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On a Dirichlet Process Mixture Representation
of Phase-Type Distributions∗

Daniel Ayala†, Leonardo Jofré‡, Luis Gutiérrez§, and Ramsés H. Mena¶

Abstract. An explicit representation of phase-type distributions as an infinite
mixture of Erlang distributions is introduced. The representation unveils a novel
and useful connection between a class of Bayesian nonparametric mixture mod-
els and phase-type distributions. In particular, this sheds some light on two hot
topics, estimation techniques for phase-type distributions, and the availability of
closed-form expressions for some functionals related to Dirichlet process mixture
models. The power of this connection is illustrated via a posterior inference al-
gorithm to estimate phase-type distributions, avoiding some difficulties with the
simulation of latent Markov jump processes, commonly encountered in phase-type
Bayesian inference. On the other hand, closed-form expressions for functionals of
Dirichlet process mixture models are illustrated with density and renewal function
estimation, related to the optimal salmon weight distribution of an aquaculture
study.
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1 Introduction

Mixture models are ubiquitous in statistics. Their study can be traced back to Pearson
(1894) with excellent, up to date, reviews by Titterington et al. (1985), McLachlan and
Peel (2000) and Frühwirth-Schnatter (2006). A mixture model can be written as

fY (·) =
N∑

h=1

whK(·|θh), (1)

with N = 1, . . . ,∞, where K(·|θ) is a kernel density, here supported in R+, and

{θh, wh}h≥1 are N -dimensional parameters satisfying
∑N

h=1 wh = 1. Depending on the
kernel and weights specification, this model might induce a dense class of densities,
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‡Departamento de Estad́ıstica, Pontificia Universidad Católica de Chile.
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namely it could capture any density on R+. When N = ∞ and the parameters are
random, mixture models (1) are widely studied in Bayesian nonparametrics (see, e.g.,
Ghosh and Ramamoorthi, 2003; Müller and Quintana, 2004; Dunson, 2010; Müller and
Mitra, 2013), with the benchmark model being the celebrated Dirichlet process mixture
(DPM) model (Ferguson, 1973, 1974; Lo, 1984; Escobar and West, 1995). The DPM
model can be defined as the random density model

fP (y) =

∫
R+

K(y | ξ)P (dξ), (2)

driven by a Dirichlet Process (DP), P ∼ DP(α, P0), i.e. a random probability measure
P =

∑
h≥0 whδθh , where weights, {wh}h≥1, and locations, {θh}h≥1, are random and

independent, given by

wh = vh
∏
�<h

(1− v�), vh
iid∼ Beta(1, α), α > 0, (3)

and θh
iid∼ P0, respectively. Here, P0, sometimes referred as the baseline distribution, is

assumed to be a non-atomic distribution on R+. The Bayesian nonparametric literature
offers a wide choice of other models for P , being of practical interest those falling in the
general class of species sampling models (Ghosal and van der Vaart, 2017). Among other
aspects, the Dirichlet process stands out within this latter general class as being the only
one tractable for atomic P0. Though this discreteness of P0 could be potentially relevant
for our purposes below, letting P0 to be atomic is not always adequate, as it prevents
posterior distributions to smoothly deviate from the prior. Indeed, this has encouraged
other proposals in the literature (Canale and Dunson, 2011; Canale and Prünster, 2017)
to overcome the difficulty of modeling random mass probability functions. Hence, we
keep the assumption of non-atomic P0. Notice that random density (2) can be also
simplified as

fP (y) =
∞∑
h=1

wh K(y | θh), (4)

and, when describing a set of iid observations {y1, . . . , yn} from it, sometimes written
in the hierarchical representation form

yk | θk ind∼ K(y | θk) , k = 1, 2, . . . , n, (5)

θk | P iid∼ P,

P ∼ DP(α, P0) .

On an unseemly connected direction, phase-type distributions (Neuts, 1975, 1978)
(sometimes abbreviated as PH-distributions) have been mainly studied in the applied
probability literature, see, e.g., Bladt and Nielsen (2017) for extensive treatment. The
basic idea of phase-type distributions starts by considering a Markov jump process
{Xt}t≥0 with state space E = {1, 2, . . . , p, p+ 1}, where states 1, 2, . . . , p are transient,
and state p+ 1 is absorbing. This process is driven by an intensity matrix of the form

Λ =

(
T t
0 0

)
,
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where T ∈ T, with T denoting the space of subintensity matrices of dimension p × p.
Given the row elements in an intensity matrix add up to 0 (i.e. Λ1 = 0), the space T

contains all the square matrices whose row sums are non-positive, and contains negative
elements in the main diagonal, that is,

T (i, j) =

{
−λi if i = j

λij if i �= j
,

where λi > 0 corresponds to the parameter of an exponential distribution. This amounts
to say that the process remains in state i, an exponential time with rate λi, and then
jumps to state j with transition probability p(i, j) = P (Xn+1 = j | Xn = i) = λij/λi.
Notice that λij is the rate at which transition from i to j occurs. Given the finite
nature of this Markov chain, transition probabilities are typically represented with a
matrix P with elements p(i, j), for i �= j, and p(i, i) = 0. The vector t = −T1 is
the exit rate, as it contains the jump rates to the absorbing state (Bladt and Nielsen,
2017). Here, 1 is a p-dimensional column vector of ones. Now let π = (π1, . . . , πp), with
πi = P(X0 = i), be a row vector in the p-dimensional simplex space S

p. A phase-type
distribution with dimension p is defined as the time until absorption of the Markov jump
process {Xt}t≥0, with initial distribution π and subintensity matrix T, namely the dis-
tribution of the random variable Y := inf {t > 0 | Xt = p+ 1}. Accordingly, we will use
the notation Y ∼ PHp(π,T) for a phase type distribution with the embedded Markov
process {Xt}t≥0 characterized by π and T. It is worth noting that, to keep the standard
notation in phase-type distributions literature, we are keeping π as a row vector.

