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Bayesian Concentration Ratio and Dissonance∗

Wei Shi†, Ming-Hui Chen‡, Lynn Kuo§, and Paul O. Lewis¶

Abstract. We propose two new classes of Bayesian measure to investigate conflict
among data sets from multiple studies. The first (“concentration ratio”) is used
to quantify the amount of information provided by a single data set through the
comparison of the prior and its posterior distribution, or two data sets according
to their corresponding posterior distributions. The second class (“dissonance”)
quantifies the extent of contradiction between two data sets. Both classes are
based on volumes of highest density regions. They are well calibrated, supported
by simulation, and computational algorithms are provided for their calculation.
We illustrate these two classes in three real data applications: a benchmark dose
toxicology study, a missing data study related to health effects of pollution, and
a pediatric cancer study leveraging adult data.

Keywords: area under the curve, data compatibility, highest density regions,
Monte Carlo methods, power prior.

1 Introduction

With the development of modern information technology, the need to compare and
combine data across multiple studies has never been more important. For example, the
ability to pool data and perform integrative data analysis is particularly important and
timely in the addiction sciences (Conway et al., 2014). In phylogenomics, there is a
need for both measuring the amount of information provided by sequence data from
individual genes and quantifying the degree of gene tree conflict (Lewis et al., 2016). In
meta-analysis, it is important to quantify the extent of heterogeneity among a collection
of studies (Higgins and Thompson, 2002; Higgins et al., 2003). In pediatric drug devel-
opment, difficulties arise in clinical trials due to a low incidence of the disease in children
and many substantial challenges, including economic, logistical, technical, and ethical
barriers. Recent attention has increasingly focused on extrapolation; that is, leverag-
ing available data from adults or older age groups to draw conclusions for the pediatric
population (Schoenfeld et al., 2009; Gamalo-Siebers et al., 2017; Lakshminarayanan and
Natanegara, 2019).

When drawing inferences from various data sources, it is crucial to judge whether
the data are compatible. Divergence is often used to establish the distance of one prob-
ability distribution from another as a means of assessing “incompatibility” in statistics
and information geometry. Many kinds of divergence have been proposed. For exam-
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ple, f-divergence (Ali and Silvey, 1966; Csiszár and Shields, 2004; Morimoto, 1963)
(including the Kullback-Leibler divergence (Kullback and Leibler, 1951) and Hellinger
distance (Hellinger, 1909)), Rényi’s divergence (Rényi, 1961), and Bregman divergence
(Bregman, 1967). Many divergence measures are not easy to compute empirically and
it is hard to tell when the conflict is severe. In the Bayesian setting, Shi (2017) de-
fined a partition-based measure to quantify the compatibility of two data sets based
on their posterior distributions. Methods for detecting and measuring conflict using p-
values include Marshall and Spiegelhalter (2007), G̊asemyr and Natvig (2009), Evans
and Moshonov (2006), Presanis et al. (2013), and Nott et al. (2020). While p-value is a
single summary, to extend its scope, we propose two new classes of measures: concentra-
tion ratio measure focusing on scale change and dissonance measure focusing on location
shift. Both measures are easy to interpret and can be computed for any multi-modal,
skewed, or complex distribution.

Lindley (1956) defined the information provided by an experiment as the difference
between the posterior and prior differential entropies. Information is the resolution of
uncertainty (Shannon, 1948); it reduces the set of values deemed plausible. A 100(1−α)%
Bayesian credible region provides one way to define a set of plausible values after the
data are collected. When a distribution is not symmetric or unimodal, a 100(1 − α)%
highest density region (HDR) is more desirable than other regions, as every point inside
the HDR has higher density value than every point outside.

We propose two novel classes of Bayesian measures based on HDRs. LCR(α) (Log-
arithm of the Concentration Ratio) is defined as the log-ratio of the volume of two
HDRs at level α. LCR(α) indicates whether one distribution is more dispersed than
the other, however, it cannot detect conflict caused by a location shift. Therefore D(α)
(dissonance) is introduced as the fraction of the volume of the smaller HDR that is not
overlapping with the larger HDR at the α level.

Computing HDR volume is required for both measures. In a one-dimensional case,
the HDR consists of the highest density interval and thus the volume is measured by
the interval length. Chen and Shao (1999) provided a Monte Carlo method to estimate
the HD interval for a unimodal distribution. For two or more dimensions, the com-
putation of the HDR is more complicated, so is the estimation of its volume. Tanner
(1996) provided an algorithm to calculate the content and boundary of the HDR using
a normal approximation. However, Tanner’s algorithm does not work well when the dis-
tribution is multi-modal or skewed, and computation of the volume of the HDR remains
unaddressed. To overcome such difficulties, we propose two two-stage Monte Carlo algo-
rithms to first estimate the HDR and then compute its volume. The algorithms are then
applied to calculating LCR(α) and D(α). Simulation studies are provided in Appendix
C in Supplementary Material (Shi et al., 2021) to examine the empirical performance
of the algorithms.

The article is organized as follows. Section 2 presents a detailed development of
LCR(α) and D(α). We propose two two-stage Monte Carlo algorithms to estimate the
volume of a HDR in Section 3.1 and use them to calculate LCR(α) and D(α) in Sec-
tion 3.2. To gain further insight, we compare our dissonance measure to conflict p-value
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approaches in Evans and Moshonov (2006) and Presanis et al. (2013) for normal loca-
tion and binomial problems in Section 4. We display the results of concentration ratio
measure and dissonance measure for several scenarios, including location shift, scale
change, tail change, multi-modal and skewed distributions in Section 5. In Section 6,
the proposed LCR(α) measure and the integrated D(α) measure are applied to three
studies: (1) a benchmark dose toxicology study, (2) evaluating missing data information
in a health effect study on respiratory function for children, and (3) investigating how
to leverage adult data to analyze pediatric data. HDR has been criticized for being not
invariant under reparametrization, so we explore an invariant HDR in Section 7. We
conclude the article with a brief discussion in Section 8.

2 Concentration Ratio and Dissonance

2.1 HDR

For a parameter θ with the probability density function f(θ), the 100(1− α)% highest
density region (HDR) is the subset of the parameter space Θ such that

R(α) = {θ ∈ Θ : f(θ) ≥ fα}, (2.1)

where fα is the largest constant such that Pr(θ ∈ R(α)) ≥ 1− α.

Recognizing that log-concave distributions are frequently encountered in practice, we
provide an important property of a HDR for a log-concave distribution in the following
theorem.

Theorem 2.1. For a log-concave density, the 100(1−α)% HDR is a closed convex set.

Proof. For any two points a, b within the 100(1−α)% HDR, we have f(a) ≥ fα, f(b) ≥
fα. Then, by the log-concavity of f , for any λ ∈ (0, 1),

f(λa+ (1− λ)b) ≥ f(a)λf(b)1−λ ≥ fλ
αf

1−λ
α = fα.

Therefore, the point λa+ (1− λ)b also falls within the 100(1− α)% HDR.

2.2 Definitions of Concentration Ratio and Dissonance

Consider two probability distributions of θ with probability densities f1(θ) and f2(θ),
and R1(α) and R2(α) as their corresponding 100(1− α)% HDRs. We have

Ri(α) = {θ ∈ Θ : fi(θ) ≥ fα,i} , i = 1, 2,

where fα,i is the largest constant such that Pr(θ ∈ Ri(α)) ≥ 1− α.

