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The Attraction Indian Buffet Distribution∗

Richard L. Warr†,‖, David B. Dahl‡, Jeremy M. Meyer§, and Arthur Lui¶

Abstract. We propose the attraction Indian buffet distribution (AIBD), a distri-
bution for binary feature matrices influenced by pairwise similarity information.
Binary feature matrices are used in Bayesian models to uncover latent variables
(i.e., features) that explain observed data. The Indian buffet process (IBP) is a
popular exchangeable prior distribution for latent feature matrices. In the pres-
ence of additional information, however, the exchangeability assumption is not
reasonable or desirable. The AIBD can incorporate pairwise similarity informa-
tion, yet it preserves many properties of the IBP, including the distribution of the
total number of features. Thus, much of the interpretation and intuition that one
has for the IBP directly carries over to the AIBD. A temperature parameter con-
trols the degree to which the similarity information affects feature-sharing between
observations. Unlike other nonexchangeable distributions for feature allocations,
the probability mass function of the AIBD has a tractable normalizing constant,
making posterior inference on hyperparameters straight-forward using standard
MCMC methods. A novel posterior sampling algorithm is proposed for the IBP
and the AIBD. We demonstrate the feasibility of the AIBD as a prior distribution
in feature allocation models and compare the performance of competing methods
in simulations and an application.

Keywords: Bayesian nonparametric models, clustering, Chinese restaurant
process, feature allocations, Indian buffet process, latent feature models.

1 Introduction
Two primary functions for data modeling are to relate observed data to each other and
to future observations. These purposes of modeling imply that the data (both previ-
ously observed and yet to be observed) are, to some extent, related to each other. Thus,
when modeling, we assume that the observed data are somehow interconnected and pos-
sess some information about future observations. These relationships are often complex
and not easily captured in traditional models. Bayesian nonparametric latent feature
models account for these complexities by allowing any number of features to connect
observations to one another, without assuming a predetermined relationship structure.

One prior for Bayesian nonparametric latent feature models is the Indian buffet
process (IBP) (Griffiths and Ghahramani, 2011). In a realization of the IBP, an obser-
vation may possess zero, one, or any number of features possibly shared with the other
observations. The total number of possible features is unbounded, and can theoretically
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account for any amount of complexity in the data. Under the Bayesian construct, the
IBP is used as a prior distribution for a feature allocation, and is updated with data
(via a likelihood) which results in a posterior distribution of that feature allocation.

A major assumption of the IBP is that all observations are exchangeable. In other
words, before the data are collected one item is indistinguishable from another. This
assumption can be quite restrictive if, a priori, information about the observations is
known. For example, the amount of trade between pairs of countries might be known, yet
this information cannot be incorporated into a model which insists on an exchangeable
feature allocation distribution.

To account for distance information between observations, Gershman et al. (2015)
developed the distance dependent Indian buffet process (dd-IBP). This method allows
a modeler to indicate, a priori, the distances between each pair of observations. In
this paper we also propose a generalization of the IBP which incorporates pairwise
distances into the feature allocation prior, namely the attraction Indian buffet distri-
bution (AIBD). However, the AIBD retains a few desirable characteristics of the IBP
which are lost with the dd-IBP. The first is that our method retains the same number
of expected features as the IBP, whereas the dd-IBP changes the number of expected
features, with respect to the IBP. The AIBD also has a tractable probability mass func-
tion (pmf) which readily allows for standard MCMC techniques on hyperparameters.
Another property of the AIBD is that the expected number of shared features between
two customers can increase or decease (in relation to the IBP). In the dd-IBP the ex-
pected number of shared features typically decreases as the distances are included. The
methods associated with the AIBD are implemented in the package aibd available on
the comprehensive R archive network (CRAN). We feel, and demonstrate in detail, that
the characteristics of our proposed method provide specific advantages over the dd-IBP.

The organization of the paper is as follows. In Section 2 we discuss some of the
previous work for this methodology and establish the notation and models needed for
this article. In Section 3 we present the AIBD pmf. Next, in Section 4, we investigate key
properties of the AIBD and compare them to the dd-IBP. Then, in Section 5, we outline
a new recipe for posterior simulation when using an IBP or AIBD prior. Section 6 is
a description of a classification analysis of an Alzheimer’s disease neuroimaging study
(Dinov et al., 2009), and demonstrates the advantages of using an AIBD prior. We finish
in Section 7 with a brief summary of this work.

2 Literature Review
In this section we discuss the primary literature needed for our proposed method and
define notation used in this article. A short discussion of the Chinese restaurant process
is included as an aide for those who might be familiar with random partition models,
but are new to feature allocation models.

2.1 The Chinese Restaurant Process

Bayesian nonparametric models seek to capture latent structure in data. In clustering
applications where each observation is assigned to a group to form a partition, the Chi-
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nese restaurant process (CRP) serves as a prior distribution over all possible partitions.
The CRP resembles a Chinese restaurant with an infinite number of tables, in which n
customers enter one at a time. Each customer picks a table to sit at, favoring tables with
more customers. The resulting assignment of customers to tables induces a partition of
the customers. Thus, the CRP will create latent features that are exclusive. The CRP
is exchangeable. Consequently, the probability of any two customers being in the same
cluster is the same for all pairs of customers.

However, the constraint that each customer has an equal chance of being clustered
with any other customer may not fully reflect existing (a priori) knowledge. Certain
covariates like socioeconomic background, age, or other distances in time and space,
will likely impact the clustering. Therefore, instead of constraining all datapoints to be
equidistant at the start of the analysis, it could be useful to have an expert incorpo-
rate pairwise distances into the prior. Blei and Frazier (2011) developed the distance-
dependent Chinese restaurant process (ddCRP) to facilitate these distances a priori.
However, the ddCRP does not have a tractable probability mass function (pmf), which
makes using standard Markov chain Monte Carlo (MCMC) techniques for posterior
inference on hyperparameters difficult.

Dahl et al. (2017) proposed the Ewens-Pitman attraction distribution (EPA), which
also allows pairwise distance information to be included in the CRP. This distribution
has an explicit pmf with a tractable normalizing constant and pmf. This is ideal for using
standard MCMC sampling methods. Like the dd-CRP, the EPA places more probability
on partitions that group similar items. But unlike the ddCRP, the EPA does not change
the distribution of the number of subsets; it only influences how the datapoints are
clustered together within the class of partitions having the same number of subsets.

Similar to how the EPA incorporated distance information while preserving many of
the qualities of the CRP, we propose a new distribution, the AIBD, that incorporates
pairwise distance information in the IBP prior. Although the existing dd-IBP uses pair-
wise distances, we propose a distribution that preserves some properties and intuition
for the IBP and has an explicit pmf with a tractable normalizing constant.

2.2 The Indian Buffet Process

A popular prior distribution for Bayesian nonparametric latent feature allocation models
is the Indian buffet process (Griffiths and Ghahramani, 2006). The Indian buffet process
(IBP) puts a prior distribution on feature allocations. The generative construct of the
IBP can be thought of as an Indian buffet restaurant with a seemingly infinite number
of dishes. A fixed number of customers enter the buffet one at a time to sample dishes.
The first customer enters and takes a Poisson(α) number of unique dishes. After the
first customer, the ith customer samples each existing dish with probability mk/i, where
mk is the number of customers who have previously sampled dish k. The ith customer
then takes Poisson(α/i) new dishes. Thus, popular dishes will tend to be taken more
often by later customers and the number of new dishes to be sampled will diminish as
more customers enter the restaurant.

The dishes taken by each customer can be encoded in a (binary) feature allocation
matrix Z where rows and columns correspond to customers and dishes, respectively. In
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this matrix, zi,k = 1 indicates that customer i took dish k. Likewise zi,k = 0 indicates
that customer i did not take dish k. Z also describes how the customers share features.
For example, zi,k = zj,k = 1 indicates customers i and j both took (i.e. share) dish k.
The dishes are analogous to latent features and thus customers who share more dishes
are thought to share similar (unobserved) attributes. Although, technically, an infinite
number of dishes are not sampled (which are represented as columns of zeros), these
are generally removed from Z.

Since the dishes are indistinguishable, the ordering of the columns in Z is irrelevant.
As a result, any permutation of the columns in Z will correspond to the same feature
allocation. Considering all column-permutations of Z that represent the same feature
allocation is important. One way to map each Z to its unique feature allocation is
to consider the equivalence class of matrices in left-ordered form. A left-ordered form
(lof ) matrix can be obtained by taking the binary number of each column (with the
most significant digit in the first row) and then ordering the columns in descending
order from left to right. A Z in left-ordered form will thus have a stair-like pattern,
with the first 1 appearing in a column only when a new dish is taken. To take into
account the indistinguishable columns, we add a combinatoric term to the probability
mass functions in (1) and (9). Thus a specific Z will refer to the class of all feature
allocations that map to the same left-ordered form.

The expected number of sampled dishes per customer is the mass parameter α, a
positive real number. We will denote N as the number of customers and K as the
total number of dishes taken by at least one customer. That is, the matrix Z has N
rows and K nonzero columns. Define xi as the number of new dishes customer i takes,
yi as the number of sampled dishes before customer i, and m−i,k as the number of

customers that took dish k before customer i. For convenience, let HN =
∑N

i (1/i) be
the N th harmonic number. The IBP pmf is shown in (1) and can be loosely divided
into 3 pieces: the combinatorial term, the Poisson term, and the Bernoulli (binary)
term. The cardinality of all possible non-zero binary columns of length N is 2N − 1, so∏2N−1

h=1 Kh! iterates over the sample space of all distinct non-zero columns in Z. Where
Kh represents the number of columns for the hth possible configuration. By following
the constructive pattern, the IBP pmf can be expressed as

P(Z|α) =
[ ∏N

i=1 xi!∏2N−1
h=1 Kh!