If Y ∼ PHp(π,T), the corresponding density and cumulative distribution function
(cdf) are given by

f(y) = πeTyt and F (y) = 1− πeTy1 , (6)

respectively, where eTy =
∑∞

�=0
1
�! (Ty)� and the parameter space is given by Θ = S

p×T.

Just as for DPM models, this class can be dense in the space of distributions on
the positive real line when the number of phases p tends to infinity (Asmussen, 2000a).
Phase-type distributions are appealing in a variety of complex statistical problems. They
are closed under convolutions and mixing, they have closed-form expressions to solve
problems in Survival Analysis (Aalen, 1995), Renewal theory (Asmussen and Bladt,
1996), computation of Ruin probabilities (Asmussen, 2000b), the estimation of the
Lorenz curve and Gini index (Bladt and Nielsen, 2011), and various other estimation
problems (see, e.g., Bladt et al., 2016). As it will become clear later, these results unveil
various novel applications of DPM models.

Although connections between phase-type distributions and mixture models have
been described in the literature (see, e.g., Cumani, 1982; O’Cinneide, 1989; Mocanu
and Commault, 1999; Lee and Lin, 2010, 2012; Zadeh and Stanford, 2016), they have
not been exploited in depth. Inference for Bayesian nonparametric mixture models,
is nowadays relatively standard (see, e.g., Escobar and West, 1995; Neal, 2000; Ish-
waran and James, 2001; Walker, 2007; Kalli et al., 2011; Miller and Harrison, 2018),
whereas inference for phase-type distributions is still challenging task (Bladt et al.,
2003; Aslett, 2012). Both classical and Bayesian approaches to phase-type distribution
inference available in the literature, resort to the underlying Markov jump processes
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{Xt}kt≥0, k = 1, . . . , n to write the complete likelihood, and thus to estimate the pa-
rameters using the Expectation-Maximization (EM) (Asmussen et al., 1996) or Gibbs
Sampling algorithms (Bladt et al., 2003). In both approaches, it is difficult scaling up
the corresponding algorithms to consider relatively large sample sizes n. In the EM
algorithm, the computation of the Expectation step, based on latent trajectory of em-
bedded jump process, is necessary for each data in the sample. On the other hand, in
the Gibbs algorithm, the simulation of the associated Markov jump process for each
data point is required. Furthermore, a question that arises in both approaches is: How
to determine the number of phases p? As we will show below, our proposal solves all
these difficulties.

The main purpose of this work is to reveal an appealing connection between DPM
mixtures and phase-type distributions, thus mutually benefiting both research areas.
With this in mind, we present an explicit representation of phase-type distributions as
an infinite mixture of Erlang distributions. This new representation is derived using the
corresponding Laplace transform, which admits loops of the process to the same state,
and generalizes an existing result by Zadeh and Stanford (2016).

The manuscript is organized as follows. In Section 2, after presenting some back-
ground material related to infinite-dimensional phase-type distributions also known as
SPH-distributions, we present results that connect phase-type distributions with infi-
nite mixtures of Erlang distributions. This section includes the connection with Bayesian
nonparametrics, which then allows to adapt known posterior inference techniques, shown
in Section 3. An extensive Monte Carlo simulation study is included in Section 4. Sec-
tion 5 illustrates the availability of a closed expression for the renewal function and
density estimation with aquaculture data. Some concluding remarks are deferred to
Section 6.

2 A SPH-distribution representation via Erlang kernels

When the number of transient states is infinity, p = ∞, PH-distributions are not neces-
sarily proper, defining the class of infinite-dimensional phase-type (IPH) distributions.
Shi et al. (1996) give conditions under which a subset of this class, identified with the
acronym SPH, contains only proper distribution functions. Let us recast their result:

Corollary 1 (Shi et al., 2005). Let (w1, w2, . . .) be a probability vector and for each
h = 1, 2, . . ., let Fh(t) be the cdf of a PHph

(πh,T(ph)) distribution, with initial distribu-
tion πh and subintensity matrix T(ph), where (ph)

∞
h=1 is a sequence of finite dimension

values. Now assume there exists λ := sup
h,j

|Tjj(ph)| < ∞, where Tjj are the diago-

nal elements of T. Hence, the mixture model
∑∞

h=1 whFh(t) can be represented as a
PH∞(φ,W) distribution, with

φ = (w1π1, w2π2, · · · ), and W =

⎡
⎢⎢⎣

T(p1) 0 · · ·

0 T(p2)
. . .

...
. . .

. . .

⎤
⎥⎥⎦ .

Such distribution is referred to as a SPH-distribution.
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Theorem 2.1 in Shi et al. (1996) establishes that SPH-distributions are proper if
and only if the infinite matrix W is invertible. SPH-distributions share similar closure
properties with PH-distributions; in fact, the class of finite PH-distributions is contained
in the SPH class. In particular, if all diagonal elements of the matrix W are bounded
and W is invertible, then

∑∞
h=1 whFh(t) defines a proper density of the form in (6) with

parameters (φ,W), which is established in Shi et al. (Theorem 2.2, 1996). The following
sections are valid for p arbitrarily large but finite. The conditions in Shi et al. (1996)
justify using infinite mixtures of Erlang distributions, which satisfy such conditions, have
a phase-type representation, and can be seen as an infinite-dimensional PH-distribution.