Our measure LCR(α) is based on the comparison of V (R1(α)) and V (R2(α)), where
V (·) denotes the volume.

Definition 1. Let the concentration ratio CR(α) = V (R1(α))/V (R2(α)). The loga-
rithm of the concentration ratio of the first distribution to the second distribution is
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defined as

LCR(α) = logCR(α) = log
V (R1(α))

V (R2(α))
.

For a fixed α, LCR(α) measures the volume change between two HDRs. When the
first distribution is the prior distribution and the second one the posterior distribution,
LCR(α) quantifies the amount of information provided by the data beyond our prior
belief.

Figure 1: Graphical illustration of LCR(α) in the one-dimensional case.

When the posterior distribution is identical to the prior, the ratio CR(α) = 1 and
thus LCR(α) = 0 (Figure 1(a)). The set of plausible values remains the same after the
data are considered, which means no concentration change is provided by the data in
addition to the prior knowledge. When the volume of the posterior HDR V (R2(α)) is
smaller than V (R1(α)), the ratio CR(α) > 1, which results in positive LCR(α) (Fig-
ure 1(b)). In this case, the data effectively exclude some outcomes which are considered
plausible by the prior. Finally, data may make us less certain about the value of the
parameter, increasing the size of the set of plausible values specified by the prior. This
represents negative LCR(α) (Figure 1(c)).

Remark 1. For θ ∼ Nk(μ,Σ), the 100(1− α)% HDR is

R(α) =
{
θ ∈ Θ : (θ − μ)�Σ−1(θ − μ) ≤ χ2

k,α

}
, (2.2)

where χ2
k,α is the upper 100αth percentile of the chi-square distribution with k degrees

of freedom. From Appendix A in Supplementary Material (Shi et al., 2021), the volume
of (2.2) is

V (R(α)) =
π

k
2

Γ(k2 + 1)

(
χ2
k,α

) k
2 (det(Σ))

1
2 .

Thus, when comparing two normal distributions Nk(μ1,Σ1) and Nk(μ2,Σ2),

LCR(α) =
1

2
log

det(Σ1)

det(Σ2)
. (2.3)
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Note that in this case, LCR(α) has the same value over different choices of α. Assuming
det(Σ1)/ det(Σ2) = r, then for r = 2, 4, 8, 16, 32, LCR(α) = 0.35, 0.69, 1.04, 1.39, 1.73.
This can be used as a guide for calibrating LCR(α) when comparing approximately
normal distributions.

While LCR(α) compares the dispersion of each distribution, it cannot capture con-
flict caused by a location shift. Therefore, we introduce a dissonance measure, D(α),
which complements LCR(α) by focusing on how far apart the two distributions are.

Definition 2. For R1(α) and R2(α), let Rmin(α) denote the region with a smaller vol-
ume and Rmax(α) denote the larger one. The dissonance D(α) is measured as the frac-
tion of the volume of the smaller HDR that is not overlapping with the larger HDR, i.e.,

D(α) =
V (Rmin(α) ∩Rmax(α))

V (Rmin(α))
, (2.4)

where Rmin(α) ∩Rmax(α) = {θ ∈ Θ : θ ∈ Rmin(α),θ /∈ Rmax(α)}.

Figure 2: Graphical illustration of D(α) in the one-dimensional case.

As D(α) is defined as the fraction of conflict in terms of the volume of the smaller
HDR, the range of D(α) is [0, 1]. When the smaller HDR Rmin(α) entirely falls within
the larger HDR Rmax(α), D(α) = 0, referred as ‘no dissonance’ (Figure 2(a)). When
there is partial overlap of two HDRs (Figure 2(b)), referred as ‘partial dissonance’;
D(α) is between 0 and 1. When two HDRs are disjoint, D(α) = 1, indicating complete
dissonance (Figure 2(c)).

2.3 Summarizing Concentration Ratio and Dissonance over
Different Content Levels

The measures LCR(α) and D(α) are related to the content level α. LCR(α) is rela-
tively stable over multiple choices of α. We show in (2.3) that when comparing two
normal distributions, LCR(α) is actually unrelated to α. In our first real data analysis
(Section 6.1), we present results of LCR(α) for 5 choices of α to illustrate the stability
of LCR(α) empirically.
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In contrast, D(α) is very sensitive to the choice of α. In the partial dissonance case
as in Figure 2(b), it is trivial to find a content level α leading to complete dissonance
and thus the measure D(α) over different α values yields differing conclusions. As D(α)
is a function of α and bounded by 0 and 1, we plot the curve of D(α) versus α and
summarize the extent of conflict using the area under the curve, denoted as D-AUC.
The formal definition of D-AUC is given as follows:

Definition 3. D-AUC is the area under the D(α) curve, i.e.,

D-AUC =

∫ 1

0

D(α)dα.

It is a summary of D(α) over all possible choices of α and measures the degree of conflict
between two distributions.

We can revisit the three examples in Figure 2 to better understand D-AUC. In the
case of no dissonance, D(α) is always 0 over different values of α as the smaller HDR
is inside the larger HDR for whatever content level. For partial dissonance, D(α) starts
with value 0 when α = 0, i.e., the 100% HDRs of two distributions are both the whole
parameter space and thus no dissonance. As α increases, that is when we compare
99%, 98%, . . . HDRs, we begin to have partial non-overlapping regions and thus D(α)
has a value between 0 and 1. At a certain content level α, two HDRs become disjoint
and D(α) equals 1 and stays at 1 thereafter. In the extreme case of complete dissonance,
D(α) = 1 for all values of α > 0, resulting in D-AUC = 1.

In conclusion, the range of D-AUC is also [0, 1], with smaller value suggesting com-
patibility and larger value indicating contradiction. The interpretation is consistent with
that of D(α) with a fixed α. Moreover, D-AUC avoids the necessity for an arbitrary
choice of α. In our real data applications, we use D-AUC to report the results of disso-
nance.

2.4 Prior-Data Comparison and Data-Data Comparison

We have defined LCR(α) and D(α) in very general terms, so they can be applied to
comparing prior and data, or two data sets.

In the context of prior-data comparison, in addition to comparing prior versus poste-
rior distribution, we can also compare prior and likelihood by converting the likelihood
function to a posterior distribution through a noninformative prior. More details are
given in Section 4.

For the data-data comparison, consider two data sets S1 and S2 from similar studies
with common parameter θ defined on the same parameter space Θ. We use the same
prior distribution for θ for each data set and compare the two data sets based on their
posterior distributions.

Letting R1(α) and R2(α) be the posterior HDRs for S1 and S2, respectively, LCR(α)
defined in Definition 1 compares the concentration of S1 to that of S2. Consequently,
LCR(α) = 0 means that S1 and S2 are equally concentrated; LCR(α) > 0 indicates that
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S2 is more concentrated than S1; and LCR(α) < 0 implies that S2 is less concentrated
than S1.

To construct a dissonance measure D(α) between these two data sets, we can apply
Definition 2 with R1(α) and R2(α) specified to be the posterior HDRs for S1 and S2,
respectively. Definition 3 for D-AUC still applies in this case.

