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Biclustering via Semiparametric Bayesian
Inference†∗

Alejandro Murua‡ and Fernando Andrés Quintana§

Abstract. Motivated by classes of problems frequently found in the analysis of
gene expression data, we propose a semiparametric Bayesian model to detect
biclusters, that is, subsets of individuals sharing similar patterns over a set of
conditions. Our approach is based on the well-known plaid model by Lazzeroni
and Owen (2002). By assuming a truncated stick-breaking prior we also find the
number of biclusters present in the data as part of the inference. Evidence from a
simulation study shows that the model is capable of correctly detecting biclusters
and performs well compared to some competing approaches. The flexibility of the
proposed prior is demonstrated with applications to the analysis of gene expression
data (continuous responses) and histone modifications data (count responses).
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1 Introduction

Assume we record measurements {yij} corresponding to a sample of i = 1, . . . , n indi-
viduals (e.g. genes) on each of j = 1, . . . , J conditions. The data structure can thus be
summarized in matrix form. Assume also the main interest is in identifying subsets of
individuals sharing consistent patterns over a subset of conditions. In other words, we
are concerned with the detection of biclusters (Pontes et al., 2015). Such problems arise
frequently in the analysis of gene expression data (Tanay et al., 2002).

Several methods have been proposed in the literature to tackle the problem of finding
biclusters in data coming in this matrix format. Biclustering was first discussed by
Hartigan (1972) in the context of creating a method for simultaneously grouping rows
and columns of a matrix (coining for this the term direct clustering). A generic form
of approaching this problem consists of clustering analysis, in which individuals and
conditions are each separately partitioned and the combined subsets later assessed.
This idea could be criticized because of the potentially large number of clusters being
created, including possibly meaningless subsets, and also because no overlapping is
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allowed among selected subsets. Nevertheless, this has been traditionally a common way
to tackle the problem of biclustering. Approaches based on this idea can be found in
Getz et al. (2000) and in Tang and Zhang (2005). The case of latent block models (LBM,
see, e.g. Govaert and Nadif, 2014) is one such instance where independent partitions are
considered for rows and columns of the data matrix. These partitions are inferred from
the data in a model-based fashion. For a review of computational approaches to LBM
see also Bouveyron et al. (2019). A different approach was considered by Cheng and
Church (2000), who proposed an algorithm based on identifying submatrices with similar
entries, as measured by a mean squared residue. Tanay et al. (2002) proposed SAMBA
(Statistical-algorithmic method for bicluster analysis), which is based on viewing the
data structure as a bipartite graph with edge weights assigned according to a certain
probability model in such a way that heavy sub-graphs coincide with biclusters with
high probability. The Factor analysis for bicluster acquisition (FABIA), developed by
Kasim et al. (2010) considers instead a class of multiplicative models that exploits a
sparse factorization of the data matrix that allows for heavy-tailed data, paired with a
model selection approach to detect biclusters under a Laplacian prior to enforce sparsity.
For a recent review on these and other bicluster methods for gene expression data, see
Pontes et al. (2015), and for the case of biclustering discrete multivariate data, see
Fernández et al. (2019).

Other model-based approaches devised for detection of biclusters are available in the
literature. One traditional alternative (on which the approach to be discussed later is
based) is the plaid model (Lazzeroni and Owen, 2002). In the plaid model, the expected
value for each yij is computed by summing contributions from each bicluster, and bi-
clusters need not be disjoint, i.e. they may have nonempty overlapping. An improvement
of their original algorithm for finding biclusters is described in Turner et al. (2005a).
Extensions of this approach were considered, with different forms of prior construction,
in Zhang (2010), Chekouo and Murua (2015a), and Chekouo et al. (2015). Under a
parametric prior framework for the plaid model, Caldas and Kaski (2008) discuss an
efficient implementation using a collapsed Gibbs sampler. Gu and Liu (2008) present an
approach that, based on identifiability considerations, restricts biclusters to overlap on
either rows or columns. Many of these approaches involve specifying a fixed number of
biclusters. A different approach that does not involve this restriction was discussed in
Xu et al. (2013). They proposed a nonparametric Bayesian Poisson model for histone
modifications (HMs) by means of a zero-enriched Pólya urn model (Sivaganesan et al.,
2011) that allows for clustering of HMs and also accounting for the fact that many
HMs are idle and play no role for clustering. They also allow for each subset of HMs
to define their own clustering of genomic locations, thus constructing a nested struc-
ture of biclusters. We stress here that by construction, the nested biclustering structure
does not allow for overlapping. Ni et al. (2020) proposed a model for feature allocation
that can also produce overlapping biclusters of patient-disease and symptom-disease,
but using a completely different approach than ours, based on matrix factorizations.
Their model is in reality specifically designed for the case of categorical entries in the
data matrix. Li et al. (2020) described a mixed effects model for periodontal data that
takes into account the spatial configuration of teeth, using a non-overlapping bicluster
construction that features repulsion to induce sparsity by way of a determinantal point
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process. Ren et al. (2020) propose a method that identifies biclusters of patients sharing
similar patterns over time, with applications to monitoring data on 24-hr ambulatory
blood pressure. They construct the biclusters by means of a Dirichlet process prior at the
level of patients and a baseline distribution with time change points. And recently, Zhou
et al. (2021) consider Dirichlet-multinomial mixtures and matrix factorizations for the
analysis of taxon abundance data.

In this work, we revisit the plaid model with a nonparametric prior that allows us
to detect biclusters that may have nonempty intersections, while at the same time lift-
ing the restriction of fixing a priori the number of biclusters. At the heart of the plaid
model definition is the introduction of two binary matrices (details will be given later
in Section 2) that indicate whether genes and conditions form part of a certain biclus-
ter. These matrices also imply a null cluster that has the purpose of concentrating the
background noise. Our hierarchical model construction specifies the prior distribution of
these matrices by way of two separate stick-breaking processes on latent variables that
define these binary quantities via thresholding. Furthermore, we model the collection of
latent variables defining the binary matrix for genes by way of a conditional autoregres-
sive specification. This allows us to introduce information on which genes are a priori
more likely to be part of a given bicluster. A byproduct of the double stick-breaking con-
struction is that we can infer the number of biclusters. In practice, we assume a certain
maximum K of biclusters, which can be large enough to pose no practical restriction.
At the same time, we introduce a penalization term that discourages the formation of
very large biclusters that may otherwise be detected. Large biclusters are usually hard
to interpret and, many times, meaningless. The prior construction is general and can be
coupled with specific sampling models such as a Gaussian, unimodal or Poisson likeli-
hood, depending on particular needs and/or data features. We illustrate and implement
all these instances, and compare results with other competitor approaches that were
designed for data structures matching our inferential target. The comparisons are car-
ried out in the context of extensive simulations studies and also with datasets already
analyzed elsewhere.

