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Perfect Sampling of the Posterior in the
Hierarchical Pitman–Yor Process∗

Sergio Bacallado†, Stefano Favaro‡,§, Samuel Power¶, and Lorenzo Trippa‖

Abstract. The predictive probabilities of the hierarchical Pitman–Yor process are
approximated through Monte Carlo algorithms that exploits the Chinese Restau-
rant Franchise (CRF) representation. However, in order to simulate the posterior
distribution of the hierarchical Pitman–Yor process, a set of auxiliary variables
representing the arrangement of customers in tables of the CRF must be sam-
pled through Markov chain Monte Carlo. This paper develops a perfect sampler
for these latent variables employing ideas from the Propp–Wilson algorithm and
evaluates its average running time by extensive simulations. The simulations re-
veal a significant dependence of running time on the parameters of the model,
which exhibits sharp transitions. The algorithm is compared to simpler Gibbs
sampling procedures, as well as a procedure for unbiased Monte Carlo estimation
proposed by Glynn and Rhee. We illustrate its use with an example in microbial
genomics studies.

Keywords: Bayesian nonparametrics, Gibbs sampling, hierarchical Pitman–Yor
process, perfect sampling, species sampling, unbiased Monte Carlo estimation.

1 Introduction

The hierarchical Pitman–Yor process was introduced in Teh et al. (2006) and Teh (2006)
as a nonparametric prior model for a collection of discrete distributions with heavy
tails. See Teh and Jordan (2010) for a review on hierarchical nonparametric priors. In
Bayesian nonparametrics, theoretical developments and applications of the hierarchical
Pitman–Yor process have been considered in language modeling (Teh, 2006; Huang and
Renals, 2007; Wood et al., 2009), infinite hidden Markov modeling (Beal et al., 2002;
Van Gael et al., 2008; Blunsom and Cohn, 2011), species sampling with multiple popula-
tions (Battiston et al., 2018; Camerlenghi et al., 2019; Bassetti et al., 2020; Camerlenghi
et al., 2019), clustering (Argiento et al., 2020), graphical modeling (Creamschi et al.,
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2020), image segmentation (Sudderth and Jordan, 2009), and topic models (Sato and
Nakagawa, 2010; Araki et al., 2012; Lindsey et al., 2012). In this paper we evaluate and
compare multiple computational strategies for posterior inference under the hierarchi-
cal Pitman–Yor process prior. In particular, we discuss: i) a novel conditional Gibbs
sampling; ii) an application of coupling from the past for perfect sampling; iii) the ap-
plication of a more recent framework studied by Glynn and Rhee (2014) with the aim
of deriving unbiased posterior estimates from Markov chain sampling. The latter ap-
proach can be viewed as an intermediate solution between Gibbs sampling and perfect
simulations.

1.1 The Pitman–Yor process

The Pitman–Yor process (Pitman, 1995) is a discrete random probability measure whose
distribution depends on two parameters (β, θ), with β ∈ [0, 1) and θ > 0, and a proba-
bility measure ν. The parameter β is usually indicated as the concentration parameter,
the parameter θ is referred to as the mass parameter, and the measure ν is the base
measure. Among the various possible definitions, a simple and intuitive one follows
from the so-called stick-breaking construction (Pitman, 2006). Let (vi)i≥1 be indepen-
dent random variables such that vi is distributed as a Beta distribution with parameter
(θ+iβ, 1−β), and define π1 = v1 and πi = vi

∏
1≤j≤i−1(1−vj) for i ≥ 1. Also, let (yi)i≥1

be independent random variables with distribution ν. The discrete random probability
measure

μ =
∑
i≥1

πiδyi ,

where δy is the point mass at y, is a Pitman–Yor process with concentration β, mass
θ and base distribution ν. For brevity we write μ ∼ PY (ν, θ, β). The Dirichlet process
(Ferguson, 1973) is recovered as a special case of the Pitman–Yor process for β = 0. See
Sethuraman (1994).

Discrete random probability measures play a fundamental role in Bayesian nonpara-
metrics, since their laws act as nonparametric priors for discrete distributions (Lijoi and
Prünster, 2010). The Pitman–Yor process is arguably one of the most popular priors.
In particular, several Bayesian nonparametric models include a collection of random
variables (X1, . . . , Xn) either observed or latent, from a Pitman–Yor process. That is,

Xi | μ iid∼ μ, i = 1, 2, . . . ,

μ ∼ PY (ν, θ, β).

Here (X1, . . . , Xn) are the first n coordinates of an exchangeable sequence (Xi)i≥1 whose
de Finetti measure (or prior) on the unknown distribution μ is the law of the Pitman–Yor
process. Because of the discreteness of μ, (X1, . . . , Xn) from μ presents k ≤ n distinct
types, labelled by X∗

1 , X
∗
2 , . . . , X

∗
k with frequencies (n1, . . . , nk) such that ni ≥ 1 and∑

1≤i≤k ni = n. Here X∗
i is the i-th distinct value that appears in (Xi)i≥1. For example

if X1 = X2 and X2 �= X3 then X∗
2 = X3. The number of distinct values k increases

with the sample size n; we can therefore use the notation k(n) if necessary to make the
relationship explicit.
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The predictive probabilities induced by the Pitman–Yor process (Pitman, 1995),
i.e. the conditional distribution of Xn+1 given (X1, . . . , Xn), have the following explicit
form

Xn+1 | X1, . . . , Xn ∼ θ + k(n)β

n+ θ
ν +

k(n)∑
i=1

ni − β

n+ θ
δX∗

i
(1.1)

for n ≥ 1. Here to simplify the presentation we are assuming that ν is nonatomic, i.e.
ν({x}) = 0 for every singleton {x}. The Chinese Restaurant Process (CRP) of Pitman
(1995) gives an intuitive metaphorical description of the predictive probability (1.1).
In particular, consider a sequence of customers entering a restaurant and sitting at
various tables, each table serving a single dish. Customers select their table through a
reinforced urn scheme, with balls sequentially drawn. The probability of selecting a ball
is proportional to its weight. Initially the restaurant is empty and the urn contains only
a black ball with weight θ. Customers seat sequentially to various tables accordingly to
the following scheme. Whenever the black ball is selected, the next customer sits in a
new table, and the dish served on this table is sampled from ν. In this case a new ball
labeled by the table with weight 1− β is added to the urn, and the weight of the black
ball is increased by β. When, instead, a ball labelled by a table is selected, the next
customer sits at the corresponding table, and the weight of the ball is increased by 1.

