Optimal loss functions

First consider estimating 3 based on observed responses y. Suppose the loss for this
aim is A\o(3, b) where b € B is an action for estimating 3 and B is the action space (e.g.
b is a point estimate of 3 in B = RP). The optimal action minimises the fitted posterior
expectation of Ag(3,b), i.e. bp = arg minpes Egjy,ra [Ao(B,b)].

The loss function, as written in Section 2.1, is given by A(8,y, F,A) = )\O(ﬁ,f)p)
and is optimal under the fitted posterior distribution. In this paper, only optimal loss
functions are considered. Indeed, the self-information and squared error loss functions
are optimal under logarithmic scoring and A\o(3,b) = Hﬁ—bH% 1, respectively. However,
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Generator Composite

Name Expression for Name Expression for
ABy, F,A) My, F A)

Self- Asi(B,y, F,A) = Entropy Ag(y,F,A) =
information —logw(Bly, F, A) (E) Egyy,r,a [~ logn(Bly, F, A)]
(SI)
Squared Ase(B,y, F,A) = Trace Ay (y, FyA) =
error 18 — Egly,r,a (8) H%Ip variance  tr [vargy r,a (8)]
(SE) (TV)

Table 1: Exemplar generator and composite loss functions.

the formulation in Section 2.1 allows consideration of sub-optimal loss functions, if

deemed appropriate, e.g. A\(8,y, F,A) = ||3 — Mgy, r,a (8) H%Ip, where Mgy ra (8) is
the fitted posterior mode of 3.

Under optimal loss functions, the following result giving an inequality for the external
expected loss in relation to the internal expected loss under the designer model. The
proof is given in Section SM1 of the Supplementary Material.

Lemma 2.1. Suppose fitted and designer models are compatible, i.e. 3 = 0, with
A(ﬁquFaA) = )‘0(/87bF) and )\(ﬂ,y,D, A) = )‘O(ﬂ7bD)7 then LDF(A) 2 LDD(A)7
where Lpp(A) is the internal expected loss under the designer model given by (3).

In Lemma 2.1, the difference between the external expected loss and the internal
expected loss under the designer model is due to the loss of information caused by the
fitted model being different to the model under which expectation is taken. Note that
Lemma 2.1 only requires the compatible fitted and designer models to be different, not
that the designer model is more complex.

By finding the design that minimises the external expected loss, we are minimising
an upper bound on the internal expected loss under the designer model. A special case of
Lemma 2.1 for the self-information loss is called the Barber-Agakov bound (Barber and
Agakov, 2003) and has been used by Foster et al. (2019) to approximately find Bayesian
designs. Lemma 2.1 now justifies the use of this approach to other loss functions as has
previously been pursued for intractable likelihood models (for example, Ryan et al.
2016a, as discussed in Section 2.1).

Lemma 2.1 is uninformative on the relationship between the external expected loss
and the internal expected loss under the fitted model (1).
Generator and composite loss functions

There are intuitive choices of loss function given as scalar summaries of the fitted poste-
rior distribution, independent of 3, e.g. A(y, F, A) = |var(B|y, F, A)|, where | - | denotes
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the determinant of a square matrix. In some cases, these are given as the fitted posterior
expectation of a loss function Ag(B,y, F, A),i.e. \c(y, F, A)=Egy.ra [Aa(B,y, F, A)].
For such pairs, we term A¢(y, F, A) as composite and Ag(3,y, F, A) as generator. The
right-hand column of Table 1 shows the entropy and trace variance loss functions which
are composite to the generator loss functions of self-information and squared error,
respectively, in the left-hand column.

The internal expected composite loss is equal to the corresponding internal expected
generator loss. Apart from when fitted and designer models are disjoint, i.e. 3 = ~y, this
equivalence is not necessarily true when considering the external expected loss. This
leads to a question on how to choose between a pair of loss functions equivalent under
internal expected loss, e.g. how should we choose between self-information and entropy
loss functions? In the next section, to answer this question, we develop an asymptotic
approximation to the external expected loss. This is used to explore differences in be-
haviour between the exemplar generator and composite loss functions shown in Table 1.
We find that a composite loss solely focuses on fitted posterior precision. On the other
hand, a generator loss also incorporates point estimation of common parameters 8. This
is essentially a bias-variance trade-off. Considering this trade-off is unnecessary under
internal expected loss because the fitted model is, in a sense, “unbiased” as it is identical
to the designer model.