The main novelties of this paper can then be summarized as follows: (1) we free the
traditional plaid model from the restriction of a pre-specified number of biclusters, while
allowing for a wide range of possible sampling models to accommodate for various data
formats; (2) we define the binary indicator matrices by way of a novel approach based
on thresholding a double stick-breaking prior that allows us to provide inference on the
number and conformation (i.e. genes and conditions) of possibly overlapping biclusters;
and (3) we introduce a penalty prior that controls the size of biclusters.

This paper is organized as follows. Section 2 describes the proposed hierarchical
model and the corresponding prior construction. The model has several components,
and we describe each of these, discussing their role and impact on the resulting inference.
A detailed posterior simulation strategy is described in an accompanying Supplemen-
tary Materials (Murua and Quintana, 2021) file, and for convenience, a summary of
some of its less standard aspects is presented in Section 2.3. A simulation study aimed
at evaluating and comparing model performance is described in Section 3. Data illus-
trations for both continuous and count outcomes are described in Section 4. The article
concludes with a discussion in Section 5.
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2 The modeling approach

The proposed model is of hierarchical type and builds on the plaid model. As discussed

below, the sampling model adopts either an additive or multiplicative form depending

on the type of data available. The prior involves a double stick-breaking construction

that is used to overcome the restrictions posed by fixing a priori de number of biclusters.

In what follows, we specify all of the model components, discussing their role for the

desired inference problem, namely, uncovering meaningful biclusters.

2.1 Sampling model

We start our discussion with the definition of the mean response, and then proceed to

the specification of sampling distribution. We deal here mainly with the continuous and

count response cases, which are the most frequently found in practical applications from

fields such as genetics.

Plaid model for signals in sampling model

Let yij denote the score collected for individual (say, gene) 1 ≤ i ≤ n and condition

1 ≤ j ≤ J . The data structure is then of matrix form, with individuals typically

represented as rows and conditions as columns. We consider below the case of continuous

and count scores, which may naturally arise in various applications. Our approach for

the detection of biclusters, i.e., subsets of individuals exhibiting similar behavior across a

subset of conditions or columns, is based on the plaid model introduced by Lazzeroni and

Owen (2002). In the continuous response case, this model expresses each yij as the sum

of signals coming from potentially several biclusters plus a noise term. To explain the

main idea, we start by introducing the bicluster indicators. Let ρ = {ρi�} and κ = {κj�}
be matrices with binary entries defining the biclusters in the following way: gene i and

condition j are part of bicluster 1 ≤ � ≤ K provided that ρi� = κj� = 1. Note that a

maximum number K of possible biclusters is assumed (this number can be assumed to

be large enough to pose no practical restriction). Also define γij =
∏K

�=1(1 − ρi�κj�),

and note that γij = 1 only when gene i and condition j are not part of any bicluster. We

refer to this cluster as the null cluster, representing what we term as the noise present

in the data. The null cluster was first introduced by Chekouo and Murua (2015a), and

was also used in Chekouo et al. (2015). Xu et al. (2013) also used a similar null cluster,

but they defined it as a collection of subclusters nested inside larger biclusters. The

plaid model assumes a sampling model where responses are conditionally independent

given the bicluster matrices ρ and κ. In our work, depending on the nature of the data,

the plaid model is either an additive or a multiplicative model, the latter case arising

as an additive specification in the log-scale. Details follow.

Sampling model for continuous responses: In the case of continuous data, the

mean response under the plaid model, μij
.
= E(yij), is assumed to be additive
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in the row and column effects. Specifically, it is expressed as

μij =

K∑
�=1

(μ� + αi� + βj�)ρi�κj� + γijμN , i = 1, . . . , n, j = 1, . . . , J. (2.1)

Sampling model for count responses: In the case of count responses (e.g., Poisson
data), the mean response in the plaid model is assumed to have multiplicative row
and column effects (or equivalently, additive in a logarithmic scale). It is expressed
as

μij =

[ K∏
�=1

exp
{
(μ�+αi�+βj�)ρi�κj�

}]
exp

{
γijμN

}
, i = 1, . . . , n, j = 1, . . . , J.

(2.2)

The rightmost term in (2.1) or (2.2) represents the background noise or null cluster, i.e.,
everything that does not belong to a bicluster. Under either case, the sampling level
parameters αi1, . . . , αiK and βj1, . . . , βjK are not identified and need to be constrained.
A standard procedure for doing so consists of imposing the restriction

∑n
i=1 αi�ρi� =∑J

j=1 βj�κj� = 0 for all 1 ≤ � ≤ K. This constraint can be easily implemented with a
change of variables. Concretely, write α� = (α1�, α2�, . . . , αn�), and denote the number
of rows in bicluster � as r� =

∑n
i=1 ρi�. The constraint on α� can be expressed as

α� = V �a�, for an n-dimensional vector a�, and an n×n matrix V � whose components
are given by (V �)ii = ρi�(1− (1/r�)), and (V �)ij = −ρi�/r� if i �= j. In other words,

αi� = ρi�ai� −
1

r�

n∑
k=1

ρk�ak� = ρi�ai� −
1

r�
ρ′
�a�,

where ρ� = (ρ1�, . . . , ρn�). It is easily seen that with these transformations,
∑n

i=1 αi�ρi�=
ρ′
�α� = 0, for all �. So, instead of working with α�, we can work with a�. In a similar

manner, we can replace the vector β� with a vector b�, so that β� = W �b�, where

(W �)ii = κi�(1 − (1/c�)), and (W �)ij = −κi�/c� if i �= j, and where c� =
∑J

j=1 κj� is
the number of columns in bicluster �. Prior choices for these parameters are discussed
below.

Error distribution for sampling model

So far we have defined the mean of the signals through (2.1) or (2.2), depending on
the data type under consideration. To properly define a sampling model, we consider
two versions of likelihood function: Gaussian, and Poisson. The first is appropriate for
signals on a continuous scale, while the second is suitable for count data such as in the
histone modification (HMs) example discussed in Section 4. In defining the sampling
model we recall that the distribution for observed responses should combine the signals
from potentially overlapping biclusters and also those coming from the background
noise. The likelihood models we use are thus:
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(a) Gaussian likelihood model: In this case we combine the Gaussian signals with
three different specifications for the noise term that we have found useful in prac-
tice. These choices result in the sampling models p(yij |ρ,κ) that are specified in
Table 1 below:

Noise p(yij |ρ,κ)

Gaussian exp
{
− 1

2σ2
e
(yij − μij)

2(1− γij)− 1
2σ2

0e
(yij − μN )2γij

}
Uniform exp

{
− 1

2σ2
e
(yij − μij)

2(1− γij)− γij log(2ξN )1{yij∈[μN−ξN ,μN+ξN ]}

}
Unimodal exp

{
− 1

2σ2
e
(yij − μij)

2(1− γij)

+
(
1
2 log(π/[2σ

2
0e]) + log

(
1− Φ(|μN − yij |/σ0e)

))
γij

}
Table 1: Likelihood models in the Gaussian case with different distributional assump-
tions for the background noise.

