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Abstract. Accurate models of clinical actions and their impacts on disease pro-

gression are critical for estimating personalized optimal dynamic treatment re-

gimes (DTRs) in medical/health research, especially in managing chronic condi-

tions. Traditional statistical methods for DTRs usually focus on estimating the

optimal treatment or dosage at each given medical intervention, but overlook the

important question of “when this intervention should happen.” We fill this gap

by developing a two-step Bayesian approach to optimize clinical decisions with

timing. In the first step, we build a generative model for a sequence of medical

interventions—which are discrete events in continuous time—with a marked tem-

poral point process (MTPP) where the mark is the assigned treatment or dosage.

Then this clinical action model is embedded into a Bayesian joint framework where

the other components model clinical observations including longitudinal medical

measurements and time-to-event data conditional on treatment histories. In the

second step, we propose a policy gradient method to learn the personalized opti-

mal clinical decision that maximizes the patient survival by interacting the MTPP

with the model on clinical observations while accounting for uncertainties in clin-

ical observations learned from the posterior inference of the Bayesian joint model

in the first step. A signature application of the proposed approach is to sched-

ule follow-up visitations and assign a dosage at each visitation for patients after

kidney transplantation. We evaluate our approach with comparison to alternative

methods on both simulated and real-world datasets. In our experiments, the per-

sonalized decisions made by the proposed method are clinically useful: they are

interpretable and successfully help improve patient survival.
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Paris 6
¶Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université
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1 Introduction

In biomedical applications involving long-term personalized care of patients with chronic
health conditions (e.g., diabetes, human immunodeficiency virus infections, and chronic
kidney diseases), treatments often include a sequence of decision making and must be
adaptive to the uniquely evolving disease progression of each patient. Such scenarios are
called dynamic treatment regimes (DTRs). Patients with chronic diseases are usually
required to follow up with their physicians from time to time and their clinical data are
recorded longitudinally. Based on these clinical observations, physicians make clinical
decisions such as scheduling follow-up visitations and prescribing the right dosages to
optimize patient outcomes given a patient’s individual characteristics and treatment
history at each clinic visitation. Estimating treatment effects and optimizing sequential
treatment assignments from observational data have been extensively studied in both
statistics and machine learning, such as the G-computation formula (Robins, 1986), in-
verse probability of treatment weighting (Orellana et al., 2010), doubly robust methods
(Zhao et al., 2015), and reinforcement learning (Zhao et al., 2011; Clifton and Laber,
2020). This paper develops a two-step Bayesian approach to optimize clinical decisions
with timing. In the first step, we develop a Bayesian joint model consisting of a genera-
tive probabilistic submodel for clinical decisions with timing and a submodel for clinical
observations (e.g., longitudinal clinical measurements and time-to-event data): these two
submodels share certain structures and parameters in order to capture the mutual influ-
ence between the clinical observations and decisions. The posterior inference of the pro-
posed Bayesian joint model can learn the parameters in the clinical decision submodel as
the estimates of how physicians treatment patients in the observed data and uncertain-
ties in clinical observations. In the second step, we propose an optimization method that
allows the decision model, by interacting with the other parts of the joint model, to learn
to make the personalized optimal clinical decision at the right time while accounting for
uncertainties in clinical observations. Such a joint model and the proposed optimization
method will be useful in many biomedical applications. We elaborate on one signature
application in Section 1.1, explain why existing methods won’t work well on it in Sec-
tion 1.2, and then give an overview of our method and its technical novelty in Section 1.3.

1.1 A signature application

A signature medical application of the proposed method would be the kidney trans-
plantation, the most common type of organ transplantation and the primary therapy
for patients with end-stage kidney diseases (Arshad et al., 2019). Compared to dialy-
sis, kidney transplantation improves patients’ long-term survival and quality of life but
with a lower healthcare cost (Jarl et al., 2018). Despite significant advances, a number
of complications after surgery still represent important causes of morbidity and mortal-
ity for kidney transplant recipients, such as infection, stroke, and graft failure (Lamb
and Lodhi, 2011; Bicalho et al., 2019). To prevent graft rejection, patients are usually
hospitalized for a few days initially to monitor signs of complications, then required to
have frequent checkups at an outpatient center after being released. At each visitation,
they are administered immunosuppressive drugs, such as tacrolimus, to keep their im-
mune systems from attacking and rejecting the new kidney (Kasiske et al., 2010). One
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crucial medical decision is to schedule patients’ post-transplantation follow-up visita-
tions. While follow-up visitation frequency varies from 0-12 months (Israni et al., 2014),
patients with stable kidney function usually have less frequent follow-ups compared
to non-stable patients. Another medical decision is to determine the right dosage of
tacrolimus at each follow-up visitation since a dosage that is either too high or too low
may cause serious adverse events. Higher tacrolimus levels have been reported to asso-
ciate with adverse effects such as neurotoxicity, nephrotoxicity, and cancers (Naesens
et al., 2009); while lower tacrolimus levels are associated with an increased likelihood
of graft rejection (Staatz et al., 2001). Therefore, optimizing personalized follow-up
schedules and prescribing the right dosage of tacrolimus tailored to each patient at each
visitation (i.e., precision medicine) are critical and can have a significant impact on
patients’ survival.

Large-scale kidney transplantation databases, such as French computerized and val-
idated data in transplantation (DIVAT), provide us both opportunities and challenges
to determine personalized optimal follow-up schedules and tacrolimus dosages. DIVAT
is a database storing medical records for kidney transplantation in several French hos-
pitals (e.g., Nantes, Paris Necker). Data are collected from the date of transplantation
until the graft failure, defined as either returning to dialysis or death with a functioning
graft. At each scheduled follow-up visitation, patients’ creatinine levels, an important
biomarker for measuring kidney function, are collected longitudinally to determine the
next follow-up time and assign dosages by physicians. For example, Figure 1 presents
one randomly selected patient’s longitudinal creatinine levels and tacrolimus dosages
versus his/her follow-up visitations from DIVAT. In the first several visitations after
kidney transplantation, this patient’s creatinine levels were high, indicating the kid-
ney was not functioning well; therefore, the physician scheduled a high frequency of
follow ups and prescribed high dosages of tacrolimus. As time went by, this patient’s
kidney function became stable indicated by slowly decreasing creatinine levels; then the
prescribed tacrolimus dosages also slowly decreased accompanied with a decreasing fre-
quency of visitations. For patients with kidney transplantation, a major clinical outcome
of interest is the graft survival time, defined as the time between the transplantation
and the first graft failure. Follow-up schedules and tacrolimus dosages should be made
for the sake of maximizing patients’ graft survival time.

1.2 Why not use existing methods?

Although many statistical and machine learning DTR methods have been developed to
optimize sequential clinical decisions (Murphy et al., 2003; Chakraborty, 2013; Laber
et al., 2014; Xu et al., 2016; Luckett et al., 2019), they don’t model, and thus can’t op-
timize, the timing of clinical decisions. Most DTR methods regard treatment schedules
as known a priori and only learn to assign optimal treatments at pre-defined schedules.
For example, Xu et al. (2016) developed a Bayesian nonparametric approach building
upon a dependent Dirichlet process and a Gaussian process to determine the optimal
treatment regimen containing a front-line chemotherapy and a salvage treatment for
acute myelogenous leukemia patients. However, the timing of the salvage treatment was
pre-defined as the time when patients became resistant to the front-line chemother-
apy or achieved complete remission first then relapsed. Shardell and Ferrucci (2018)
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Figure 1: Example data for one patient’s creatinine and tacrolimus levels on a log scale
over time. The points represent actual visitations.

proposed a joint mixed effects model using G-computation in which the longitudinal

outcome and treatment assignment models share common random effects to estimate

causal effects with pre-defined treatment timing. Clifton and Laber (2020) reviewed

the use of Q-learning, a general class of reinforcement learning methods, in estimat-

ing optimal treatment regimens taking the timing of treatments as given. Zhao et al.