3 Understanding the external expected loss

In this section, an asymptotic approximation to the external expected loss is derived.
This approximation is used to provide insight into properties of exemplar loss functions,
in particular, to investigate the difference between external expected generator and
composite loss functions.

3.1 Asymptotic approximation of external expected loss

In general, the external expected loss (2) is not available in closed form and use of an ap-
proximation is therefore necessary. Recent developments in computational methodology
for approximating (and minimising) the expected loss (example references in Section 1)
can actually be used for this task with little modification. Indeed, in the examples in
Section 4.2 and Section SM6 in the Supplementary Material we describe Monte Carlo
approximations to the external expected loss function.

However, in this section, to gain understanding of the behaviour of the external
expected loss, we develop an asymptotic approximation. The resulting approximations
to the external expected loss under the exemplar loss functions in Table 1 are derived
and compared to the corresponding expressions under the internal expected loss.

~ ~ T
First, some preliminary definitions are required. Let B = (’yT,GT) be the p x 1
vector of parameter values for 3 that minimise the Kullback-Leibler divergence between
the designer and fitted likelihoods for a given value of @ under the designer model, i.e.
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B maximises

d(t) = Ey\G,D,A [10g7r(y|t,F, A)] . (4)
Define Z and Z to be
?logn(ylt, F,A)
Eyjo.p.a |~ ototT

evaluated at t = 0 and t = 6, respectively. Similarly, define J to be

{(%g m(ylt, F, A) Olog7(y|t, F, A)}
Eyj0,0,a ;

ot otT

evaluated at t = 0, respectively. Let K = Z~17Z! with Z and K partitioned as

~ T Iy ~ Ky Koo }
T = LA ) K= vy oy 7
{ Toy oo ] { Koy Koo

where iw is the p, x p, sub-matrix corresponding to v with similar definitions for Zyo,
Loy = I»?e and the sub-matrices of K.
Under regularity conditions (see Section SM2 in the Supplementary Material), an

asymptotic approximation (Kleijn and van der Vaart, 2012) to the fitted posterior dis-
tribution of 3 is given by

N(BI7), (5)
~ ~ T
where 3 = (‘yT, 0T> is the maximum likelihood estimate of 3 under the fitted model.

The loss function is approximated by replacing fitted posterior quantities by the cor-
responding approximated fitted posterior quantities under (5). Such an approximation
is denoted A\*(3, 8, A). For example, the self-information loss is approximated by

< (B, [N P
51(8.8,8) = Nsy — 5 log|Z| + 518~ I3 1.

where Ng; = plog(27)/2 is a constant not depending on the design.

To approximate the external expected loss (2), the parameters present only in the
fitted model, ~, are marginalised with respect to an approximate fitted posterior con-
ditional on 6, induced from (5). Then expectation with respect to the distribution of
y conditional on 6 under the designer model can be approximated using asymptotic
results for inference under an alternative (or misspecified) model (White, 1982).

The result is now formally stated with proof given in Section SM2 of the Supple-
mentary Material.

Theorem 3.1. Under conditions given in Section SM2 of the Supplementary Material,
an asymptotic approximation to the external expected loss is given by

Lpr(A) =Egp.a (EmeﬂA {Evlﬁ,s,F,A [)\*(ﬁ,ﬁ,A)} }) ; (6)
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where the two inner expectations are taken with respect to

~|3,0.F,A ~N (ﬁlﬁ Do i—l) . and  B|6,.D,A~N (ﬂ/c) ,

7YY
with Py = (I, P2) and Py =T} T,

In Theorem 3.1, K has the sandwich form of the “robust variance formula” (e.g. Paw-
itan, 2003, page 374). In inferential settings, the values of Z and J are estimated from
observed responses, whereas, in design settings, the values follow from the assumption
of a designer model.

Due to the tractability of the normal distribution, the two inner expectations in
(6) are available in closed form for many common loss functions, e.g. the exemplar loss
functions in Table 1. Then the approximate external expected loss is written L}, »(A) =
Eoip,a [(5(6,A)]; the designer prior expectation of a function (0, A), typically a
function of Z and K.

For loss functions independent of 3, including composite losses, the approximate loss
is denoted A*(B,A) and the approximate external loss given by L}p(A) =

Eoip,a [(6(6,4)], where (5(0,A) = Ezi6.0.a [/\*(B,A)] is often available in closed

form.