These choices are motivated to provide a sensitivity assessment to specific dis-
tributional assumptions for the background noise. The third choice consists of
noise modeled as a unimodal distribution based on the Rayleigh distribution.
More precisely, by employing the unimodal distributions representation derived
by Khintchine (1938), and following the work of Paez and Walker (2018), we find
that any unimodal density fY (y) can be expressed as

fY (y) =

∫
(2s)−11s∈(μ−s,μ+s)fS(s)fμ(μ) dsdμ.

Even though the Khintchine representation just described is general, we are mainly
interested in assessing how departures from normality assumptions for the back-
ground noise component affect the likelihood model. We thus consider a para-
metric mixture specification in the above unimodal representation and leave the
nonparametric aspects of the model for the definition of prior distribution of the
binary matrices ρ and κ, as detailed below. Under this view, we have found in
practice the Rayleigh distribution to be a useful choice for mixing distribution.
This is because by taking fS(s) = (s/σ2

0e) exp(−s2/[2σ2
0e]) we get a closed-form

expression:

fY (y) =

∫
(2σ2

0e)
−11y∈(μ−s,μ+s) exp(−s2/[2σ2

0e])fμ(μ) dsdμ

=

∫
fμ(μ)dμ

∫ +∞

|μ−y|
(2σ2

0e)
−1 exp(−s2/[2σ2

0e]) ds

=

√
2π

2σ0e

∫ ∫ +∞

|μ−y|

1√
2πσ0e

exp

(
− s2

2σ2
0e

)
fμ(μ) dsdμ

=

√
2π

2σ0e

∫ {
1− Φ

(
|μ− y|
σ0e

)}
fμ(μ)dμ,
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which simplifies to what is indicated in Table 1. The prior specification of this part
of the model proceeds by assuming standard distributions for mean and variance
parameters:

{μ� : � ≥ 1} iid∼ N(0, σ2
μ), μN ∼ N(0, σ2

μ,N ) (2.3)

and

σ−2
α ∼ Gamma(aα, bα), σ−2

β ∼ Gamma(aβ , bβ), σ−2
μ , σ−2

μ,N
iid∼ Gamma(aμ, bμ),

(2.4)
σ−2
e ∼ Gamma(ae, be). (2.5)

In addition we assume

σ−2
0e ∼ Gamma(a0e, b0e) under Gaussian noise, or

ξ−2
N ∼ Gamma(a0e, b0e) under uniform noise.

(2.6)

Finally the specification of this part of the model is completed by assuming that

{ai� : i ≥ 1, � ≥ 1} iid∼ N(0, σ2
α) and {bj� : j ≥ 1, � ≥ 1} iid∼ N(0, σ2

β).
(2.7)

(b) Poisson likelihood model: In this case, we have found it useful to assume that
a realization in the null cluster comes from a Beta negative binomial distribution
with parameters (r, αN , βN ). Under this assumption, the density of an observation
y in the null cluster is given by

pN (y|r, αN , βN ) =
Γ(r + y)

Γ(y + 1)Γ(r)

Γ(αN + r)Γ(βN + y)

Γ(αN + βN + r + y)

Γ(αN + βN )

Γ(αN )Γ(βN )

=
B(αN + r, βN + y)

yB(r, y)B(αN , βN )
,

where B(·, ·) stands for the beta function. We suppose that βN is fixed (for exam-
ple, we can fix βN to a small positive value). Therefore, the likelihood model for
count data can be expressed as

p(yij |ρ,κ) = exp

{
(1− γij)[yij logμij − μij − log(yij !)]

+ γij
[
logB(αN + r, βN + yij)− log

(
yijB(r, yij)B(αN , βN )

)]}
.

Unlike the previous Gaussian case, we find it convenient to assume the priors on
the bicluster means {μ�}, and unconstrained row and column effect coefficients
{ai�} and {bj�} to be given by i.i.d. log-gamma distributions, that is, π(μ�) ∝
exp(βGμ� − eψ(βG)+μ�),

π(ai�) ∝ exp(βGai� − eψ(βG)+ai�), π(bj�) ∝ exp(βGbj� − eψ(βG)+bj�),

where βG is a constant, and ψ(·) denotes the digamma function. Note that this
choice gives a zero-mean prior to each of the {μ�}, {ai�} and {bj�} parameters
inside the exponential expression in (2.2).
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2.2 Hierarchical prior structure

An essential component of the plaid model is the pair of binary matrices indicating
bicluster membership. Recall that gene i and condition j form part of bicluster 1 ≤ � ≤
K provided that ρi� = κj� = 1. The prior distribution we construct, which is explained
in detail below, has three main distinct goals: (1) to allow for overlapping biclusters by
adopting the plaid model, but without a pre-specified number of biclusters; (2) to express
prior beliefs on how genes or rows interact with each other when forming biclusters; and
(3) we use information on the expected proportion of data that will form the biclusters,
without restricting the number of detected biclusters in any way. The third goal is
specifically designed to help avoiding the detection of too many (potentially spurious or
hard to interpret) biclusters. We describe all these elements next.

Prior for matrix κ

We assume first a maximum number K of biclusters, taken to be large enough so that
it does not restrict in any practical way the desired inference. Next, the probabilities of
bicluster membership are defined by way of a stick-breaking prior (Ishwaran and James,
2001) truncated at K, which frees us from the restriction just described. The main idea
here is to use an ordered set of latent thresholds (the ζ�’s below), computed by determin-
istically transforming the probability mass (the t�’s below) induced by a stick-breaking
process. This way, elements are assigned to biclusters according to a thresholding pro-
cess that employs a collection of latent scores (the Tj�’s below). Specifically, for the case
of the column membership variables κ we assume a truncated process construction of
the form

t1 = U1 and t� = U�

�−1∏
k=1

(1− Uk) for � = 2, . . . ,K − 1, (2.8)

where
U1, U2, . . . , UK−1

iid∼ Beta(1,Mc) and Mc ∼ Gamma(amc, bmc).

Setting UK = 1 we have the same weight distribution as a truncated version of the
Dirichlet process (Sethuraman, 1994) conditional on Mc, and in particular, P (

∑K
�=1 t� =

1 | Mc) = 1. Based on the previously constructed stick-breaking process we specify the
latent thresholds as ζ1 = 0 = Φ−1(1/2), and

ζ� = Φ−1
(
{1 + t1 + · · ·+ t�−1}/2

)
, 2 ≤ � ≤ K − 1, (2.9)

where Φ−1(·) denote the inverse of the standard normal CDF. The binary matrix κ is
then defined as

κj� = I{Tj� > ζ�}, where Tj�
iid∼ Normal(0, 1), (2.10)

and I{A} denotes the indicator function of the set A. This defines a categorical assign-
ment of bicluster memberships with values ranging from 1 to K, and with a stochastic
reduction in the underlying probabilities, to discourage the formation of small spurious
biclusters.
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Prior for matrix ρ

For the gene selection matrix ρ we set up a prior that uses available information de-
scribing which genes are more likely to form part of the same group. This information is
commonly available in biclustering for genetic problems. See the discussion below. We
translate this information into a prior distribution in terms of a neighboring structure,
which is a natural way of encoding known relations among genes. We construct the joint
prior distribution for ρ by resorting to a sequence of latent multivariate normal ran-
dom vectors that follow a conditionally autoregressive (CAR) specification, and another
stick-breaking process similar to the one describing the prior on κ. These elements are
described next.