]
αK exp{−αHN}∏N

i=1(i
xi xi!)

×

N∏
i=2

yi∏
k=1

( m−i,k

i

)zi,k (
1− m−i,k

i

)1−zi,k
.

(1)

Note that the
∏n

i=1 xi! term will cancel, but it is not removed so one can intuitively see
the origin of the various parts of the pmf. In the case where no dishes have been sampled
before customer i enters (yi = 0), the result of the double product is defined to be 1.

The IBP prior has the property that customers are exchangeable, i.e. changing the
order of the rows in Z has no impact on the probability of any given feature allocation.
As a result, the expected number of shared features for all customers is uniform. There-
fore, on average, customers will share the same number of features. While this may be
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desirable in instances where nothing is known about the customers, additional a priori
information may be relevant and should be used to influence how features are shared. For
example, in the context of the Indian buffet restaurant, we may know that certain cus-
tomers have similar dietary preferences before they walk in the restaurant. In other ap-
plications, time-based, spatial, or covariate dependencies can be used to create prior de-
pendencies between data points. Instead of assuming customers are exchangeable before
the analysis, it may be helpful to relax this assumption in light of additional information.

The Distance Dependent IBP

Gershman et al. (2015) proposed a generalization of the IBP, the distance dependent
Indian buffet process (dd-IBP), which incorporates pairwise distance information, e.g.
distance in time, in space, or computed from covariates. Under the dd-IBP, customers
that are “nearer” share dishes more frequently, whereas customers that are further apart
share dishes less frequently. This behavior is achieved as follows. First, customers either
“own” a dish, or are connected to customers (including themselves) that own a dish. The
number of dishes that customer i “owns” is λi ∼ Poisson(α/hi), where α is again a mass

parameter, N is the number of customers, hi =
∑N

j=1 f(di,j), di,j denotes the distance
between customers i and j, and f(d) is a monotone decay function satisfying f(0) = 1
and f(∞) = 0. The set of dishes “owned” by customer i are labelled (arbitrarily)

as Ki = (
∑

j<i λj ,
∑

j≤i λi], and the total number of owned dishes is K =
∑N

i=1 λi.
Customer i then “connects” to customer j for dish k ∈ {1, . . . ,K} with probability
ai,j = f(di,j)/hi. By connecting, customer i “inherits” dishes owned or inherited by
customer j. A dish is automatically inherited by the dish owner. Customers that inherit
the same dishes thus share features. An N×K connectivity matrix C encodes customer
connections, in which ci,k = j denotes that customer i connects to customer j for dish
k. Based on C, a feature allocation Z is deterministically computed. Note that the
relationship between C and Z is many-to-one.

The joint distribution for the connectivity matrix C and K-dimensional dish owner-
ship vector c�, where c�k ∈ {1, . . . , N}, denotes the customer that owns dish k is given by

Pr(C, c� | D, α, f) = Pr(c� | α) · Pr(C | c�,D, f), with (2)

Pr(c� | α) =

N∏
i=1

Pr(λi | α), and (3)

Pr(C | c�,D, f) =

N∏
i=1

K∏
k=1

ai,ci,k , (4)

where D is a N ×N distance matrix. Note that in (3), c� is deterministic given the λ’s.
Finally, the probability of a feature allocation matrix Z is

Pr(Z | D, α, f) =
∑

(c�,C):φ(c�,C)=Z

Pr(c�,C | D, α, f), (5)

where φ(c�,C) maps a given connectivity matrix and ownership vector to a feature
allocation matrix Z. Crucially, the pmf of the feature allocation Z in (5) requires
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marginalizing over all possible connectivity matrices and ownership vectors. This is
intractable whenN is moderately large. Thus, in practice, posterior sampling algorithms
for making inference on Z rely on sampling from the posterior distribution of C and
c�.

The dd-IBP reduces to the IBP when the proximity matrix is a lower diagonal matrix
of 1’s. When this is not the case, neither the distribution of the number of dishes per
customer nor the distribution of the total number of features K are the same as that
of the IBP. Since the AIBD will also incorporate pairwise distance information, we will
compare properties of both the dd-IBP and AIBD in Section 4.

Recent Applications of and Other Work on the IBP

The value of the IBP can be seen in its repeated application in research problems,
particularly, in the biological sciences. See, for example, Hai-son and Bar-Joseph (2011);
Chen et al. (2013); Xu et al. (2013); Sengupta et al. (2014); Xu et al. (2015); Lee et al.
(2015, 2016); Ni et al. (2018); Lui et al. (2020).

In terms of methodological extensions, other work has been done to relax the ex-
changeability constraint of the IBP in the literature. Williamson et al. (2010) proposed
the dependent IBP, which introduces dependence through a hierarchical Gaussian pro-
cess. Miller et al. (2012) proposed a generalization of the IBP, the phylogenetic Indian
buffet process, that introduces dependencies between objects by conditioning on a de-
pendency tree. This also reduces down to the IBP when all branches meet at the root.
This method performs well for data with genealogical relationships and expresses prior
object similarity through a tree. The Indian buffet Hawkes process (Tan et al., 2018)
extended the IBP to capture latent temporal dynamics by incorporating ideas from the
Hawkes process. Williamson et al. (2020) presents a class of nonexchangeable dynamic
models constructed by adapting the IBP. These models are tailored to data that are
believed to be generated by latent features exhibiting temporal persistence. We focus
our comparison on the dd-IBP since it, like our AIBD, introduces dependence through
pairwise distances.

2.3 The Linear Gaussian Latent Feature Model (LGLFM)

The typical likelihood in the Bayesian nonparametric literature for latent feature models
is the linear Gaussian latent feature model (LGLFM). Using similar notation as found
in Griffiths and Ghahramani (2011), the LGLFM is defined as:

X = ZA+ ε, (6)

where X is an N ×D matrix of N observations on D variables. Z is an N ×K binary
matrix of 0s and 1s and indicates which features are turned off or on for a specific
observation (i.e., row of X). A is a K × D matrix whose rows are the latent features
and whose prior is a matrix Gaussian distribution, with probability density function

p(A|σA) ∝ exp

{
− 1

2σ2
A

trace
(
ATA

)}
. (7)
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Finally, ε is an N × D matrix and represents the error term of the model; it also
has a matrix Gaussian distribution similar to A but has different dimensions and its
parameter is σX . Technically Z and A have an infinite number of columns and rows
(respectively). However, only K columns of Z are non-zero. Thus the zero columns of
Z are discarded along with the associated rows of A and we treat those matrices as if
they have a finite number of rows and columns (see Griffiths and Ghahramani (2005) or
Griffiths and Ghahramani (2011) for more details). If A is integrated out of the model,
the collapsed likelihood is:

p(X|Z, σX , σA) ∝
1

σND−KD
X σKD

A

∣∣∣ZTZ +
σ2
X

σ2
A
I
∣∣∣D/2

×

exp

{
− 1

2σ2
X

trace

(
XT

[
I −Z

(
ZTZ +

σ2
X

σ2
A

I

)−1

ZT

]
X

)}
.

(8)

We use this collapsed likelihood in the posterior inference section with various feature
allocation priors on Z in Section 5.

3 The Attraction Indian Buffet Distribution

We propose a generalization of the IBP, the attraction Indian buffet distribution (AIBD).
We describe how we obtain this distribution by modifying the generative model of the
IBP to include distance information between customers. Incorporating existing distance
information about the customers, in turn, influences how the dishes are shared. We then
show the nonexchangeable probability mass function and compare it to the IBP.

Distance information can be stored in a symmetric N×N pairwise distances matrix.
The distance di,j between customers i and j is located in the ith row and jth column.
We transform these distances to similarity values, where 0 indicates negligible similarity
and larger values indicate a greater similarity between customers. Various transforma-
tions can appropriately map distance to similarity and a temperature parameter τ is
introduced to accentuate the effect of these distances. In general, we require: i. the
transformation function f(τ, di,j) to be a monotonically decreasing function in di,j for
fixed τ , ii. f(τ1, d1)f(τ2, d2) ≤ f(τ2, d1)f(τ1, d2) for d1 ≤ d2 and τ1 ≤ τ2, and iii. when
τ = 0, it must return a constant in the interval (0,∞). These properties imply that, as
the temperature τ increases, the ratio f(τ, d1)/f(τ, d2) increases for fixed d1 ≤ d2. Thus,
increasing τ accentuates the effect of distance on similarity. Valid decay functions include
those listed in Gershman et al. (2015). For example, the constant function, f(τ, d) = c,
where c is a positive constant; the exponential function, f(τ, d) = exp(−τd); the recip-
rocal function, f(τ, d) = (d+ν)−τ , with shift ν > 0 added to avoid division by 0; and the
window function, f(τ, d) = 1(d ≤ 1/τ). The result of the element-wise transformations
of the distance matrix is a similarity matrix. The AIBD uses the similarity matrix Λ
to incorporate dependence between customers. A temperature parameter is also used
in the dd-IBP and a few functions to transform distances to proximities are suggested
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in Gershman et al. (2015). It is worth mentioning that, unlike the AIBD, the dd-IBP
does not require a symmetric distance matrix.

Due to non-exchangeability, the AIBD is conditioned on a permutation parameter
ρ, which is any permutation vector of the integers 1 to N . This controls the order in
which customers arrive and allows us to characterize temporal or spatial dependence a
priori. In many cases, however, the data has no natural ordering. That is, it may not
make sense to say the data depends on the order it was observed or recorded. For this
reason, the permutation parameter is typically averaged out of the model by Monte
Carlo integration or enumeration. A reasonable prior distribution for ρ, is the uniform
distribution over all possible permutations of the integers 1 to N .