(2011) attempted to optimize the timing to initiate second-line therapy in the context

of clinical trials with two-stage treatments using Q-learning, but only considered two

options (i.e., immediately or delayed after induction therapy). Other work on optimiz-

ing intervention timing with a fixed number of treatment options include initiation of

antiretroviral therapy in HIV (Robins et al., 2008), just-in-time adaptive interventions

in mobile health (Nahum-Shani et al., 2018; Carpenter et al., 2020), and advantage

doubly robust policy learning that optimizes when to treat (Nie et al., 2021). Guan

et al. (2019) developed a Bayesian nonparametric method that learns to recommend a

regular recall time for patients with periodontal diseases. However, their method only

picks the recall time out of a few pre-defined choices (e.g., 3 months, 6 months, and 9

months) and thus is not applicable to complicated scenarios like the one introduced in

Section 1.1: at each visitation after kidney transplantation, the next visitation time has

to be carefully scheduled given the current clinical measurement in order to maximize

the patient’s health outcome. For instance, when patients’ kidney function is relatively

stable, they should be instructed to wait longer until the next visitation compared to

those who are less stable.
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1.3 Why use our method?

To the best of our knowledge, the proposed approach is the first general methodology for
estimating personalized optimal clinical decisions with timing. The method is cutting-
edge because (1) we build a generative probabilistic model that properly handles clinical
decisions with timing; (2) we embed this decision process into a Bayesian joint model
that also models clinical observations; (3) we propose a Bayesian optimization procedure
to optimize personalized treatment schedules alongside other clinical decisions while
accounting for uncertainties in clinical observations based on the posterior inference of
the proposed Bayesian joint model.

Our decision model is a marked temporal point process (MTPP) (Aalen et al., 2008),
which is a natural tool to model discrete events in continuous time. It has been widely
applied and become increasingly popular in various domains, including social science
(Butts and Marcum, 2017), medical analytics (Liu et al., 2018), finance (Hawkes, 2018),
and stochastic optimal control (Tabibian et al., 2019). In our example application of
Section 1.1, each follow-up visitation is an event: the visitation time is assumed to be
stochastically scheduled according to the probability distribution characterized by the
proposed MTPP; and the assigned tacrolimus dosage, when the visitation happens, is
treated as the corresponding “mark.”

The proposed MTPP for clinical decisions is then embedded into a Bayesian joint
model where it shares certain structures and parameters with the other components
modeling clinical observations, including longitudinal creatinine measurements and pa-
tient survival in the example application of Section 1.1. Such design allows our model
to capture the complicated mutual influence between clinical observations (e.g., creati-
nine levels) and decisions (e.g., treatment schedules and tacrolimus dosages). We fit the
proposed Bayesian joint model to the data and obtain the posterior inference, which
not only learns the dynamic patterns of clinical observations with uncertainty quantifi-
cation, but also estimates the parameters in modeling clinical decisions as the estimates
of how physicians treat patients in practice. The posterior means of these parameters
can be used as the initial values in the optimization procedure so that clinical decisions
can be refined to optimize patients’ survival.

Next, we let the decision model interact with the observation model in an opti-
mization procedure. This technique is known as “reinforcement learning” (Sutton and
Barto, 2018): the decision model (also called the “policy”) is reinforced, by the feedback
from the observation model (also called the “environment”), to give personalized opti-
mal treatment schedules and dosages that would improve the expected health outcome
for each patient. The Bayesian nature of our approach allows the learning to account
for parameter uncertainties in the observation model. Figure 2 illustrates the proposed
two-step Bayesian approach. The left box displays the observational data including the
clinical measurements and dosages at a sequence of visitations, and the right-headed
arrow next to it stands for the Bayesian joint model (i.e., the first step), pointing to the
right box, which represents the learned inference from the Bayesian joint model, includ-
ing inference on longitudinal measurements, the hazard function of survival, dosages,
and the intensity function of visitation timing. The vertical arrows inside the right box
indicates the policy optimization method (i.e., the second step), in which the decision
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model learns to achieve higher reward by interacting with the learned measurement
model. The R package doct (short for “Decisions Optimized in Continuous Time”) im-
plementing the proposed model and algorithm is available at https://github.com/

YanxunXu/doct.

Figure 2: Illustration of the proposed method.

The rest of the paper is organized as follows. In Section 2, we outline the overall
framework of the proposed two-step Bayesian approach. In Section 3, we elaborate on
the first step of developing a Bayesian joint model consisting of the decision submodel
(for visitation schedules and dosages) and the observation submodel (for clinical longi-
tudinal measurements and patient survival). In Section 4, we elaborate on the second
step of the optimization procedure for the decision model. We evaluate the proposed
approach through simulation studies in Section 5 and applying it to the DIVAT kidney
transplantation dataset in Section 6. Lastly, we conclude the paper with a discussion in
Section 7.

2 Problem formulation

Our goal is to optimize personalized clinical decision including scheduling a patient’
follow-up visitations and prescribing dosages to maximize the patient’ health outcome,
e.g., the graft survival time in the kidney transplantation application. In this section, we
first introduce the notations, and then outline the framework of the proposed two-step
Bayesian approach.

https://github.com/YanxunXu/doct
https://github.com/YanxunXu/doct
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For each patient i, let Ti and Ci denote the graft survival and administration cen-
soring times, respectively, i = 1, . . . , I. We observe only T̃i = min(Ti, Ci) and the
censoring indicator δi = 1(Ti ≤ Ci). The graft survival would typically be affected
by the patient’s baseline risk factors, denoted by xi, including the patient’s age when
receiving the transplantation and the donor type. At each visitation time ti,j , the clin-

ical measurement yi,j of interest would be taken, j = 0, . . . , Ji, and ti,Ji ≤ T̃i. Note
here ti,0 = 0 denotes the transplantation date of patient i, and yi,0 denotes the initial
creatinine level. Then the physician would prescribe the dosage di,j , and schedule the
next visitation time ti,j+1. In the kidney transplantation application, yi,j is the loga-
rithm of the creatinine level (μmol/l), and di,j is the logarithm of the tacrolimus level
(ng/ml). We represent the i-th patient’s sequence of visitations and assigned dosages
by ei,T̃i

= {(ti,0, di,0), . . . , (ti,Ji , di,Ji)}. Denote yi = (yi,0, . . . , yi,Ji). Our data can be

summarized as D = {xi, T̃i, δi,yi, ei,T̃i
}Ii=1.

Assume that the physician assigns the dosage di,j and schedule the next visitation
time ti,j+1 based on the patient’s baseline covariates xi and the longitudinal creatinine
measurements yi,j = {yi,j′ : j′ ≤ j}, we write the joint model of the observed clinical
observations and decisions as

I∏
i=1

p(T̃i, δi,yi, ei,T̃i
| xi) =

I∏
i=1

[
p(T̃i, δi | yi, ei,T̃i

,xi)

×
∏
j

p(yi,j | ti,j , di,j−1,xi)p(di,j | xi, yi,j)p(ti,j+1 | xi, yi,j)
]
.

(2.1)

We leave the details of the chosen parametrization for this joint model to Section 3.
Throughput this paper, we use p(·) to denote the probability density. In order to iden-
tify causal effects, we make the standard assumptions of sequential ignorability and
consistency throughout this paper (Murphy et al., 2003). The positivity assumption is
satisfied in our model due to the use of the marked temporal point process (MTPP)
(Aalen et al., 2008) for modelling stochastic clinical decisions in continuous time, which
will be introduced in Section 3.1.