The parameter β has a critical role since it tunes the rate at which new dishes
are generated. Indeed, when a new dish (Xn �= Xi, i = 1, . . . , n − 1) is generated, a
reinforcement equal to β is assigned to the continuous component ν (expression (1.1)),
and it affects the probability of generating further new dishes. The larger β the stronger
the reinforcement mechanism, which is absent in the Dirichlet process (β = 0). In
different words, the expected number of unique dishes k(n) increases with the value of
the parameter β.

1.2 The hierarchical Pitman–Yor process

The hierarchical Pitman–Yor process is an extension of the Pitman–Yor process. It
defines a nonparametric prior model for a collection of discrete distributions by means
of a hierarchy of Pitman–Yor processes. Precisely, for any R ≥ 1, the hierarchical
Pitman–Yor process is a collection of dependent discrete random probability measures
(μ1, . . . , μR) defined as

μr | μ iid∼ PY (μ, θ, β), for r = 1, . . . , R,

μ ∼ PY (ν, θ0, β0).

The dependence among the random probability measures μr is induced by the common
base measure μ. The hierarchical Dirichlet process (Teh et al., 2006) is recovered when
β = 0 and β0 = 0. As a generalization of the previous Bayesian nonparametric con-
struction, let {(Xr,1, . . . , Xr,nr)}r=1,...,R be samples from the hierarchical Pitman–Yor
process, i.e.,

Xr,i | μ1, . . . , μR, μ
iid∼ μr, for i = 1, . . . , nr and r = 1, . . . , R,
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μr | μ iid∼ PY (μ, θ, β), for r = 1, . . . , R,

μ ∼ PY (ν, θ0, β0).

By construction, conditional on the Pitman–Yor process μ, the μr’s are independent
Pitman–Yor processes. Here (Xr,1, . . . , Xr,nr ; r = 1, . . . , R) includes the first nr coordi-
nates, for r = 1, . . . , R, of a partially exchangeable array (Xr,i)r≥1,i≥1 whose de Finetti
(or prior) measure on the unknown (μ1, . . . , μR) is the law of the hierarchical Pitman–
Yor process.

The predictive probabilities induced by the hierarchical Pitman–Yor process can be
described by means of the Chinese Restaurant Franchise (CRF), which extends the CRP.
In particular, each sample (Xr,1, . . . , Xr,nr) identifies the dishes of the nr customers in
restaurant r, for r = 1, . . . , R. Customers seating at the same table eat the same dish
and, due to the discreteness of the common base measure μ, the same dish can be
served at multiple tables within the same restaurant and in different restaurants. The
assignment of the nr customers to different tables is identical as in the CRP, and the
assignment of customers to tables is independent in the R restaurants. Conditionally on
μ, each table in the R restaurants is assigned a dish sampled from μ. We denote by I
the number of distinct dishes, i.e. distinct values in the finite array (Xr,1, . . . , Xr,nr ; r =
1, . . . , R), labelled by {X∗

1 , . . . , X
∗
I }, across the R restaurants, and by nr,i ≥ 0 the

number of customers in restaurant r eating dishX∗
i . We can arbitrarily assign the indices

i = 1, . . . , I to the I distinct dishes in (Xr,1, . . . , Xr,nr ; r = 1, . . . , R). Furthermore, we
introduce a variable kr,i for the number of tables in restaurant r serving the dish X∗

i .

The distribution of Xr,nr+1, for any index 1 ≤ r ≤ R, conditioning on (i) (Xr,1, . . . ,
Xr,nr ; r = 1, . . . , R), (ii) the number of tables in restaurant r occupied by the first
nr customers, kr,· =

∑
i kr,i, and (iii) the number of tables occupied in the CRF,

k =
∑R

1 kr,· and (iv) k·,i =
∑

i kr,i, can be represented as

θ + βkr,·
θ + nr

(
θ0 + β0k

θ0 + k
ν +

I∑
i=1

k·,i − β0

θ0 + k
δX∗

i

)
+

∑
i:nr,i>0

nr,i − kr,iβ

θ + nr
δX∗

i
. (1.2)

We refer to the recent works of Camerlenghi et al. (2019) and Bassetti et al. (2020) for
a detailed study of the predictive probability (1.2) and related results.

1.3 Contributions

Teh et al. (2006) proposed a strategy for sampling from the posterior distribution of
the hierarchical Dirichlet process and from the posterior distribution of the hierarchical
Pitman–Yor process. In particular, they proposed a collapsed Gibbs sampler, which
marginalizes out the random probability measures μ and (μ1, . . . , μR). Let tr,j be the
index of the table assigned to customer j in restaurant r. The target of the Gibbs sampler
is the joint distribution of {(tr,j , . . . , tr,nr)}r=1,...,R conditional on the observations X =
{(Xr,1, . . . , Xr,nr)}r=1,...,R. Teh et al. (2006) also proposed a conditional Gibbs sampler
which augments the set of latent variables with the measure μ. Van Gael et al. (2008)
and Papaspiliopoulos and Roberts (2008) define similar conditional samplers which
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augment the sample space with the random probability measures μ and (μ1, . . . , μR),
in the special case β = β0 = 0.