Remark 2. We expect LCR(α) for comparing two data sets to be robust to the prior
choice, given that it is evaluated from the “central” region of each posterior distribution.
D(α) is more complicated. Although D(α) is also evaluated from two posterior distribu-
tions, the numerator of (2.4) depends on the shapes of each distribution, so this measure
is not expected to be robust to the prior choice. Therefore, we have used diffuse priors
in real data applications to focus more on the data.

3 Computational Algorithm

3.1 Computation of the Volume of an HDR

A two-stage Monte Carlo algorithm is developed to estimate the volume of the 100(1−
α)% HDR in (2.1). It is often difficult to calculate fα in (2.1) analytically. Therefore, in
the first stage, we obtain an approximation to fα through a Monte Carlo technique. Let
ψ = f(θ), which is obtained by transforming θ by its own density function. Then fα is
the 100αth percentile of ψ since it satisfies Pr(f(θ) ≥ fα) = 1−α. Therefore fα can be

estimated by the corresponding sample quantile of ψ, denoted as f̂α. The approximated
100(1 − α)% HDR is therefore defined as R̂(α) = {θ ∈ Θ : f(θ) ≥ f̂α}. According to

Hyndman (1996), when the sample size goes to infinity, f̂α → fα and so R̂(α) → R(α).
In the second stage, we employ a needle-dropping technique to estimate the volume.
We first construct a hyper-rectangle with known volume that covers the approximated
region R̂(α), generate a large number of random points uniformly from the hyper-
rectangle region and count the proportion of points that fall within R̂(α) to estimate
the volume. Again, as the number of points increases, the estimated volume V̂ (R̂(α))
approaches the actual volume of R̂(α). Detailed steps are summarized in Algorithm 1.

When the distribution is approximately normal, we can improve the algorithm in
the second stage using a hyper-ellipsoid region. Since an HDR of a multivariate normal
distribution is a hyper-ellipsoid (2.2), we construct a hyper-ellipsoid that just covers
the approximated region R̂(α). Given the estimated mean (ẑ) and covariance matrix
(S), the approximated hyper-ellipsoid is {z : (z − ẑ)�S−1(z − ẑ) ≤ χ2

k,α}. This hyper-
ellipsoid may not be large enough to contain all points known to be in the HDR, so
the lengths of its semi-axes are increased by 2% and the constructed hyper-ellipsoid
is {z : (z − ẑ)�S−1(z − ẑ) ≤ 1.022 × χ2

k,α}. An expansion factor of 2% (1.02) is
arbitrary, but the expansion factor may be determined in any particular case by finding
the inflection point in a plot of estimated HDR volume against expansion factor. The
estimated HDR volume increases linearly while the expansion factor is too small, then
flattens when the hyper-ellipsoid defined by the expansion factor is large enough to
contain the true HDR. Similarly, we generate uniformly distributed random points from
this hyper-ellipsoid region using the method in Dezert and Musso (2001) and calculate
the proportion falling within R̂(α). Algorithm 2 gives the detailed steps.
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Algorithm 1 Computing the volume of a HDR using a hyper-rectangle region.

1. Draw a Markov chain Monte Carlo (MCMC) sample {θt, t = 1, . . . , T} from f(θ).

2. Calculate ft = f(θt) for t = 1, . . . , T . Choose f̂α = f(j), where f(j) is the jth
smallest number of {ft} and j = [αT ], the integer part of αT . The approximated

100(1− α)% HDR is given by R̂(α) = {θ ∈ Θ : f(θ) ≥ f̂α}. (Hyndman, 1996).
3. Obtain the minimum and maximum of each dimension in the MCMC sample

{θt}, denoted as {[θ1(1), θ1(T )], . . . , [θk(1), θk(T )]}. Draw a sample {zi, i = 1, . . . , N}
uniformly from the hyper-rectangle region {[θ1(1), θ1(T )]× · · · × [θk(1), θk(T )]}.

4. Calculate the proportion p of {zi} that falls within R̂(α), i.e.,

p =
#{i : f(zi) ≥ f̂α}

N
,

where #{·} denotes the cardinality of {·}.
5. The estimated HDR volume is given by

V̂ (R̂(α)) = p× (θ1(T ) − θ1(1))× · · · × (θk(T ) − θk(1)).

Remark 3. The density function f(·) in Algorithm 1 is only required to be known up
to a normalizing constant.

Algorithm 2 Computing the volume of a HDR using a hyper-ellipsoid region.

Follow the same steps as in Algorithm 1, except steps 3 and 5 are replaced as follows:

3′. Obtain the sample mean (ẑ) and sample covariance matrix (S) from the MCMC
sample {θt}. Generate random points {zi, i = 1, . . . , N} uniformly distributed in
hyper-ellipsoid {z : (z− ẑ)�S−1(z− ẑ) ≤ 1.022×χ2

k,α} (Dezert and Musso, 2001):

– Generate random points {ui, i = 1, . . . , N} by drawing k-dimensional stan-
dard normal random vectors ai independently and computing ui = ai/‖ai‖,
where ‖ · ‖ represents the Euclidean norm.

– Generate ri = v
1/k
i , i = 1, . . . , N with vi

iid∼ U(0, 1).

– Compute yi = riui, i = 1, . . . , N .

– Compute the Cholesky decomposition of S, where S = TT�.

– Compute xi = Tyi, i = 1, . . . , N .

– Compute and return zi = 1.02×
√

χ2
k,αxi + ẑ.

5′. The estimated HDR volume is given by

V̂ (R̂(α)) = p×

(
πχ2

k,α

) k
2 × 1.02k

Γ(k2 + 1)
(det(S))

1
2 .
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In Appendix B in Supplementary Material (Shi et al., 2021), we explain why we
drop needles uniformly to estimate the volume.

We evaluate the performance of both algorithms using simulation studies for a bi-
variate normal distribution and a 5-dimensional normal distribution and the details
are given in Appendix C in Supplementary Material (Shi et al., 2021). Our simulation
results show that, when T is large enough, increasing N improves performance, and,
when N is large enough, increasing T also improves the performance. For the bivariate
normal case, the simulation study suggests we need at least T = 104 and N = 104

for the hyper-rectangle method (Algorithm 1) and at least T = 104 and N = 102 for
the hyper-ellipsoid method (Algorithm 2). For the 5-dimensional normal case, at least
T = 104 and N = 106 are required for the hyper-rectangle method and at least T = 104

and N = 103 are required for the hyper-ellipsoid method. As expected, Algorithm 2
produces more accurate results than Algorithm 1 for both normal distributions.

3.2 Calculating Concentration Ratio and Dissonance

We now list the steps required to compute our measures using the algorithms of the
previous section.

Step 1. Apply Algorithm 1 (Algorithm 2) to the distribution f1(θ) to obtain V̂ (R̂1(α)).

Denote the corresponding approximated cut-off value as f̂α,1 and the needle-
dropping sample as {zi,1}.

Step 2. Apply Algorithm 1 (Algorithm 2) to the distribution f2(θ) to obtain V̂ (R̂2(α)).

Denote the corresponding approximated cut-off value as f̂α,2 and the needle-
dropping sample as {zi,2}.

Step 3. Calculate LCR(α), which is

LCR(α) = log

{
V̂ (R̂1(α))

V̂ (R̂2(α))

}
.

Step 4. After evaluation, we know which HDR is smaller.