Because we desire to preserve many of the properties of the IBP, the AIBD has a
generative model very similar to the IBP. Using the same restaurant analogy as the IBP,
the AIBD can also be thought of as an Indian buffet restaurant where customers enter
one at a time. Like the IBP, the first customer takes a Poisson(α) number of dishes and
the ith customer takes Poisson(α/i) new dishes. However, instead of sampling existing
dishes with probability proportional to the number of customers who have already
sampled the dish, the AIBD also uses pairwise similarity information. The ith customer
gets existing dishes with probability equal to the sum of similarities of individuals who
have that dish, divided by the sum of the total similarity with all previous individuals,
all multiplied by (i−1)/i. When all the pairwise similarities are the same, the probability
of sampling existing dishes reduces to that in the IBP. Thus, the IBP can be thought of
as a special case of the AIBD when all the pairwise similarity components are identical.

By following the constructive process described above, the pmf of the AIBD can be
obtained, as shown in (9). The AIBD is a distribution over feature allocations, therefore,
the support is over all binary matrices with N rows and only non-zero columns. Since
the ordering of features does not matter, this probability mass function returns the
probability of all feature allocations that are equivalent to the supplied Z. The AIBD
uses a pairwise distance matrix D and is conditioned on the permutation vector ρ of
the integers 1 to N . The parameters and notation carry the same meaning as they do
in the IBP pmf in (1). The pmf of the AIBD is

P(Z|α,ρ, τ) =
∏N

i=1 xi!∏2N−1
h=1 Kh!

· α
K exp{−αHN}∏N

i=1(i
xi xi!)

×

N∏
i=2

yi∏
k=1

(
hik(τ) · (i− 1)

i

)zi,k (
1− hik(τ) · (i− 1)

i

)1−zi,k

,

(9)

where hik(τ) is defined as

hik =

i−1∑
j=1

f(τ, dρj ,ρi) · zj,k
i−1∑
j=1

f(τ, dρj ,ρi)

. (10)

The term dρj ,ρi corresponds to the distance between the ith and jth individuals in a
given permutation ρ.
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The IBP and AIBD priors have the same support, and the probability mass functions
are fairly similar. The key differences are the probabilities defined in the double product
of (1) and (9). The IBP has a customer sample a dish proportional to the number of
times it has been taken. Customers in the AIBD also sample popular dishes more
frequently, but the probability is also dependent on similarity information. Note that
when f(τ, d) is constant, hi,k = m−i,k/(i−1), and thus, the terms in the double product
of (9) reduce to (m−i,k/i) and (1 − m−i,k/i) as in the IBP p.m.f. in (1). When f is
not constant, hi,k is larger (or smaller) when a greater (or fewer) number of “similar”
customers have previously sampled dish k.

4 Properties of the AIBD

In this section, we explore some of the properties of the AIBD and compare them to the
IBP and dd-IBP. A distribution on possible Z’s implies a distribution on the number of
non-zero columns. The distribution of the number of non-zero columns in the AIBD is
the same as that in the IBP because, in the constructive model, the distance information
is not used to determine the number of dishes. Thus, the distribution of features is
invariant to similarity information included in the AIBD. We will compare this result
by simulation to the dd-IBP, where the distribution of the number of features changes
with the temperature parameter and the distance information. We will also compare
how the features are shared between customers as a function of temperature for both the
AIBD and dd-IBP. Thus, we will proceed by focusing on the total number of features
and number of shared features in Z.

4.1 Distribution of the Number of Features

In the IBP and AIBD, the distribution of the number of features T (i.e. number of non-
zero columns in the Z matrix) can be explicitly characterized. Since a new column in Z
is generated when a customer samples a new dish, the total of the number of features is
equal to the sum of the number of new dishes each customer takes. From the generative
model of the IBP and AIBD, let the number of new dishes that the ith customer takes
be Xi = Poisson(α/i). Since the Poisson draws are independent between customers, the
total number of features, T =

∑
i Xi is distributed

T
d
= TIBP

d
= TAIBD ∼ Poisson(αHN ), (11)

where HN is the N th harmonic number. This distribution is identical for the IBP and
AIBD because the similarity information present in the AIBD is only used to determine
how existing features are shared. No new dishes or columns are generated based on the
distance information. Note that this is also invariant to the permutation parameter ρ.
The distribution of the number of features can only be changed by adjusting the mass
parameter α or changing the number of customers N .

The generative model for the dd-IBP, however, is different in that the proximity, like
the AIBD’s similarity information, changes the total number of features. The dd-IBP
uses a proximity matrix P to capture a priori pairwise distance information. Using the
dd-IBP generative model in Gershman et al. (2015), the number of new features for
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AIBD Similarity Matrix (τ = 1)

1 2 3 4 5
1.00 0.89 0.51 0.02 0.02
0.89 1.00 0.55 0.03 0.02
0.51 0.55 1.00 0.04 0.03
0.02 0.03 0.04 1.00 0.36
0.02 0.02 0.03 0.36 1.00

dd-IBP Proximity Matrix (τ = 1)

1 2 3 4 5
1.00 0.00 0.00 0.00 0.00
0.89 1.00 0.00 0.00 0.00
0.51 0.55 1.00 0.00 0.00
0.02 0.03 0.04 1.00 0.00
0.02 0.02 0.03 0.36 1.00

Table 1: Similarity matrix Λ and sequential proximity matrix P at a fixed temperature
τ using the natural permutation. Although both have ones on the diagonal, it is only
required for the dd-IBP’s proximity matrix P .

customer i is Xi ∼ Poisson(α/hi). Thus,

Tdd-IBP =

N∑
i=1

Xi ∼ Poisson

(
α

N∑
i=1

1

hi

)
, (12)

where hi =
∑N

j=1 Pi,j and Pi,j corresponds to the proximity measure between customers

i and j. Thus, hi is the sum of the ith row in the dd-IBP proximity matrix. The
proximity matrix in the dd-IBP differs slightly from the similarity matrix Λ in the
AIBD. The dd-IBP requires self-proximity to be 1 and infinite distances to be mapped
to a proximity of 0. Thus, only monotonic transformations that map distance values
from [0,∞) to [0, 1] can be used. We will employ the same transformation mentioned
earlier, f(τ, di,j) = exp(−τdi,j), where di,j corresponds to the pairwise distance matrix
used for the AIBD. The proximity matrix is called sequential if when i < j, Pi,j = 0;
that is, when the proximity matrix is lower-diagonal. This allows current customers to
only inherit dishes from previous customers. For the dd-IBP to simplify to the IBP, one
condition is that P must be sequential, analogous to how the IBP restaurant analogy
only allows customers to enter one at a time.

The dd-IBP simplifies to the IBP when the proximity matrix is a lower-diagonal
matrix of 1’s. When this happens, hi in (12) is equal to i, so Tdd-IBP and TIBP have the
same distribution. A comparison of an AIBD similarity matrix using the natural per-
mutation (integers 1 through N in ascending order) and a sequential dd-IBP proximity
matrix is shown in Table 1. Both matrices were generated from the USArrests dataset
in R. We selected the states New Hampshire, Iowa, Wisconsin, California, and Nevada
respectively. We then calculated the pairwise Euclidean distances of the 5 states after
centering and scaling the covariates. For the AIBD, we put the pairwise distances in a
5× 5 matrix D as described in Section 3. Finally, to get the similarity or proximity, we
applied the transformation exp(−τdi,j) to each distance element. Note that in this ex-
ample, the individual states are analogous to customers in the Indian buffet restaurant.

After fixing α = 1,N = 5, and using the permutation of increasing natural numbers 1
through N , we obtain the probability distribution of the number of features as shown in
Figure 1. Recall that both TAIBD and TIBP have the same distribution as T , whereas
the number of non-zero columns in the dd-IBP, Tdd-IBP , varies by temperature and
distance information. The distributions of T and Tdd-IBP were given in (11) and (12).
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Figure 1: The distribution of TAIBD and TIBP is displayed as the bold black line. The
distribution of Tdd-IBP is displayed in the narrow colored lines for various temperatures.
This figure shows that the distribution of the number of features for the dd-IBP (using
the proximity matrix in Table 1 and when τ > 0) is stochastically greater than the
number of features for the IBP and the AIBD.

Figure 1 illustrates that, for this proximity matrix, the dd-IBP has a higher number of
expected features than the IBP. As the temperature increases, Tdd-IBP has a limiting
distribution of a Poisson(αN), and values on the off diagonal of the dd-IBP’s proximity
matrix approach zero. Thus, the proximity matrix P approaches an identity matrix,
and α

∑n
i (1/hi) → αN as τ → ∞. In this case, the N customers do not share features

and individually sample α dishes, on average. On the other hand, the AIBD preserves
the same distribution of the number of features as the IBP, regardless of temperature,
and is only affected by the mass parameter. This is an important attribute of the AIBD,
because as the number of features increases so does the computational complexity of
inference. The AIBD also encourages more feature sharing than the dd-IBP, as discussed
in the next section.

Another property the AIBD preserves from the IBP is that they have the same
expected number of features per customer, which is α (see Section S.1 in the supple-
mentary material for a proof). These two properties ensure that the average number
of features and the average number of features per customer are identical between the
AIBD and the IBP. Therefore, the IBP and the AIBD do the same amount of feature
sharing, which is solely controlled by the parameter α. However, the AIBD differs from
the IBP, not by changing the amount of feature sharing, but by allowing the propensity
of customers to share a feature to depend on their pairwise distances.

4.2 Expected Number of Shared Features

One consequence of exchangeability in the IBP is that the expected number of shared
features is identical for all customer pairs. This is not a desirable property when, a
priori, one knows that a pair of customers are more alike when compared to another
customer. The AIBD is able to include this information; which has the desired effect
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Figure 2: The expected number of shared features as a function of temperature in
the AIBD (averaged over all permutations) with corresponding similarity matrix when
τ = 1. Each line represents a customer pair, with some pairs identified in the legend.
This figure shows that the AIBD adjusts feature sharing for pairs of customers given
the similarity matrix; the IBP would have all customers share on average 0.5 features.

of changing the expected number of shared features for a pair of customers, while the
average overall feature sharing remains the same as with the IBP.