In this paper we discuss the problem of posterior sampling from the hierarchical
Pitman–Yor process. In particular, we employ an augmentation strategy which spec-
ifies the state of the urns in the CRF. We start by describing three Gibbs sampling
algorithms, two of them based on the collapsed and conditional samplers of Teh et al.
(2006), and a novel Gibbs algorithm which we call doubly conditional as it employs a
larger augmentation. Then, as an alternative to Gibbs sampling, we propose a perfect
sampling algorithm based on the coupling from the past method of Propp and Wilson
(1996). Perfect sampling allows to perform posterior inference and to compute Monte
Carlo approximations of predictive probabilities. Finally, as an intermediate solution
between the Gibbs sampling algorithms and perfect simulations, we consider the appli-
cation of a procedure for unbiased posterior estimation introduced by Glynn and Rhee
(2014).

We present an evaluation of the convergence of the proposed Gibbs samplers and
discuss the running time of the perfect sampling procedure. While perfect sampling
yields exact samples from the posterior distribution, the algorithm has a random stop-
ping time and it may not be practical in certain situations. An extensive simulation
study is presented, revealing a dependence of the running time on the parameters (θ, β)
and (θ0, β0) of the hierarchical Pitman–Yor process prior, with some parameter settings
making it prohibitively time consuming to draw samples from the posterior. In contrast,
the simulation-based evaluations of the doubly conditional Gibbs sampler suggest that
the computing time to approximate the posterior does not vary substantially across
parameterizations of the prior.

The paper is structured as follows. Section 2 contains the main contributions of
the paper: three Gibbs sampling algorithms, the perfect sampling algorithm, and the
procedure to compute unbiased approximations of posterior estimates. In Section 3 we
present the simulation study for evaluating the convergence of the Gibbs samplers and
the running time of the perfect sampling algorithm. Section 4 contains an application in
microbial genomics. Section 5 concludes the paper with a discussion of related problems
and open questions.

2 Posterior sampling from the hierarchical Pitman–Yor
process

In the CRF metaphor, we have that: i) I denotes the number of dishes across the R
samples X = {(Xr,1, . . . , Xr,nr)}r=1,...,R; ii) nr,i ≥ 0 denotes the number of customers
in restaurant r and eating dish i; iii) kr,i ∈ {1, . . . , nr,i} denotes the number of tables
serving dish i in restaurant r, and kr,i = 0 if nr,i = 0. Moreover, we use the notation
k·,i =

∑
r kr,i, kr,· =

∑
i kr,i, and k =

∑
r,i kr,i. We denote by (x)n↑a the generalized

factorial of x ≥ 0 of order n ∈ N and increment a ≥ 0, that is (x)n↑a =
∏

0≤i≤n−1(x+ai)
with the proviso (x)0↑a = 1.

We observe that, according to the predictive probabilities (1.2), the summaries
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n = {(nr,1, . . . , nr,I)}r=1,...,R and k = {(kr,1, . . . , kr,I)i≥1}r=1,...,R allow one to straight-
forwardly predict the dish assigned to future customers of the CRF. In particular in
the CRF the joint probability of R partitions of customers into groups with sizes n
allocated at k tables is

(θ0)I↑β0

∏
i(1− β0)k·,i−1↑1

∏
r,i f(nr,i, kr,i)

∏
r(θ)kr,·↑β

(θ0)k↑1
∏

r(θ)nr↑1
, (2.1)

where

f(n, s) =
∑

γ∈Bn,s

n−s∏
j=1

γj (2.2)

and γ ∈ Bn,s ⊂ R
n−s satisfies γj = (j − 1) + αj(1 − β), for integers αi’s such that

1 = α1 ≤ α2 ≤ · · · ≤ αn−s ≤ s. Precisely, the expression in (2.1) is obtained by
summing, for every pair (r, i), over all possible times at which new tables in restaurant
r serving dish i are created. Then the only factors depending on this order are gathered
in f(nr,i, kr,i). The triangular array defined in equation (2.2) satisfies the following
recursion

f(n, s) =

s∑
i=1

[(n− s− 1) + i(1− β)]f(n− s+ i− 1, i), (2.3)

for n �= s, with f(n, n) = 1. This fact can be verified by induction using the definition
of the function f in equation (2.2). We remark that the sampling algorithms in this
section require memorizing the triangular array defined in equation (2.2), and our im-
plementations compute it through the recursion 2.3. We wish to sample the conditional
distribution

p(k | n) ∝
∏

i(1− β0)k·,i−1↑1
∏

r,i f(nr,i, kr,i)
∏

r(θ)kr,·↑β

(θ0)k↑1

∝
∏

i(1− β0)k·,i−1↑1
∏

r,i f(nr,i, kr,i)
∏

r(θ/β)kr,·↑1β
kr,·

(θ0)k↑1
. (2.4)

2.1 Gibbs sampling algorithms

Markov chain Monte Carlo algorithms for the hierarchical Dirichlet process have been
designed for models in which the dishes in the CRF analogy are not observed. In par-
ticular, dishes are assumed latent variables which determine, for example, component
membership in a mixture model. Here, we focus on a different setting where the dishes
are observed, which makes it difficult to directly compare with algorithms previously
proposed in the literature. However, Markov chains in both cases can be characterized
as either collapsed or conditional samplers, depending on whether the algorithm aug-
ments the sample space by the latent probability measure μ or not. We first define a
Gibbs sampling algorithm of each type, and then introduce a third Gibbs sampler with
a larger augmentation.
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Collapsed Gibbs sampler

One of the Gibbs sampling algorithms originally proposed by Teh et al. (2006) augments
the sample space with dish assignments, which we assume to be observed, and a variable
capturing the number of tables for each dish, in each restaurant, which is equivalent to
the array k defined in the previous section. In particular, each iteration of the algorithm
samples the distribution p(kr,i | {kr′,i′ ; (r′, i′) �= (r, i)},n) for each entry kr,i in the array
k. Then, the conditional distribution is known up to a constant. Specifically, we can
write

p(kr,i | {kr′,i′ ; (r′, i′) �= (r, i)},n) ∝
(1− β0)k·,i−1↑1f(nr,i, kr,i)(θ/β)kr,·↑1β

kr,·

(θ0)k↑1
,

for kr,i ∈ {1, . . . , nr,i} when nr,i > 0.