If R̂min(α) = R̂1(α), calculate D(α) as

D(α) =
#{i : f1(zi,1) ≥ f̂α,1, f2(zi,1) < f̂α,2}

#{i : f(zi,1) ≥ f̂α,1}
;

If R̂min(α) = R̂2(α), calculate D(α) as

D(α) =
#{i : f2(zi,2) ≥ f̂α,2, f1(zi,2) < f̂α,1}

#{i : f2(zi,2) ≥ f̂α,2}
.
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4 Comparing Dissonance and Conflict P-Values

To better understand our dissonance measure D-AUC, we compare it with two conflict
p-value approaches in detecting prior-data conflict.

Evans and Moshonov (2006) explored prior-data conflict using the p-value of a min-
imal sufficient statistic with its prior-predictive distribution as the reference.

Presanis et al. (2013) discussed another type of conflict p-value using a node splitting
approach that evaluated a conflict locally at a particular node or group of nodes in a
directed acyclic graph. The evidence about θ is split into two parts, resulting in two
independent distributions p(θa|ya) and p(θb|yb). They defined δ = h(θa)−h(θb), where
h(·) is a Jeffreys’ transformation, and calculated the p-value as the probability that the
density of δ is smaller than that at 0, i.e.,

pPresanis = Pr(pδ(δ|ya,yb) < pδ(0|ya,yb)).

In this section, we compare our p-values of D-AUC (prior/posterior) and a variation
ofD-AUC (prior/likelihood), denoted by D̃-AUC, to the above Bayesian conflict p-values
with a normal location example first, then a binomial success probability example.

4.1 Normal Location Model

Suppose we have a single observation y from a normal distribution with known variance.
Then y ∼ N(μ, σ2), and the prior for μ is assumed to beN(μ0, σ

2
0). Let w = σ2

0/(σ
2
0+σ2),

the posterior distribution for μ is N((1−w)μ0 +wy,wσ2) = N(μ̂, σ̂2), where μ̂ denotes
the posterior mean of μ with posterior standard deviation σ̂.

The prior predictive distribution of y is N(μ0, σ
2+σ2

0) with density denoted by p(y).
The Bayesian conflict p-value of Evans and Moshonov (2006), denoted by pEM, is

pEM = Pr(p(Y ) ≤ p(y)) = 2

(
1− Φ

(
|y − μ0|√
σ2 + σ2

0

))
.

Instead of evaluating the conflict between prior and posterior, we can compare prior
and likelihood by converting the likelihood to a posterior distribution through a nonin-
formative prior, using the setup by Presanis et al. (2013):

data-translated likelihood: μa ∼ N(y, σ2),

prior: μb ∼ N(μ0, σ
2
0),

δ = μa − μb ∼ N(y − μ0, σ
2 + σ2

0),

pPresanis = Pr(pδ(δ) < pδ(0)) = 2

(
1− Φ

(
|y − μ0|√
σ2 + σ2

0

))
.

In this case, it is the same as pEM.
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When comparing prior N(μ0, σ
2
0) versus posterior N(μ̂, σ̂2), our dissonance measure

D(α) =

⎧⎪⎨
⎪⎩
0 if zα/2 ≥ |μ̂−μ0|

σ0−σ̂ ,
|μ̂−μ0|
2zα/2×σ̂ − σ0−σ̂

2σ̂ if |μ̂−μ0|
σ0+σ̂ < zα/2 < |μ̂−μ0|

σ0−σ̂ ,

1 if zα/2 ≤ |μ̂−μ0|
σ0+σ̂ ,

where zα/2 = Φ−1(1− α/2). Let a = |μ̂−μ0|
σ0+σ̂ , b = |μ̂−μ0|

σ0−σ̂ , then

D-AUC =

∫ 1

0

D(α)dα

=
|μ̂− μ0|
2
√
2πσ̂

(
E1

(
a2

2

)
− E1

(
b2

2

))
− σ0 − σ̂

σ̂
(Φ(b)− Φ(a)) + 2Φ(a)− 1,

where E1 is the exponential integral defined as E1(x) =
∫∞
x

exp(−t)/tdt, x > 0 (Abra-
mowitz and Stegun, 1972).

The p-value of D-AUC is

pD-AUC = Pr(D-AUC(Y ) ≥ D-AUC(y)),

where Y ∼ N(μ0, σ
2 + σ2

0) and y is the observed data.

When comparing prior N(μ0, σ
2
0) and likelihood N(y, σ2), denote the dissonance

measures by D̃(α). When σ0 > σ, we can show:

D̃(α) =

⎧⎪⎨
⎪⎩
0 if zα/2 ≥ |y−μ0|

σ0−σ ,
|y−μ0|

2zα/2×σ − σ0−σ
2σ if |y−μ0|

σ0+σ < zα/2 < |y−μ0|
σ0−σ ,

1 if zα/2 ≤ |y−μ0|
σ0+σ .

Let c = |y−μ0|
σ0+σ , d = |y−μ0|

σ0−σ ,

D̃-AUC =

∫ 1

0

D̃(α)dα

=
|y − μ0|
2
√
2πσ

(
E1

(
c2

2

)
− E1

(
d2

2

))
− σ0 − σ

σ
(Φ(d)− Φ(c)) + 2Φ(c)− 1.

When σ0 < σ, we can carry out the derivation similarly. Combining both cases, we have

D̃-AUC =
|y − μ0|

2
√
2πmin{σ0, σ}

(
E1

(
c2

2

)
− E1

(
e2

2

))

− |σ0 − σ|
min{σ0, σ}

(Φ(e)− Φ(c)) + 2Φ(c)− 1,

where e = |y−μ0|
|σ0−σ| (set e = ∞ when σ0 = σ). Derivations of these expressions are given

in Appendix D in Supplementary Material (Shi et al., 2021). Numerical comparison
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among D-AUC, D̃-AUC, Kullback-Leibler divergence, and Hellinger distance is given in
Appendix E in Supplementary Material (Shi et al., 2021).

Similarly, the p-value of D̃-AUC is

pD̃-AUC = Pr(D̃-AUC(Y ) ≥ D̃-AUC(y)),

with Y ∼ N(μ0, σ
2 + σ2

0) and y as the observed data.

The two p-value methods, pEM and pPresanis, are identical in this example, so they
are plotted using one p-value curve. Plotting p-value (EM, Presanis et al.), p-value of
D-AUC, and p-value of D̃-AUC as a function of y shows that three curves are identical
for several choices of σ and σ0 (Figure 3 shows the result of σ0 = 1, σ = 1). This
suggests that our dissonance check is equivalent to that of Evans and Moshonov (2006)
and Presanis et al. (2013) in this example.

As mentioned in Nott et al. (2020), if two discrepancy statistics A(y) and B(y) are
related as a function of y by a monotone transformation, denoted by A(y)

.
= B(y), they

will result in the same predictive p-values. Here

D-AUC(y)
.
= |μ̂− μ0| = w|y − μ0| .

= |y − μ0|,
D̃-AUC(y)

.
= |y − μ0|.

For the conflict check of Evans and Moshonov (2006), p(y)
.
= (y − μ0)

2 .
= |y − μ0|.

In this case, all these checks compare |y − μ0| to the distribution of |Y − μ0| for Y ∼
N(μ0, σ

2 + σ2
0) and therefore yield the same p-values.