Assume that the joint model (2.1) is parameterized with θ and φ, where θ denotes
the set of parameters related to clinical decisions that control patients’ follow-up sched-
ules and dosages at follow-up visitations, and φ denotes the remaining parameters. We
aim to learn the parameters θ of the clinical decision model such that, for any (fu-
ture/hypothetical) patient i, a certain reward Ri can be maximized by prescribing the
right amount of dosages and scheduling the visitations at the right times. Formally, we
aim to maximize the expected reward for any patient i with baseline covariates xi:

Gi(θ) =

∫
E(yi,Ti,ei,Ti

)∼p(yi,Ti,ei,Ti
|θ,φ,xi)[Ri]p(φ | D)dφ. (2.2)

Here the expectation is taken over all possible stochastic realizations of the clinical
measurements yi, the survival time Ti, and the clinical decisions ei,Ti from their joint
distribution p(yi, Ti, ei,Ti | θ,φ,xi); D denotes the observed data; and p(φ | D) is
the posterior distribution of φ obtained from the posterior inference of the Bayesian



856 Personalized Dynamic Treatment Regimes in Continuous Time

joint model (2.1). Note that the reward is stochastic, because the clinical measurements
and decisions (i.e., dosages and visitation times), and their influence on the reward are
all stochastic. In our kidney transplantation application, we can consider the patient’s
median survival time as the reward. More details on the reward will be introduced in
Section 4.

To find the optimal clinical decision parameter θ̃i that maximizes the expected
reward Gi(θ) for patient i after integrating out the uncertainty in the longitudinal
process and the survival distribution, we propose a two-step Bayesian approach. In the
first step that will be introduced in Section 3, we will fit the joint model (2.1) to the
observed data and assign priors for parameters θ and φ, then obtain posterior inference
through Markov chain Monte Carlo (MCMC) simulations. In the second step that will
be introduced in Section 4, we will propose a policy gradient method using stochastic
gradient descent (SGD) (Ruder, 2016) to optimize personalized clinical decision. The
uncertainties in the clinical observations will be incorporated by integrating over the
posterior distribution of p(φ | D) when calculating the reward (2.2). The estimated
posterior mean of θ from the first step can be used as an initial value in the optimization
procedure for efficient learning.

3 First step: a Bayesian joint model

In this section, we describe the proposed Bayesian joint model for both clinical decisions
and observations. In Section 3.1, we introduce the clinical decision model for follow-up
visitation schedules and dosages; in Section 3.2, we introduce the clinical observation
model for longitudinal measurements and time-to-event data, which are linked to the
decision model through parameter sharing. To facilitate our presentation and readers’
understanding, we will use the kidney transplantation example and the DIVAT data
to illustrate the model. However, the proposed method is applicable to general medical
settings since the patterns that the method can capture are not tied to this particular
application.

3.1 Modeling clinical decisions

Modeling event data with marker information is important to learn the latent mecha-
nisms that govern the observed stochastic event patterns over time in many domains,
such as social science (Butts and Marcum, 2017) and medical analytics (Liu et al., 2018).
Marked temporal point processes (Aalen et al., 2008) are a general framework for mod-
eling such event data. Formally, a marked temporal point process is a random process,
the realization of which consists of a sequence of events localized in time, i.e., H =
{(t0, d0), (t1, d1), . . . , (tJ , dJ)} with the occurrence time of event j being tj ∈ R

+ and dj
is the associated mark. In our application, tj represents the time when a patient visits
an outpatient center and dj represents the tacrolimus dosage assigned by the physician.
The first event is defined as the day of transplantation at t0 = 0 with an initial dose d0.

Denote the event history up to time t to be Ht = {(tj , dj) ∈ H | tj < t}. Under
MTPP, the instantaneous rate of the event is characterized by a conditional inten-
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sity function λ(t), namely λ(t) = limdt→0
Pr{event happens in [t,t+dt)|Ht}

dt . Common forms
of the conditional intensity function λ(t) include Poisson process (Zhu and Li, 2018),
Gamma process (Shibue and Komaki, 2020), Hawkes process (Hawkes, 1971). However,
these common models cannot capture complicated patterns in many medical applica-
tions. For instance, as shown in Figure 3(a) that plots the empirical intensity of the
amount of time between visitations for different ranges of creatinine levels in the DI-
VAT data, the elapsed time between follow-up visitations depends on the creatinine
level. Also, the empirical intensities of visitations are observed to quickly rise to a peak
and then fall down accompanied by moderate oscillations. Such complication is beyond
the capacity of the Poisson process that assumes a constant intensity and the Gamma
process whose intensity function is monotonic. The Hawkes process assumes that the
past events always elevate the intensities of future events and this “self-exciting” effect
is additive—it is also apparently not the dynamics that the visitations in the DIVAT
data actually follow.

Figure 3: Panel (a) shows the empirical intensity plot for the amount of time (in days)
between follow-up visitations. Panel (b) plots an example of how creatinine levels and
model parameters affect the visitation intensity, where ξ = 2, βα = (10,−1.8)T , μ =
−4.4, ν1 = 1.5, and ν2 = 1.

We propose a flexible conditional intensity function that also incorporates human
intuition: it takes longitudinal clinical measurements into account and captures patients’
heterogeneity. Recall that yi,j denotes the logarithm of the creatinine level for patient i
at the j-th follow-up visitation occurring at time ti,j (days). Our conditional intensity
function makes use of a Gamma density function as follows:

λi(t) = exp(μ)︸ ︷︷ ︸
Baseline Intensity

+ αi,j (t− ti,j)
κ−1e−γ(t−ti,j)

γκ

Γ(κ)︸ ︷︷ ︸
Gamma density

for t ∈ (ti,j , ti,j+1], (3.1)

where αi,j > 0, γ > 0, κ ≥ 1. The parameter αi,j is patient-specific so that our intensity
function λi is personalized. We set κ = exp(ν2) + 1 > 1 so that the intensity rises
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to a “global peak” and then decreases: it would eventually approach to the “baseline
level” exp(μ) unless the next visitation happens and sets up a new intensity curve.
For easy interpretation, we parameterize γ as γ = exp(ν2 − ν1) such that the “peak
time” (i.e., when the peak of the intensity function occurs) can be easily computed
as κ−1

γ = exp(ν1). Moreover, since the intensity level often depends on the clinical

measurement (e.g., as in Figure 3(a), a higher creatinine level implies a higher intensity),
we condition the parameter αi,j , which controls the peak intensity for patient i between
time ti,j and ti,j+1, on the clinical measurement taken at the j-th visitation:

αi,j =
ξ

1 + exp((1, yi,j)βα)
.

This design reflects the human intuition that the time of “next visit” is usually deter-
mined based on the clinical measurement of “this visit.” Note that our design allows
incorporating other covariates (i.e., measurements) by simply augmenting them to the
vector (1, yi,j). Figure 3(b) shows how the visitation intensity under our model is af-
fected by the most recent creatinine level yi,j (and thus the magnitude parameter αi,j)
given a specific set of parameter values.

Next, we model the dosage di,j at the j-th visitation of patient i as the “mark” of
the visitation event. Generally speaking, the physician would assign a dosage based on
the patient’s current clinical measurement yi,j and potential risk factors xi. We assume
the following dosage model reflecting this knowledge:

di,j = (1, yi,j ,xi)βd + ζi,j , (3.2)

where ζi,j
i.i.d.∼ Normal(0, σ2

d). This Gaussian error assumption is suitable for our dosage
data, which has continuous values, but can be easily modified for other dosage/treatment
types (e.g., generalized linear regression models for discrete treatment choices). In the
kidney transplantation application, we assume that the clinical decision at time ti,j (i.e.,
assigning a dosage di,j and scheduling the next visitation time ti,j+1) is independent of
the patient’s history conditional on the measured creatinine at the current visit yi,j . This
is reasonable in our application since the duration between two consecutive visitations
for patients after kidney transplantation can be months or even longer. However, this
assumption can be relaxed as in other popular DTR methods such as Q-learning (Clifton
and Laber, 2020) if desired. For instance, the patient’s past creatinine levels can be
included in the vector (1, yi,j ,xi) of (3.2) to model the effect of past creatinine levels on
the dosage. Thus, the probability density of the i-th patient’s sequence of visitations and
assigned dosages ei,Ti = {(ti,0, di,0), . . . , (ti,Ji , di,Ji)} up to time Ti can be written as

p(ei,Ti | yi,xi,βv,βd, σ
2
d)