Conditional Gibbs sampler

A different algorithm discussed by Teh et al. (2006) augments the space with the la-
tent probability measure μ. The key fact is that the distribution of μ given k can be
sampled retrospectively (Papaspiliopoulos and Roberts, 2008). That is, one only needs
to sample the mass assigned to the atoms corresponding to the observed dishes in the
probability measure μ, which we denote by μ(1), . . . , μ(I), and this can be done through
the stick-breaking representation of the Dirichlet process (Sethuraman, 1994). The same
strategy can be adopted in the context of the hierarchical Pitman–Yor process. In par-
ticular, conditionally on (k,n), the vector (μ(1), . . . , μ(I)) is identically distributed to
BD, where B ∼ Beta(k − Iβ0, θ0 + Iβ0) and D ∼ Dirichlet(k·,1 − β0, . . . , k·,I − β0)
are independent. Then, conditionally on (μ,n) each row of k is independent and has
distribution

p(kr,1, . . . , kr,I | n, μ) ∝ (θ)kr,·↑β

I∏
i=1

f(nr,i, kr,i)μ(i)
kr,i

for r = 1, . . . , R. It is worth pointing out that, as the support of this distribution could
be very large, it is convenient to sample one entry kr,i at a time conditional on all the
others.

Doubly conditional Gibbs sampler

We introduce a novel Gibbs sampling algorithm, which augments the sample space
by two vectors, one indexed by restaurants and one indexed by dishes. To eliminate
the rising factorials in equation (2.4) for our target distribution p(k |n), here we ap-
ply a standard augmentation trick for normalized completely random probability mea-
sures (Favaro and Teh, 2013). In particular, we introduce independent random variables
(G1, . . . , GR),

Gr ∼ Gamma(θ/β, 1)
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for r = 1, . . . , R. Also, let

(D1, . . . , DI , D+) ∼ Dirichlet(1− β0, . . . , 1− β0, θ0 + Iβ0)

be independent of (G1, . . . , GR). Let pG denote the distribution of G = (G1, . . . , GR)
and let pD denote the distribution of D = (D1, . . . , DI , D+). Then, we consider the
distribution

q(k, d, g) ∝
∏
i

1

di

∏
r,i

f(nr,i, kr,i)(grdiβ)
kr,ipG(g)pD(d). (2.5)

The random variables k have the same support in (2.5) and in (2.4). Moreover, by
integrating the right-hand side with respect to g = (g1, . . . , gR) and d = (d1, . . . , dI , d+)
we obtain ∫ ∏

i

1

di

∏
r,i

f(nr,i, kr,i)(grdiβ)
kr,ipG(g)pD(d)dgdd (2.6)

∝ βk
∏
r,i

f(nr,i, kr,i)
∏
r

(θ/β)kr,·↑1

∫ ∏
i

d
k·,i−1
i pD(d)dd

∝ βk
∏
r,i

f(nr,i, kr,i)
∏
r

(θ/β)kr,·↑1

∏
i(1− β0)(k·,i−1)↑1
(I + θ0)(k−I)↑1

∝ p(k | n).

This line of reasoning leads to the following Gibbs sampling algorithm for the distri-
bution q(k, d, g) and for our target distribution p(k | n). First, conditionally on k, the
vectors d and g in (2.5) are Dirichlet distributed and Gamma distributed, respectively.
Moreover, they are independent vectors. Second, conditionally on d and g, the vari-
ables kr,i in (2.5) are independent. In particular, since the random variables kr,i are
discrete variables with a finite support, it is straightforward to sample their conditional
distribution.

2.2 Perfect sampler

We start by introducing a collection of independent random variables (U,E,E′, G0, G)
which will be used to define multiple coupled Markov chains. Let Um,r,i be independent
random variables identically distributed as a Uniform distribution on (0, 1), for m ∈
Z, 1 ≤ i ≤ I, 1 ≤ r ≤ R. The index m will indicate time in the coupled Markov
chains, while indices i and r indicate dishes and restaurants, as in previous sections.
The random variables Um,r,i are combined with the variables Em,�,h and E′

m,�,h, which
are independent and have Exponential distribution with parameter 1, for m, 	, h ∈
Z. Moreover, let G0,�,m be independent Gamma random variables with parameters
(1−β0, 1), for 	,m ∈ Z, and let G�,m be independent Gamma random variables Gamma
with parameters (θ/β, 1), for 	,m ∈ Z. For any a > 0, we define the distribution

pa(k) = Z(a)
∏
r,i

f(nr,i, kr,i)
βk

∏
r(θ/β)kr,·↑1

∏
i(1− β0)k·,i−1↑1

ak
,
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where the support of k is the same as in equation (2.4), and Z(a) is a normalization
constant. We define an augmentation of this distribution similar to (2.5),

pa,D,G(k, g0, g) ∝
∏
r,i

f(nr,i, kr,i)

∏
r(grβ)

kr.
∏

i(g0,i)
k·,i−1

ak
pG(g)pG0(g0), (2.7)

where

i) pG indicates the distribution of independent Gamma random variables with pa-
rameter (θ/β, 1);

ii) pG0 indicates the distribution of independent Gamma random variables with pa-
rameter (1− β0, 1).