We start with the first column of ρ, i.e. (ρ11, . . . , ρn1)
′. Let Z ′

1 = (Z11, . . . , Zn1) be
a corresponding random vector of latent scores. We assume that

ρi1 = I{Zi1 > 0}, i = 1, . . . , n, (2.11)

which is a common way to define a set of binary outcomes in terms of a deterministic link
involving the latent scores. See, e.g. Albert and Chib (1993). To build dependence in the
joint distribution of the binary variables, we consider a multivariate normal distribution,
expressed conditionally as

Zi1 | Z−i
1 ∼ N

(
n∑

r=1

qirZr1, d
−1
i

)
, (2.12)

where Z−i
1 is Z1 with the ith component removed, qi1r is non-zero if and only if i1 ∼ r

and r �= i1, that is, if the distinct genes i1 and r are a priori believed to belong to the
same bicluster (more on this below), and di is a precision (reciprocal of the variance)
parameter. Note then that qii = 0 by definition. Let Q be the n × n matrix with
Qii = di and Qir = −diqir. Besag (1974) proved that the CAR assumption (2.12)
defines a valid joint multivariate normal distribution provided that Q is symmetric and
positive definite, in which case we have that

Z1 ∼ Nn

(
0,Q−1

)
. (2.13)

An additional consideration is that (2.11) implies lack of identifiability under changes
of scale of Zi1. To overcome this deficiency, we choose di = 1 for all 1 ≤ i ≤ n in the
definition of Q. The relation given by the prior belief membership “∼” induces a graph
with vertices given by 1, . . . , n and edges connecting i1 and i2 if and only if i1 ∼ i2.
The degree νi of any vertex i in the graph is given by its neighborhood size, that is,
νi = Card(ir : i ∼ ir). The matrix A = (Aij) given by Aij = 1 if i ∼ j, i �= j, and zero
otherwise, is known as the adjacency matrix. The matrix L = diag(ν1, . . . , νn) − A is
the so-called Laplacian of the graph. When di = 1 for all 1 ≤ i ≤ n, and qir = ν−1

i , the
matrix Q coincides with the random-walk normalized Laplacian matrix. We work with
a slight modification of this matrix by setting qir = λ/νi, for λ ∈ R. Thus, our model
for Q corresponds to a generalized Laplacian. Moreover, we assume that all degrees νi
are the same (that is, that all points have the same number of neighbors in the graph).
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Our generalized Laplacian is diagonally dominant provided that |λ| < 1. This latter
condition ensures the invertibility of Q. Therefore, we assume a prior distribution

λ ∼ Beta(aλ, bλ) (2.14)

for this parameter that so defines the prior mean for the latent variables {Z1�}.
The remaining columns of ρ are defined through additional latent scores. Denote

these columns by Z2,Z3, . . .. We assume these to be i.i.d with the same distribution
as Z1, given in (2.13). Our prior construction aims at encouraging a change in the
number of genes participating in subsequent biclusters, and that row sizes of these
are stochastically sorted in decreasing order, with largest biclusters (in number of rows)
appearing first. To this effect, we move the cutoff in (2.11) and consider a stick-breaking
construction of the form

w1 = V1 and w� = V�

�−1∏
k=1

(1− Vk), � ≥ 2, (2.15)

where
V1, V2, . . .

iid∼ Beta(1,Mr) and Mr ∼ Gamma(amr, bmr).

As in the case of the column variables κ, this prior structure implies P (
∑∞

�=1 w� =
1 | Mr) = 1. With this, we assume the additional columns of ρ to still be defined via
thresholding, but change (2.11) to

ρi� = I{Zi� > θ�}, 1 ≤ i ≤ n, � ≥ 1, (2.16)

where θ1 = 0 = Φ−1(1/2), and

θ� = Φ−1

(
1 + w1 + · · ·+ w�−1

2

)
, � ≥ 2. (2.17)

Note that, by construction, 0 = θ1 < θ2 < θ3 < · · · and θ� ↑ ∞ as � → ∞ with
probability 1.

The above definition does not enforce a maximum number of biclusters as described
earlier. To set this maximum number to K, we simply truncate the stick-breaking con-
struction as was done when defining the prior for κ. We achieve this by letting VK = 1,
so that w1 + · · · + wK = 1 surely, and furthermore set θK+1 = ∞ in (2.16). Of course
we can set a large enough value of K so as to represent no practical limitation in our
capacity to detect biclusters.

The neighborhood structure of genes

There are several ways to incorporate prior beliefs in the gene graph edges. A sim-
ple solution consists of considering the distances between genes (e.g., correlation or
Euclidean distances), and placing an edge between the knn-nearest-neighbors of every
gene. A more involved distance corresponds to using Lin’s pairwise similarities (Lin,
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1998; Resnik, 1995) between genes obtained from gene ontologies (Ashburner et al.,
2000). These latter distances were used in Chekouo et al. (2015). We adopt here a sym-
metrized version of the knn graph. In practice knn depends on the size of the graph. In
our applications and simulations we used the Euclidean distances, and set knn to 30 as
recommended by authors using similar graphs (Stanberry et al., 2008; Chekouo et al.,
2015).

A penalty on the number of elements in biclusters

We have found it useful to incorporate in the model a prior belief on the proportion of
data that actually forms biclusters under each of the likelihood models described earlier.
This is done so as to avoid the formation of biclusters that are too large when there is
little evidence that they are present in the data. In principle, the prior belief is passed
as a geometric distribution, so that

p

( K∑
�=1

n∑
i=1

J∑
j=1

ρi�κj� = m

)
∝ exp{−λpm}.

However, note that

exp
{
−λp

K∑
�=1

n∑
i=1

J∑
j=1

ρi�κj�

}
=

n∏
i=1

J∏
j=1

exp
{
−λp

K∑
�=1

ρi�κj�

}
.

Thus, we may see the penalty as a product of nJ distributions

pij

( K∑
�=1

ρi�κj�

)
∝ exp

{
−λp

K∑
�=1

ρi�κj�

}
.

Taking into consideration the normalizing constants of these probability mass functions,
we get nJ identical Binomial(K, e−λp/(3 + e−λp)) distributions

pij

( K∑
�=1

ρi�κj� = m

)
=

(
K

m

)
e−λpm

3K−m

(3 + e−λp)K
.