In the AIBD, customers that are closer in distance tend to share more features. The
degree to which customers share features can be adjusted by the temperature parameter.
An example is shown in the plot of Figure 2. The plot was obtained by fixing α = 1 and
by using pairwise similarity information found in Table 1. We fixed α because changing
the mass parameter only scales the y-axis in the plot of Figure 2. The lines indicate the
expected number of shared features for a pair of customers.

When the temperature is zero, the AIBD reduces to the IBP, and so all customer
pairs have the same expected number of shared features. Due to variability between
permutations, each line in Figure 2 was calculated by averaging the expected number
of shared features across all possible N ! = 120 permutations. In other words, ρ was
integrated out after placing a uniform prior on it. Since N is small, we enumerated
across all permutations up to 7 possible features, which accounted for 99.4% of the
probability mass.

A similarity matrix from a fixed temperature is shown to the right of the feature
sharing plot in Figure 2. As expected, customers with higher similarity tend to share
more features. However, even though customers 1 and 2 have the highest similarity,
customers 4 and 5 tend to share more features. This behavior occurs by design, the
expected number of features per customer in the AIBD is the same as in the original
IBP, so the distances do not effect the number of features, just how features are shared
among each other. So, the issue is not which exp{−τdi,j} is the largest or smallest,
but rather the relative sizes of these quantities. See (9) and (10). As an illustration,
consider the similarity matrix in Figure 2 and suppose that customer 5 is the last to be
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allocated features. Among customers 1–4, customer 5 will highly favor sharing features
with customer 4 since the relative similarity 0.36/(0.02 + 0.02 + 0.03 + 0.36) = 0.84 is
close to 1. Conversely, if customer 1 is the last to be allocated, its relative attraction to
customer 2 is only 0.89/(0.89+ 0.51+ 0.02+ 0.02) = 0.61, which is not as large as 0.84.
Therefore, it would be expected that even though customers 1 and 2 have the high-
est similarity (i.e., 0.89), customers 4 and 5 tend to share more features. The sharing
arrangements will depend somewhat on the permutation since, a priori, feature alloca-
tion only depends on the similarities of previously allocated customers, but the overall
effect remains that number of shared features among pairs of customers will be driven
by relative rather than absolute similarities. Table S.2 in the supplementary material
compares the expected number of features between two states with the similarity values
for this example with three different temperatures.

We now examine the effect of increasingN on the expected number of shared features
per customer in the AIBD. We do this using plots similar to Figure 2. Additionally, we
use plots for both the AIBD and dd-IBP to compare how they each influence feature
sharing. We use sample sizes N = 5 and N = 50 to demonstrate the effect of increasing
N . Since it is computationally infeasible to enumerate 50! permutations, we create the
plots using Monte Carlo estimation.

To sample from the AIBD with a greater number of customers, we used pairwise
distance information from the N = 50 states in the USArrests dataset in R. To obtain
the similarity matrices used, first we centered and scaled the USArrests dataset. Then,
we calculated a pairwise symmetric Euclidean distance matrix based on all the data.
For N = 50, we simply used all states, but for N = 5 we used the same states that were
used to calculate Table 1, which were centered and scaled separately. The simulation
results for the AIBD are shown in the top row of Figure 3.

Note that in the IBP, which corresponds to the AIBD with τ = 0, the expected
number of shared features between all customer pairs is α/2. For any N , due to ex-
changeability, the number of shared features is the same for all customer pairs. Recall
that the first customer samples X1 ∼ Poisson(α) dishes. The second customer will take
each dish sampled by customer 1 with probability 1/2. Thus the total number of shared
features between customers 1 and 2, is X1,2 ∼ Binomial(X1, 1/2). By the law of total
expectation, E(X1,2) = E(E(X1,2|X1)) = E(X1/2) = α/2. Since any permutation of
customers results in the same probability distribution for the IBP, the expected number
of shared features for the first and second customer is the same for other pairs. While
the AIBD is not exchangeable, it can be shown by simulation that across any temper-
ature τ and sample size N , the expected number of shared features averaged across all
pairs is α/2. Thus, the AIBD allows each pair to share features differently; but across
all pairs, the mean of the expected number of shared features is the same as the IBP.

For the AIBD, as customers are added to the process (i.e., as N grows) the behavior
of the average feature sharing changes, as seen in the top two plots of Figure 3. For
high temperatures, a customer pair can share, on average, more or less than when there
are more customers in the restaurant. At τ = 5 and N = 5, the expected number of
shared features for the 10 possible pairs range from 0.35 to 0.73, when N = 50 this
range increases by roughly 60% for those same pairs. Thus increasing τ and N allows
more disparity between the average feature sharing of customer pairs.
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Figure 3: A view of the average feature sharing as a function of temperature for the
AIBD and dd-IBP using sample sizes of N = 5 and N = 50, where α = 1. This figure
shows how the AIBD retains the overall average of the expected number of shared
features of the IBP, while on average the dd-IBP with a sequential proximity matrix
shares less, as the temperature increases. For each plot the permutation of the data, ρ,
was integrated out of the model, similar to Figure 2 but using Monte Carlo integration.

4.3 Comparison of the AIBD’s and the dd-IBP’s Properties

Although both use the pairwise distances of items, the AIBD and the dd-IBP have
some notable differences. To compare the AIBD’s properties to the dd-IBP’s, we refer
to Figure 3. The bottom row of the figure shows that as the temperature increases
in the dd-IBP, on average, pairs of customers share less. Asymptotically, all average
feature sharing goes to zero; that is, at a temperature of infinity, all customer pairs will
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Property AIBD dd-IBP
Tractable pmf Yes No
Reduces to IBP when τ = 0 Yes In one case
E(# Features) Same as IBP Different from IBP
E(# Features per customer) Same as IBP Different from IBP
E(# Total shared features) Same as IBP∗ Different from IBP∗∗

E(# Shared features per customer) Higher or Lower Different from IBP∗∗

Table 2: Summary of the properties of the AIBD and dd-IBP to the IBP. Details of
the first two properties can be found in Section 3, and the remainder can be found
in Section 4, focusing on the dd-IBP’s properties in Section 4.3. ∗ Demonstrated via
simulation. ∗∗ We consistently found this to be lower than the IBP in simulations.

share no features. We find similar behavior for the dd-IBP with a symmetric proximity
matrix; plots for that distribution, similar to Figure 3, can be found in Figure S.1 in
the supplementary material. Additional exploration of feature sharing in the AIBD and
the dd-IBP can be found in Section S.3 of the supplementary material.

A table comparing several properties of the AIBD and dd-IBP to the IBP is shown
in Table 2. In the dd-IBP, on average the customers share less as τ increases. As a result,
all lines in the dd-IBP plots in Figure 3 go to zero as τ → ∞. This may be sensible in
cases where we want customers to share less than the IBP. However, it does not seem
possible to allow certain customer pairs to share more than the IBP. In contrast, the
AIBD up-weights or down-weights average sharing depending on the pairwise similarity
value while still having the same average expected number of shared features across
all pairs as the IBP. Larger N increases the disparity between pairs in the AIBD, but
appears to decrease the disparity between pairs for the dd-IBP.

For the dd-IBP, a major consequence of the expected number of shared features
going to zero as τ → ∞ is that the total number of features in the distribution increases
to αN . For N = 50 and α = 1, the expected number of features in the AIBD is the
50th harmonic number, or 4.5 for all temperatures. For the dd-IBP in this example,
however, the expected number of features can range from 4.5 to 50, depending on
the temperature chosen. This is shown in Figure 4. The dd-IBP reduces sharing and
borrowing of strength between features, which is a primary reason to use the IBP. This
can potentially result in higher computational burdens when a Z from the dd-IBP has a
larger number of columns than the AIBD. One reason why the average number of shared
features in the AIBD does not tend to zero is that the AIBD preserves the distribution
of the total number of features for fixed α and N . Thus, in the AIBD, the distribution
of the number of columns is unchanged from the IBP. The AIBD only influences how
features are shared.

The primary point of both the dd-IBP and the AIBD is that two data points with
similar covariates should generally share more features than two with less-similar covari-
ates. However, our approach to achieving this differs from the dd-IBP on a key point. In
the AIBD, the total number of features (and, therefore, the total amount of sharing) is
controlled with the mass parameter α. It is not influenced by the similarity/proximity
matrix. Further, we also designed the AIBD such that the similarity matrix has the
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Figure 4: The distribution of the total number features overlayed with the pairwise
expected shared feature plots for the AIBD and the dd-IBP for N = 50. The Q1 and
Q3 lines represent the quartiles of the number of shared features. This figure highlights
that as the temperature increases, the average number of features (gray dashed line)
remain fixed in the AIBD, but grows rapidly in the dd-IBP. It also shows how the
median number of shared features (red line) of the AIBD and the dd-IBP change as a
function of temperature.

sole influence on how the total amount of sharing (as determined by the mass param-
eter) is divided. For example, the IBP with a particular value for the mass parameter
induces a distribution over the amount of sharing. The AIBD, with this same value for
the mass parameter, also has the same total amount sharing on average, but the AIBD
provides the flexibility to divide it according to the similarity matrix. In contrast, the
dd-IBP uses the pairwise distance information to influence both the number of features
and the sharing configurations. That is, although both are based on pairwise distances,
the AIBD and dd-IBP use them to achieve fundamentally different distributions and,
together, they provide choice for the statistician.