4.2 Binomial Model

A binomial model has been applied to events consisting of two possible outcomes, for
example, cured or not cured in clinical trial, success or failure in a designed experiment.
Binomial models are common in disease monitoring, drug development, opinion poll,
quality control, etc.

For n independent trials, assume the probability of a success in each trial remains
constant at θ. Let y denote the number of successes in n independent Bernoulli trials.
Assuming n is known, consider y ∼ Bin(n, θ), a binomial distribution with parameter
θ. For a Bayesian analysis, further assume the Beta(a, b) distribution as the prior for θ.
Then the posterior for θ|y ∼ Beta(a+ y, b+ n− y).

The prior predictive density for y is beta-binomial,

p(y) =

(
n

y

)
B(a+ y, b+ n− y)

B(a, b)
, y = 0, . . . , n,where B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
.

The Bayesian conflict p-value of Evans and Moshonov (2006) is

pEM = Pr(p(Y ) ≤ p(y)) =
∑

Y :p(Y )≤p(y)

(
n

Y

)
B(a+ Y, b+ n− Y )

B(a, b)
.
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Figure 3: Comparison among Bayesian conflict p-values, p-value of D-AUC, p-value of
D̃-AUC for the Normal Location Model, σ0 = 1, σ = 1.

For Presanis et al. (2013), we consider:

data-translated likelihood: θa ∼Beta(1 + y, 1 + n− y),

prior: θb ∼ Beta(a, b),

let δ= θa − θb, then pPresanis = Pr(pδ(δ)<pδ(0))= 2× min{Pr(δ > 0), 1− Pr(δ > 0)},

assuming that the distribution of δ is roughly symmetric and unimodal. In this case,
pPresanis is calculated using MCMC samples by counting the number of times θa > θb.

When comparing prior Beta(a, b) versus posterior Beta(a+ y, b+n− y), the p-value
of D-AUC in this case is pD-AUC = Pr(D-AUC(Y ) ≥ D-AUC(y)), where Y follows the
prior predictive distribution with pmf p(y) and y is the observed data.

Similarly, when comparing prior Beta(a, b) and likelihood Beta(1+ y, 1+n− y), the
p-value of D̃-AUC is pD̃-AUC = Pr(D̃-AUC(Y ) ≥ D̃-AUC(y)), with Y from the prior
predictive distribution and y as the observed data.

Assuming n = 10, we have plotted the above 4 p-values (pEM, pPresanis, pD-AUC and
pD̃-AUC) for each y and 2 prior choices in Figure 4. For most y values, the p-value of

D-AUC is the same as the p-value of D̃-AUC and is close to either pEM or pPresanis.
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Figure 4: Comparison among Bayesian conflict p-values, p-value of D-AUC, p-value of
D̃-AUC for the Binomial Model.

5 Numerical Results from Comparing Two Distributions

To better understand how the two measures behave, we design the following experiments
to explore various scenarios between the two distributions, which are inspired by Section
3.3 of Holmes et al. (2015). Let yi denote a sample from each distribution, i = 1, 2. Then
we compare the two distributions in each of the following scenarios.

1. Mean shift: y1 ∼ N(0, 1), y2 ∼ N(θ, 1), θ = 0, 0.1, 0.2, . . . , 4.

2. Variance shift: y1 ∼ N(0, 1), y2 ∼ N(0, θ2), θ = 1, 1.1, 1.2, . . . , 3.

3. Tails: y1 ∼ N(0, 1), y2 ∼ tθ, θ = 103, 102, 10, 5, 2, 1.

4. Mixture: y1 ∼ N(0, 1), y2 ∼ 1
2N(θ, 1) + 1

2N(−θ, 1), θ = 0, 0.1, 0.2, . . . , 3.

5. Skewed: y1 ∼ Gamma(1, 1), y2 ∼ Gamma(θ, 1), θ = 1, 1.1, 1.2, . . . , 4.

The results of the 5 scenarios are shown in Figure 5, with LCR plotted in the left
column and D-AUC plotted in the right column.

With scenario 1 of mean shift, there is no scale change, so LCR(α) = 0, ∀α and we
focus instead on the dissonance measure, plotting D-AUC as a function of θ. We observe
that D-AUC increases as θ increases.

For scenario 2, there is no location change, so D-AUC = 0 and thus we only plot
the LCR(α) as a function of θ for α = 0.05. We see that LCR values are negative and
become more negative with increased θ.
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Figure 5: Results on LCR(α) with α = 0.05 and D-AUC with 5 scenarios for comparing
two distributions.
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For scenario 3, D-AUC = 0, so we report only LCR(α) with α = 0.05 as a function
of θ. As expected, values become more negative because the distribution for y2 becomes
more dispersed than that for y1 when the degree of freedom θ decreases.

For scenarios 4 and 5, we plot both LCR(α) with α = 0.05, and D-AUC as a function
of θ. All LCR values are negative as expected because the distribution for y2 is more
diffuse than y1. For the mixture scenario, D-AUC remains low when θ ≤ 1 and increases
as a function of θ afterwards. This is because, when θ is small, the mixture distribution
is still unimodal. Once θ > 1, the distribution for y2 becomes bimodal in this case. For
the skewed scenario, D-AUC increases as a function of θ as expected.

Remark 4. From Figure 5 the mean shift scenario, we see D-AUC = 0.5, 0.7, 0.9, 0.97
for θ = 0.5, 1, 2, 3. Therefore, we can categorize D-AUC < 0.5 as small dissonance,
0.5 ≤ D-AUC < 0.7 as moderate dissonance, 0.7 ≤ D-AUC < 0.9 as large dissonance,
0.9 ≤ D-AUC < 0.97 as extra large dissonance, and 0.97 ≤ D-AUC as extremely large
dissonance.

6 Real Data Applications

6.1 Analysis of Benchmark Dose Data in Toxicology

In this study, we select two data sets from similar studies and would like to answer the
questions: (1) are the two data sets compatible? and (2) which of these two data sets is
more concentrated?

The benchmark approach is a useful tool in toxicology. The benchmark dose is the
dose of an environmental toxicant that produces a predetermined change in response
compared with the background response level. The toxicological data contain n binomial
responses y = (y1, . . . , yn) with yi ∼ Bin(ni, pi), where ni is the number of animals
tested at dose level xi and pi is the probability that an animal gives an adverse response
at dose level xi. Using the logistic regression model, we have

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, i = 1, . . . , n.

The Kociba study (Kociba et al., 1978) is a lifetime feeding study of both female and
male Sprague Dawley rats, with 50 rats tested in each group at doses of 0, 1, 10, and
100 ng/kg/day. Inferences derived from the Kociba study have been widely used as the
basis for risk assessments for 2,3,7,8-tetrachlorodibenzodioxin (TCDD). The National
Toxicology Program (NTP) study (National Toxicology Program, 1982) is a study in
which groups of 50 male rats, 50 female rats, and 50 male mice received TCDD as a
suspension in 9:1 corn oil: acetone by gavage twice each week to achieve doses of 0,
10, 50, or 500 ng/kg/week for two years. These exposures correspond to daily averaged
doses of 0, 1.4, 7.1, or 71 ng/kg/day for rats. Liver tumor (neoplastic nodule) incidences
of female rats from both studies, shown in Table 1, are chosen as the data for this
analysis. Posterior mean and posterior standard deviation (SD) for β0 and β1 for each
study are also given.
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Kociba NTP
y n x y n x
9 86 0 5 75 0
3 50 1 1 49 1.4
18 50 10 3 50 7.1
34 48 100 12 49 71
β0 Mean(SD) = −1.785(0.210) β0 Mean(SD) = −3.030(0.366)
β1 Mean(SD) = 0.028(0.004) β1 Mean(SD) = 0.026(0.007)

Table 1: Benchmark dose data summary.