In general, PH-distributions are not identifiable (Telek and Horváth, 2007), mean-
ing two different sets of parameters, (π,T) and (π∗,T∗), might account for the same
probability mass. This lack of identifiability can be seen as consequence of the obser-
vation process: there are different possible trajectories, of the embedded Markov jump
process, {Xt}1t≥0, . . . , {Xt}nt≥0, that lead to the same observed absorption time. Addi-
tionally, even identifiable cases such as the Exponential distribution of rate one, can
be represented as a non-identifiable PH-distribution with a higher dimension p. Notice
that there is a difference between the dimension and the order of a PH-distribution, the
latter being the smallest dimension among all its representations. All this complicates
the learning process in estimation procedures, as noted by Asmussen et al. (1996) when
fitting of the Old Faithful geyser data.

As mentioned above, the literature offers some instances of connections between
phase-type distributions and mixture models. However, to the best of our knowledge,
such connections have not been used for Bayesian inference. Here, we use a novel char-
acterization of PH-distributions as SPH-distributions, with Erlang kernels.

Proposition 1. Let Y ∼ PHp(π,T), where π ∈ S
p, T ∈ T, p < ∞, and denote by

P the transition matrix of the embedded Markov process. Then the Laplace transform

of Y can be represented as L(s) = π
(∑∞

k=0 (DP)
k
)
D(I − P)1, for s > 0, where D

denotes the diagonal matrix with elements
(

λi

λi+s

)
, corresponding to Laplace transforms

of exponential distributions with rates λi > 0 for all i = 1, . . . , p.

Proof. Using the same notation as in Section 1, the Laplace transform of Y , L(s) :=
E[e−sY ], can be represented as a non-homogeneous linear system of equations, as there
exists a positive probability that the embedded Markov process {Xt}t≥0 jumps to the
absorbing state directly from any initial state. That is L(s) =

∑p
i=1 πiLi(s), where

Li(s) := E[e−sY | X0 = i], with

Li(s) =
λi

λi + s

p∑
j=1,j �=i

pijLj(s) +
λi

λi + s

⎛
⎝1−

p∑
j=1,j �=i

pij

⎞
⎠ .

Here, pij denotes the ij-element of P. The first term of Li corresponds to the case
where the embedded Markov process {Xt}t≥0 jumps to state j, after an exponential
time in state i. The second term corresponds to the case where the process jumps to
the absorbing state directly from any initial state i.
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Using the notation L := (L1(s), . . . ,Lp(s))
t, we have L = DPL+D (1−P1), which

solving with respect to L, simplifies as L = (I−DP)
−1

D (1−P1).

Hence, the Laplace transform of Y can be expressed as L(s) = πL = π(I −
DP)−1D(1 − P1) and, for s > 0, represented as L(s) = π(

∑∞
k=0(DP)k)D(I − P)1.

This latter representation relies on the series expansion

(I−A)
−1

=

∞∑
k=0

Ak,

which exist when the norm ‖A‖∞ < 1. Here ‖A‖∞ := maxi
∑

j |aij |.
We have to show that ‖DP‖∞ < 1. Using the sub-multiplicative property of the

matrix norm, and the fact that the norm of a sub-stochastic matrix P is less than or
equal to one, we have

‖DP‖∞ ≤ ‖D‖∞‖P‖∞
= max

i

∑
j

|dij |max
i

∑
j

|pij |

≤ max

{
λ1

λ1 + s
, . . . ,

λp

λp + s

}

=
λmax

λmax + s
,

where the second inequality follows from maxi
∑

j |pij | ≤ 1, and λmax =

max {λ1, . . . , λp}. Hence, DP‖∞ < 1 implying that (I−DP)−1 =
∑∞

k=0(DP)k.

Note that the Laplace transform of Phase-type distributions can be well defined for
negative values of its argument. However, having s > 0 is sufficient for the celebrated
Laplace uniqueness Theorem (e.g. Feller, 1971, Section XIII) to follow, and thus to
ensure the coincidence in distribution of positive random variables. This will be used in
the results below.

Proposition 2. Let Y ∼ PHp(π,T), where π ∈ S
p, T = λ(P − I), that is, T is a

subintensity matrix with all the elements on the main diagonal equal to −λ, with P
the associated transition matrix of the embedded Markov process and λ > 0. Denote
by Er(a, b), the Erlang distribution with mean a/b. Hence, the density of Y can be
represented as

fY (·) =
∞∑
k=0

αkEr(· | k + 1, λ),

where αk = πPk(I−P)1 . Additionally, if P is a nilpotent matrix, that is, Pk = 0 for
some positive integer k, then

fY (·) =
p−1∑
k=0

αkEr(· | k + 1, λ),

which is an identifiable statistical model.
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Proof. The proof follows directly from Proposition 1. In fact, as T = λ(P − I), then
D = λ

λ+sI, where
λ

λ+s is the Laplace transform of an exponential distribution with rate
λ > 0, and

L(s) = π

( ∞∑
k=0

(DP)
k

)
D(I−P)1

= π

( ∞∑
k=0

((
λ

λ+ s

)
IP

)k
)(

λ

λ+ s

)
I(I−P)

=

∞∑
k=0

πPk(I−P)1

(
λ

λ+ s

)k+1

.

Also note that,

∞∑
k=0

αk =

∞∑
k=0

πPk(I−P)1

= π

( ∞∑
k=0

(Pk −Pk+1)

)
1

= lim
k→∞

π(P0 −Pk)1

= πP01

= 1.