This result comes from the fact that for each pair (i, j)

∑
ρ,κ

exp
{
−λp

K∑
�=1

ρi�κj�

}
=

K∑
m=0

∑
(ρ,κ)∈Rm

e−λpm,

where Rm = {(ρ, κ) :
∑K

�=1 ρi�κj� = m}. The cardinalities of the sets Rm, for m =
0, . . . ,K are computed next. To have exactly m biclusters for which ρi�κj� = 1, we need
to have ρi� = 1 and κj� = 1 simultaneously exactly m times. So for each � = 1, . . . ,K,
ρi�κj� = 1 only 2J−12n−1 times, and ρi�κj� = 0, the remaining (2J2n − 2J−12n−1) =

3× 2J−12n−1 times. So, |Rm| =
(
K
m

)
3K−m

(
2J−12n−1

)K
. Therefore

K∑
m=0

∑
(ρ,κ)∈Rm

e−λpm =
(
2J−12n−1

)K K∑
m=0

(
K

m

)
3K−me−λpm =

(
2J−12n−1

)K
(3+e−λp)K .
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The desired penalty is now introduced by assuming independent identically distributed
Binomial distributions for each point (i, j). With this, the prior on the number of obser-
vations in biclusters is specified through a Binomial distribution with parameters nJK,
and e−λp/(3 + e−λp), that is

p

( K∑
�=1

n∑
i=1

p∑
j=1

ρi�κj� = m

)
= e−λpm

(
nJK

m

)
3nJK−m/(3 + e−λp)nJK .

The mean and variance of this distribution depend on the maximum number of clus-
ters K. To lessen this dependency, we replace λp by logK + λp. This change results
in the expected number of observations in biclusters equal to nJe−λp/(3 + e−λp/K) ≈
e−λpnJ/3, and a variance of nJ3e−λp/(3+e−λp/K)2 ≈ e−λpnJ/3 for moderate to large
values of K. This can also be derived from the Poisson approximation to the binomial,
noting that

nJK × e− log K+λp

3+e− log K+λp

K→∞−→ nJe−λp/3,

which is independent ofK. That is, by replacing λp by logK+λp we obtain a distribution
on the number of observations in biclusters very close to a Poisson with mean e−λpnJ/3.
To choose a reasonable value for λp, we can set the mean of the Binomial distribution

to a value close to the prior belief on the number of points that form clusters: λ̂p =
− log(3EB/nJ), where EB is the number of observations that are expected to form part
of biclusters. Alternatively, one can also set a prior on λp, for example, λp ∼ Exp(θp),

with θ−1
p = λ̂p. In our experiments, this prior works well.

2.3 Implementation

To implement inference for the models discussed earlier we use a hybrid MCMC posterior
simulation scheme. A complete description of all the required steps is given in the
Supplementary Materials file. This also includes the specific changes needed for each
of the likelihood models adopted here. Nevertheless, we offer in this section a general
discussion and summary of the main steps involved in the implementation.

The full model considers likelihood location-level parameters {μ�}, {ai�}, {bj�},
{ρi�}, {κj�} and μN . In addition to these, the model involves various variance parame-
ters (some of which change with the assumptions on background noise distribution), the
CAR matrix parameter λ, the penalty parameter λp, and the stick-breaking parameters
Mc and Mr. To begin this summary, recall that the bicluster row membership indi-
cators {ρi�} are by construction deterministic functions of {Zi�}, and {w�}, according
to (2.16) and (2.17). Moreover, the {w�} parameters are also deterministic functions of
the stick-breaking quantities {V�}, as seen from (2.15). Similarly, the bicluster column
membership indicators {κj�} are deterministic functions of the {Tj�} and {U�} param-
eters, as seen from (2.10), (2.8) and (2.9). Thus, in the sampler, the {ρi�} and {κj�}
parameters are replaced by {Zi�}, {V�}, {Tj�} and {U�}. In the Gaussian case the full
conditionals for mean and fixed effects are available in closed form, while in the Poisson
case, Metropolis-Hastings (MH) moves are proposed. In addition, the full conditionals
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for variance parameters in the Gaussian case also have closed-form expressions, and so
is the case of the stick-breaking parameters Mr and Mc.

We discuss next some of the special moves required to sample from those parameters
defining the binary matrices ρ and κ, which as described earlier, are constructed via
thresholding. For the row labels, ρi� = I{Zi� > θ�} together with (2.17) imply that
the full conditional distribution of Zi� can be written as the mixture of two truncated
normal distributions. The full conditionals of the stick breaking variables V� are more
difficult to handle. Let ηi,�+1 denote the variable

(
2Φ(Zi �+1)− (1 + w1 + · · ·+ w�−1)

)
/

�−1∏
k=1

(1− Vk),

where Φ(·) stands for the standard normal cdf. Set μ
(0)
ij,� =

∑K
k �=�(μk+αik+βjk)ρikκjk+

γijμ0, and μ
(1)
ij,� = μ

(0)
ij,� + (μ� + αi� + βj�)κj�, and define g

(ij,�)
0 = g

(
yij |μ(0)

ij,�, else
)
,

g
(ij,�)
1 = g

(
yij |μ(1)

ij,�, else
)
, where g(·|μ(r)

ij,�, else) stands for the likelihood of the model

(i.e., either, Gaussian or Poisson), evaluated at μij,� = μ
(r)
ij,�, r = 0, 1, and “else” refers

to all other model parameters fixed at their currently imputed values. In Section A.4.1
of the Supplementary Materials file we show that

P (V�|V−�, y,Θ)

∝ (1− V�)
M−1

J∏
j=1

⎛
⎝ ∏

i:ηi,�+1>V�

gij, �+1
1

⎞
⎠

⎛
⎝ ∏

i:ηi,�+1≤V�

gij, �+1
0

⎞
⎠ e−[λp+log(3)]mΓ(nJK + 1)

Γ(m+ 1)Γ(nJK −m+ 1)
,

(2.18)

with V−� = {V1, . . . , VK−1} \ {V�}, where the rightmost term comes from the penalty

prior, and m =
∑n

i=1

∑p
j=1

∑K
� ρi�κj� is the total size of the biclusters. Note that

there are about 2nJ possible combinations in the above product term (depending on
the values of the κ-labels). Therefore, it is more efficient to consider a MH sampling for
the stick-breaking variables. For example, we could sample proposal updates from the
associated Beta prior distribution, or consider transformations to near-normality of the
stick-breaking variables followed by MH moves that mimic the suggestion of Roberts
and Rosenthal (2009). More details are provided in Section A.4 of the Supplementary
Materials file.

A similar type of full conditional is obtained for the latent Tj� scores, related to the
column labels. Here, we again obtain that the full conditionals are mixtures of truncated
normal distributions and MH moves are considered when updating the stick-breaking
variables U� (see Sections A.1 and A.4.2 in the Supplementary Materials file).

Finally, the full conditional distribution of λ implied by assumptions (2.12) through
(2.14) has a complicated form, but we are able to derive a good approximation as

p(λ | else) ≈ C λaλ−1(1− λ)bλ+
nK
2ν −1 (1 + λ/ν)

nK
2 exp

{(
λ/2ν

)
trace

(
AV̂

)}
,
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where V̂ =
∑K

�=1 Z�Z
′
�/K, C is the corresponding normalizing constant, which we

evaluate numerically, ν is the common degree of the graph, and the matrix A is the
adjacency matrix associated with the data graph (see Section 2.2).