Denote the Kociba study data by S1 = (n1,y1,x1) and the NTP study data by
S2 = (n2,y2,x2). Shao and Small (2011) showed that while S1 and S2 are not com-
patible in terms of all parameters θ = (β0, β1)

�, they are compatible in terms of one
common parameter β1. Our measure D(α) confirms their conclusion. The settings for
prior distributions, likelihood functions, and corresponding posterior distributions are
given as follows:

π(β0) ∼ N(0, 10000),

π(β1) ∼ N(0, 10000),

L(β0, β1 | S1) =

n∏
i=1

[
exp(β0 + β1x1i)

1 + exp(β0 + β1x1i)

]y1i
[

1

1 + exp(β0 + β1x1i)

]n1i−y1i

,

L(β0, β1 | S2) =

n∏
i=1

[
exp(β0 + β1x2i)

1 + exp(β0 + β1x2i)

]y2i
[

1

1 + exp(β0 + β1x2i)

]n2i−y2i

,

π(β0, β1 | S1) ∝ π(β0)π(β1)L(β0, β1 | S1),

π(β0, β1 | S2) ∝ π(β0)π(β1)L(β0, β1 | S2).

The estimated marginal posterior densities of β0 based on the Kociba data and the
NTP data, respectively, have different locations, inducing almost complete dissonance
in β0 and thus are not compatible (Figure 6(a)). The estimated marginal posterior
densities of β1 for each data set share a similar location leading to small D-AUC values
for β1 and thus are compatible with each other (Figure 6(b)). Because the posterior
distributions for the two parts are largely non-overlapping, there is almost complete
dissonance for (β0, β1) jointly (Figure 6(c)).

Remark 5. The priors π(β0) and π(β1) are specified as normal distributions and thus
are log-concave. The likelihood functions of the logistic regression L(β0, β1 | S1) and
L(β0, β1 | S2) are log-concave. Log-concavity is preserved under multiplication, i.e., the
product of log-concave functions is also log-concave. Therefore, the posterior distribu-
tions π(β0, β1 | S1) and π(β0, β1 | S2) are both log-concave and HDRs corresponding to
each distribution are both closed convex sets according to Theorem 2.1.

To compare these two data sets, we estimated the HDR R1(α) based on the posterior
distribution π(β0, β1 | S1) and the HDR R2(α) based on the posterior distribution
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Figure 6: Posterior distributions of (β0, β1) for Kociba and NTP data.

π(β0, β1 | S2). We calculated LCR(α) with respect to β0, β1 and (β0, β1) for several
different level α values (Table 2). Over five choices of α values, LCR(α) is quite stable,
indicating that LCR(α) is not sensitive to the choice of α. The results show that the
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α β0 β1 (β0, β1)
0.05 −0.544 −0.580 −0.920
0.25 −0.537 −0.576 −0.906
0.50 −0.532 −0.573 −0.903
0.75 −0.530 −0.572 −0.910
0.95 −0.530 −0.575 −0.957

Table 2: LCR of Kociba data to NTP data.

Figure 7: Plot of D(α) versus α for Kociba to NTP comparison.

NTP data is less concentrated than the Kociba data marginally for each parameter
and also jointly for both parameters given that LCR(α) is negative in all three cases.
Plotting D(α) versus α and summarizing the results using D-AUC (Figure 7) shows
almost complete dissonance for β0 and jointly for (β0, β1), as 0.985 and 0.992 are quite
close to 1, and little dissonance for β1, as expected.

6.2 Analysis of Six Cities Data

In this subsection, we illustrate how our dissonance measure can be useful in the missing
data problem and would like to know if the data with no missing values are adequate
and how much information is contributed by handling the missing data.

The six cities longitudinal study of the health effects of respiratory function in
children (Ware et al., 1984) is a well known environmental data set that has been
analyzed extensively in the literature. We only select two cities from this data set as
an example. The binary response is the wheezing status of a child at age 11 with y = 0
representing no wheezing and y = 1 for wheezing. The wheezing status is modeled as a
function of the city of residence (x1) and the smoking status of the mother (x2). The city
of residence x1 is a binary covariate that equals 1 if the child lived in Kingston–Harriman,
Tennessee, the more polluted city, and 0 if the child lived in Portage, Wisconsin. The
covariate x2 is maternal cigarette smoking measured by number of cigarettes per day.
There are 2315 subjects in the data set. The covariate x1 is missing for 32.8% of the
cases. We present a brief summary of the data in Table 3. Details of the data set can
be found in the original paper.
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y x1 x2 n y x1 x2 n
0 0 0 418 1 0 0 127
0 1 0 323 1 1 0 106
0 0 ≥ 1 226 1 0 ≥ 1 72
0 1 ≥ 1 201 1 1 ≥ 1 83
0 NA 0 369 1 NA 0 86
0 NA ≥ 1 229 1 NA ≥ 1 75

y: wheezing status. 0: no wheezing; 1: wheezing.
x1: city of residence. 0: clean city; 1: polluted city; NA: missing.

x2: maternal smoking (number of cigarettes per day).

Table 3: Summary of Two Cities data.

We use a logistic regression model for y given x1 and x2. i.e.,

P (yi = 1 | x1i, x2i,β) =
exp(β0 + β1x1i + β2x2i)

1 + exp(β0 + β1x1i + β2x2i)
,

where β = (β0, β1, β2). We further model x1 given x2 by a logistic regression to han-
dle the missing data problem. Specifically, we assume x1i given x2i are independent
Bernoulli variables with probability

P (x1i = 1 | x2i,α) =
exp(α0 + α1x2i)

1 + exp(α0 + α1x2i)
, i = 1, . . . , n,

where α = (α0, α1). The proposed joint prior distribution for (α,β) is

π(α,β) = π(α | c0)π(β | d0),

where α | c0 ∼ N2(0, c0I2) and β | d0 ∼ N3(0, d0I3).

Let ri be the missing indicator with ri = 1 if x1i is missing and ri = 0 otherwise. Let
Dcc (complete case) denote the subset of the data where both x1 and x2 are observed
with no missing values (ri = 0). Then the joint likelihood function based on the complete
case data subset Dcc is

L(α,β | Dcc) =
∏

i:ri=0

f(yi | x1i, x2i,β)f(x1i | x2i,α),

where

f(yi | x1i, x2i,β) =
exp[yi(β0 + β1x1i + β2x2i)]

1 + exp(β0 + β1x1i + β2x2i)
,

f(x1i | x2i,α) =
exp[x1i(α0 + α1x2i)]

1 + exp(α0 + α1x2i)
.