If the fitted and designer models are identical, then Zp = Jp, and B = 3. In this
case, we obtain an asymptotic approximation to the internal expected loss given by
Lip(A) = Egjpa [£7:(8, A)], where £3;(8, A) is the expected value of \*(8, 3,A) with
respect to (5).

3.2 Exemplar loss functions

Table 2 shows the functions €% (6,A) and £5(6,A) for the exemplar loss functions
considered in this paper (see Table 1). Derivation of these expressions is given in Sec-
tion SM3 of the Supplementary Material. Also shown is the function £} (8, A) for the
asymptotic approximation to the internal expected loss. Note that designs that minimise
the fitted prior expectation of ¢};(8,A) under self-information and squared error are
commonly referred to as pseudo-Bayesian D- and A-optimal, respectively. In Table 2,

. . N |
Too = (Igg — ZgVIV_A}IA,g) is the approximate marginal fitted posterior variance ma-

trix of @, under (5). Additionally, Spo = Iy, + ig,yf,yi}f;}iw.

Note that ¢, £ and ¢}, all feature —log|Z| (under self-information/entropy) or
tr (Z7') (under squared error/trace variance). Minimising these terms has the effect
of (approximately) maximising posterior precision. For the pseudo-Bayesian objective
functions these are averaged with respect to the fitted prior. Whereas for external ex-
pected loss, they are averaged with respect to the designer prior of 8 through 3; a
function of @ and the best possible estimate of 3 under the fitted model. The expres-
sions for £ (i.e. under composite loss) give the entropy and trace of variance under the
asymptotic distribution of B under a misspecified model (5).
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Self-information Squared error
(:(0,8) Nor—Llog[Z|+410-0]2, . (T1)+l6-0l2,
+ytr (7;51’699) + /2 +tr {309 (’699 - 7799)]
Entropy Trace variance
(:(8,A)  Ngs— Llog|Z|+2 tr (i—l)
D-optimality A-optimality
0 (B,A) Ngr—slog|Z|+ & tr (Z71)

Table 2: Exemplar approximate external expected loss functions.

The expressions for £, (6, A) under the generator squared error and self-information

loss functions feature two extra terms related to the quality of 0 as a point estimate of
the common parameters 8. The first of these, ||@ — 0”3,14 where A is either T,," or Sgy,

relates to the bias. This term penalises designs that lead to 0 being (on average under
the designer model) far from 6. The second term measures the difference between the

variance of 6 under the fitted model, i.e. Tpg, and under the designer model, i.e. Koo.

4 Examples

Two examples are considered in this section where designs are found under our proposed
design framework. In both cases, the fitted model is simpler than the designer model.
As will be seen, the designs found provide robustness through replicated design points
within a linear regression setting, and also through providing space filling properties for
estimating parameters under a non-linear model. In Section SM6 in the Supplementary
Material, a further example is provided where the fitted model is more complex (as
measured by number of parameters) than the designer model.

4.1 Normal linear regression vs full-treatment model

In this example we explore the implications of assuming a full-treatment designer model
within a fitted linear regression setting. Under the fitted model, it is assumed

ylv,0% F,A ~N(X~,0°1,),

where X is an n x p model matrix (a function of A), and o2 > 0 is a nuisance parameter.
We assume a conjugate normal-inverse-gamma fitted prior distribution for 4 and o2 such
that ¥|o?, F ~ N (pup,0?Vr) and 02|F ~ 1G (ap/2,bp/2). For the designer model, at
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this stage, it is only assumed that y has finite mean E (y|D,A) = mp and variance
var (y|D,A) = Xp. Note that the fitted and designer models are disjoint, sharing no
common parameters.

Under the fitted and designer models, it is possible to derive closed form expres-
sions, to some extent, for the external expected loss. The fitted posterior distribu-
tion of v is t (/fLF,I;FVF/dF,&F), i.e. a multivariate t-distribution with mean i, =

VF (XTy + VF_lp,F), scale matrix IBFVF/dF, and ap = ap + n degrees of freedom,
where