Integrating (2.7) with respect to g and g0 yields pa(k). In (2.7) the array entries kr,i are
independent conditional on G and G0, which leads to a natural Gibbs sampler similar to
the doubly conditional algorithm of the previous section. We will apply coupling from
the past to sample from pa(k) exactly, and subsequently extend the procedure in order
to sample p(k | n).

We construct a coupling of Gibbs samplers where we generate each Markov transition
by using the set of random numbers (U,E,E′, G0, G). Let φg0,g

a,r,i be the inverse marginal
cumulative distribution function of kr,i after we condition on (g0, g) in (2.7). For j ≤ m,
define

kj,mr,i =

⎧⎨
⎩φ

Gj,m−1
0,a ,Gj,m−1

a

a,r,i (Um,r,i) if j < m,

kinitr,i if j = m,
(2.8)

where kinitr,i are fixed integers and

Gj,m−1
0,a =

⎛
⎝
⎡
⎣G0,1,m +

kj,m−1
.1 −1∑
h=1

Em,1,h

⎤
⎦ , . . . ,

⎡
⎣G0,I,m +

kj,m−1
.I −1∑
h=1

Em,I,h

⎤
⎦
⎞
⎠ , (2.9)

Gj,m−1
a =

⎛
⎝
⎡
⎣G1,m +

kj,m−1
1.∑
h=1

E′
m,1,h

⎤
⎦ , . . . ,

⎡
⎣GR,m +

kj,m−1
R.∑
h=1

E′
m,R,h

⎤
⎦
⎞
⎠ . (2.10)

In the above construction, the sequences (kj,j ,kj,j+1,kj,j+2, . . . ), where kj,m =
{kj,mr,i ; r = 1, . . . , R, i = 1, . . . , I}, defined by equation (2.8), equation (2.9) and equa-
tion (2.10), for distinct values of j are copies of the same Gibbs Markov chain with
stationary distribution pa(k). In particular, the Markov chains are coupled through the
use of common random numbers (U,E,E′, G0, G). Furthermore, this coupling is mono-
tone with respect to the following partial order: k 
 k̃ if and only if kr,i ≥ k̃r,i for all

r = 1, . . . , R, and i = 1, . . . , I. That is, kj,m 
 kj′,m implies kj,m+1 
 kj′,m+1 with
probability 1.
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Following the usual coupling from the past construction, we define two arrays kj,m

and kj,m for j ≥ m, through the recursive equations (2.8)–(2.10) where, in the first
case, the initial state kinit is set to the maximum of the partial order, kinitr,i = nr,i for all

r, i, and in the second case to the minimum, kinitr,i = 1(nr,i > 0) for all r, i. Theorem A.1
guarantees that

lim
j→∞

k−j,0 = lim
j→∞

k−j,0,

almost surely, and the distribution of this limit is pa(k). This theorem is based on the
coupling from the past approach introduced in the work of Propp and Wilson (1996). We

shall denote by k(a) = {k(a)r,i ; r = 1, . . . , R, i = 1, . . . , I} the limiting random element
with distribution pa(k).

In the described construction k(a) is a function of (U,E,E′, G0, G), and if a′ ≥ a,

p(k(a) 
 k(a′)) = 1. Therefore, if e0 ∼ Gamma(θ0, 1), (E
∗
i )i≥1

iid∼ Exponential(1), and

E∗∗
j = e0 +

∑j
i=1 E

∗
i , there is at most one integer H such that

k(E
∗∗
H ) = H, (2.11)

where k(E
∗∗
H ) =

∑
r,i k

(E∗∗
H )

r,i . This is because the right hand side is strictly increasing in
H and the left hand side is a.s. monotone decreasing in H. Define the random variable
H as the solution to this equation, when it exists, with H = −1 when it does not.
Then, the distribution of k(E∗∗

H ) conditional on the event that the equation above has a
solution matches the target posterior p(k | n). Indeed we can write the following

Pr(k(E∗∗
H ) = k | H > −1) ∝

∫ ∞

0

Pr(E∗∗
k = a)Pr(k(a) = k)da

=

∫ ∞

0

ak+θ0−1e−a

Γ(k + θ0)

× Z(a)
∏
r,i

f(nr,i, kr,i)
βk

∏
r(θ/β)kr,·↑1

∏
i(1− β0)k·,i−1↑1

ak
da

∝ p(k | n).

Algorithm 1 provides a schematic view of a perfect sampler for the distribution
p(k | n). The pseudocode outputs one sample of the posterior distribution. Note that the
inner while loop terminates when we find an integer H which satisfies equation (2.11),
in which case we return the array k(E∗∗

H ), or alternatively, when we can verify that the
equation has no integer solution, in which case we restart the outer loop. The routine
called in Line 7 computes, for the given value of a, the arrays k−j,0 and k−j,0 for increas-
ing values of j ∈ {2, 22, 23, . . . }, until they become equal and therefore converge to k(a).
The computational cost of each iteration of the inner while loop is O(RIjmax), where R
is the number of restaurants, I is the number of dishes, and jmax is the number of steps
of the coupling required in Line 7. The next section will quantify this computational
burden by simulations. Line 3 is purely schematic, as E,E′, U,G0, G are infinite arrays.
These pseudorandom numbers may be memorized or recomputed from a random seed
as needed, which ensures that memory requirements do not increase with jmax.
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Algorithm 1 Perfect sampler for the hierarchical Pitman–Yor process.