= exp
(
−
∫ Ti

0

λi(t | yi,βv)dt
)

︸ ︷︷ ︸
Prob. of no visits at t∈[0,Ti]\{ti,j}Ji

j=1

Ji∏
j=0

p(di,j | yi,j ,xi,βd, σ
2
d)︸ ︷︷ ︸

Prob. of dosage

Ji∏
j=1

(3.1)︷ ︸︸ ︷
λi(ti,j | yi,j−1,βv)︸ ︷︷ ︸
Prob. of a visit at ti,j

,

(3.3)
where yi = (yi,0, . . . , yi,Ji), βv = {μ, ν1, ν2, ξ,βα}.
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3.2 Linking clinical observations with clinical decisions

In this section, we introduce the proposed Bayesian joint model that links the submodel
of the longitudinal measurements and time-to-event data to the MTPP of the clinical
decisions by carefully designing parameter sharing in order to capture the mutual influ-
ence between clinical observations and decisions. Shortly in Section 4, we will leverage
this joint model to optimize clinical decisions with the goal of maximizing patients’
survival.

Our clinical observation model is composed of two submodels—a linear mixed effects
model for longitudinal clinical measurements (e.g., creatinine levels) and a time-to-event
model for patient survival (e.g., graft survival time after kidney transplantation). The
two submodels are then connected by sharing random effects (Rizopoulos et al., 2014).
Recall that yi,j = yi(ti,j) denotes the longitudinal measurement value for patient i
at j-th follow-up visitation at time ti,j , i = 1, . . . , I, j = 0, . . . , Ji. Let y∗i (t) be the
underlying true but unobserved longitudinal process at time t ≥ 0. We assume

yi(t) = y∗i (t) + εi,j = zi(t)βl + ri(t)bi + εi(t), (3.4)

where εi(t)
i.i.d.∼ Normal(0, σ2

l ) and bi ∼ Normal(0,Σb). The covariate vectors zi(t) and
ri(t) are associated with fixed and random effects respectively:

zi(t) = (1, di(t),xi, t, t
2) and ri(t) = (1, di(t), t),

where di(t) at time t is the dosage assigned by the physician at the most recent visitation,
i.e., di(t) = di,j for t ∈ (ti,j , ti,j+1]. The temporal dependence of z and r on the dosage
d captures the drug effect on the longitudinal measurements of interest: in the kidney
transplantation application, it is supposed to capture the suppressive effect of tacrolimus
on the creatinine level. Denote di = (di,0, . . . , di,Ji), the probability of the observed
sequence of creatinine measurements yi is

p(yi | di,xi,βl, σ
2
l , bi) =

Ji∏
j=1

p(yi,j | ti,j , di,j−1,xi,βl, σ
2
l , bi). (3.5)

Next, we construct the time-to-event submodel depending on the underlying true
longitudinal trajectory y∗i (t) and the MTPP that models clinical decisions. We consider
a Weibull proportional hazards model as follows:

hi(t) = exp
(
− ( βs1y

∗
i (t)︸ ︷︷ ︸

longitudinal effect

+βs2di(t) + βs3Toxi(t)︸ ︷︷ ︸
dosage effect

+ βs4αi(t)︸ ︷︷ ︸
visitation effect

+h0)
)
ωtω−1,

(3.6)
where ω is the shape parameter. If desired, more complex survival models can be ex-
plored, such as Cox proportional hazard models (Lin and Wei, 1989) and Bayesian
nonparametric survival regression models (Xu et al., 2019). The dependence on y∗i (t)
reflects the domain knowledge that the survival event is usually associated with the
underlying health condition reflected by longitudinal measurements. The dosage effect
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term in (3.6) measures the overall drug effect on the patient: βs2di(t) is the “instanta-
neous” effect while βs3Toxi(t) is the “accumulated” effect:

Toxi(t) =

∫ t

0

di(τ)ηtox exp(−(t− τ)/ηtox)dτ,

where the parameter ηtox controls the rate of the exponential weighting for the past
dosages. In practice, the instantaneous effect is usually beneficial (e.g., tacrolimus re-
duces the likelihood of graft rejection or death) while the accumulated effect is often
toxic (and that is why we name it Tox): e.g., a prolonged high dosage of tacrolimus
might have adverse effects on kidneys, central nervous system, and gastrointestinal
tract, thereby worsening a patient’s survival (Randhawa et al., 1997). We also link the
survival submodel with the visitation model by defining αi(t) = αi,j for t ∈ (ti,j , ti,j+1]
since a high visitation intensity (i.e., larger αi,j) typically implies a higher risk, e.g.,
graft failure and thus shorter expected survival time.

Recall that Ti and Ci denote the survival and censoring times for patient i, re-
spectively. We assume T̃i = min(Ti, Ci) and δi = 1(Ti ≤ Ci). Denote fi(t) and Si(t)
to be the corresponding density and survival functions of the hazard function (3.6):

Si(t) = exp(−
∫ t

0
hi(u)du), fi(t) = hi(t)Si(t). We can write the survival likelihood for

patient i as

p(T̃i, δi | yi,xi, ei,T̃i
,βl, bi,βs) = fi(T̃i | yi,xi, ei,T̃i

,βl, bi,βs)
δi

×Si(T̃i | yi,xi, ei,T̃i
,βl, bi,βs)

1−δi , (3.7)

where βs = {ω, βs1, βs2, βs3, βs4, h0, ηtox,βα, ξ}.
In summary, we propose a joint model consisting of an MTPP for clinical decisions

including follow-up visitation schedules and dosages, a linear mixed effects model for
longitudinal clinical measurements, and a time-to-event model for the patient survival;
they are inter-connected by sharing structures and parameters. The joint probability of
the clinical observations and decisions can then factor as

I∏
i=1

p(yi, ei,T̃i
, T̃i, δi | xi,βl,βd,βv,βs, bi, σ

2
l , σ

2
d)

∝
I∏

i=1

(
p(ei,T̃i

|yi,xi,βv,βd, σ
2
d)︸ ︷︷ ︸

(3.3)

p(yi |di,xi,βl, σ
2
l , bi)︸ ︷︷ ︸

(3.5)

p(T̃i, δi |yi,xi, ei,T̃i
,βl, bi,βs)︸ ︷︷ ︸

(3.7)

)
.

(3.8)

Note that (3.8) appear to have circulation of di | yi in (3.3) and yi | di in (3.5). However,
it is a valid factorization because the dependencies are temporal: each dosage di,j is
conditional on the current measurement yi,j in di | yi, while the next measurement
yi,j+1 is conditional on the current dosage di,j in yi | di.

We complete the model by imposing the following priors: βd ∼ Normal(βd0,Σβd
),

σ2
d ∼ InverseGamma(πd1, πd2), βl ∼ Normal(βl0,Σβl

), σ2
l ∼ InverseGamma(πl1, πl2)
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for conjugacy. We assume a flat prior for Σb. When conjugacy is unattainable for the
visitation and survival parameters, we assume βs1, βs2, βs3, βs4, h0 ∼ Normal(βs0, σ

2
s0),

ηtox ∼ Gamma(πs1, πs2), ω ∼ Gamma(πs3, πs4), μ, ν1, ν2 ∼ Normal(βv0, σ
2
v0), βα ∼

Normal(βα0,Σβα), and ξ ∼ Gamma(πv1, πv2). We carry out posterior inference us-
ing the Markov chain Monte Carlo (MCMC) sampler. The details are included in the
Supplementary Material Section A (Hua et al., 2021).

4 Second step: optimize personalized clinical decision

In this section, we propose a policy gradient method using stochastic gradient descent
(SGD) (Ruder, 2016) to optimize personalized clinical decision including scheduling a
patient’ follow-up visitations and prescribing dosages to maximize the patient’ health
outcome, e.g., the graft survival time in the kidney transplantation application.