Then, when the matrix T has all the elements of its diagonal equal to λ, the phase-
type distribution has an equivalent representation as an infinite mixture of Erlang dis-
tributions. The mixture is finite when P is nilpotent because Pq = 0 for all q ≥ p.
Note that the family of Erlang kernels in the mixture has a lexicographical order, then
using Theorem 2 in (Teicher, 1963), one can deduce that a phase-type distribution with
T = λ(P− I) and P nilpotent is an identifiable statistical model.

Proposition 3. Let Y ∼ PHp(π,T), where π ∈ S
p, T ∈ T, p < ∞. Denote by

P∗ := 1
λT + I a transition matrix that admits loops to the same state, where λ is any

arbitrary value such that λ > max {-diag(T)}. Then, the density of Y can be represented
as

fY (·) =
∞∑
k=0

α∗
kEr(k + 1, λ),

where α∗
k := πP∗k(I−P∗)1.

Proof. First, note that P∗ is a sub-stochastic matrix. In fact, the diagonal elements are
of the form pii = 1− λi/λ and the off-diagonal elements pij = λij/λ. Each row adds up
to a number less or equal than one. On the other hand, let D∗ = λ

λ+sI, s > 0. Then,
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we have

‖D∗P∗‖∞ ≤ ‖D∗‖∞‖P∗‖∞

= max
i

∑
j

|d∗ij |max
i

∑
j

|p∗ij |︸ ︷︷ ︸
≤1

≤ λ

λ+ s
< 1.

Using the result in Proposition 1, we have

L(s) = π (I−DP)
−1

D (1−P1)

= π

( ∞∑
k=0

(D∗P∗)k
)
D∗(I−P∗)1

= π
∞∑
k=0

((
λ

λ+ s

)
P∗

)k (
λ

λ+ s

)
(I−P∗)1

=

∞∑
k=0

α∗
k

(
λ

λ+ s

)k+1

,

where α∗
k := πP∗k(I−P∗)1.

Example 1. Let Y ∼ PH2(π,T), where

π = ( 1 0 ), T =

(
−1 1
0 −2

)
.

The Laplace transform is given by LY (s) = π(sI−T)−1t = 2
(s+1)(s+2) . The equiva-

lent representation is given by the transition matrix

P∗ =

(
1− 1

λ
1
λ

0 1− 2
λ

)
and D∗ =

λ

λ+ s
I.

With the above parameters we have that α∗
k = 2

λ

[(
1− 1

λ

)k −
(
1− 2

λ

)k]
for λ > 2.

In such a case, the density of Y has an equivalent representation as an infinite mixture
of Erlang distributions

fY (·) =
∞∑
k=0

2

λ

[(
1− 1

λ

)k

−
(
1− 2

λ

)k
]
Er(k + 1, λ). (7)

Mixture distribution (7) can be equivalently rewritten as a convolution. This can be
derived using the Laplace transform of Proposition 1, that is

LY (s) =

∞∑
k=0

2

λ

[(
1− 1

λ

)k

−
(
1− 2

λ

)k
](

λ

λ+ s

)k+1

=
2

(s+ 1)(s+ 2)
,

namely the Laplace transform of a convolution o two Erlang distributions, Er(1, 1) and
Er(1, 2). The representation of P∗, D∗ and π can be equivalently expressed without
loops to the same state, but with a double number of states, such as, Y ∼ PH4(ν,Q),
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where

ν = ( 1 0 0 0 ), and Q =

⎛
⎜⎜⎝

0 1
λ 1− 1

λ 0
0 0 0 1− 2

λ
1− 1

λ
1
λ 0 0

0 1− 2
λ 0 0

⎞
⎟⎟⎠ .

Computing the eigenvalues and eigenvectors of Q it is immediate to show that the
Laplace transform of such representation is also given by LY (s) = 2

(s+1)(s+2) . This

example illustrates how a phase-type distribution with representation (π,P∗) can be
represented without loops to the same state, but with a double number of states.

Proposition 3 states that any phase-type distribution has an equivalent representa-
tion as an infinite mixture of Erlang kernels. Hence, a natural way to represent a gen-
uine infinite mixture distribution, without resorting to truncation, is to use an infinite-
dimensional prior distribution like the Dirichlet process. Note that, given a value of λ
and the number of phases p, the infinite sequence of weights α∗

k, k = 1, 2, . . . can always
be recovered with a stick-breaking construction as the one used to construct the Dirichlet
process, see e.g. Bissiri and Ongaro (2014). The parameter λ, somehow mimics a similar
effect of the total mass parameter in the DP. Indeed, fitting mixture model of Proposition
3 can be achieved by fitting a DPM model with the following hierarchical representation

yk | φk
iid∼ Er

(
y | 
φk�, λ

)
, (8)

φk | P ind∼ P ,

P | α, P0 ∼ DP(α, P0) ,

λ ∼ Ga(a1, b1) ,

α ∼ Ga(aα, bα) ,

with P0 = Ga(a0, b0), the Gamma distribution with mean a0/b0, and where 
x� denotes
the least integer greater than or equal to x. Though one could think of modeling the
shape parameter of the Erlang distribution above with a Dirichlet Process with atomic
baseline, P0, this results in a poor posterior performance, as noted by Canale and
Prünster (2017). Therefore, to avoid this, as well as to keep mixtures of Erlangs and
benefit of the closed-form expressions for phase-type distributions, we resorted to above
truncated mechanism. Indeed, this resembles the rounding function approach suggested
by Canale and Dunson (2011).

For the sake of simplicity, model (8) has common rate parameter λ, however this is
not a limitation, as mixtures of Erlang distributions with common rate parameter λ are
dense in the space of distributions with support on the positive real numbers (Tijms,
1994; Lee and Lin, 2010).