1: Input array n
2: while true do
3: Sample arrays E,E′, U,G0, G,E∗, e0
4: H ← n
5: while true do
6: a ← E∗∗

H

7: Simulate coupling from the past using E,E′, U,G0, G to obtain k(a)

8: if k(a) = H then
9: return k(a)

10: else if Verified k(E
∗∗
H ) �= H for all H ∈ N then

11: break while
12: else
13: Set H to a new higher or lower value depending on whether k(a) > H or

k(a) < H.
14: end if
15: end while
16: end while

2.3 Unbiased estimation through Markov chain couplings

The inference objective in a Bayesian analysis is usually a posterior moment of the form
h∗ = Ek|n h(k,n) for a function h of interest. In what follows we will assume that the
function h is bounded; examples include h(k,n) = kr,i and predictive probabilities in
species sampling problems with multiple populations (Camerlenghi et al., 2019). An
MCMC estimator derived from a Markov chain k1, . . . ,kM ,

ĥ =
1

M

M∑
m=1

h(km,n),

is generally biased. The bias is a function of the starting point and the length of the
chain. Importance sampling can also be applied to estimate posterior moments, but
estimates will be biased if the posterior density is only known up to a constant. On the
other hand, if the sequence k1, . . . ,kM consists of perfect samples of the posterior of k
given n, then the estimator above is unbiased.

Glynn and Rhee (2014) proposed an alternative strategy to estimate posterior ex-
pectations without bias. Concretely, let (hm)m≥0 be a sequence of estimators for h∗

which is asymptotically unbiased, that is, E(hm) → h∗ as m → ∞. The Glynn–Rhee
procedure constructs unbiased estimators from this sequence. While this yields one of
the desirable properties of perfect sampling, the unbiased estimators produced by this
method don’t need to be bounded, even when the function h is, and indeed constructing
bounded estimators is not always possible (Jacob and Thiery, 2015).

To define the estimator, let Δm for m ≥ 0 be random variables satisfying E(Δm) =
E(hm − hm−1) with the convention that h−1 = 0. Let T be a random positive integer
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independent of (Δm)m≥0 with p(T ≥ m) > 0 for all m ≥ 0. Then, by Fubini’s theorem,
the estimator

ĥGR =

T∑
m=0

Δm

p(T ≥ m)
=

∞∑
m=0

1(T ≥ m)

p(T ≥ m)
Δm (2.12)

satisfies EĥGR = h∗, provided that
∑∞

m=0(E|Δm|/p(T ≥ m)) < ∞. This last condition

implies that Δm → 0 weakly. The Glynn–Rhee estimator ĥGR has finite variance if the
variables Δm tend to vanish quickly. Previous work on the outlined method includes
two constructions of sequences (Δm)m≥0, based on Markov chain couplings. For both

cases Glynn and Rhee (2014) discussed sufficient conditions to verify that ĥGR has finite
variance. The recent work of Jacob et al. (2020) reviews and extends the discussion on
these sufficient conditions. See also Theorem 1 in Rhee and Glynn (2015) for a self-
contained analysis. Glynn and Rhee (2014) derived also a number of useful properties
for averages of the form

ȟGR =
1

L

L∑
�=1

ĥ
(�)
GR,

where ĥ
(1)
GR, . . . , ĥ

(L)
GR are i.i.d. copies of ĥGR. Notably, under certain conditions on the

coupling and the variable T , the estimator ȟGR satisfies a Central Limit Theorem.

The first construction in Glynn and Rhee (2014) involves defining

Δm = h(k̃m,n)− h(km−1,n) for m ≥ 1, and Δ0 = h(k̃0,n), (2.13)

where (km)m≥0 and (k̃m)m≥0 are identically distributed, coupled Markov chains with

stationary distribution p(k | n), in which ‖k̃m+1 − km‖ decreases quickly with high
probability as m → ∞. The requirements on this coupling are less stringent than the
monotonicity required by the Propp–Wilson algorithm. Thus, there is significant flexi-
bility in how to define it. By way of example, we propose using two copies of the doubly
conditional Gibbs sampler introduced in Section 2.1. This construction is used in Sec-
tion 4 to produce unbiased posterior moments in an example from microbial genomics.

In particular, let k̃0 = k0 be a fixed array. Each step of the coupled Gibbs samplers
involves sampling the variables g, d, and k (see expression (2.6)). We define a Markov
coupling similar to the one used to define the perfect sampler, in which the same set
of random variables is utilized to define two Markov chains (km)m≥0 and (k̃m)m≥0.

Each transition km−1 → km is coupled to the transition k̃m → k̃m+1 for m ≥ 1, in
such a way that if kj = k̃j+1, then for all m > j, km = k̃m+1. In each of these transi-
tions, conditional sampling of g and d requires generating Gamma and Dirichlet random
variables (expression (2.6)), and conditional on g and d the entries of k are generated
using the inverse cumulative distribution. In the construction of the Markov chains, at
each transition time Gamma random variables with different parameters are coupled
by using shared arrays of exponential random variables. That is, we obtain Gamma
distributed variables by summation of independent exponential random variables. The
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Dirichlet random variables are coupled similarly, by generating coupled Gamma random
variables and normalizing them. In this case we exploit the fact that a Dirichlet vector
can be sampled by normalizing independent Gamma random variables. Finally, at each
transition, the discrete variables (kr,i and k̃r,i) are coupled by applying the conditional
inverse cumulative distribution functions to the same Uniform(0, 1) variables.