4.4 The Similarity Function

The similarity function can be chosen to accommodate a variety of feature-sharing
behaviors. Figure 5 shows the transpose of the feature allocation Z simulated under the
constant, reciprocal (with shift=1), window (with width=2), and exponential functions.
A mass of α = 5, a temperature of τ = 2, and the absolute temporal distance (di,j =
|i− j|) for 100 customers were used. The same random number generator seed was used
to generate the figures, so the first two customers in each scenario take the same dishes.
Note that the constant similarity reduces the AIBD to the IBP.
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Figure 5: A draw from the AIBD under the (a) constant, (b) reciprocal, (c) exponential,
and (d) window functions. For the window similarity, a width of 2 was used; for the
reciprocal similarity, a shift of 1 was used. For all simulations, the number of customers
N was 60, the mass α was 5, the permutation was {1, . . . , N}, the temperature τ was
2, and the distance used was the absolute temporal distance (di,j = |i− j|).

Considering the correlation structures between observations can provide additional
intuition for selecting the similarity functions. To illustrate, Figure 6 provides a view
of the squared correlation between customers, computed from the feature allocations
under the four similarity functions. Unsurprisingly, under the IBP (constant similarity),
correlations between proximal customers are weak. Under the exponential and window
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Figure 6: Squared correlation matrix between customers drawn from the AIBD under
various similarity functions.

similarity for the temperature of 2, strong correlations are observed between proximal
customers. Correlations appear to diminish as customers get further apart. Under the
reciprocal similarity with a shift of 1 and temperature of 2, the correlation structure
is less pronounced. Moderate correlation can be observed between proximal customers,
but weakens at longer ranges.

4.5 Lack of Marginal Invariance

Unlike the IBP, the AIBD and dd-IBP are not marginal invariant. Both distributions are
such that the distribution defined for n−1 customers is not the same as the distribution
obtained by marginalizing over the last customer. Thus, data analysis with the AIBD
and dd-IBP is limited to cases where we are fully aware of the pairwise distances among
all data points. By construction and as desired, adding another observation changes the
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relative relationships among the previous observations. Take, for example, the AIBD
similarities in Table 1. If New Hampshire was never considered, Iowa and Wisconsin
will share more features because they are relatively closer. Conversely, having New
Hampshire in the model greatly changes the relative relationships, an effect that persists
even when marginalizing over New Hampshire.

5 AIBD Posterior Sampling

We now describe how to sample from the joint posterior distribution of the model
parameters in the LGLFM (i.e., Z, τ , α, ρ, σA and σX), presented in Section 2.3, with
an AIBD prior on the feature allocation. We suggest priors for the parameters and a
Metropolis-Hastings-within-Gibbs sampling algorithm. Using the likelihood in (8), we
can write the full joint posterior as shown in the following equation:

p(Z,ρ, α, τ, σX , σA|X,Λ) ∝ p(Z|α,ρ, τ) p(ρ) p(α) p(τ) p(σX , σA) p(X|Z, σX , σA).
(13)

5.1 Posterior Sampling of the Feature Allocation Z

We use an AIBD prior on Z along with prior distributions on the other parameters in
conjunction with the likelihood, and suggest the following algorithm to sample from the
posterior. We emphasize that this algorithm is valid only for the collapsed likelihood
defined in (8). We suppose it could be adapted to other prior distributions on Z.

From (13), the full conditional distribution of Z is proportional to

p(Z|α,ρ, τ) p(X|Z, σX , σA).

Instead of proposing an entirely new Z matrix, we update Z row-by-row. Define a
singleton feature for row i to be a feature that only customer i has. In other words,
a singleton feature for customer i is a column in Z of all zeros except for a 1 on row
i. Define the non-singleton features to be features that are owned by any of the other
customers. For each row i ∈ {1, 2, . . . , N} in Z:

1. Let m1,m2, . . .mh ∈ K be the collection of column indices of the non-singleton
features in the current state of Z, where h is the total number of non-singletons.
If h = 0, skip to step 3. If h > 0, generate a random permutation of the collection
of indices in K. We update the non-singleton columns in this order in step 2.

2. Start by updating the non-singleton features on row i one at a time using the
Metropolis-Hastings algorithm in the permuted order as generated in step 1. De-
note zi,m to be the binary number in the ith row and mth column of Z. We update
each element zi,m for each m ∈ K sequentially according to the permutation of K.
For each m ∈ K:

(a) Define the active feature to be the feature in the mth column of the current
state of Z. This is the feature that is currently being updated.
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Current State Z⎡
⎣1 0 1 0 1
1 1 0 1 1
0 0 0 0 0

⎤
⎦

Proposed State Z∗⎡
⎣1 0 1 1 1
1 1 0 1 1
0 0 0 0 0

⎤
⎦

Figure 7: Example of a posterior update from step 2. Customer 1 has one singleton
feature (column 3) and four non-singleton features. For customer 1, we will individually
update the columns 1,2,4, and 5 in a random order. The underlined number z14 is being
updated and thus the active feature is column 4. There are 3 features identical to the
active feature (including itself) in the proposed state and 2 identical features in the
current state. The Hastings ratio is 3/2 to account for the asymmetric proposal.

(b) Propose z∗i,m = 1 − zi,m (i.e., the opposite of the current state of zi,m). Let
Z∗ be the same as Z, except for z∗i,m in place of zi,m.

(c) Since the order of the columns does not matter, different updates may result
in the same proposed feature allocation. Thus, the proposal distribution is
not symmetric. The Hastings ratio is computed by dividing the number of
features identical to the active feature d∗ in Z∗ by the number of features
identical to the active feature d in Z. The active feature is also counted in
this total, so if the active feature is distinct in both the current and proposed
states, the ratio is 1. From the example in Figure 7, m = 4 and h = 4, and
the active feature is column 4. In the current state, there are d = 2 features
identical to column 4 (including itself), and d∗ = 3 features identical to
column 4 in the proposed state.

(d) Compute the Metropolis-Hastings ratio MHR = p(Z∗|α,ρ,τ)p(X|Z∗,σX ,σA)
p(Z|α,ρ,τ)p(X|Z,σX ,σA)

d∗

d

and update zi,m to z∗i,m with probability min(1, MHR), else leave zi,m un-
changed.

3. Now we propose new singleton features for customer i.

(a) We first evaluate the unnormalized probability mass of the full conditional
distribution of Z after adding 0, 1, 2, . . . features (with all other parameters
and rows in Z held constant). Since we cannot check a theoretically infinite
number of features, we stop considering new features once we obtain a mass
that is less than a specific fraction (e.g., we used 1/1000) of the highest
mass. This should cover most reasonable posterior values and the fraction
is a tuning parameter that can be adjusted if desired. This truncation step
makes this algorithm an approximate sampler, but it can closely mimic an
exact sampler. See Section S.2 in the supplementary material for a simulation
study on the accuracy of this sampling algorithm.

(b) We estimate probabilities p0, p1, p2, . . . of adding 0,1,2,. . . singleton features
by dividing each unnormalized mass in the previous step by the sum of all
masses. Add j singletons to customer i with probability pj .

After going through all rows, the result is one scan of the Markov chain updates for
Z. We then sample from the other parameters, which we describe in the next section.
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5.2 Sampling the Other Parameters

After updating Z, we proceed to update the other parameters (α, ρ, τ , σX , and σA).
The parameters α and τ are sampled univariately; while (σX , σA) is sampled jointly,
and ρ is sampled as a vector.

For the mass parameter α, we suggest using a gamma prior because it is conditionally
conjugate. If a Gamma(aα, bα) prior (with expectation aα/bα) is used, then the resulting
conditional posterior is a draw from a Gamma(aα + TZ , bα + HN ). TZ indicates the
total number of features in the current state of Z and HN is the N th harmonic number.

For the permutation parameter ρ, we suggest using a discrete uniform on all possible
permutations of the integers 1 through N, unless there is natural ordering in the data.
Using the discrete uniform prior, we update ρ with a random walk using a discrete
uniform proposal. For small N, this can be done by sampling from any of the N ! possible
permutations. However, for larger N , this could lead to low acceptance rates. As such,
we recommend only updating kρ of the elements in the permutation at a time, where kρ
is a tuning parameter that controls how quickly the permutation space is explored. In
our experience choosing kρ to obtain an acceptance rate of around 25% produced good
mixing. As N gets larger, kρ may need to stay at a fixed quantity to get good acceptance
rates. The steps to sample a new ρ are outlined as follows. First randomly select kρ
indices in the permutation to update. Next, randomly shuffle the kρ indices, while leaving
the other N−kρ indices fixed, to generate a proposed permutation. Finally, calculate the
Metropolis acceptance ratio, Rρ and accept the proposed permutation with probability
min(1, Rρ). Checking for good mixing and convergence for ρ is more nuanced than for
the other parameters. We provide some recommendations in Section 6.5 to assess the
convergence for ρ.

The temperature parameter τ in the likelihood does not appear to have a conjugate
prior. Therefore, any prior with positive continuous support might be reasonable. For
our implementation, we choose a Gamma prior. To draw from the conditional posterior
of τ we use a Metropolis step with a Gaussian random walk proposal and reject proposals
outside the support of τ .

For the variance components of the likelihood, we recommend using any positive
continuous prior, such as a Gamma prior on σX and σA. Since σX and σA are typically
negatively correlated in the posterior, we used a bivariate Gaussian random walk to
update both parameters simultaneously, again rejecting proposals outside the support
of (σA, σX).

Due to the computational burden of updating Z relative to updating the other pa-
rameters, we recommend updating the other parameters several times for every update
of Z. We updated other parameters 10 times for every update of Z in the application
in Section 6 to reduce the autocorrelation within the posterior draws, at a negligible
computational cost.

The methods suggested in this section are implemented in the samplePosteriorL-
GLFM function of the aibd R package. The posterior sampling algorithm can be applied
to both the AIBD and, since it is a special case of the AIBD, the IBP. From our expe-
rience, the results are accurate and the only source of bias comes from the truncation
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step. This truncation error can be controlled and appears to be negligible compared to
Monte Carlo error.