3 Posterior inference

Assume that we have i.i.d. observations y = (y1, . . . , yn) from model (8). The main
difficulty in the estimation process is the infinite-dimensional nature of the parameter
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space. In Bayesian nonparametric literature, dealing with the infinite-dimensional na-
ture of a model is virtually a routine problem. We begin by examining the likelihood
function of the observed data:

L(w,φ, λ | y) =
n∏

k=1

∞∑
h=1

wh Er
(
yk | 
φh�, λ

)
. (9)

Now, let dk be a latent variable such that

(yk | dk = h) ∼ Er
(
yk | 
φh�, λ

)
,

for k = 1, . . . , n, h = 1, 2, . . . , and P[dk = h] = wh . This inclusion leads to a simplifi-
cation of (9), which can be rewritten as

L(w,φ, λ | y,d) =
∞∏
h=1

wnh

h

⎡
⎣ ∏
{k:dk=h}

Er
(
yk | 
φh�, λ

)⎤⎦ , (10)

where d = (d1, . . . , dn) and nh =
∑n

k=1 1{dk = h}, h = 1, 2, . . . .

To bypass the computation of an infinite number of terms in (10), Walker (2007)
introduced a set of latent variables {uk}nk=1, such that:

f(yk, uk | w,φ, λ) =

∞∑
h=1

1{uk < wh}Er
(
yk | 
φh�, λ

)
.

The advantage of this approach is that only a finite subset of wh’s will satisfy the
condition (wh > uk, k = 1, . . . , n). Hence, in a sampling scenario it is only necessary
to sample N parameter sets, where N = maxk{Nk} and Nk is the smallest integer

such that
∑Nk

h=1 wh > 1− uk (Walker, 2007; Kalli et al., 2011). Namely, in a particular
iteration, the infinite-dimensional parameters w, φ reduce to a finite value. The number
of components, N , is random and its magnitude depends on the complexity of the data,
influenced by aspects like the number of modes, skewness levels or outlier observations.
Using the stick-breaking representation of (3), with stick lengths denoted by vks, and
adding the latent variable dk previously defined, the joint distribution is given by

f(yk, dk, uk | w,φ, λ) = 1{uk < wdk
}Er(yk | (
φdk

�), λ) ,
and the complete data likelihood for n observations ends up being

L(w,φ, λ | y,d,u) =
n∏

k=1

1{uk < wdk
}Er(yk | 
φdk

�, λ) . (11)

The following algorithm implements a slice Gibbs sampler based on the above likeli-
hood. Details of the corresponding full conditionals can be found in the Supplementary
Material (Ayala et al., 2021).

To learn about the precision parameter α, one can further implement the step de-
scribed in Escobar and West (1995). See details in the Supplementary Material. This
algorithm was implemented in an R function, mcmcErlangMix. The code is included in
the Supplementary Material. It is worth emphasizing that any other valid algorithm for
DPM models could be alternatively used.
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Algorithm 1: Slice sampler.

1 Initialize N,φ
(0)
N , λ(0),v

(0)
N ,u(0) and d(0)

2 Sample φh from p(φh | . . .) ∝
{∏

{k:dk=h}
λ�φh�y

�φh�−1

k(
�φh	−1

)
!

}
× φa0−1

h e−b0 φh

3 Sample λ from Gamma
(
a1 +

∑n
k=1
φdk

� , b1 +
∑n

k=1 yk
)

4 Sample vh from Beta
(
1 +

∑n
k=1 1{dk = h} , α+

∑n
k=1 1{dk > h}

)
, set

wh=vh
∏

�<h(1− v�)

5 Sample uk from (uk | . . .) ∼ Unif(0, wdk
), k = 1, . . . , n . Then set N as the

smallest integer for which
∑N

h=1 wh > 1− u∗, where u∗ = mink{uk}
6 With probability P[dk = h | . . . ] ∝ 1{h : wh > uk}Er

(
yk | 
φdk

�, λ
)
, set

dk = h; k = 1, . . . , n

7 Repeat steps 2 through 6 until reaching stationarity.

Remark 1. Note that the mixture model induced in each iteration of Algorithm 1 is
given by

fY (y) =

N∗∑
h=1

w
(r)
h Er(y | 
φ(r)

h �, λ(r)) ,

where the superscript r denotes the iteration, N∗ ≤ N is the effective number of mix-

ture components, and it comes from the number of different 
φ(r)
h � values of φ(r). Con-

sequently, it is necessary to factorize weights w
(r)
h in w(r) whose corresponding φ

(r)
h

produce the same 
φ(r)
h � value.

3.1 Phase-type representation

Here, we develop an algorithm to recover the parameters of the phase-type represen-
tation from model (8). The algorithm is based on the phase-type representation of the
mixture

f(y) =

N∑
h=1

whEr(y | h, λ), (12)

which corresponds to parameters π = (wN , . . . , w1),

T =

⎡
⎢⎢⎢⎣

−λ λ · · · 0
0 −λ λ 0
...

. . .
. . .

...
0 0 0 −λ

⎤
⎥⎥⎥⎦ .

Note that the maximum value of h determines the number of phases. The initial proba-
bilities are given by the weights in reverse order. For instance, the first component in the
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mixture is an Erlang distribution with parameters 1 and λ, which is represented by the
initial probability πN = w1, that is, a process that starts on state N where it remains
an exponential time, and then jumps to the absorbing state. On the other hand, the
last component in the mixture is an Erlang distribution with parameters N and λ. In
this case, the initial probability is π1 = wN ; here, the process starts in the state 1 and
then jumps to the following states until absorption from state N .