Let Dac denote the whole data set with the subscript ac meaning all case. The joint
likelihood function based on all data Dac is

L(α,β | Dac) = L(α,β | Dcc)L1(α,β | Dac\Dcc),
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where

L1(α,β | Dac\Dcc) =
∏

i:ri=1

[f(yi | x1i = 1, x2i,β)f(x1i = 1 | x2i,α)

+f(yi | x1i = 0, x2i,β)f(x1i = 0 | x2i,α)].

That is, for the missing data part, we marginalize over x1i.

The posterior distributions of the complete case π(α,β | Dcc) and all case π(α,β |
Dac) are defined as:

π(α,β | Dcc) ∝ L(α,β | Dcc)π(α,β),

π(α,β | Dac) ∝ L(α,β | Dac)π(α,β).

Dcc Dac

Mean SD Mean SD
β0 −1.252 0.089 β0 −1.337 0.081
β1 0.145 0.118 β1 0.145 0.118
β2 0.011 0.005 β2 0.013 0.004

Table 4: Posterior Mean and Standard Deviation of Parameters β for Two Cities Data.

Using c0 = d0 = 100, a MCMC sample of size 1,000,000 was generated from each
posterior distribution. As expected, for α = 0.05, comparing Dcc versus Dac, LCR(α)
for β0 and β2 are 0.099 and 0.195 indicating that the marginal posterior distributions
for β0 and β2 become more concentrated with the addition of data, while LCR(α) for
β1 is −0.001 (nearly zero), which is expected given that the additional observations
are completely missing for the covariate x1. Marginal posterior densities of β0 and β2

show some dissonance between the complete case and the all case, whereas marginal
posteriors for β1 are nearly identical (Figure 8). Posterior mean and standard deviation
for each parameter are reported for the Dcc and Dac respectively in Table 4. Because
the modes of β1 from the complete case and the all case are almost identical, D-AUC
is very close to 0 (0.06) (Figure 9). The modes of β2 from the two cases are still quite
similar, with D-AUC = 0.383. For β0, there is a location shift between the complete
case and the all case. The D-AUC for β0 is 0.686. The D-AUC for (β0, β1, β2) jointly is
0.566. The dissonance measure shows that adding 32.8% missing data to the complete
case does not affect β1, affects β2 slightly, affects β0 moderately, and has moderate effect
on (β0, β1, β2) jointly.

6.3 Analysis of Pediatric Cancer Data

Conducting pediatric clinical trials as part of drug development for children and ado-
lescents can be difficult due to the often low incidence of the disease, making accrual
slow or infeasible. In addition, low morbidity in this population makes it impractical
to achieve adequate power. In this case, pediatric care providers are accustomed to
relying on evidence from adult studies, so it is natural to consider leveraging informa-
tion from adult trials. Our measures LCR(α) and D(α) can be very useful in deciding
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Figure 8: Posterior distributions of β0, β1 and β2 from the complete case and the all
case for Two Cities Data.

Figure 9: Plot of D(α) versus α for the complete case compared to the all case for the
Two Cities Data.

the extent we should borrow. Here we illustrate this using the pediatric cancer study of
Philadelphia chromosome positive chronic myeloid leukemia (Ph+CML). We have adult
and pediatric clinical trials for Tasigma (nilotinib) for newly diagnosed Ph+CML in
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chronic phase. The primary efficacy endpoint was major molecular response (MMR) at
12 months after the start of study medication. MMR was defined as less than or equal
to 0.1% BCR-ABL/ABL % (BCR-ABL: breakpoint cluster region - Abelson murine
leukemia gene, ABL: Abelson murine leukemia gene) by international scale measured
by real-time quantitative polymerase chain reaction (RQ-PCR), which corresponds to
a greater than or equal to 3 log reduction of BCR-ABL transcript from standardized
baseline. A summary of two trials is provided in Table 5. Other detailed information
can be found in https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/

022068s027lbl.pdf.

Adult Pediatric
Endpoint MMR at 12 month MMR at 12 month
Design Randomized Single-arm
Sample Size 282 25
Age 18+ 2-18
Results 125/282 = 44% 15/25 = 60%

Table 5: Summary of Adult and Pediatric Clinical Trials.

The adult data are denoted DA, where the sample size nA is 282, and the number of
subjects having MMR yA is 125. Similarly, the pediatric data are denotedDP , with nP =
25 and yP = 15. We use a binomial distribution to model yA and yP : yA ∼ Bin(nA, p)
and yP ∼ Bin(nP , p), where p is the efficacy for each population. To determine the
extent of information we could borrow from the adult data, we used the power prior
method (Ibrahim et al., 2015). Letting π(p) denote the initial prior distribution for p,
the power prior distribution of p with the weight a0 for the pediatric cancer study is
defined as

π(p | DA, a0) ∝ π(p)[L(p | DA)]
a0 ,

where a0 controls the weight of the adult data relative to the pediatric data. Our settings
can be summarized as follows:

π(p) ∝ p−1(1− p)−1,

π(p | DA, a0) ∝ π(p)[L(p | DA)]
a0 ,

π(p | DA, DP , a0) ∝ π(p | DA, a0)L(p | DP )

∝ π(p)[L(p | DA)]
a0L(p | DP )

∼ Beta(a0yA + yP , a0(nA − yA) + (nP − yP )).

The range of a0 is restricted between 0 and 1, with a0 = 0 meaning no incorporation
of the adult data. We compare the posterior distributions π(p | DA, DP , a0) to π(p |
DA, DP , a0 = 0), i.e., borrowing versus no borrowing (pediatric data only), through
various choices of value a0. Ideally, if two distributions are nearly identical, we gain
information from incorporating the adult data with certain weight a0. In this case, our
measure D(α) helps to quantify the extent of discrepancy between the two distributions
and LCR(α) can measure how much information to gain by borrowing from the adult
data versus not borrowing at all.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022068s027lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022068s027lbl.pdf
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Figure 10: Posterior distributions of Pediatric Data Only versus Borrowing.

Figure 11: Plot of D(α) versus α for borrowing versus pediatric data only.

We plot the posterior densities of p with a0 = 0.01 or a0 = 0.04 (borrowing from the
adult data) versus a0 = 0 (no borrowing) (Figure 10). For each value a0, we calculate
D(α) and summarize the result using D-AUC. With weight a0 increasing, we gain more
information as the variance becomes smaller; however, the location shift also becomes
more severe (Figure 11). As the borrowing power a0 increases, the difference of two
modes increases as well since the borrowing distribution is pulled more towards the
adult side (Figure 12(a)). As a result, D-AUC also increases.

As the weight a0 increases, both effective sample size and LCR increase due to more
borrowing from the adult study, which has a larger sample size and smaller variance
(Figure 12(b)). The relationship between LCR and the effective sample size is logarith-
mic. Both distributions are roughly symmetric (Figure 10), which leads to LCR being
almost equivalent to the log ratio of the standard deviations of these two distributions.
The effective sample size is proportional to the ratio of variances of these two distri-
butions, thus we see a logarithmic trend in the plot. These two plots work together to
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Figure 12: Plots of D-AUC and LCR over different choices of a0.

determine the weight a0 for borrowing from the adult study such that the borrowing
distribution is similar to the pediatric study and we can gain information from incor-
porating the adult data. For instance, we can choose weight a0 to be 0.04, with D-AUC
= 0.487 slightly less than 0.5, LCR = 0.170 and effective sample size is 35. In this way,
the extent of difference is acceptable, and we gain 100 × (exp(LCR) − 1) = 19% more
information by borrowing the amount of information equivalent to 10 subjects from the
adult study compared to using pediatric data only.