3 Simulation study

We next describe a simulation study designed to evaluate the performance of the pro-
posed model, and to compare it against some alternative methods designed to uncover
biclusters in the same setting we have described. These methods are (1) the algorithm
by Cheng and Church (2000); (2) the plaid method of Lazzeroni and Owen (2002), as
improved by Turner et al. (2005a); and (3) the penalized biclustering method described
in Chekouo and Murua (2015a). The first two methods are implemented in the R pack-
age biclust (Kaiser and Leisch, 2008), while the third has been implemented in Java

and is publicly available on the web-sites of the authors (Chekouo and Murua, 2015b).
While other methods are available, as described in Kasim et al. (2017), we have limited
this comparison to some of the model-based approaches, discarding purely algorithmic
alternatives.

Data were generated according to a number of different scenarios based on the
number of biclusters K ∈ {2, 4, 8, 16}, the type of overlap between biclusters, either
conditions-only overlap (C, or columns-only overlap), or conditions and genes overlap,
(C&G, or row-and-columns overlap), and the type of noise, either normal (Gaussian),
uniform, or unimodal noise. Three data sizes were considered. The smaller datasets
generated consist of 355 rows and 17 columns, a choice that mimics the well-known
yeast cycle dataset that recorded the gene expressions of yeast over seventeen different
conditions (Cho et al., 1998; Mewes et al., 1999; Tavazoie et al., 1999; Yeung et al., 2001).
Two large datasets were also considered. They consist respectively of 2000 rows and 38
columns, and 2000 rows and 76 columns. These mimic the retina detachment dataset
GSE28133 found at NCBI/GEO (Edgar et al., 2002) and used by several researchers
(Delyfer et al., 2011; Chekouo et al., 2015). The synthetic data were generated following
the setup used by Chekouo et al. (2015). Sizes and positions of biclusters were visually
generated so as to have sufficient but not extensive overlap. Some datasets are illustrated
in Figure 1.

Figure 1: Some examples of datasets used in the comparison study. The data matrices
depicted are transposed only for convenience of graphical illustration.
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For each bicluster k ∈ {1, . . . ,K}, the overall bicluster mean was set to a draw
from a normal distribution with mean k + 1 and unit variance. Row effects were
generated as realizations of a multivariate normal with mean vector given by αki =
2/(1+exp{−i})− ᾱk, where ᾱk = mean{2/(1+exp{−i}) i = 1, . . . , |rk|} (recall that rk
and ck denote, respectively, the number of rows and the number of columns in biclus-
ter k). The column effects were generated similarly by replacing rk by ck. We devised
scenarios corresponding to low and to high variance. The low variance scenario has the
row and column effects variances as well as the bicluster mean variances set to 2.0. The
error variance was drawn from a gamma distribution with parameters 2.0 and 5.0. The
high variance scenario has the row and column effects variances as well as the bicluster
mean variances set to 10.0. The error variance was drawn from a gamma distribution
with parameters 1.5 and 15.0. For the larger datasets (with 76 columns), we also con-
sidered a moderate variance scenario. This has the row and column effects variances
as well as the bicluster mean variances set to 6.0. The error variance was drawn from
a gamma distribution with parameters 2.0 and 12.0. For the three scenarios, the noise
parameters were set as follows:

Normal Noise: in this case the data were generated from a zero-mean normal distri-
bution with variance defined as twice the error variance;

Uniform Noise: in this case each data point in the null cluster is generated as a draw
from a uniform distribution in (−5|u1|, 5|u2|), where for each data point, the pair
(u1, u2) is a draw from a standard bivariate normal distribution;

Unimodal Noise: in this case each point is a draw from a Rayleigh-standard-Normal
unimodal distribution with Rayleigh parameter σ2

0e = 20.

We considered five replications for each data scenario described above, except for sce-
narios associated with the larger dataset (76 columns) which were replicated according
to the Graeco-Latin square design displayed in Table 2. Three factors were simultane-
ously varied: variance scenario {Low, Moderate (Mod), High}, noise distribution used to
generate the data {normal, uniform, unimodal}, and number of true biclusters {4, 8, 16}.
A fourth factor, the noise model assumed by our model, denoted here by SbCAR for
the stick-breaking-CAR prior, was also varied. Because the larger datasets are consid-
erably more computational demanding, this design was conceived so as to measure the
performance of the different algorithms on several factors, but with less runs.

The biclustering results were evaluated using the F1-measure (Santamaria et al.,
2007; Turner et al., 2005b; Chekouo et al., 2015) of agreement between the true bicluster-
ing and the estimated biclustering yielded by the different methods that were compared.
The F1-measure is the harmonic mean between the so-called “recall” and “precision.”
For given biclusters B1 and B2, these are defined as follows: recall = |B1 ∩ B2|/|B2|,
and precision = |B1 ∩ B2|/|B1|, so that F1(B1, B2) = 2(1/ recall +1/ precision)−1.
Given two biclustering collections A = {A1, . . . , AG} and B = {B1, . . . , BK}, we de-
fine for each Ai ∈ A, F1(Ai,B) = maxB∈B F1(Ai, B), and similarly, for each Bj ∈ B,
F1(Bj ,A) = maxA∈A F1(Bj , A). We measure the similarity between the two biclustering
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Variance
Noise Low Mod High

normal
Biclusters = 4 Biclusters = 8 Biclusters = 16

SbCAR = normal SbCAR = unimodal SbCAR = uniform

unimodal
Biclusters = 8 Biclusters = 16 Biclusters = 4

SbCAR = uniform SbCAR = normal SbCAR = unimodal

uniform
Biclusters = 16 Biclusters = 4 Biclusters = 8

SbCAR = unimodal SbCAR = uniform SbCAR = normal

Table 2: Simulation designed to vary three factors simultaneously: Variance, Noise, and
Number of true biclusters. The notation SbCAR = xyz, means that the model SbCAR
was run assuming a noise distribution equal to xyz.

collections using a symmetrized version of the F1-measure defined as

F1(A,B) =
1

2

(
1

G

G∑
i=1

F1(Ai,B) +
1

K

K∑
j=1

F1(Bj ,A)

)
.

Choosing the biclusters To choose the biclusters and their number we look at the
posterior means of the labels p(ρi� = 1 | y), p(κj� = 1 | y), and also at p(ρi�κj� = 1 | y).
We set the �-th bicluster to be the submatrix formed by the ensemble of rows i and
columns j for which p(ρi� = 1|y) and p(κj� = 1 | y) are large enough. That is, if they are
larger than a predetermined threshold such as 0.5, which is the threshold used in our
simulations. The same procedure can also be done by only looking at p(ρi�κj� = 1 | y).
Our simulation results yielded the same or similar results with either choice of posterior
means. Besides empty biclusters, we also discarded biclusters containing only a handful
of cells (less than five).