In our case, the parameters for r-th posterior sample are φ
(r)
N∗ =

(
φ
(r)
1 , . . . , φ

(r)
N∗

)
,

w
(r)
N∗ =

(
w

(r)
1 , . . . , w

(r)
N∗

)
, and λ(r), for r = 1, . . . , R. The number of phases is computed

using the same logic of mixture (12), that is p = max
{

φ(r)

1 �, . . . , 
φ(r)
N∗�

}
. Note that

the number of phases depend on the magnitude of parameters 
φ� and not on the

number of components in the mixture. However, the values 
φ(r)
1 �, . . . , 
φ(r)

N∗� are not
ordered nor consecutive as it is the case for the parameters h = 1, . . . , N in mixture

(12). Then the values of w
(r)
N∗ are sorted according to the values of φ

(r)
N∗ which are in

increasing order: set π = 0, and replace the elements of π at positions p − 
φ(r)
h � + 1

with π
p−�φ(r)

h 	+1
= w

(r)
h , for h = 1, . . . , N∗.

Finally, the subintensity matrix T is constructed as a p× p bi-diagonal matrix, with
tjj = −λ(r) for j = 1 . . . , p , and tj,j+1 = λ(r) for j = 1, . . . , p − 1 , using the same
logic of mixture (12). The estimated π has a sparse structure, which makes sense as we
are representing a phase-type distribution with p < ∞, through an infinite-dimensional
mixture distribution.

It is important to emphasize that even though the parameter space is of infinite
dimension by definition, the resulting mixture estimate and corresponding phase-type
representation can only be expressed as finite-dimensional object, due to the random
truncating nature of Algorithm 1.

4 Monte Carlo study

To assess the behavior of Algorithm 1 for model (8), a Monte Carlo (MC) study was
designed to estimate six different density functions on R

+. Distributions, their corre-
sponding density functions and parameter values are shown in Table 1. It is worth noting
that these distributions do not belong to the matrix-exponential distributions family,
except obviously for the phase-type case.

The simulation study was structured as follows: first, we generated 100 random
samples for every distribution, each with three sample sizes (n = 125, 250, 500). Subse-
quently, Markov chain density estimates were obtained for all samples via Algorithm 1.
The hyper-parameters for the base measure were fixed at a0 = 2 and b0 = 0.1, reflecting
our lack of knowledge about their values, resulting in a prior mean for φ equal to 20
and a variance of 200. Similarly, the hyper-parameters for the parameter λ were fixed
at a1 = a2 = 0.1, resulting in a prior mean for λ equal to 1 and a variance of 10, sup-
porting the parametric space. Finally, for the hyper-prior distribution of the precision
parameter α, we assumed aα = bα = 1.
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Distribution name Density function Parameter values

Log-normal
f(y) = 1

yσ
√

2π
exp

{
− (log(y)−μ)2

2σ2

} μ = 0.0

LN(μ, σ) σ = 0.25

Log-normal mixture f(y) = ω1 LN(μ1, σ1) + ω2 LN(μ2, σ2)
ω1 = 0.6;μ1 = 0.0;σ1 = 1.0

ω2 = 0.4;μ2 = 1.0;σ2 = 0.25

f(y) = (ψ/χ)λ/2

2Kλ(
√

χψ)
yλ−1 exp

{
−(χy−1 + ψy)/2

} λ = 2

Generalized Inverse χ = 2

Gaussian ψ = 1

GIG(λ, χ, ψ) where Kλ(z) = 2−λ−1zλ
∫ ∞
0

u−λ−1e−u− z2

4u du

GIG mixture f(y) = ω1 GIG(λ1, χ1, ψ1) + ω2 GIG(λ2, χ2, ψ2)

λ1 = 12;χ1 = 1;ψ1 = 2

ω1 = 0.65

λ2 = 30;χ2 = 1;ψ2 = 2

ω2 = 0.35

Three-parameter

f(y) = α
β

(
y−θ
β

)α−1
exp

{
−

(
y−θ
β

)α} α = 5

Weibull β = 2

Weibull(α, β, θ) θ = 1

Phase-type
f(y) = πeTyt

π = (0.6, 0, 0, 0, 0, 0, 0, 0.4, 0, 0)
PHp(π,T) T is a bidiagonal matrix with

where t = −T1 p = 10 and λ = 1.5

Table 1: Monte Carlo study density functions.

Each run comprised 10,000 iterations, with a burn-in period of 2,000 iterations and
a thinning value of 8. Therefore, all density estimates were constructed by averaging
over 1,000 posterior density draws. Figure 1 shows the posterior mean of the density
for each of the 100 MC replicates. In particular, this figure presents the results for
n = 500 (see the Supplementary Material for posterior mean estimates when n = 125
and n = 250).

Subsequently, to gauge the estimation process’s overall performance quantitatively,
the Mean Integrated Squared Error (MISE), E‖fn − f‖22 = E

∫
(fn(x) − f(x))2dx, was

estimated for every density function and sample size, over a reasonable grid which covers
up to two times the maximum of sampled deviates. Here, f and fn denote the true and
estimated densities, respectively. The results for the MISE are reported in Table 2, and
they show an improvement in the precision of density estimates as sample size increases
for each distribution.