Let θ = (ν1, ν2, μ,βd, σ
2
d) denote the set of “policy” parameters related to clinical

decisions, i.e., the parameters that only appear in the conditional intensity function
(3.1) and the mark distribution (3.2), which control patients’ follow-up schedules and
dosages at follow-up visitations. Let φ = (βs, bi,βl, σ

2
l ) denote the set of “observation”

parameters, i.e., all other parameters in the joint model (3.8). Recall that in Section 2, we
define the expected reward for any future/hypothetical patient i with baseline covariates
xi to be:

Gi(θ) =

∫
E(yi,Ti,ei,Ti

)∼p(yi,Ti,ei,Ti
|θ,φ,xi)[Ri]p(φ | D)dφ. (4.1)

The expectation is taken over all possible stochastic realizations of (yi, Ti, ei,Ti). In
the kidney transplantation application, we define a personalized reward function Ri as
the log-scaled median survival time to optimize patients’ survival: Ri = log(T̂i), where

Si(T̂i) = 0.5. This reward provides computational and variance-reduction advantages
over a naive choice of the survival time itself. If desired, other reward functions can be
considered. For example, if a physician or patient would like to take into consideration
the healthcare cost per visit, we could penalize the number of visitations in the reward
function, e.g., Ri = log(T̂i) + η0Ci, where η0 is a tuning parameter and Ci is the
number of visitations. Our goal is to find, for any patient i with baseline covariates
xi, the optimal clinical decision, represented by θ̃i, to maximize the expected reward
Gi(θ) after integrating out the uncertainty in the longitudinal process and the survival
distribution:

maximizep(ei,Ti
|θ)Gi(θ),

where p(ei,Ti | θ) is the probability density of the MTPP.

To find the optimal clinical decision parameter θ̃i for patient i, we use stochastic
gradient descent (SGD) (Robbins and Monro, 1951), i.e., θi,m+1 = θi,m +
si,m∇θGi(θ) |θ=θi,m , which requires computing the gradient of the expected reward:
∇θGi(θ). As the expectation is taken over realizations of the joint distribution
p(yi, Ti, ei,Ti | θ,φ,xi), it is intractable to directly compute ∇θGi(θ). Fortunately, we
can indirectly compute this gradient by taking the expectation of the reward-weighted
gradient of log-policy. Precisely,
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Proposition 1. For any patient i with baseline covariates xi, given a joint distribution
p(yi, Ti, ei,Ti | θ,φ,xi), the gradient of the expected reward Gi(θ) with respect to θ is:

∇θGi(θ) =

∫
E(yi,Ti,ei,Ti

)∼p(yi,Ti,ei,Ti
|θ,φ,xi)[Ri∇θ log p(ei,Ti | yi,xi,φ,θ)]p(φ | D)dφ,

where p(ei,Ti | yi,xi,φ,θ) is the probability of the patient’s sequence of visitations and
assigned dosages in (3.3).

We leave the detailed proof of Proposition 1 to Supplementary Section B.

According to Proposition 1, in order to compute ∇θGi(θ), we first need to be able
to sample yi, Ti, ei,Ti from p(yi, Ti, ei,Ti | θ,φ) and calculate Ri from the generated
samples. We sample the j-th follow-up visitation time ti,j and the survival time Ti

using an inverse transform sampling method: first computing the cumulative distribution
function (CDF) of the distribution, sampling a random number U from Uniform(0, 1),
and then inverting the CDF function at U to yield the visitation/survival time (Giesecke
et al., 2011). If the j-th visitation time occurs before the survival time, i.e., ti,j < Ti,
we sample yi,j and di,j from their respective distributions and continue to sample the
(j+1)-th visitation time and the survival time. We iteratively sample follow-up visitation
times, survival times, longitudinal measurements, and dosages until the sampled survival
event occurs before the next visitation time. After obtaining samples of yi, Ti, ei,Ti , we
can easily compute Ri. We describe the sampling process for a general Ri in Algorithm
1. The algorithm details of sampling yi, Ti, ei,Ti , Ri for the reward being the log median
survival time are provided in Supplementary Section C.

Next we compute the gradient of the log-likelihood of the MTPP, ∇θ log p(ei,Ti |
yi,xi,φ,θ), using the parametrization defined in (3.3). The details are described in
Supplementary Section D. Lastly, we integrate out φ in computing ∇θGi(θ) using the
Monte Carlo method since it is analytically intractable. Suppose that we haveK MCMC
draws from the posterior distribution of φ and we denote the k-th draw as φ(k), then
∇θGi(θ) can be approximated as follows:

∇θGi(θ) ≈
∑K

k=1 E(yi,Ti,ei,Ti
)∼p(yi,Ti,ei,Ti

|θ,φ(k),xi)[Ri∇θ log p(ei,Ti | yi,xi,φ
(k),θ)]

K
.

(4.2)

To compute each term of the summation in the numerator of (4.2), we first sample Ti,
yi, and ei,Ti from p(yi, Ti, ei,Ti | θ,φ(k),xi) using Algorithm 1 to compute Ri for each
φ(k), then multiply the gradient of the log-probabilities of visitation times and dosages
under the MTPP policy. We use an adaptive step size algorithm and choose the step
size to be: si,m = 0.01√∑m−1

l=m−50 ∇θGi(θi,l)2
. The entire SGD algorithm for finding the op-

timal parameter θ̃i is described in Algorithm 2, where Gi(θi,m) denotes the expected

reward in iteration m. We select the optimal policy θ̃i to be the one yielding the high-
est expected reward across all iterations. Note that, in the step 7 of Algorithm 2, we
subtract the average reward from each individual reward: this “baseline subtraction”
trick significantly reduce the variance while still yielding an unbiased estimate of the
gradient (Williams, 1992; Greensmith et al., 2004).
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Algorithm 1 Sampling yi, Ti, ei,Ti from the joint model and computing Ri.

Let ei,Ti = {(ti,0, di,0), . . . , (ti,Ji , di,Ji)}, and yi = (yi(ti,1), . . . , yi(ti,Ji)) denote the
simulated follow-up schedules, dosages, and longitudinal data over Ji visitations until

the survival time, Ti for any patient n with covariates xi.
Input: θ, φ, xi, yi,0

Output: yi, Ti, ei,Ti , Ri

1: Initialize j ← 1, continue ← true
2: ti,0 ← 0
3: yi(0) ← yi,0
4: di,0 ← Normal((1, yi(0),xi)βd, σ

2
d)

5: bi ← Normal(0,Σb)
6: while continue do
7: Uv ← Uniform(0, 1)

8: Solve for ti,j : 1− exp(−
∫ ti,j
ti,j−1

λi(x)dx) = Uv

9: Us ← Uniform(0, 1)

10: Solve for Ti : 1− exp(−
∫ Ti

ti,j−1
hi(x)dx) = Us

11: if Ti > ti,j then
12: zi(ti,j) ← (1, di(ti,j−1),xi, ti,j , ti,j

2), ri(ti,j) ← (1, di(ti,j−1), ti,j)
13: yi(ti,j) ← Normal(zi(ti,j)βl + ri(ti,j)bi, σ

2
l )

14: di,j ← Normal((1, yi(ti,j),xi)βd, σ
2
d)

15: j ← j + 1
16: else
17: Ji ← j − 1, continue ← false
18: ei,Ti ← {(ti,0, di,0), . . . , (ti,Ji , di,Ji)} and yi ← (yi(ti,1), . . . , yi(ti,Ji))
19: Compute Ri

20: end if
21: end while

5 Simulation study

To demonstrate the advantage of the proposed Bayesian joint model, we compared it
to an alternative model that breaks the connection between longitudinal and survival
processes. Furthermore, to illustrate the benefit of optimizing the personalized clinical
decision, we compared the expected reward under the estimated optimal clinical decision
to alternative strategies of scheduling follow-up visitations on a regular basis, e.g., every
three months (Israni et al., 2014).