7 Extension of Concentration Ratio and Dissonance
Using Invariant HDR

7.1 Invariant HDR

We note that the use of HDRs makes our proposed measures not invariant to reparame-
trization. Consider for example y ∼ Bin(1, θ) and θ ∼ U(0, 1), the posterior HDR for
θ is HDRθ(α) = {θ : θy(1− θ)1−y ≥ fα}. For a new parameterization γ = logit(θ), the
posterior HDR for γ is HDRγ(α) = {γ : eγ(y+1)/(1 + eγ)3 ≥ fα}. When y = 1, the
posterior HDR for θ is one-sided while the posterior HDR for γ is two-sided and thus,
HDRγ(α) �= logit(HDRθ(α)). It means that with data unchanged, our measures may
lead to different conclusions under different parameterizations, which is undesirable. So
we explore an invariant version of the HDR proposed in Druilhet and Marin (2007).

They argued that the lack of invariance for HDRs was mainly due to the choice of
the Lebesgue measure as dominating measure and thus they chose the Jeffreys measure
instead, which makes HDRs invariant under 1-1 smooth reparametrization.
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Let λ denote the Lebesgue measure. Let πλ(θ) and πλ(θ|x) ∝ f(x|θ)πλ(θ) denote the
prior and posterior density of θ with respect to λ. The Jeffreys measure for θ, denoted
by Jθ, is the measure with density |I(θ)|1/2 with respect to λ, where I(θ) represents
the Fisher information. Assuming that the Fisher information I(θ) is well defined and
positive definite for every θ ∈ Θ, the 100(1−α)% HDR for θ with the Jeffreys measure
as dominating measure (JHDR) is defined by

JHDRθ(α) = {θ : f(x|θ)|I(θ)|− 1
2 πλ(θ) ≥ kα},

where kα is the largest constant such that Pr(θ ∈ JHDRθ(α)) ≥ 1− α.

Note that, if I(θ) ∝ 1, the JHDR is the same as the posterior HDR. Recall the
normal location example in Section 4.1 where y ∼ N(μ, σ2) with known variance and
μ ∼ N(μ0, σ

2
0), we have I(μ) ∝ 1 and thus the posterior HDR for μ is the JHDR.

As our measures involve calculating the volume of a JHDR, we provide an important
property of the volume of a JHDR in the following theorem.

Theorem 7.1. The volume of a JHDR is invariant under differentiable reparametriza-
tion.

Proof. Consider a differentiable reparametrization γ = h(θ) and denote the Jeffreys
measure for γ by Jγ ,

VJθ
(JHDRθ(α)) =

∫
JHDRθ(α)

dJθ =

∫
1(θ ∈ JHDRθ(α))|I(θ)|

1
2 dθ,

VJγ (JHDRγ(α)) =

∫
JHDRγ(α)

dJγ =

∫
1(γ ∈ JHDRγ(α))|I(γ)|

1
2 dγ

=

∫
1(h(θ) ∈ h(JHDRθ(α)))|Iγ(h(θ))|

1
2h′(θ)dθ

=

∫
1(θ ∈ JHDRθ(α))|I(θ)× (h′(θ))−2| 12h′(θ)dθ

=

∫
1(θ ∈ JHDRθ(α))|I(θ)|

1
2 dθ

= VJθ
(JHDRθ(α)).

7.2 Calculating JHDR Volume

We can tailor Algorithm 1 to calculate the volume of a JHDR, with detailed steps given
in Algorithm 3.

When it is easy to generate a sample from the Jeffreys prior π(θ) ∝ |I(θ)|1/2 and
we know the normalizing constant m =

∫
Θ
|I(θ)|1/2dθ, Step 3 in Algorithm 3 can be

replaced by drawing a sample {zi, i = 1, . . . , N} from the Jeffreys prior distribution and

the estimated JHDR volume is V̂Jθ
= #{i : f(x|zi)|I(zi)|−

1
2πλ(zi) ≥ k̂α} ×m/N .
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Algorithm 3 Computing the volume of a JHDR.

1. Draw a MCMC sample {θt, t = 1, . . . , T} from the posterior distribution πλ(θ|x).
2. Calculate kt = f(x|θt)|I(θt)|−

1
2πλ(θt) for t = 1, . . . , T . Choose k̂α = k(j), where

k(j) is the jth smallest number of {kt} and j = [αT ], the integer part of αT .
3. Obtain the minimum and maximum in the MCMC sample {θt}, denoted by θ(1)

and θ(T ). Draw a sample {zi, i = 1, . . . , N} with zi
iid∼ U(θ(1), θ(T )).

4. Calculate the weighted proportion w of {zi} that falls within the approximated
JHDR, that is,

w =
1

N

∑
i

|I(zi)|
1
2 , where i ∈ {i : f(x|zi)|I(zi)|−

1
2πλ(zi) ≥ k̂α}.

5. The estimated JHDR volume is given by

V̂Jθ
= w × (θ(T ) − θ(1)).

7.3 Analysis of Pediatric Cancer Data using JHDR

We apply our measures using JHDR to the pediatric cancer study in Section 6.3. The
Fisher information of p is I(p) = nP p

−1(1 − p)−1, and the posterior density of p with
respect to Jp is

πJp(p | DA, DP , a0) ∝ π(p | DA, a0)L(p | DP )|I(p)|−
1
2

∝ π(p)[L(p | DA)]
a0L(p | DP )|I(p)|−

1
2

∝ Beta

(
a0yA + yP +

1

2
, a0(nA − yA) + (nP − yP ) +

1

2

)
.

The JHDR for p and the corresponding volume are given by

JHDRp(α) = {p : πJp(p | DA, DP , a0) ≥ kα},

VJp(JHDRp(α)) =

∫
1(p ∈ JHDRp(α))|I(p)|

1
2 dp.

The results of D-AUC and LCR using JHDR are given in Figure 13. They are quite
similar to those in Figure 12, with slightly changes that D-AUC = 0.473 when a0 = 0.04,
and LCR = 0.193.

8 Discussion

We propose two new Bayesian measures, LCR(α) and D(α), for quantifying change
in data scale and location, respectively. We provide algorithms for computing both
measures based on volumes of HDRs and show that both measures can be calibrated.
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Figure 13: Plots of D-AUC and LCR using JHDR over different choices of a0.

We provide three examples to illustrate how LCR(α) and D(α) are useful in different
areas: comparing two similar studies, measuring the information in missing data, and
leveraging adult data in a pediatric cancer study.

We demonstrate that our measures can be computed and calibrated for approxi-
mately normal distributions with moderate dimension. For high dimensional non-normal
distributions, finding efficient algorithms for evaluating the HDR volume remains chal-
lenging.

The use of HDRs means that our proposed measures are not invariant to reparame-
trization. If the Fisher information is available in closed form, an invariant version
JHDR may be used and we provide an algorithm to compute the volume. Calculating
our measures using JHDR marginally requires further investigation.

Supplementary Material

Supplementary Material for “Bayesian Concentration Ratio and Dissonance” (DOI:
10.1214/21-BA1277SUPP; .pdf).
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