6 Data Analysis

In this section, brain measurement data is analyzed using a latent feature model in sev-
eral analyses. The LGLFM likelihood, introduced in Griffiths and Ghahramani (2006)
and discussed in Section 2.3 of this paper, remains the same over each analysis, how-
ever, the prior distributions vary. Three fundamentally different prior distributions are
considered. Specifically, the proposed AIBD, the dd-IBP and the standard IBP are used
as prior distributions on the matrix Z and the posterior results are then compared.

6.1 The Data

The data for these analyses were obtained from a neuroimaging study of the brains of
healthy and Alzheimer’s-diseased subjects (see Dinov et al., 2009). The data and some
details of the study are available on UCLA’s Statistics Online Computational Resource
(SOCR) data page SOCR (2009). Of that data, we consider the 27 Alzheimer’s diseased
and 35 normal control subjects. In the study, 56 distinct regions of interest (ROIs) in the
brain are observed; each region has four different measurements. The four measurements
are the surface area (SA), shape index (SI), curvedness (CV), and fractal dimension
(FD). One of the properties of the LGLFM is that the error terms for each of these
measurements are assumed to have constant variance. Therefore, before modeling, the
ROI measurements are centered and scaled (so each has a mean of zero and a standard
deviation of one). Additionally, the SA measurements are somewhat skewed, thus a log
transformation was performed before centering and scaling those measurements.

6.2 The Analysis

The analysis of this data mirrors the steps taken in Gershman et al. (2015). First, pa-
tient age is included in the AIBD and dd-IBP priors as a distance between patients.
Including this distance makes the both the AIBD and dd-IBP priors nonexchangeable,
with the hope that this extra information will improve the model’s predictive perfor-
mance. The distances between patients are defined in both priors using the exponential
decay function (i.e., exp{−temperature × |age difference|}).1 As in their analysis, we
use a sequential proximity matrix for the dd-IBP and fix the order of the patients
from youngest to oldest in both the AIBD and the dd-IBP. The temperatures for the
AIBD and dd-IBP are set at 5 levels (0.4, 0.8, 1.2, 1.6, and 2.0). Since the IBP prior
is exchangeable, it does not include any distance information between patients. In each
model a gamma(1, 1) is used as the prior distribution for the mass parameter (the same
as in the dd-IBP code by Gershman, 2013). The LGLFM likelihood is used as defined
previously, with the data being the 4 different measurements in 56 regions of the brain.
The data, X, are contained in a 62 × 224 matrix, which is an over parameterized model
unless some type of regularization or dimension reduction is used.

1In the AIBD prior, 0.00001 is added to each age difference to ensure no two patients have a distance
of 0.
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Prior distributions for the variance components of the likelihood also need to be
specified. Since the data are centered and scaled, a reasonable maximum value for
σA and σX is 1. Therefore, in all models a standard uniform prior is placed on these
parameters; i.e., p(σA) = I (0 < σA < 1) and p(σX) = I (0 < σX < 1).

With the models fully specified, we follow similar steps of the analysis in Gershman
et al. (2015). First, we obtain 3,000 MCMC posterior samples from each model. The
first half of the samples is discarded for burn-in. Each model had 50 MCMC chains, for
a total of 75,000 posterior samples. For each sample, the subjects are randomly divided
into training and testing sets. Using the latent features from the posterior sample of
Z as predictors, an L2-regularized logistic regression is performed on the training set
(to classify which patients do or do not have Alzheimer’s disease). For the logistic
regression, we use the penalized function in the penalized R package (Goeman et al.,
2018; Goeman, 2010) with the regularization constant set to 10−6. Using the results
from the logistic regression model, the test group subjects are then classified to assess
performance. Finally, for each test group’s classification, the area under the receiver
operating characteristic curve (AUC) is calculated. Thus we obtain 75,000 posterior
samples of AUC, which are used to compare each model’s efficacy.

Although the steps in this analysis are the same as in Gershman et al. (2015),
based on the information provided in that article, a few aspects of the analysis cannot
be replicated. First, in the dd-IBP paper a few observations were randomly removed
in the classification to balance the training and testing sets. However, the removed
observations were not identified. Therefore, we do not ignore any observations; i.e., the
training and testing sets are disjoint but include all 62 subjects. Also, it is not specified
which observations are assigned to the training and testing sets for classification. In our
implementation, we randomly assign 14 diseased and 18 healthy subjects to the training
set, and then assign the remaining 13 diseased and 17 healthy subjects to the testing
set; this is repeated for each posterior sample.

In total there are five AIBD priors (one for each temperature), five dd-IBP priors,
and one IBP prior. In each of those 11 models we obtained 75,000 posterior samples; the
ith sample of each chain are compared using identical training and testing sets during
classification. For posterior simulation, the code available at Gershman (2013) is used
for the dd-IBP, and the functions included in the aibd package (Dahl et al., 2021) are
used for both the AIBD and the IBP. Posterior means and standard deviations of the
parameters from the several models are included in Section S.4 of the supplementary
material. One possible confounding factor in our comparison of the AIBD and the dd-
IBP is that the posterior simulation for the dd-IBP is an approximate MCMC scheme,
as noted in Gershman (2013).

6.3 Comparison Between the AIBD and the dd-IBP

Each model’s performance is measured by how well it correctly classifies subjects into
“healthy” or “diseased”. This performance can be quantified using the AUC, which
ranges between zero and one, with higher values indicating a better classifier. Using the
AUC, from the classifications on the testing sets, the results of the models with AIBD
and dd-IBP priors are compared. 95% Monte Carlo confidence intervals for the expected
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Temp 0.4 0.8 1.2 1.6 2.0

AIBD (0.747, 0.748) (0.747, 0.748) (0.750, 0.752) (0.754, 0.755) (0.753, 0.754)
dd-IBP (0.677, 0.679) (0.715, 0.716) (0.708, 0.710) (0.719, 0.721) (0.720, 0.721)

Table 3: Posterior Expected AUC. 95% Monte Carlo confidence intervals for the ex-
pected posterior AUC for the five AIBD and dd-IBP models (with fixed temperatures
and permutation), higher values indicate better model performance.

Temp 0.4 0.8 1.2 1.6 2.0
AIBD 32531.58 32523.37 32557.66 32513.63 32489.31
dd-IBP 35322.27 35005.67 35286.97 35316.80 35144.78

Table 4: DIC values for the five AIBD and dd-IBP models (with fixed temperatures and
permutation), lower values indicate better model fit.

posterior AUC from the models with AIBD and dd-IBP priors are reported in Table 3.
This table shows that, on average, the AIBD has higher AUC than the dd-IBP at every
temperature setting. In Table 4 we also include the deviance information criterion (DIC)
scores (as defined by Gelman et al. (2013) and use the penalty term in their Equation
7.8), for each model to determine which has a better fit. The DIC indicates that the
AIBD is performing better than the dd-IBP.

While the AIBD performs better than the dd-IBP under these conditions, it has the
added benefit of easily accommodating a prior on the temperature parameter. Find-
ing a suitable static value for the temperature parameters seems neither intuitive nor
straight-forward. Allowing prior distributions to incorporate some amount of uncer-
tainty is arguably more appropriate. An additional model with an AIBD prior was
fit (with 75,000 posterior samples) with a gamma(1, 1) prior distribution set on the
temperature parameter and a uniform distribution on the permutation, ρ. When tak-
ing advantage of this flexibility the AIBD performs even better, with a 95% Monte
Carlo confidence interval on the expected posterior AUC of (0.758, 0.760), and a DIC
of 32477. It should be noted that it is also possible to set a prior on the permutation
for the dd-IBP, but the available software does not have that option. This example
demonstrates that the AIBD prior is better able to capture the distance information
(age) between subjects. On average, the logistic regression trained on each posterior Z,
learned from the AIBD model when compared to the dd-IBP model, more accurately
classifies subjects as “healthy” or “diseased.”

To further compare the AIBD and the dd-IBP, the expected number of posterior fea-
tures in Z can be found in Table 5. These numbers demonstrate a substantial reduction
in dimension from the original 224 data columns plus the age variable. This reduction in
dimension is really larger than it first appears because the entries in feature allocation
matrices are binary, zeros and ones, whereas the data contained in X are continuous
values. To determine how much information from the data is lost in the dimension re-
duction, we compare the AUC results from two alternative models. These alternative
models are penalized logistic regressions fit to the same training sets of the centered
and scaled data as the AIBD and dd-IBP models, one includes X as the predictors,
and the other includes both X and the age of each patient. The average AUC of these
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Temp 0.4 0.8 1.2 1.6 2.0
AIBD 68 (61,76) 68 (61,76) 66 (60,73) 66 (59,73) 65 (59,72)
dd-IBP 87 (56,128) 104 (74,134) 95 (68,135) 105 (76,200) 105 (73,199)

Table 5: The average number of features in the posterior samples of Z for the AIBD and
the dd-IBP at five different temperatures. Additionally, for each case, a 95% posterior
probability interval for the number of features is shown in parentheses.

Temp 0.4 0.8 1.2 1.6 2.0
AIBD 4.3 (3.9,4.9) 4.5 (4.1,5.2) 4.7 (4.1,5.2) 4.8 (4.2,5.3) 4.9 (4.3,5.6)
dd-IBP 4.2 (3.6,4.8) 3.6 (3.1,4.1) 3.2 (2.9,3.7) 2.9 (2.5,3.3) 2.7 (2.3,3.1)

Table 6: The average number of customers per feature in the posterior samples of Z for
the AIBD and the dd-IBP at five different temperatures. Additionally, for each case, a
95% posterior probability interval for the number of customers per feature is shown in
parentheses.

models are 0.778 and 0.785 respectively. So little information is lost in the dimension
reduction and the AIBD’s posterior feature allocation can comprise nearly all the infor-
mation about a patient’s disease state, while drastically decreasing the dimensionality.
This reduction of dimension is most useful if the results can be interpreted.