VFZ(XTX‘FVFA)A; I;F:bF+||y_XNF||§E;1§ Yp=I,+XVpX".
The external expected self-information and squared error loss functions are given by
1 N N
Lprsi(A) = Hgri+ 3 log |Vr| + gEy|D,A (log bF) , (7)
Eyip,a (Z;F) .
Lprse(A) = ————~tr (VF) ) (8)
ap — 2

respectively, where Ey|D7A(lA)F) = bp + |mp — XuF||§ g1t tr (EpEp') and Hgp
1R

is a constant not depending on the design. Derivations of (7) and (8) are provided in
Section SM4 in the Supplementary Material. The expectation of log bp with respect to
the designer model, appearing in the external expected self-information loss (7), is not
available in closed form. In what follows, we use a delta approximation (for example
Davison, 2003, pages 33-35) where Ey|p A (log Bp) ~ log Ey|D7A(ZA)F). However, note that
by Jensen’s inequality, i.e. Ey|p a(log BF) < log Ey‘DyA(IA)F), the approximate external
expected self-information loss (which we minimise to find designs) is actually an upper
bound on the true external expected loss.

Compare (7) and (8) to the corresponding expressions for the internal expected
self-information and squared error given by

Lppsi(A)=Hgra+ %log Ve, and Lrpse(A) = anF_ 2tr (VF> ,
respectively, where Hgy o is a constant not depending on the design. The difference is
that the external expected loss functions feature expectation of (a function of) bp under
the designer model. O’Hagan and Forster (2004, page 319) describe how by summarises
the inadequacy of the fitted model so it is natural that this drives the difference, with
the external expected losses favouring designs for which the expected value of bp is
small.

Now assume a specific form for the designer model as a full-treatment model (e.g
Gilmour and Trinca, 2012), i.e. where each unique treatment permits a unique mean
response. Mathematically, the full-treatment designer model is

b
ylr,02,D,A ~ N (Z7,0%I,); 7|02, D,A~N (up,0*Vp); a2|D~IG<a2D,2D>,
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where 7 is a ¢ X 1 vector of mean treatment effects. The n x ¢ designer model matrix
Z is a function of A where ¢ is the number of unique treatments. For ¢ = 1,...,n, the
ith row of Z is the vector e;, i.e. a vector of zeros except for the jth element which is
one, indicating that run ¢ receives unique treatment j. Therefore, mp = Zup, ¥p =

bp (In + ZVDZT) /(CLD — 2) and Ey‘D’A(lA)F) =bp+ HZ“D — XMF||§,E;1 +tr (ZDZEI).

Interpretation is simplified by assuming non-informative fitted and designer prior
distributions where, for the fitted model bp = 0, pp = 0, (the p x 1 vector of zeros)
and VF_1 = Opxp (the p X p matrix of zeros), and, for the designer model, pp = 0.
However, Vp needs to be finite for Xp to be finite and for the external expected loss to
exist. It is assumed the elements of 7 are independent with 7; ~ N (O, ko? /nj), where
x> 0 and n; is the number of runs receiving the jth unique treatment, for j =1,...,q.
Under this prior specification, the designer posterior mean of 7; is the sample mean of
the corresponding responses shrunk toward zero by a common factor /(1 + k), with
controlling the amount of shrinkage. Consequently, Vp =k (Z*Z )71.

Under these prior specifications, minimising the external expected self-information
and squared error loss functions is equivalent to minimising

EDF’SI(A) = plog[(1+&)(n —p) — kd] —log | X" X]|, (9)
Lorse(d) = [(1+r)n—p) - rd)r [(X*X) '], (10)

respectively, where d = n — ¢ is known as the pure error degrees of freedom, i.e. the
number of repeated treatments. Derivations of expressions (9) and (10) are provided in
Section SM5 of in the Supplementary Material. We refer to designs that minimise (9)
and (10) as DE- and AE-optimal, respectively. The corresponding expressions to (9)
and (10) under the internal expected loss are

Lipsi(A) = —log|X"X|,  and  Lppsp(A) =t [(X"X)7'],

respectively, and designs that minimise Lrps7(A) and Lrpsp(A) are called D- and
A-optimal, respectively. Hence it can be seen that under the external expected loss
there is a trade-off between precision of estimation of =, as measured by functions of
XTX, and pure error degrees of freedom, i.e. DE- and AE-optimal designs will tend
to feature more replication than D- and A-optimal designs, respectively. A numerical
example verifying this is now provided.

Consider Example 1 from Gilmour and Trinca (2012) involving an experiment with
n = 16 runs and k = 3 design variables. The fitted model is a second-order model
including an intercept, three first-order terms, three quadratic terms and three pairwise
interactions, i.e. p = 10. We specify Kk = n leading to a unit-information prior for 7
(Smith and Spiegelhalter, 1980).