5.1 Simulation setup

We simulated a dataset mimicking the DIVAT dataset composed of longitudinal crea-
tinine measurements, follow-up schedules, tacrolimus dosages, and survival events for
I = 500 patients. We considered three baseline covariates in xi: donor age (AgeD),
delayed graft function (DGF), and body mass index (BMI). DGF is a binary variable
with 1 indicating that the patient used dialysis within the first week of the trans-



864 Personalized Dynamic Treatment Regimes in Continuous Time

Algorithm 2 Stochastic Gradient Descent for optimizing θ for any patient i.

Input θ0, φ
(k) (k = 1, . . .K), xi, yi,0.

Output θ̃i

1: Initialize θi,1 ← θ0
2: for m:=1 to M-1 do
3: for k:=1 to K do
4: do Algorithm 1 (θi,m, φ(k), xi, yi,0) to sample e

(k)

i,T
(k)
i

and y
(k)
i , and compute

R
(k)
i .

5: end for

6: Gi(θi,m) ←
∑K

k=1 R
(k)
i

K

7: ∇θGi(θi,m) ←
∑K

k=1(R
(k)
i −Gi(θi,m))∇θ logp(e

(k)

i,T
(k)
i

|y(k)
i ,xi,φ

(k),θi,m)

K
8: θi,m+1 ← θi,m + si,m∇θGi(θi,m)
9: end for

10: m∗ ← argmaxm Gi(θi,m)

11: θ̃i ← θi,m∗

plant, 0 otherwise. For each patient, the donor age and BMI were generated from
Normal(52.5, 15.82) and Normal(24.3, 4.52), respectively, and then standardized. Pa-
tients’ delayed graft functions were generated from Bernoulli(0.4) independently. In
the MTPP model for follow-up schedules, the simulated true parameters were set to
be ν1 = 2.5, ν2 = 1.5, μ = −4.8, ξ = 2, and βα = (9.5,−1.5)T so that a higher
creatinine level results in a higher visitation intensity; for assigning dosages, the sim-
ulated true βd was set to be (1, 0.2, 0.15, 0.2, 0.15)T and σd = 0.3. In modeling log-
transformed longitudinal creatinine levels, the simulated true parameters were set to be
βl = (5.3, 0.1, 0.3, 0.4, 0.25,−1× 10−4, 3× 10−8)T , σl = 0.1, and

Σb =

⎡⎣0.04 0 0
0 0.0049 0
0 0 10−8

⎤⎦ .

Note that the last two terms in the simulated true βl were small since the times were
recorded in days. Patients’ initial log-transformed creatinine levels right after trans-
plantation yi,0’s were independently generated from Normal(5, 0.12). In the survival
submodel (3.6), we assumed that the simulated true parameters were h0 = 5, ω = 1.05,
βs1 = 1, βs2 = 0.9, βs3 = −0.75, βs4 = −5, and ηtox = 50. The censoring times Ci’s were
independently generated from Weibull(3, 8000). Based on the proposed Bayesian joint

model in Section 3, we generated the data yi, ei,T̃i
, T̃i, δi for each patient i, i = 1, . . . , I.

The simulated dataset had a total of 14,395 follow-up visitations for 500 patients
with a 10.8% censoring rate. The median survival time was 1,684 days with the shortest
being 24 days and the longest being 10,016 days. Supplementary Figure S1 plots the
simulated longitudinal creatinine levels and follow-up schedules with dosages for four
randomly selected patients.
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5.2 Results: model fitting

We applied the proposed Bayesian joint model to the simulated dataset. The hyper-

parameters were set to be βd0 = βl0 = βα0 = 0, Σβd
= Σβl

= Σβα = 1002I,

πd1 = πd2 = πl1 = πl2 = πs3 = πs4 = 0.01, πs1 = πs2 = 0.01, βs0 = βv0 = 0,

σ2
s0 = σ2

v0 = 1002, πv1 = 400, πv2 = 200. We ran 20,000 MCMC iterations with an

initial burn-in of 5,000 iterations and a thinning factor of 50. The convergence was as-

sessed using R package coda, including traceplots of the post-burn-in MCMC samples

for some randomly selected parameters (Supplementary Figure S2), showing no issues

of non-convergence. We first report on the performance of the proposed joint model

in terms of parameter estimation. Supplementary Figure S3 plots the 95% estimated

credible intervals (CIs) for selected parameters, showing that all 95% CIs are centered

around the simulated true values. As another metric of performance, we computed the

mean squared error (MSE) taken as the averaged squared errors between the post-burn-

in MCMC posterior samples and the simulated true values. Supplementary Table S1

summarizes the MSE and the standard deviation of squared errors, indicating that the

proposed joint model can accurately estimate parameters.

As the proposed model represents the first effort in the literature to jointly model

clinical decisions, longitudinal markers, and the survival event, there is no existing

method we can compare with. To demonstrate the advantage of jointly modeling lon-

gitudinal creatinine levels and the survival event, we compared the proposed model

with an alternative “separate longitudinal and survival (SLS)” model that breaks the

connection between the longitudinal and survival submodels by replacing the process

y∗i (t) with the observational data yi(t) in the hazard model (3.6). We first compared the

two models by checking their model adequacy using the Watanabe-Akaike information

criterion (WAIC) (Watanabe and Opper, 2010): the joint model has a WAIC value of

226,982 while the SLS model has a WAIC of 226,992, indicating that the proposed joint

model fits data slightly better. Furthermore, we compared the two models in terms of

parameter estimation. Table 1 reports the simulated true values of parameters in the

survival submodel, and posterior means of these parameters under the joint model and

the SLS model with 95% CIs, showing that the joint model estimates parameters more

accurately.

Truth Joint posterior mean (95% CI) SLS posterior mean (95% CI)
βs1 1 1.1 (0.92,1.26) 1.19 (0.94,1.6)
βs2 0.9 1.25 (0.74,1.95) 1.41 (0.63,2.3)
βs3 -0.75 -0.92 (-1.62,-0.33) -1.03 (-1.8,-0.18)
βs4 -5 -5.01 (-5.51,-4.47) -5.16 (-6.14,-4.56)
h0 5 4.36 (3.44,5.35) 3.89 (1.6,5.22)
ω 1.05 1.06 (0.99,1.12) 1.06 (0.97,1.13)

Table 1: Parameter estimation under the joint and SLS models.
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5.3 Results: personalized optimal clinical decision estimation

We applied the proposed policy gradient method in Section 4 to the simulated dataset
to estimate the personalized optimal clinical decision that maximizes one patient’s graft
median survival time, i.e., Ri = log(T̂i), where T̂i is the median survival time of any
patient n. The starting parameter values θ0 in Algorithm 2 were set to be the estimated
posterior means of these parameters from posterior inference, which can be considered
as the estimates of how physicians treated patients in the simulated data. Therefore, the
goal of the optimization procedure is to improve physicians’ current treatment strategy
in terms of prolonging patients’ survival.

We implemented Algorithm 2 with M = 1000 steps to estimate the personalized
optimal parameter θ̃i for two randomly selected patients, denoted as S1 and S2. Patient
S1 had a DGF of 0, donor age of 54.2 years, and BMI of 24, while patient S2 had a
DGF of 1, donor age of 37.4 years, and BMI of 24.8. Figure 4(a, b) plots the expected
mean reward versus SGD iterations. Note that the SGD procedure in the context of
reinforcement learning usually has high variability, which is alleviated by our variance
reduction method in Algorithm 2 as shown in Figure 4. For patient S1, the expected
mean reward increases from an initial value of 7.65 to its maximum in the SGD, 7.69,
which corresponds to a predictive median survival time of 2,209 days, a 4.6% increase
from its initial value 2,111. For patient S2, the expected mean reward goes from an
initial value of 7.69 to a maximum at 7.76. This corresponds to the predictive median
survival time increasing from 2,203 days to 2,383 days, an 8.2% improvement.