As discovered in the prior exploration of the AIBD and the dd-IBP, we also see
similar feature sharing trends in the posterior. Table 6 shows the average number of
customers per feature in the posterior samples for each of the 10 models. These numbers
indicate that the amount of feature sharing goes down in the posterior of the dd-IBP as
the temperature parameter increases. While we see an increase in the amount of sharing
in the AIBD for the same temperatures.

A very rough speed comparison of the posterior sampling algorithms for the dd-
IBP and the AIBD showed that the dd-IBP could do one update of all parameters in
roughly 13 seconds (using ∼25 cores), while the AIBD took approximately 70 seconds
(using one core). There are a few issues that make a full comparison quite challenging.
One is that the methods are implemented in different software; the dd-IBP takes ad-
vantage of MATLAB’s multi-threading capabilities, while the AIBD implementation is
single-threaded. Additionally, each MCMC scan is highly dependent on the number of
active features in the current iteration, and the dd-IBP had a higher average number
of posterior features in Z. The AIBD also gains a time advantage using compiled code.

6.4 Comparison Between the AIBD and the IBP

As demonstrated, the AIBD competes favorably with the dd-IBP as an effective nonex-
changeable prior for latent feature models. In this application we also want to show that
using a nonexchangeable prior can produce better results than when using an exchange-
able prior, specifically the IBP. In this case the AIBD has the added advantage over
the IBP of knowing a patient’s age and using it as a distance between patients. If a pa-
tient’s age is important to predicting Alzheimer’s disease the AIBD should outperform
the IBP; however, if the information is not informative no benefit should be expected.
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The comparison between the models with the AIBD and IBP priors uses the same
scheme as in the previous subsections. The prior for the mass parameter in both models
is a gamma(1, 1) distribution. Additionally for the AIBD model, a gamma(1, 1) prior
is set on the temperature parameter and a uniform prior on the permutation. Again,
we recommend the permutation parameter be integrated out of the model, unless there
is meaningful order of the data. To tune the proposal distribution of the permutation
parameter, we set kρ = 8 which produced an acceptance rate of approximately 20% in
that Metropolis-Hastings step.

For posterior results we get, DIC values for the AIBD and the IBP models are
32477.35 and 32539.26, respectively. Additionally, the average number of customers per
feature in the posterior samples is 74 for the AIBD and 70 for the IBP. The average
number of customers per feature is 4.6 for the AIBD and 4.1 for the IBP. The re-
sulting posterior expected AUC for each model is 0.759 and 0.747 for the AIBD and
IBP, respectively. A 95% confidence interval on the paired difference between average
AUC for the AIBD and the IBP is (0.011, 0.013). The results are fairly convincing:
the AIBD can use the extra distance information to obtain better classification re-
sults.

This example demonstrates that a patient’s age does contain information that is
valuable in classifying patients into healthy and Alzheimer’s diseased states. It also
shows that the AIBD prior is able to capture this distance information contained in a
patient’s age to improve model performance.

An informal speed comparison of the posterior sampling algorithms for the IBP
and the AIBD showed that the IBP could do one update of all parameters in roughly
63 seconds, while the AIBD took approximately 70 seconds. This comparison is easier
to make than with the dd-IBP, since the algorithm and software implementation are
the same. This application demonstrates that the computational penalty for using the
nonexchangeable AIBD prior isn’t high, and improves model performance over the IBP
prior.

6.5 Items for Consideration

Procedures to check the convergence of the MCMC chains are rather standard for most
parameters of the model, however, since ρ is fairly novel, we highlight a few considera-
tions for it. As with essentially any parameter, we cannot visit all possible values for ρ
in posterior sampling, and we treat it much the same as any other parameter. Although
we set a uniform prior on ρ, we do not expect its posterior to be uniform. What we want
to accomplish is obtain a sample which provides reasonable Monte Carlo estimates. We
look for good acceptance rates and exploration around the space by first checking that
the chaining is moving and, secondly, converging. To check for movement, we observe
the standard deviation of each item’s permutation in each chain and ensure it is well
above 0. To check for convergence, we monitor the mean of the permutation of the first
half of the observations and we also monitor the mean of the permutation of the odd
observations. If these two summaries of ρ show convergence, this provides evidence that
the chain is sampling from the stationary distribution. Additional summaries of ρ may
be warranted if concern about the mixing of ρ exists.
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The scalability of sampling from feature allocation models seems to be somewhat
limited from small to moderate N . Conducting a simple test, we ran the AIBD model
with a random temperature and permutation using three different data sets with N ∈
{31, 62, 124}. The test first used X31×224, next X62×224, and finally X124×224. The
average time it took for one Gibbs scan took on average 3.7, 20.4, and 195.5 seconds,
respectively. All else being equal, as N grows so will the number of features K. The
average K for those 3 tests are: 25.7, 36.7, and 78.8. We also ran the same tests for
the IBP and the average time it took for one Gibbs scan took on average 3.7, 20.9, and
188.7 seconds and the average K for those 3 tests are: 25.7, 36.7, and 78.6, respectively.
Therefore we see that the AIBD and the IBP scale similarly. We suppose this occurs
because the likelihood computations dominate those of the prior. We expect the dd-IBP
would scale similarly for the same values of N . For larger N , the computation required
to get samples from the posterior might be too computationally expensive. Thus other
approaches might be required, e.g., variational inference. A few works on variational
inference in feature allocation models include Teh et al. (2007), Doshi et al. (2009), and
Ranganath et al. (2014).

The similarity function, which transforms distances into similarities, is an impor-
tant modeling choice in the AIBD. We considered a slightly altered AIBD model, again
with random temperature and permutation, but only changing the similarity func-
tion. The similarity function we chose for the comparison was the reciprocal function
1/(di,j + 10−5). The results were fairly similar to those obtained using the exponential
decay similarity function. This model has a DIC of 32539.38, a 95% Monte Carlo (MC)
confidence interval for AUC is (0.751, 0.752) and for posterior expected number of fea-
tures is (71.7, 71.8), and the average number of customers per feature in the posterior
samples is 4.5. In this case, the model does not seem to be overly sensitive to the choice
of the similarity function.

7 Conclusion
In this paper, a generalization of the IBP was developed to allow for customer depen-
dence in the prior. It was demonstrated that after including pairwise distance infor-
mation, the AIBD preserves many familiar properties of the IBP. We compared these
properties of the AIBD to those of the IBP and dd-IBP, and summarized them in Ta-
ble 2. Further, while the AIBD and dd-IBP attempt to generalize the IBP by including
pairwise distance information, we have shown that the AIBD possesses several proper-
ties that make it particularly appealing. An instance of this was shown in the application
in Section 6, where the AIBD outperformed the dd-IBP in terms of AUC. We note that
the AIBD is constrained to cases where distances are symmetric, whereas the dd-IBP
allows for non-symmetric distances.

Overall, the AIBD is an attractive solution for incorporating distance information
into a prior distribution of a feature allocation. It retains many desirable properties of
the IBP. For a fixed mass and temperature, it encourages more feature sharing between
customers than the dd-IBP. Priors can readily be set on model parameters, such as the
temperature. Last, but not least, this distribution and some associated methods are
implemented in the aibd package in R (Dahl et al., 2021).
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Supplementary Material

S.1 The AIBD’s Expected Number of Features per Observation.
A Proof that the AIBD has the Same Number of Expected
Features as the IBP

Here, we show that the sum of each row in the feature allocation matrix from the AIBD
(conditioned on the permutation ρ, temperature τ , and mass α) has an expected value
of α. Recall that Xi is the number of new dishes customer i takes, and Yi is the number
of dishes sampled before customer i samples dishes. Let Qi be the number of previously-
samples dishes that i takes. Let Si = Xi+Qi be the total number of dishes sampled by
customer i. That is, Si is the sum of row i in the feature allocation matrix Z. We will
show that E[Si | α,ρ, τ ] = α, and thus, E[Si | α] = α, for all i. We will show this by
strong mathematical induction.

First, note that S1 = X1, and X1 | α,ρ, τ ∼ Poisson(α). Thus, E[S1 | α,ρ, τ ] =
E[X1 | α,ρ, τ ] = α. Next, S2 = X2 +Q2. Thus, E[S2 | α,ρ, τ ] = E[X2 +Q2 | α,ρ, τ ] =
E[X2 + X1,2 | α,ρ, τ ] = E[X2 | α,ρ, τ ] + E[X1,2 | α,ρ, τ ] = α/2 + α/2 = α, where
X1,2 is the number of shared features between customers 1 and 2. (See 4.2 for why
E[X1,2 | α,ρ, τ ] = α/2.)

Now, suppose that for some i ∈ N, E[Sj | α,ρ, τ ] = α for all j ≤ i. Let Ci =∑i
j=1 f(τ, dρj ,ρi+1), then

E[Si+1 | α,ρ, τ ] = E

⎡
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Thus, E[Si+1 | α,ρ, τ ] = α also. Therefore, by mathematical induction, E[Si | α,ρ, τ ] =
α, for all i ∈ N. Since for all (ρ, τ), E[Si | α,ρ, τ ] = α, we also obtain E[Si | α] = α.

S.2 Simulation of MCMC Algorithm Accuracy. A Posterior
Simulation Study to Show the Accuracy of the Proposed
MCMC Algorithm

We conducted a Monte Carlo study to demonstrate that the proposed MCMC algo-
rithm in Section 5.1 approximately samples from the target distribution. Recall that
our algorithm has a truncation parameter, designed to provide feasible computation
with reasonable accuracy. We consider our sampling algorithm for various truncation
parameters and use our MCMC algorithm to sample Z’s from the AIBD prior distribu-
tion. We also sample Z’s using the constructive definition of the AIBD from Section 3.
We then compare Monte Carlo estimates of univariate summaries of the distribution
and compare them to theoretical values. The default value for the truncation parameter
is 1000 and we show that Monte Carlo error dominates the small truncation error.