Since, as discussed earlier, our normal-likelihood model allows three types of noise
in the data, namely, normal, uniform and unimodal noise distributions, our model was
run assuming normal, uniform and unimodal noise distributions on each dataset, re-
gardless of the actual noise used to generate the data. For the cases K ∈ {2, 4, 8}, we
also compare the results with our Poisson-likelihood model. For this, we applied the
exponential transform to the data (that is, x �→ exp(x)), and scaled the data so as to
avoid numerical problems with the exponentiation. In our experiments, we transform
a data point x to y = exp(scale x/maxx), where maxx denotes the maximum over
the absolute values of the data, and scale is chosen so that log(y) ≤ 30. The hyperpa-
rameters Mr and Mc were given Gamma priors with shape and rates equal to (2, 20),
and (2, 100), respectively. The inverse-variance hyperparameters were set as follows:
aμ = aα = aβ = 2.1, and bμ = bα = bβ = 1.1. Finally, a symmetrized 10-nearest-
neighbor graph structure with Euclidean distance was employed when running these
simulations.

Figures 2 and 3 display barplots with means and standard deviations of the F1

measure comparing the true collections of biclusters to what is estimated by each of the
methods studied, for the case of sixteen biclusters, and for the case of eight biclusters,
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Figure 2: F1 comparison results for the large datasets (with 36 conditions/columns).
“Low” and “High” refer to the low and high variance scenarios, respectively. “C” and
“C&G” refer to the conditions-only and conditions and genes overlap scenarios. The
barplots titles “normal”, “uniform” and “unimodal” refer to the type of noise used to
generate the data. The methods displayed under the bars in the figure are, from left to
right, Cheng & Church (CC), penalized-plaid (PenPld), plaid (Plaid), and the proposed
normal-likelihood model with normal (SbCARn), uniform (SbCARu) and unimodal (Sb-
CARm) noise fits (sampling models). Error bars represent variability over five repeated
simulations; see the text for further explanation.

respectively (the results for two and four biclusters for the smaller datasets are similar
and are shown in Section B of the Supplementary Materials file). Our proposed model is
denoted here as SbCAR for the stick-breaking-CAR prior. In Figure 3 only the normal-
noise fit (SbCARn) results are displayed. For the small datasets, the unimodal noise
model’s performance is very similar to that of the normal noise; the performance of the
uniform noise model is also similar but not as good as in the case of the normal and
unimodal noise models. This is in contrast with the performance of the uniform fit in
the large datasets (see Figure 2).

Overall, the results for the small datasets show that the best performing methods are
the proposed normal-likelihood model with either normal or unimodal (not shown) noise
fit, the proposed Poisson-likelihood model, and the Penalized-Plaid model of Chekouo
et al. (2015). However, for four biclusters (not shown here), the best performer is the
Penalized-Plaid model. But, its performance is closely followed by those of the Poisson-
likelihood and normal-likelihood models. For both type of datasets, our proposed models
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Figure 3: F1 comparison results for the small datasets. “Low” and “High” refer to the low
and high variance scenarios, respectively. “C” and “C&G” refer to the conditions-only
and condition-and-genes overlap scenarios. The barplots titles “normal”, “uniform” and
“unimodal” refer to the type of noise used to generate the data. The methods displayed
under the bars in the figure are, from left to right, Cheng & Church (CC), penalized-
plaid (PenPld), plaid (Plaid), the proposed Poisson-likelihood model with negative-
binomial noise (Poisson), and the proposed normal-likelihood model with normal noise
fit (SbCARn). Error bars represent variability over five repeated simulations; see the
text for further explanation.

are clearly the best performers when the number of biclusters is large (eight or sixteen).
For the large datasets, the performance of our models is by far the best. The specific type
of noise (i.e. sampling model) used when fitting our model does not appear to have much
impact on inference and generally speaking, model performance. Nevertheless, the model
with uniform noise has a slightly better performance, but this finding is shadowed by
the typically longer computational time it requires to carry out posterior inference when
compared to the other two alternatives we tried. In the accompanying Supplementary
Materials file, Section C, we report on summary statistics obtained from some of the
runs we have carried out. Taking all of this into account, our practical recommendation
is to choose either the unimodal or normal sampling models.

The results from the simulation with the larger datasets (with 76 conditions/col-
umns) are displayed in Table 3. All statistics were computed from three runs of each
model as specified in the Graeco-Latin design of the simulation shown in Table 2. For
this simulation we added the method BBC for Bayesian biclustering described in Gu
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and Liu (2008). This method adopts a parametric prior for the plaid model, and based
on identifiability considerations, imposes a certain restriction on biclusters, namely, that
they can overlap either on rows or columns but not both. However, this method did
not yield any results when the number of biclusters were set to 8 or to 16. Note that
in all the runs of our model SbCAR, we have not imposed any constraints on the bi-
clusters found except for the minimum number of cells which, as explained earlier, was
set to five cells. Furthermore all competing methods were run by letting them know
the true number of biclusters to be found. So in this simulation we have experimented
with setting a minimum number of genes and conditions in each bicluster in the re-
sults of SbCAR. It seems reasonable to set the number of genes and the number of
conditions forming a bicluster in proportion with their dimension in the data. So for
the larger dataset with 76 conditions, we asked for 5% of genes and 10% of conditions
as minimum sizes to form a bicluster. These translate to be a minimum of 100 genes
and a minimum of 8 conditions to form an “interesting” bicluster. We remark here
that these constraints are considered only as part of the posterior processing required
to actually determine the biclusters, and are not at all related to other aspects of the
method such as the definition of K or the penalty term discussed earlier. The results
with these constraints are denoted by SbCARx in the corresponding table. The last
row of Table 3 gives the overall performance of each method over all nine scenarios
of Table 2. It is clear that SbCAR performs best overall, specially with the variant
SbCARx.

Model

Factor Levels BBC CC PenPlaid Plaid SbCAR SbCARx

Biclusters

4 0.632 (0.080) 0.019 (0.015) 0.788 (0.197) 0.707 (0.044) 0.586 (0.116) 0.810 (0.141)
8 – 0.069 (0.110) 0.448 (0.021) 0.296 (0.154) 0.594 (0.034) 0.682 (0.038)
16 – 0.024 (0.004) 0.270 (0.029) 0.224 (0.114) 0.395 (0.038) 0.445 (0.030)

Variance

Low – 0.077 (0.103) 0.491 (0.268) 0.454 (0.269) 0.563 (0.141) 0.714 (0.232)
Mod – 0.015 (0.011) 0.444 (0.159) 0.450 (0.180) 0.548 (0.110) 0.641 (0.204)
High – 0.019 (0.017) 0.570 (0.372) 0.322 (0.347) 0.464 (0.116) 0.581 (0.126)

Noise

normal – 0.014 (0.006) 0.504 (0.244) 0.402 (0.314) 0.525 (0.155) 0.686 (0.254)
uniform – 0.011 (0.010) 0.421 (0.182) 0.329 (0.288) 0.545 (0.129) 0.649 (0.172)
unimodal – 0.087 (0.095) 0.581 (0.369) 0.495 (0.200) 0.505 (0.110) 0.601 (0.159)