To further interpret the estimated optimal “policy” parameters for patients S1 and
S2, we compared the initial parameter values of the SGD–posterior means, with the
optimized values by the SGD in Table 2. Recall that the dosage model is di,j =
(1, yi,j ,xi)βd + ζi,j . Denote βd = (βd1, βd2, . . . , βdL)

T , where L is the dimension of
βd. Since xi denotes the baseline covariate and does not change over time, we define
the personalized dosage intercept to be β̃d = (1,xi)(βd1, βd3, . . . , βdL)

T so that optimiz-
ing βd is equivalent to optimizing (βd2, β̃d). As shown in Table 2, the optimized dosage
parameters β̃d and βd2 for patient S1 were lower than the estimated posterior means,
indicating that patient S1 would benefit from a lower dosage for the same creatinine
level compared to the observed dosages. In contrast, the optimal β̃d and βd2 were higher
than the posterior means for patient S2, indicating the preference for higher dosages.
The optimal dosage errors, σ2

d, for both patients were significantly lower than the initial
value, indicating that a lower variance in the dosing procedure would benefit patient
survival. The optimal baseline visitation intensity μ and the peak time parameter ν1
were both roughly the same as their posterior means, indicating that the simulated
follow-up schedules were close to optimal. However, the visitation intensity shape pa-
rameter ν2 increased from 1.464 to 1.778 and 2.008 for patients S1 and S2 respectively
and thus implies a higher intensity around the peak time ν1: intuitively, the optimized
policy learns to be more certain about the “optimal peak time.”

In addition, to illustrate the advantage of optimizing both follow-up schedules and
dosages, we compared our results to alternative strategies based on regular visits. As
studied in Israni et al. (2014), during the first year post-transplant, patients were most
frequently seen every 1 month or 3 months, depending on their physicians. After the
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Figure 4: Panels (a, b) plot the expected mean reward versus SGD iterations for two
randomly selected patients S1 and S2. Panels (c, d) plot the density of the predictive
median survival times under our method and the three alternative strategies for patients
S1 and S2.

first year, stable patients were most frequently referred back between 4–6 months but

the follow-up frequency was reported to vary from 0–12 months. We considered three

alternative follow-up strategies: recommend patients to follow up every 1 month, 3

months, and 6 months. The dosages at follow-up visitations were still optimized in the

same way as the proposed joint model with the policy gradient method. Figure 4(c,

d) show the density plots of 100 realizations of the predictive median survival times

under our method and the three alternative strategies for patients S1 and S2. Compar-

ing the predictive median survival times under the three regular visitation strategies,
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θ̃0 θ̃S1 θ̃S2

β̃d: personalized dosage intercept S1: 0.864, S2:0.987 0.746 1.316
βd2: dosage effect of creatinine 0.200 0.153 0.307
σ2
d: dosage error 0.0940 0.0217 0.00252

μ: baseline visitation intensity -4.781 -4.821 -4.785
ν1: visitation intensity peak 2.512 2.416 2.519
ν2: visitation intensity shape 1.464 1.778 2.008

Table 2: Simulation: Stochastic Gradient Descent Optimal Parameter Results.

we can see that more frequent visitations yield longer median survival times. The opti-
mized visitation schedule under the proposed method outperforms the three alternative
strategies although it yields a similar overall visitation frequency with the strategy of
“regular visits every 3 months” (not shown), highlighting the importance of optimizing
visitation schedules based on longitudinal clinical measurements to prolong patients’
survival.

6 Application: DIVAT data analysis

We extracted data from Nantes University Hospital Centers in the DIVAT cohort
(www.divat.fr), yielding a total of I = 947 patients who received a first or second re-
nal graft transplanted from a living or heart-beating deceased donor between 2000 and
2014. All patients in the dataset received an initial maintenance therapy with tacrolimus
and did not experience graft failure or death during hospitalization. Immediately after
transplantation, several covariates as risk factors for graft failure were collected: donor
age (AgeD), recipient age (AgeR), delayed graft function (DGF) defined as the indica-
tor of the use of dialysis within the first week of transplant (1=used dialysis, 0=didn’t
use dialysis), diabetes history (Diab) with 1 indicating the patient has a history of dia-
betes and 0 otherwise, type of donor (Type), and body mass index (BMI). There were
two types of donors: donation after brain death but with heart beating (Type=1) and
donation by a living donor (Type=0). Supplementary Table S2 summarizes patients’
characteristics at baseline immediately after transplantation. For each patient, longi-
tudinal data were collected from the date of transplantation until the graft failure or
being censored. At each follow-up visitation, the creatinine level and tacrolimus dosage
were recorded. The next follow-up visitation time was determined by the physician.

6.1 Experimental results: model fitting

We first applied the proposed Bayesian joint model to the DIVAT data with xi =
(AgeDi,AgeRi,DGFi,BMIi,Diabi,Typei). The hyperparameters were set to the same
as in the simulation study. We ran a total of 20,000 MCMC iterations with an initial
burn-in of 5,000 iterations, and a thinning factor of 50. The convergence was assessed
using R package coda and the trace plots for randomly selected parameters were shown
in Supplementary Figure S4, showing no issues of non-convergence.

www.divat.fr
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We plot the estimated posterior means with 95% CIs for some selected parameters
in the dosage, longitudinal, and survival submodels in Figure 5. Figure 5(a) plots pos-
terior means of the linear coefficient βd with respect to the creatinine level and baseline
covariates in the dosage model. DGF was negatively associated with the dosage, indi-
cating that patients who used dialysis within the first week of transplant were likely
to be assigned lower dosage levels. In contrast, BMI was positively associated with the
dosage since bodyweight-based dosing of tacrolimus is the standard care for patients
after transplantation (Andrews et al., 2017). Diabetes history was positively associated
with the dosage. While the effect of diabetes on tacrolimus was not well characterized in
the literature, Mendonza et al. (2007) showed that the time to maximum concentration
of tacrolimus in the pharmacokinetics study was significantly longer in diabetics versus
nondiabetics. Furthermore, donor type also increased the dosage level, indicating that
patients who received kidney from a non-living donor were more likely to be assigned
higher dosages compared to that from a living donor.

Figure 5(b) plots the estimated posterior means with 95% CIs for the fixed-effects
regression coefficients with respect to the most recent tacrolimus dosage and baseline co-
variates in the longitudinal model (3.4). The dosage, donor age, DGF, BMI, and donor
type were positively associated with the creatinine level, which agreed with findings
in the literature (Katari et al., 1997; Gerchman et al., 2009; Foucher et al., 2016). In
contrast, the recipient age was negatively associated with the creatinine level, suggest-
ing that younger patients tend to have lower creatinine levels (Maraghi et al., 2016).
Diabetes history also decreased the creatinine level. Hjelmeseth et al. (2010) showed
that a low creatinine was associated with type 2 diabetes in a cross-sectional study.
The estimated posterior means and 95% CIs for selected survival submodel parameters
are plotted in Figure 5(c). The posterior mean of the parameter corresponding to the
tacrolimus dosage was positive while that corresponding to the toxicity was negative,
suggesting that a higher tacrolimus drug reduces the hazard but the accumulated toxic-
ity increases the hazard. These results were consistent with findings in Randhawa et al.
(1997) and Böttiger et al. (1999), who reported nephrotoxicity caused by long-term high
dosages of tacrolimus.