DE- and AE-efficiency of a design A are defined by

1 .- _
Eff pr(A) = exp {p [Lor,si(Abpsr) — Lor,si(A)] } ,
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Lprse(Abrse)
Lprse(A)

Eff ap(A) =

respectively, where A7, p oy and Al g are the DE- and AE-optimal designs, respec-
tively, with similar expressions for D- and A-efficiency. The D-efficiency of the DE-
optimal design is 85%, whereas the DE-efficiency of the D-optimal design is only 7%.
The corresponding figures for squared error are 84% and 10%. Clearly, the D- and
A-optimal designs are not robust to the external expected loss, whereas the DE- and
AE-optimal designs are robust to the internal expected loss. The D-optimal design has
q = 16 unique treatments compared to ¢ = 10 for the DE-optimal design. The equiv-
alent values for the A- and AE-optimal designs are ¢ = 14 and ¢ = 10, respectively.
The minimum number of unique treatments to be able to estimate all elements of ~
under the fitted model is ¢ = p = 10. Thus the DE- and AE-optimal designs feature the
maximum amount of replication possible whilst still being able to estimate ~.

Expressions for the external expected loss under self-information (9) and squared
error (10) should be compared to the following objective functions under the DP- and
AP-criteria (Gilmour and Trinca, 2012)

Lpp(A) = plogFpa1-a —log|X"X], (11)
I_/AP(A) = Fl,d,lfatr {(XTX)_l] s (12)

respectively. Note that Lpp(A) in (11) is actually the natural logarithm of the objective
function in Gilmour and Trinca (2012) but the optimisation problem is equivalent due
to log being a monotonically increasing function. In (11) and (12), F, 41— the 1 — a-
quantile of the F}, 4 distribution with F), 41_, being a decreasing function of d. The
motivation behind the DP- and AP-criteria is to minimise the volume of the confidence
region or sum of confidence intervals, respectively, for -, where the response variance
o2 is estimated under the full-treatment model; a model-independent estimate. In both
cases, the objective functions are modified by a decreasing function of the pure error
degrees of freedom, d. As shown above we are able to provide a different, Bayesian
decision-theoretic, motivation for the same outcome.

4.2 Estimating parameters of a Michaelis-Menten model under
model discrepancy

In this section we consider designing an experiment to estimate the parameters of a
non-linear model. Finding designs for such models is widely featured in the design
of experiments literature (see, e.g. Pronzato and Pdzman 2013; Federov and Leonov
2014). Under such models, it is hypothesised that the expectation of y; is (0, A;); a
mathematical model based on mechanistic or phenomenological arguments. As such the
parameters 6 can have interpretable physical meaning.

As a specific example, consider the Michaelis-Menten model (e.g. Dette and Bie-
dermann, 2003), commonly-used in the study of pharmacokinetics and chemical kinet-
ics. A standard experiment has a response given by reaction velocity y; measured for
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k = 1 controllable variable: the scaled concentration of substrate A; = x; € [0, 1], for
i=1,...,n. The model has

n(0,x) = 01zL/ (xL + 05), (13)

where 6; > 0 is the maximum velocity of the chemical reaction, 2 > 0 is the substrate
concentration at which the reaction rate is half of 61, and L is the maximum possible
concentration of substrate, which we assume is L = 400.

Supposing a normal distribution, we assume the following fitted model
Y‘030—27F7A NN(n(evA)702In) ) (14)

where n(0,A) = (9(0,z1),...,1m(0,2,))" and ¢ > 0 is the unknown response variance
(a nuisance parameter, not of direct interest). The design problem is to choose the values
of A = (x1,...,2,)", i.e. the n concentrations.