Distribution
MISE

n = 125 n = 250 n = 500
Log-normal 0.02597 0.01073 0.00438
Log-normal mixture 0.01018 0.00462 0.00265
GIG 0.00190 0.00094 0.00064
GIG mixture 0.00121 0.00056 0.00027
3-parameter Weibull 0.01675 0.00689 0.00344
Phase-type 0.00336 0.00194 0.00088

Table 2: Mean Integrated Squared Error estimates for the Monte Carlo study.
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Figure 1: True density function (solid lines) and posterior mean density estimates (dot-
ted lines) of the 100 Monte Carlo runs for the selected distributions and sample size
n = 500.
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Figure 2: Mode of the number of phases for each replication in the Monte Carlo study:
n = 500.

Lastly, we analyzed the resulting dimension p of the equivalent phase-type repre-
sentation for every replication of the Monte Carlo study. Then, for each estimation, we
computed the mode for p in the posterior samples and reported the mode for each MC
sample in Figure 2. We observe that for distributions with lowest MISE values (GIG,
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GIG mixture, and phase-type), the estimated dimension needed to accommodate for the
given data complexity is also low. In contrast, the required dimension for the phase-type
representation is noticeable more spread out for the remaining distributions.

Table 3 includes the mode for the estimated dimension p for each scenario, that is, the
mode in the 100 replications. It also shows the sample average skewness, γ1, and sample
kurtosis of all generated samples of size 500. We observe that for unimodal distributions,
the magnitude of the mode for p is related to negative values of γ1; specifically, the three-
parameter Weibull distributed data produced the largest estimated value of p, with 109
transient states.

Distribution Mode(p) γ1 Kurtosis
Log-normal 40 0.70788 0.81165
Log-normal mixture 80 2.11441 10.23081
GIG 26 1.24060 2.05129
GIG mixture 58 0.91080 −0.26986
3-parameter Weibull 109 −0.24396 −0.13597
Phase-type 30 0.38288 −0.56179

Table 3: Monte Carlo study for the dimension mode, p, average empirical skewness and
kurtosis. Sample size n = 500.

4.1 Comparison with other inference approaches

Here we provide two simulated examples to compare our approach with the results
from the R packages mapfit and PhaseType. The mapfit package was developed by
Okamura and Dohi (2015) based on a variation of the Expectation-Maximization al-
gorithm proposed by Asmussen et al. (1996). The PhaseType package (Aslett, 2012),
follows the Bayesian approach proposed by (Bladt et al., 2003). This latter approach
resorts to the Metropolis-Hasting algorithm to simulate the underlying Markov jump
processes and then performs the inference, defining a gamma distribution as a prior
on the elements of T and a Dirichlet prior for the initial probabilities π. We simulate
n = 1,000 realizations from the phase-type distributions PH5(π1,T1) and PH10(π2,T2)
where π1 = (0, 0, 0, 1, 0), π2 = (0.6, 0, 0, 0, 0, 0, 0, 0.4, 0, 0),

T1 =

⎛
⎜⎜⎜⎜⎝

−3.96 0 0 0 3.96
0 −0.64 0 0.64 0

1.10 0.47 −1.58 0 0
0.78 0 0 −0.78 0
0 0 2.01 0 −3.95

⎞
⎟⎟⎟⎟⎠ ,

and T2 a bidiagonal matrix with elements tii = −1.5 and ti,i+1 = 1.5, i = 1, . . . , 10.
Figure 3 shows the estimated densities. For the distribution PH5(π1,T1), which is
unimodal, the mapfit package and our proposal got very good fits. The performance
of the PhaseType package is low. For the distribution PH10(π2,T2) our proposal gives
good results, the mapfit and PhaseType were unable to detect the two modes. The
number of phases in the mapfit and PhaseType packages requires to be fixed by the
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user. We have tried different values, e.g., 10, 20, 30. Figure 3 shows the best results
we observed, corresponding to p = 30. On contrast, our inference strategy adjusts
the number of phases automatically, which is an advantage. O’Cinneide (1990, 1999)
demonstrates that a phase-type distribution of order p is determined by at most 2p− 1
independent parameters. The results of the mapfit and PhaseType packages are based
on p2 + p − 1 parameters, which is clearly larger than 2p − 1. In general, for highly
redundant parametrizations, the performance of phase-type distributions is well-known
to have problems, see, e.g., Asmussen et al. (1996). In our inference strategy reduces to
estimate p parameters. Overall, our method avoids the simulation of latent processes,
used by most approaches available in the literature, which results in a more efficient
technique.

Figure 3: Density estimation for two phase-type distributions using the mapfit (Oka-
mura, with p = 30 phases), PhaseType (Aslett, with p = 30 phases) packages, and our
proposal (PH BNP).

4.2 Renewal function estimation

Within the context of Renewal Theory, a quantity of great interest is the expected
number of renewals at time τ , U(τ) := E[η(τ)], of the associated counting process η
(Feller, 1971). In the case of phase-type distributions, U(τ) has an analytical expression
(Bladt and Nielsen, 2017) given by

U(τ) =
τ

πT−2t
− π

(
I− e(T+tπ)τ

)
(T+ tπ − sϑ)−1t (13)

with ϑ = πT−1/πT−2t and s = (−T)−1t .

Accordingly, we exemplify the computation of the renewal function for the phase-
type simulated data sets described in Table 1. To that effect, we constructed the set of
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parameters (π,T) from the Erlang mixture parameters estimates, as specified in sub-
Section 3.1, and then continued with the calculation of U(τ). Resulting U(τ) estimates
are shown in Figure 4.

Figure 4: True renewal function (solid lines) and corresponding posterior mean estimates
(dotted lines) of the 100 Monte Carlo runs for phase-type simulated data: (a) n = 125;
(b) n = 250; (c) n = 500.

Here we can see that computed renewal functions do not differ significantly from the
true renewal function. Furthermore, we point out the ability to capture the non-linear
behavior of the true renewal function, a feature not captured by simple Poisson counting
processes (Winkelmann, 1995).