6.2 Experimental results: personalized optimal clinical decision
estimation

Next, we applied the proposed policy gradient method to estimate the personalized
optimal clinical decision in terms of maximizing a patient’s median survival time. We
initialized the parameters in Algorithm 2 by setting θ0 to be their posterior means.
Algorithm 2 was implemented with M = 1000 steps to estimate θ̃i for two randomly
selected patients, denoted as R1 and R2. Patient R1 at transplantation was 60 years
old with a BMI of 17, no history of diabetes, no DGF, and received donation from a
61-year-old non-living donor. Patient R2 at transplantation was 28 years old with a
BMI of 25.5, no history of diabetes, no DGF, and received a kidney from a living 29-
year-old donor. Patient R1 had an observed survival time of 1,527 days, while patient
R2 had a censored survival time of 4,487 days. Supplementary Figure S5 plots the
predictive median survival times across SGD iterations for the two patients. Patient R1’s
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Figure 5: Estimated posterior means and 95% CIs for parameters in the dosage, lon-
gitudinal, and survival submodels. The dosages and longitudinal measurements are in
log-scale. The squares represent posterior means.

predictive median survival time increased from 1,793 to 1,895 days at the maximum, a
5.7% improvement; while patient R2’s predictive median survival time increased from
5,191 to 5,628, an 8.4% gain.

To further interpret the estimated optimal parameters in clinical decisions, we com-
pared their initial values with the optimized values in Table 3. In practice, these opti-
mized parameters can be interpreted to guide clinical decisions. Patient R1’s optimal
dosage parameters, β̃d and βd2, were higher than their posterior means, suggesting that
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assigning a higher dosage level compared to what the physician actually did for the same
creatinine level would improve his/her survival outcome. Specifically, the recommended
dosage for patient R1 based on the optimized β̃d and βd2 is the baseline of 2.788 plus
an additional 0.076 units of tacrolimus for each unit of creatinine recorded at the most
recent followup visitation. On the other hand, patient R2’s optimal dosage parameters
were both lower than the initial values, so lower dosage levels are recommended. The
optimal dosage errors, σ2

d, for both patients were significantly lower than the initial
value, meaning that the optimized policy is more certain about its dosing decisions so
the variance is lower than the observed data. Therefore, a decrease in the optimized
dosage error term can be implemented in practice by closely adhering to the mean
dosage amount suggested by the optimized dosage parameters. The optimal baseline
visitation intensities μ for both patients were lower than the initial value, indicating
that they should be instructed to visit less often without the knowledge of their crea-
tinine measurements. Their optimized visitation intensity peak times were lower than
the posterior mean, indicating that they should be scheduled more frequent follow-ups
when their creatinine levels are high. Furthermore, the visitation intensity shapes were
significantly higher than the initial value so the optimized policy is more certain about
the optimal peak time for visitation schedules.

θ̃0 θ̃R1 θ̃R2

β̃d: personalized dosage intercept R1:2.367, R2:2.363 2.788 2.161
βd2: dosage effect of creatinine -0.038 0.076 -0.065
σ2
d: dosage error 0.111 0.035 0.0024

μ: baseline visitation intensity -4.197 -4.617 -4.322
ν1: visitation intensity peak 1.479 1.123 1.311
ν2: visitation intensity shape 0.258 0.864 1.261

Table 3: DIVAT data: optimal parameters estimated by the policy-optimizing method.

6.3 Ablation study: optimizing time or dosage or both

Moreover, to demonstrate the benefit of optimizing the follow-up visitation schedules
and dosages together, we compared the predictive median survival times under the
non-optimized initial policy (Non-Opt.) with three versions of optimized policies: 1)
only visitation schedules are optimized (Opt. Visits); 2) only dosages are optimized
(Opt. Dosage); and 3) both visitation schedules and dosages are optimized (Opt. Both).
Specifically, Non-Opt. used the parameters estimated from the proposed Bayesian joint
model, mimicking what physicians did as collected in the DIVAT dataset; Opt. Visits
used the optimized parameters from the SGD in the visitation model (3.1) and the
non-optimized parameters in the dosage model (3.2); Opt. Dosage used the optimized
parameters from the SGD in the dosage model and the non-optimized parameters in
the visitation model; Opt. Both is the fully optimized model obtained in Section 6.2.
Figure 6 plots boxplots for 100 realizations of the predictive median survival times under
each of the four policies. Both patients benefit more from optimizing dosages relative to
optimizing visitation schedule. The visitation schedule optimization accounts for more



872 Personalized Dynamic Treatment Regimes in Continuous Time

improvement in prolonging the survival for patient R1 compared to R2 because, as
shown in Table 3, there was a larger difference between the optimal parameter values
(μ and ν1) in the visitation model and their initial values for patient R1. The optimized
visitation schedule for both patients, as we have discussed in Section 6.2, suggested
slightly fewer visits overall, but more frequent visits when their creatinine levels are
high. Comparing the four policies, we can see that optimizing both visitation schedules
and dosages is clearly beneficial to these patients, thus empirically strengthening the
motivation of our work.

Figure 6: The boxplots of the predictive median survival times under different policies
of visitation schedules and dosages for patients R1 and R2.

7 Conclusion

In this work, we developed a two-step Bayesian approach to optimize clinical decisions
with timing. Firstly, we proposed a Bayesian joint model for clinical observations (e.g.,
longitudinal measurements and survival time) and clinical decisions (e.g., follow-up vis-
itation schedules and dosage assignments). The model components are connected by
sharing certain structures and parameters in order to capture the mutual influence
between the clinical observations and decisions. Moreover, we proposed a policy gradi-
ent method that optimized the personalized clinical decision for better survival, while
parameter uncertainties in the clinical observation model are considered. Through sim-
ulation studies, we demonstrated that the optimized clinical decision obtained from the
proposed approach yields longer predictive median survival times compared to schedul-
ing follow-up visitations on a regular basis that is commonly used in caring for patients
with chronic conditions nowadays. The analysis of the DIVAT data yields meaningful
and interpretable results, showing that the proposed method has the potential to assist
physicians’ decisions on personalized treatment. In addition, we have built an R package
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doct so that users can apply the proposed method to datasets in a similar setup that
involves longitudinal decision making and an objective reward to optimize.

There are several potential extensions. Firstly, we consider one longitudinal measure-
ment in the longitudinal process of the joint model. There could be other time-varying
measurements affecting the clinical decision and survival. In our kidney transplanta-
tion application, besides creatinine levels, there are other longitudinal measurements
recorded such as proteinuria, which represents having protein in the urine and can be an
early sign of kidney disease. The proposed method can be extended to incorporate other
longitudinal measurements by replacing the model in (3.4) with a multivariate mixed
effects model (Chi and Ibrahim, 2006). Secondly, the proposed Bayesian joint frame-
work that models both clinical decisions and observations relies on certain parametric
assumptions that are suitable for our kidney transplantation application. However, these
assumptions (e.g., the proportional hazard assumption in the survival submodel) may
not hold for other medical applications. It will be straightforward to extend the proposed
Bayesian model to more flexible models such as replacing the current prior distributions
with a Bayesian nonparametric prior (e.g., the Dirichlet process, Ferguson (1973)), or
considering other nonparametric models (e.g., neural networks). Thirdly, the proposed
MTPP assumes stationarity in clinical decisions since it yields the same distribution
over visitation timing and dosages given the same history. Although the stationarity
is reasonable in the kidney transplantation application, our approach can be easily
extended to allow non-stationary clinical decisions, by explicitly incorporating a time-
varying term (e.g., exp(ct) where c ∈ R is a coefficient parameter) in (3.1). In addition,
the policy gradient method is used to optimize personalized clinical decisions in this pa-
per. Other optimization methods such as natural evolution strategies (Wierstra et al.,
2014) will be explored in the second step of the proposed approach. Lastly, patients
with chronic conditions may take multiple medicines, e.g., mycophenolate mofetil (an
immunosuppressive drug) and steroids along with tacrolimus in our kidney transplanta-
tion application. Modeling the effects of multiple types of drugs (and their interactions
with clinical observations) and learning their optimal dosage-assigning policies in the
proposed optimization method will be an interesting and challenging research topic.

Supplementary Material

Supplement for “Personalized Dynamic Treatment Regimes in Continuous Time:
A Bayesian Approach for Optimizing Clinical Decisions with Timing”
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