Overall performance 0.211 (0.319) 0.037 (0.061) 0.502 (0.249) 0.409 (0.246) 0.525 (0.116) 0.645 (0.177)

Table 3: F1 means and standard deviations (within parenthesis) for the large dataset
(2000 rows and 76 columns) for the three different factors of the simulation. All statistics
are taken from three runs of each model as specified in the Graeco-latin design for the
simulation. The model BBC did not yield any results when the number of biclusters
were set to 8 or 16, which is why the corresponding entries are empty. The results for
SbCARx are obtained by filtering out biclusters with less than 100 rows or 8 columns.
The results for the other models were obtained by asking the corresponding algorithms
to find exactly 4, 8 or 16 biclusters, depending on the true number of biclusters in the
data.
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4 Data illustrations

We next consider applications in the case of continuous and count data, using the models
developed earlier in Section 2. Recall that, as explained in Section 2.2 we adopt here the
procedure of defining the graph structure in terms of Euclidean distances obtained from
gene ontologies, specifically by resorting to the structure induced by the symmetrized
30-nearest-neighbor of every gene.

4.1 Yeast cell data

We consider data on gene expression for yeast cell expression data discussed and avail-
able in Eisen et al. (1998), and analyzed by several authors. See Chekouo and Murua
(2015a) and references therein. The data are the result of combining information on yeast
expression levels from microarray data coming from shock experiments and some previ-
ously published microarray data originating in time-courses from various cell processes,
including the mitotic cell division cycle, diauxic shift, and sporulation. Specifically, we
have the fluctuation of the log (base 2) expression levels of 2467 genes over 79 time-
points (conditions). A small fraction of the data (about 1.9%) are missing. To make our
results comparable with previous analyses of these data, we imputed the missing data
following the procedure applied in Lazzeroni and Owen (2002) and Chekouo and Murua
(2015a). This consists of replacing missing values by the sum of the corresponding row
(gene) mean plus the column mean (time point) minus the overall mean. The main
goal of the analysis is to find genes that exhibit consistent patterns over a subset of
time-points. A close study of the noise cluster yielded by the penalized plaids model
of Chekouo and Murua (2015a), hinted that a unimodal Rayleigh distribution such as
the one describe in Section 2.1 would fit better the noise in the data than a normal
distribution. For more details, see the Supplementary Materials.

Previous published work dealing with these data report a fair number of large bi-
clusters with a large proportion of data forming part of at least one bicluster. Based on
these studies and our observation on the cluster noise, we fit a unimodal-noise model
with K = 16, and use a log-Normal proposal for the penalty parameter λp with mean
0.05 when executing the Metropolis step associated to running the MCMC procedure
described in the Supplementary Materials file. The hyperparameters were set as in the
simulation studies of Section 3.

We found 14 biclusters. In particular, at least three of the most important biclusters
found by Lazzeroni and Owen (2002) and Chekouo and Murua (2015a) are also found
by the proposed model, but one of the biclusters was in our case split into two. These
are displayed in Figure 4, with genes shown in the rows and time points in the columns.
Note that these biclusters overlap with each other, which implies that a model that
imposes a nested structure would be inadequate to properly capture this behavior. The
similarity between the conditions selected in these biclusters and those found in Chekouo
and Murua (2015a) is F1 = 0.72, while the similarity between the genes selected is
F1 = 0.62. The overall similarity is F1 = 0.48. The drop in overall similarity is mostly
due to the splitting of the Penalized-Plaid bicluster 3 into two biclusters, and the fact
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that, in general, our model selected less genes in the biclusters. This latter fact surely
entails better enrichment in the biclusters found by the proposed model.

4.2 Histone modifications data

We consider here a dataset on histone modifications (HMs), previously analyzed in Xu
et al. (2013). Histones are proteins that package and order the DNA into structural
units called nucleosomes. Histones have been found to play a role in gene regulation,
and combinations of HMs have also been linked to cancer prognosis, and DNA repair,
among other things. See the discussion in Xu et al. (2013). The data come from a ChiP-
Seq experiment for CD4+ T lymphocytes (Barski et al., 2007; Wang et al., 2008) where
39 HMs are reported, with a total of 300 genomic locations including both, promoter
and insular regions. The main goal of the application is to identify subsets of genomic
locations with similar patterns of HMs.

As in the paper of Xu et al. (2013), we reduced the data to a hundred genomic
locations: fifty from promoter regions and 50 from insulator regions. These genomic
locations are exactly the same ones selected by Xu et al. (2013). The data consist of
counts of HMs over 100 genomic locations and 39 types of HMs. We applied our Poisson-
likelihood model with row and column multiplicative effects and Negative Binomial noise
to these ChIP-Seq data. We set K = 16, and use an exponential prior of intensity 10 for
the penalty parameter λp. The hyperparameters were set as in the simulation studies
of Section 3.

The model found three biclusters. These are displayed in Figure 5. They are very
similar to those reported by Xu et al. (2013). In fact, the F1 similarity measure between
the two associated clusterings formed by the genomic locations is 0.61. Basically, biclus-
ter 1 corresponds to active-HM set 1 of (Xu et al., 2013), bicluster 2 to active-HM set
3, and bicluster 3, to active-HM set 2. Thus, the conclusions from our analysis are very
similar to the ones in (Xu et al., 2013). In particular, they corroborate the findings on
the study of histone patterns in the human genome of Wang et al. (2008).

5 Discussion

We have proposed a model to detect biclusters from a sample in the form of a ma-
trix of data, typically with subjects in the rows and conditions in the columns. Our
proposal can be used with continuous or count responses and may be regarded as a
nonparametric extension of the plaid model by Lazzeroni and Owen (2002). The hi-
erarchical prior structure features a CAR model on a latent scale to incorporate prior
information on which genes are more likely to form part of the same group, teamed with
a stick-breaking prior for encouraging changes in the number of genes that constitute
subsequent biclusters. A suitable MCMC posterior simulation procedure was devised
to make inference under this model, particularly in what refers to detecting biclusters.
Extensive simulation studies were also carried out to test the model and to compare its
performance against other competitors. The results showed that our proposal performs
well for our bicluster detection goals.
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Figure 4: Yeast cell data: Three important biclusters found by the Unimodal-likelihood
model (UML) and the Penalized-Plaid model (PP). Solid vertical bars are shown to
separate biclusters.
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Figure 5: Histone Modifications Data: The three biclusters found by the Poisson-
likelihood model with multiplicative effects for the ChIP-Seq data.

Our model included a particular definition of the columns in the gene selection matrix
ρ based on a stick-breaking construction. An alternative way to define the joint prior
model p(ρ) could consider an Ising model with a neighboring structure constructed from
prior information on gene interactions, just as in the approach described in Section 2.
Developing further this idea is part of work to be carried out in the future.
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Supplementary Material

Supplementary Materials to manuscript “Biclustering via Semiparametric Bayesian In-
ference” (DOI: 10.1214/21-BA1284SUPP; .pdf).
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