5 Application to real data sets

Here we compute density function and renewal function estimation for three datasets:
the first two have been studied in the Renewal processes literature, and a third one
belongs to an aquaculture study. The first dataset consists of the Old Faithful geyser
eruption data explored by Asmussen et al. (1996). However, we use the more compre-
hensive data set, which consists of 299 eruption observations (duration and waiting
time) from August 1st to August 15th, 1985 (Azzalini and Bowman, 1990).

The estimated density clearly captures the bi-modal shape of the observed data
(Figure 5, panel (a)), as well as the delay for times lower than 40 minutes. The renewal
function U(τ) in this case presents a distinctly nonlinear pattern, reflecting the multi-
modal density function (Figure 5, panel (b)). The second dataset comprises coal-mining
disasters presented in Jarrett (1979) and studied by Xiao (2015). This reports the num-
ber of days between 191 successive explosions on a coal-mining site and involving ten or
more men killed. The dataset includes information of a period from March 15th, 1851 to
March 22nd, 1962. The observations exhibit an exponential-like shape with a heavy tail,
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which is known to be challenging to model when using finite-dimensional phase-type
distributions (Bladt and Rojas-Nandayapa, 2018). Nevertheless, our proposed model
captures correctly the shape, as shown in Figure 6.

Figure 5: Posterior mean estimates (solid lines) and 95% credible intervals (shaded
areas) for the geyser waiting times between eruptions: (a) density function; (b) renewal
function.

Figure 6: Posterior mean estimates (solid lines) and 95% credible intervals (shaded
areas) for the coal mine waiting times between explosions: (a) density function; (b)
renewal function.
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Regarding the renewal function estimation, it is also non-linear. Having expres-
sion (13) at hand allows us to compute the number of expected events for different time
windows. For example, by day 365, one can expect the occurrence of two (≈ 2.06) mine
disasters with the characteristics of interest. By day 700, the predicted number consists
of almost four events (≈ 3.88), which is of paramount importance for risk assessment.

Finally, we tackled an estimation problem within a fish farming set up. The main
goal was to estimate the salmon weight population’s density function in a cage through-
out time. Although the underlying Markov jump process in phase-type distributions
represents the time until absorption, phase-type distributions are suitable for any ran-
dom variable with support on the positive real numbers. The dataset contains weight
measurements of sampled fish in a culture tank at day 15 (n = 243), day 34 (n = 256),
day 74 (n = 195) and day 154 (n = 251). The relevance of density estimation in this
context lies in the necessity to know the proportion of fish that is in a given weight
range due to the different commercial value according to the fish’s size.

Figure 7: Posterior mean estimates (solid lines) and 95% credible intervals (shaded
areas) for the salmon weight density by day.

Figure 7 shows the posterior mean estimate of the density for the cage’s weight
distribution. In the first stages of development, we can observe more variability and
even two modes. The weight distribution can be explained, in part, by the vaccination
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effect. It is well known that a proportion of the individuals in a cage do not receive the
corresponding doses by difficulties in the capture.

6 Discussion and concluding remarks

We demonstrated a clear connection between phase-type distributions, mixtures of Er-
lang distributions, and Bayesian nonparametric inference in this work. As established
in Propositions 1 to 3, any phase-type distribution has an equivalent infinite mix-
ture of Erlang distributions representation, and if its associated transition matrix P
is nilpotent, then the corresponding Erlang mixture is finite-dimensional. In addition,
if λ1 ≤ λ2 ≤ . . . ≤ λp, the finite mixture is an identifiable statistical model.

Although some links between phase-type distributions and Erlang mixtures have
been explored in the past, none of them have exploited this relationship for inference.
Bayesian nonparametric methods allow us to treat infinite-dimensional statistical mod-
els and thus fit phase-type distributions using their infinite mixture model representa-
tions. Under our framework, one avoids the simulation of a latent Markov jump process
for each observation when implementing a Gibbs sampler, overcoming serious identifia-
bility and numerical problems inherent to other methods available in the literature, e.g.
Bladt et al. (2003) and Aslett (2012). The significant reduction of the computational
burden translates into faster and more efficient algorithms.

As a byproduct of the established connection, we are able to use well-known closed-
form expressions obtainable for phase-type distributions’ density functionals, not readily
available from a DPMmodels standpoint. See, e.g., heavy-tailed data modeling in queue-
ing theory (Greiner et al., 1999); the numerical approximations to estimate the Lorenz
curve and Gini index in Hasegawa and Kozumi (2003); or the numerical inversion of
the Laplace transform to compute the renewal function, when inter-arrival times follow
an infinite mixture of Erlang distributions in Xiao (2015). In particular, the renewal
function is no longer an approximation but an exact analytic quantity. Therefore, we
are now capable of performing inference on a counting process by analyzing its waiting
times, even though their distribution does not belong to the exponential distributions
family, which has been the usual approach. This is an exceptional result as we can
study non-regular counting processes, as long as their inter-arrival times are assumed
i.i.d. phase-type random variables. The connection makes feasible model over and under
dispersion, something not possible in the Poisson-Exponential scenario (Cox, 1962).

Supplementary Material

Supplementary material for: On a Dirichlet process mixture representation of phase-
type distributions (DOI: 10.1214/21-BA1272SUPP; .pdf). The online Supplementary
Material contains the posterior inference derivations of the algorithm of Section 3, some
results of the Monte Carlo simulation study of Section 4, and an R function for posterior
sampling.

https://doi.org/10.1214/21-BA1272SUPP
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