The fitted model given by (14) is assumed for pragmatic convenience. However the
reasoning behind the mathematical model is usually incomplete, meaning that there
can be a systematic discrepancy between the true expected value of y; and 7(6, z;).
The Kennedy and O’Hagan (2001) framework aims to model this discrepancy using a
Gaussian process and we assume this for the designer model. Specifically, the designer
model is assumed to be

y|0,0%,8,D,A ~ N (n(0,A) +6,5°1,), (15)

where
S|, p, 0, D, A ~ N (0,,0%pC) . (16)

In (16), p > 0, 72 > 0, and C is an n x n correlation matrix with ijth element C;; =
c(|z; — z;|; ) where ¢(|z; — x;; ) is a correlation function depending on o > 0 and

the distance between x; and x;, with the property that ¢(0; ) = 1. In what follows, we

choose the Matern (5) correlation function where

2
d d? d
dia)=(14—+ — ——
c(d; ) ( +a+302)exp< a)
a commonly-used correlation function (e.g. Rasmussen and Williams, 2006, page 84). It
follows from (15) and (16) that

yl0,0%, a,p,D,A ~N[n(6,A),0” (I, + pC)] . (17)
We consider three designs found by minimising

(i) external expected squared error loss;
(ii) external expected trace variance loss;

(iii) internal expected squared error loss.
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In each case, the expected loss is not available in closed form. Indeed, since the fitted
posterior is not of known form, the loss function itself is analytically intractable. To
approach this problem, we use a nested Monte Carlo approximation (e.g. Rainforth
et al., 2018). The following algorithm is used to approximate the external expected
squared error loss.

B . . e
1. Generate a sample {Hb, o, ap, pb}b:1 of size B from the designer prior distribution
of 8, 02, o and p.

2. For b=1,..., B, generate y; from the designer likelihood

y|0b7agaab7pbaDaA ~N [T’(eva)agg (I’n + prb)] .

3. Approximate the external expected squared error loss by the following Monte
Carlo approximation

B

N 1 ~

Lprse(A) = B > 116, — E (Blys, F,A) |3 4, (18)
b=1

In (18), E (8]ys, F, A) is a Monte Carlo approximation to the fitted posterior mean
of 6 conditional on y;. This approximation is formed as follows. Generate a sample

- B ~
{0j7 532} of size B from the fitted prior distribution of @ and ¢2. Then
j=1

SF L 0;m(ys]0;,52, F.A)

E(0|yb7F7A): B - )
Zj:l ’/T(Yb‘ejaajaFa A)

forb=1,...,B.

Note that the sample generated in Step 3 is reused to calculate E(0|yb,F,A) for all
b=1,...,B.

In a similar fashion, the external expected trace variance loss can be approximated

by

B

~ 1 R

Lorrv(B) =5 )~ tr {var (Olys, F,A)}
b=1

with
var 6]y, F, A) = 1 (007 |y, F, A) = E (6], F, A) B (6], F, )",
and

7295

S m(yel6;,62, F, A)

B 3 T -,
E(90T|Yb7F,A): Z-]_1~ V] (yb| )
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Design Efficiency Number of unique
concentrations

External External Internal
SE (i) TV (ii) SE (iii)

External SE (i) 100 67.0 79.7 13
External TV (ii) 95.4 100.0 99.9 12
Internal SE (iii) 86.1 85.8 100 12

Table 3: Efficiencies and number of unique concentrations for the three designs found
for the Michaelis-Menten model.

The internal expected squared error loss is approximated by, first, generating a

sample {Ob,ag}le of size B from the fitted prior distribution of @ and ¢2. For b =
1,..., B, generate y; from the fitted likelihood

Y|9ba 0—137 F, A~N (n(aba A)val?-[n) .
Then
Lrpse(A Z 16, — E (Blys, F, A) |13 4,

We find designs with n = 20 concentrations. The fitted prior distribution is such that

0 and o2 are independent with 61,6 < U[20,200] and 02 ~ Exp(1); an exponential

distribution with mean one. The designer prlor distribution is such that 8, o2, a and p
iid

are independent with 6,6, ~ U[20,200], o2, p S Exp(1) and a ~ Exp(5).

To minimise the nested Monte Carlo approximations to the expected loss functions,
we use the approximate coordinate exchange algorithm (Overstall and Woods, 2017).
We use B = B = 20,000 but it is noted that if |8 — E (8]y, F, A) 13,7, is continuously
differentiable then the convergence rate can be slightly improved (Ramforth et al., 2018)
by setting B o< B2 (whilst holding BB fixed).