As the support of the latent array k is finite, the coupling satisfies p(km = k̃m+1 |
km−1, k̃m) > c1, for some c1 > 0. The inequality follows from the fact that for any
configuration of (km−1, k̃m) the conditional probability that both km and k̃m+1 take
minimal value is strictly positive. Therefore, the coupling coalesces at a geometric rate,
and as h is assumed to be bounded, we can deduce that E(Δ2

m+1) = E([h(km) −
h(k̃m+1)]

2) < c2c
m
3 , for some c2 > 0 and c3 ∈ (0, 1). The same argument implies that

E(|Δm1Δm2 |) < c2c
max (m1,m2)
3 .These inequalities will be applied in the sequel to show

that, for some choices of the random variable T , the estimator ĥGR has finite variance
and the computing time has finite expectation.

The second construction in Glynn and Rhee (2014) employs a coupling from the
past of Markov chain samplers for the target posterior p(k | n). To be precise, let π be a
random mapping from the state space of the array k to itself, such that if k′ ∼ p(k | n)
and π is independent of k′, then π(k′) ∼ p(k | n). Letting (πm)m≥1 be i.i.d. copies of π,
define km = π1 ◦ π2 ◦ · · · ◦ πm(k0), for k0 fixed. We can define a Glynn–Rhee estimator
through equation (2.12), with

Δm = h(km,n)− h(km−1,n) for m ≥ 1, Δ0 = h(k0,n). (2.14)

By way of example, we could use the doubly conditional Gibbs sampler (Subsection 2.1)
to specify π. The random function πm, which maps points from the support of k into the
same finite set, can be specified using arrays of Gamma and uniform random variables.
The definition of πm is nearly identical to the transitions in the inner loop of Algorithm 1
(line 6) where, given the arrays of Gamma and uniform random variables indexed by a
transition time m, the transitions from one point in the support of k to the subsequent
one become deterministic. In different words, arrays of Gamma and uniform random
variables indexed by transition times (m = 1, 2, . . .) are used to define πm and the grand
coupling (π1 ◦ π2 ◦ · · · ◦ πm; m ≥ 1).

As in the first coupling, in this second construction the conditional probability
p(∩j≥0{km+j = km+j+1} | k0, . . . ,km−1) > c1 for some strictly positive c1. This follows
from the fact that, with strictly positive probability, the random function πm can take
the same minimal (or maximal) value at every point in the function domain. In this

case the inequality implies that E(|Δm|2) < c2c
m
3 , and E(|Δm1Δm2 |) < c2c

max (m1,m2)
3

for some c2 > 0 and c3 ∈ (0, 1).

For both of the couplings defined above, we can directly bound the variance of the
estimator ĥGR,

Var(ĥGR) ≤ Eĥ2
GR ≤ E

∑
m1≥0

∑
m2≥0

|Δm1 |
p(T ≥ m1)

|Δm2 |
p(T ≥ m2)
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and for several choices of p(T ≥ m), for example p(T ≥ m) ∝ mc4 , the right hand of the
expression is finite. If the tails are exponential, i.e. p(T ≥ m) ∝ cm4 , then the constant
c4 must be large enough for the bound to be finite. As explained in Glynn and Rhee
(2014) the required constant is determined by the geometric rate at which the coupling
coalesces.

The simulations in Section 4 are limited to the two constructions in equations (2.13)
and (2.14), both tailored to the doubly conditional Gibbs sampler in Subsection 2.1.
However, the other two Gibbs samplers presented in Section 2 can be coupled in a
similar way, and there is great flexibility on how to specify the dependent Markov
chains, as monotonicity is not required. This is a key difference between perfect sampling
and the Glynn–Rhee estimation procedure. The Propp–Wilson algorithm requires a
grand coupling with monotonicity, which severely restricts its applicability, whereas the
Glynn–Rhee estimator can use any coupling where the two copies of the Markov chain
tend to coalesce quickly. Our couplings are based on the divisibility property of gamma
variables and inverse integral transformations. Recent papers by Jacob et al. (2020)
and Jacob and Heng (2019) propose several constructions beyond those we considered
to define coupled Markov chains in popular MCMC algorithms, such as Gibbs sampling
and Metropolis–Hastings. One example is a maximal coupling (see Jacob et al. (2020))
which at each transition maximizes the probability of coalescence.

Jacob et al. (2020) and Rhee and Glynn (2015) discuss unbiased estimators which
are similar to ĝGR but may have significantly lower variance. For example, Jacob et al.
(2020) considered an estimator which does not use a truncation variable T independent
of the sequence (Δm)m≥0. This is defined by

ĥGR2 =

τ∑
m=0

Δm,

where τ = inf{m : Δm+j = 0 for every j ≥ 0}. This and other modifications are
discussed in more detail in Appendix C, in relation to the application in Section 4.

3 Simulation study

The Gibbs samplers and perfect sampler of Section 2 were implemented (code available
at http://www.github.com/bacallado/hpy). This section describes numerical exper-
iments with the aim of evaluating the efficiency of the three Gibbs samplers, and the
running time of the perfect sampler, for a range of parameter settings.

3.1 Testing the correctness of the implementation

The testing procedure described by Geweke (2004) was used to verify the correctness of
the algorithms and their implementation. To be precise, for a fixed setting of parameters
(θ, θ0, β, β0), define the following routine:

1. Sample a pair (n,k′) from the CRF, with R = 5 populations, and nr,· = 100
samples for each population r = 1, . . . , 5.

http://www.github.com/bacallado/hpy
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2. Sample an array k′′ from one of the algorithms in the following list with target
distribution p(k | n):

(a) 100 iterations of the collapsed Gibbs sampler, initialised at k′,

(b) 100 iterations of the conditional Gibbs sampler, initialised at k′,

(c) 100 iterations of the doubly conditional Gibbs sampler, initialised at k′, or

(d) perfect sampling.