The experiment has two measures of accuracy. The first finds the largest absolute
difference of the empirical probability of getting a Z with K features (for all possible K)
and its actual probability. Recall Z is an N×K matrix, thus for m samples we compute

max
all k

∣∣∣∣∣P (K = k)− 1

m

m∑
i=1

I(Ki = k)

∣∣∣∣∣. (S.1)

The second measure of accuracy compares the average number of active features with
the theoretical results. This is expressed as∣∣∣∣∣αN − 1

m

m∑
i=1

tr(ZiZi
T )

∣∣∣∣∣. (S.2)

It would be more accurate to compare the number of times each Z was sampled with
its theoretical probability, however, the space of all possible Z is too large, even for
moderate N , to take this approach.

In this simulation we set N = 10 and α = 1.4. The distance matrix is defined by
d(i, j) = |i−j|/N , and we use the exponential decay function to transform the distances



960 The Attraction Indian Buffet Distribution

Sampling Method Max. Prob. of Feature Error Mean Active Feature Error
Monte Carlo 0.00024 0.0030
MCMC (trunc. = 1000) 0.00024 0.0035
MCMC (trunc. = 100) 0.00052 0.0102
MCMC (trunc. = 10) 0.00210 0.1106
MCMC (trunc. = 1) 0.00203 0.1255

Table S.1: This table provides two metrics on the accuracy of the proposed MCMC
sampler from Section 5.1. It shows that the MCMC sampler with the truncation pa-
rameter set to 1000 is nearly as accurate as a Monte Carlo sample from the AIBD. As
the truncation parameter decreases, so does the accuracy.

τ 1 / 2 1 / 3 1 / 4 1 / 5 2 / 3 2 / 4 2 / 5 3 / 4 3 / 5 4 / 5
Distance – 0.12 0.66 3.74 3.78 0.59 3.65 3.69 3.32 3.46 1.01
Expected

0.2
0.54 0.53 0.48 0.47 0.53 0.48 0.48 0.48 0.48 0.53

Similarity 0.98 0.88 0.47 0.47 0.89 0.48 0.48 0.51 0.50 0.82
Expected

1.0
0.65 0.61 0.39 0.39 0.61 0.39 0.39 0.41 0.40 0.67

Similarity 0.89 0.51 0.02 0.02 0.55 0.03 0.02 0.04 0.03 0.36
Expected

5.0
0.72 0.59 0.35 0.35 0.61 0.36 0.36 0.40 0.39 0.73

Similarity 0.55 0.04 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.01

Table S.2: This table shows the expected number of features between two states com-
pared with the similarity of those two states, for three different temperatures. As the
temperature increases, the similarity (for this similarity function) decreases and the
sharing of features also changes, it goes up for closer items and goes down for items
that are relatively far apart.

Figure S.1: The expected number of shared features between two states as a function
of temperature for the dd-IBP with a symmetric proximity matrix. In this case, the
permutation is irrelevant because there is no ordering of the customers. As shown, the
expected number of shared features has an initial increase and then decreases as the
temperature parameter increases. Across all pairs of states and for all temperatures the
amount of sharing is lower than the IBP.
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Figure S.2: These four plots show the pairwise distances against the expected number
of shared features in the AIBD when N=50 for different temperatures. The permutation
parameter is integrated out (using Monte Carlo).

to similarities with τ = 2. The permutation is fixed at 1, 2, . . . , 10, and for thinning we
retain every tenth sample. We obtain a total of one million samples for each case. We
sample directly from the AIBD for one case and use the MCMC sampler to obtain
posterior samples (with the likelihood proportional to 1) in the four other cases. Each
of the four cases of the MCMC sampler use different truncation parameter settings
(1000, 100, 10, 1).

The results are shown in Table S.1 where lower numbers represent lower error. The
“Max Prob of Feature Error” column contain values from (S.1) and the “Avg Active
Feature Error” column contain values from (S.2). It appears the second metric is more
sensitive to deviations from the truth. In Table S.1 we also included a Monte Carlo
estimate (sampling directly from the AIBD) to help quantify the amount of MC error
one might expect. Clearly, the Monte Carlo sample, directly from the target distribution,
is most accurate to the theoretical results. Our MCMC algorithm with the truncation
parameter set to 1000 is also very close to the truth. When the truncation parameter
is 100 the algorithm loses more accuracy and degrades as it decreases.
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Figure S.3: These four plots show the pairwise distances against the expected number
of shared features in the AIBD when N=50 for different temperatures. The permutation
parameter is fixed using the alphabetical ordering of the states.

This experiment supports our claim that the proposed algorithm is sampling

from the posterior directly, but it has some inherent truncation error. This error can be

reduced by increasing the newFeaturesTruncationDivisor argument in the

aibd::samplePosteriorLGLFM function. The default is set at 1000, where we have

observed that this truncation error is much smaller than typical Monte Carlo error.

A rough estimate from this simulation indicates that the computational expense from

increasing the truncation parameter from 100 to 1000 is about 15%.

S.3 Additional Material on Feature Sharing

This section further explores the sharing of features beyond that of the manuscript. The

data is from the USArrests dataset contained in R. When N = 5, the states selected

are New Hampshire, Iowa, Wisconsin, California, and Nevada (in that order). When

N = 50 all 50 states are used in the example.
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Figure S.4: These four plots show the pairwise distances against the expected number of
shared features in the dd-IBP when N=50 for different temperatures. The permutation
parameter is integrated out (using Monte Carlo).

Table S.2 shows the Euclidean distance (in the centered and scaled data) between
two states. It also includes the expected number of features between two states compared
with the similarity of those two states, for three different temperatures. As shown in the
table, as the temperature increases the similarity, using the exponential decay function
to transform distance to similarity, decreases. Also the expected number of shared of
features also changes as a function of temperature. When the temperature goes up the
sharing between “close” states increases, but for states that are relatively “not close”
the sharing decreases.

Figure S.1 shows the expected number of shared features between two states as a
function of temperature for the dd-IBP with a symmetric proximity matrix. In this case,
the permutation is irrelevant because there is no ordering of the customers. As shown,
the expected number of shared features has an initial increase and then decreases as
the temperature parameter increases. Across all pairs of states and for all temperatures
the amount of sharing is lower than the IBP (dashed line at 0.5). As the temperature
goes to infinity the sharing goes to zero.



964 The Attraction Indian Buffet Distribution

Figure S.5: These four plots show the pairwise distances against the expected number of
shared features in the dd-IBP when N=50 for different temperatures. The permutation
parameter is fixed using the alphabetical ordering of the states.

Figures S.2, S.3, S.4, and S.5 explore the expected pairwise feature sharing for the
50 states in the USArrests dataset. The plots show the expected shared number of
features at four fixed temperatures, where α = 1, for both the AIBD and the dd-IBP,
and when the permutation is averaged out of the model and fixed. As expected, there is
a negative correlation in all of the plots. When the temperature is zero all points would
be at 0.5 (with the IBP). At the temperature of 0.2 all four scenarios show some change
in feature sharing. As the temperature increases the AIBD stays centered around 0.5,
but the dd-IBP is driven towards no sharing. Additionally, for both the AIBD and the
dd-IBP the scatter of points becomes less diffuse when the permutation is integrated
out the model. In all cases of the dd-IBP, all points are below the IBP level of 0.5.

S.4 Posterior Summaries

This section contains the posterior means (and standard deviations in parentheses) of
the parameters for the various models from Section 6. The first five rows of Table S.3
contain the results for the AIBD with fixed temperatures. The sixth row is from the
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Mass Temperature σX σA

AIBD (temp=0.4) 12.1 (1.6) 0.40 (0.00) 0.52 (0.01) 0.38 (0.01)
AIBD (temp=0.8) 12.0 (1.6) 0.80 (0.00) 0.52 (0.01) 0.37 (0.01)
AIBD (temp=1.2) 11.8 (1.6) 1.20 (0.00) 0.52 (0.01) 0.37 (0.01)
AIBD (temp=1.6) 11.7 (1.6) 1.60 (0.00) 0.52 (0.01) 0.37 (0.01)
AIBD (temp=2.0) 11.6 (1.6) 2.00 (0.00) 0.52 (0.01) 0.37 (0.01)
AIBD 13.2 (1.7) 2.77 (0.29) 0.52 (0.01) 0.35 (0.01)
AIBD (recip sim) 12.7 (1.8) 0.22 (0.02) 0.52 (0.01) 0.37 (0.01)
dd-IBP (temp=0.4) 6.8 (1.7) 0.40 (0.00) 0.60 (0.03) 0.32 (0.03)
dd-IBP (temp=0.8) 5.8 (1.0) 0.80 (0.00) 0.58 (0.02) 0.32 (0.02)
dd-IBP (temp=1.2) 4.3 (0.9) 1.20 (0.00) 0.60 (0.02) 0.35 (0.03)
dd-IBP (temp=1.6) 5.0 (4.8) 1.60 (0.00) 0.59 (0.03) 0.35 (0.02)
dd-IBP (temp=2.0) 4.4 (2.6) 2.00 (0.00) 0.59 (0.03) 0.36 (0.03)
IBP 12.4 (1.6) – 0.52 (0.01) 0.38 (0.01)

Table S.3: Posterior parameter summaries. The posterior means of the parameters for
the various models. The posterior standard deviations are included in parentheses.

AIBD with random temperature and permutation. The seventh row of Table S.3 is the
AIBD with random temperature and permutation and using the reciprocal similarity
function (all other models use the exponential decay similarity function). Rows 8–12
show the results for the dd-IBP models with fixed temperatures. The last row shows
the posterior summaries for the parameters in the IBP model.
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