Table 3 shows the efficiencies of the three designs under the three expected loss
functions and the number of unique concentrations. The top panel of Figure 1 shows
(0, ) plotted against x for 100 values generated from the designer prior of 8 and the
bottom panel shows the location of the concentrations for each of the three designs,
i.e. found by minimising (i) external expected squared error loss; (ii) external expected
trace variance loss; and (iii) internal expected squared error loss. The size of the plotting
symbol is an increasing function of the replication of each concentration. From Figure 1,
the three designs have common clusters of concentrations around 0.2 and 1. The designs
found by minimising the external expected trace variance and internal expected squared
error loss functions are broadly similar. This is confirmed in Table 3 by the relatively high
efficiencies for these designs. Compared to the other designs, the concentrations under
the design that minimises the external expected squared error loss are more “spread
out”, i.e. a compromise between the designs found under external trace variance and
internal squared error and a space-filling design.
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Figure 1: Designs for the Michaelis-Menten model. The top panel shows (8, x) plotted
against x for 100 values generated from the designer prior of 8. The bottom panel shows
the location of the concentrations for each of the three designs, i.e. found by minimising
(i) external expected squared error loss; (ii) external expected trace variance loss; and
(iii) internal expected squared error loss. The size of the plotting symbol is an increasing
function of the replication of each concentration.

The similarity of the designs found under the external expected trace variance (ii)
and the internal expected squared error (iii) loss functions agrees with the asymptotic
results from Section 4.2. In this example, the function d(t) given by (4) is

d(teato'z) = EUQ,p,a\D,A {Ey\9,02,p,a,D,A [1Og7r<y‘t9at0'2aFa A)]}

1
T (6, A) —n(te, A3,

_ nag (1+ po)
%

= —g log(27) — glogtgz -

where ty and ¢, are the elements of t corresponding to 6 and o2, respectively, and 02 =
EU2‘D)A(U2) and po = E,|p,a(p) are the designer prior means of o? and p, respectively.
Clearly, d(tg, t,2) is maximised by @ = 8 and 6% = 62 (1 + po). It then follows from (5)
that the fitted marginal posterior distribution of 6 is approximated by

N (ej&}) ,
where .
= - 87] t,Ai 6’]’} t,Ai
Iy =t (1L+p0) D (8t ) 0 E?‘tT | e] '
i=1 t= t=
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Therefore, from Table 2, the external expected trace variance loss is approximated by

Lorav(8) =Fopp.a [tr ()] - (19)
By contrast, from Table 2, the internal expected squared error loss is approximated by
Lipsu(8) =Eera [tr (Zpy')] (20)
where .
_ = (L, A | an(t, A
Tyt = Ep2ipa(c?) :
| ; Ot |y 0T |,

Since o (1 + po) and Eyz2jpa(0?) do not depend on the design (for this example), the
approximations (19) and (20) are minimised by the same design.

5 Discussion

An extended framework is proposed for Bayesian design whereby the expectation of the
loss is taken with respect to the probability distribution implied by an alternative model
(the designer model) to the one being fitted to the observed responses. Properties of the
framework are explored. The key findings are that the external expected loss is an upper
bound on the corresponding internal expected loss under the designer model, providing
justification for using a simpler fitted model for the purposes of computing a design. We
also observed that designs found under composite and generator loss functions are no
longer equivalent. By developing an asymptotic approximation to the external expected
loss we were able to show that the composite loss functions focus solely on maximising
posterior precision, whereas generator loss functions also incorporate point estimation.

We encourage researchers consider the extended framework when designing experi-
ments under the Bayesian decision-theoretic approach, if not to specify the design to be
used in practice, but at least as a benchmark to assess the performance of that design.
Designs can be found under the proposed framework with only minor modification of
existing computational methods (see Section 4.2 and Section SM6 in the Supplementary
Material).

In two of the examples, the designer model is more complex than the fitted model,
and we are, in a sense, attempting to insert robustness into the design procedure. Robust
Bayesian inference (i.e. inference under the M-open paradigm of Bernardo and Smith
1994, page 385) has become an important research field in recent years (e.g. Bissiri
et al., 2016; Grinwald and van Ommen, 2017; Jewson et al., 2018). Related to this
is a body of current work on the estimation of the parameters of a non-linear model
(see Section 4.2) taking account of the incompleteness of the underlying mathematical
model (e.g. Plumlee, 2017; Xie and Xu, 2021). Considering Bayesian decision-theoretic
design of experiments under these approaches will be the focal point of future work.

Lastly, we have focused on an experimental aim of parameter estimation. In principle,
the extended framework can be generalised to model selection and prediction aims.
Exploring this will be a further avenue for future work.
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Supplementary Material

Supplementary Material for “Bayesian decision-theoretic design of experiments under
an alternative model” (DOI: 10.1214/21-BA1286SUPP; .pdf).
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