In each case (a–d), if the implementation is correct, the pair (k′,k′′) should be
exchangeable. For a specific setting of the parameters, namely β0 = β = 0.1 and
θ0 = θ = 1, we sample 200 independent copies (k′

m,k′′
m)200m=1 of the pair, and test

exchangeability through a permutation test using the following test statistics

s1 =
1

200

200∑
m=1

mean(k′
m)−mean(k′′

m), (3.1)

s2 =
1

200

200∑
m=1

max(k′
m)−max(k′′

m).

The test was performed for both statistics and all four algorithms. Using a Bonferroni
correction to maintain the familywise error below 1% for the two tests and all algorithms,
the null hypothesis was not rejected in any case.

3.2 Convergence diagnostics for Gibbs samplers

Simulations of the three Gibbs samplers were run for a fixed dataset and two settings
of the parameters (θ, θ0, β, β0) = (1, 1, 0.1, 0.1) or (1, 1, 0.7, 0.1). We use a dataset from
the human vaginal microbiome study discussed in Ravel et al. (2011). In the CRF
analogy, there are 900 restaurants, 134 distinct dishes observed, and we subsample
1,000 customers per restaurant.

For each algorithm and each parameter setting, we simulate a total of 16 chains,
which are initialized at the extremes of the state space of k, namely kr,i = nr,i and
kr,i = 1(nr,i > 0). Each chain is 2,000 steps long. Figure 5 in the Supplementary
Material (Bacallado et al., 2021) shows trace plots for two functions of k, organized
by algorithm (columns) and initial state (rows), with (θ, θ0, β, β0) = (1, 1, 0.7, 0.1). The
quantities examined were the mean of the array, (RI)−1

∑
r,i kr,i, and a specific entry,

k758,1, which had the largest mean across simulations. A visual inspection of the plots
suggests rapid mixing for all three algorithms, and the figure is similar for the parameters
(θ, θ0, β, β0) = (1, 1, 0.1, 0.1). In addition, two convergence diagnostics were computed
using the R package CODA (Plummer et al., 2006), the autocorrelation function and
the potential scale reduction factor of Gelman and Rubin (1992). In every case, the
three Gibbs samplers appear to mix in just 20 iterations, with potential scale reduction
factors below 1.02 with 95% confidence, and autocorrelations after 20 steps below 0.043
in absolute value.
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Grids of parameter vectors with two parameters fixed
{(θ, θ0, β, β0) ; θ = 1, θ0 = 1, β ∈ B, β0 ∈ B}

{(θ, θ0, β, β0) ; β = 0.1, β0 = 0.1, θ ∈ Θ, θ0 ∈ Θ}
{(θ, θ0, β, β0) ; θ = 1, β = 0.1, θ0 ∈ Θ, β0 ∈ B}
{(θ, θ0, β, β0) ; θ0 = 1, β0 = 0.1, θ ∈ Θ, β ∈ B}

Table 1: Parameter settings for simulation experiments. We define four grids with
two parameters fixed in each case, and the other ones varying over the ranges Θ =
{1, 5, 10, 15, 20} or B = {0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9}.

3.3 Testing the doubly conditional Gibbs sampler’s convergence

To further evaluate the convergence of the doubly conditional Gibbs sampler, for a
range of parameter values summarised in Table 1, we apply a test similar to that of
Section 3.1. For each setting of the parameters (θ, θ0, β, β0), we iterate the following
steps:

1. Sample a pair (n,k′) from the CRF, with R = 5 populations, and nr· = 100
samples for each population r = 1, . . . , 5.

2. Obtain a pseudo-sample k′′ from the distribution p(k | n) by simulating 1000
steps of the Gibbs sampler from the initial state kinit with kinitr,i = 1(ni,r > 0).

The difference between this routine and that of Section 3.1 is the initial state of the
Markov chain. The routine was iterated 200 times to obtain pairs (k′

m,k′′
m)1≤m≤200. If

the Markov chain produced a perfect sample from the target distribution, then k′
m and

k′′
m would be exchangeable. Thus, we test the null hypothesis of good mixing through

a permutation test, using the statistics in equation (3.1) which have mean zero under
the null.

With a Bonferroni correction to maintain the familywise error rate at 1% across the
list of parameter values described in Table 1, we find that the test using either s1 or s2
does not reject the null hypothesis of good mixing.

3.4 Evaluation of perfect sampler’s running time

The perfect sampler of Section 2 has a random running time. The running time of the
sampler for a given simulation setup will be characterized in terms of two quantities:
(i) the total number of Markov coupled transitions that had to be simulated in order
to obtain a sample, and (ii) the number of attempts required until equation (2.11) is
satisfied. The first quantity is linearly related to the CPU time required to obtain one
sample.

For a fixed set of parameters (θ, θ0, β, β0), we define the following routine:

1. Sample a pair (n,k′) from the CRF, with R = 5 populations, and nr,· = 100
samples for each population r = 1, . . . , 5.
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2. Sample an array k′′ from the distribution p(k | n) using the perfect sampler,
recording the two running time statistics listed above.

This routine allows us to evaluate the running time of the algorithm in a well-specified
setting; i.e. when the data n is sampled from the same model used for posterior inference.

For each combination of the parameters in Table 1, the routine above was iterated for
a total of 3 CPU hours. The most striking results emerged from the experiment which
fixed θ0 and β0 and varied θ and β; they are plotted in Figure 1. Large values of β and
small values of θ dramatically increase the number of coupling steps required to obtain
a sample. In fact, for the range of parameters θ considered in this simulation study,
the algorithm almost never output a sample when β > 0.5. In addition, the number
of attempts required until equation (2.11) is satisfied also increased with large β and
small θ. This is despite the fact that convergence diagnostics suggest good mixing of
the doubly conditional Gibbs sampler for all the parameter values in Table 1. Figure 1
illustrates also that the average computing time of the exact sampler, for fixed values
of θ and β, tend to decrease with respect to θ0 and slightly increases with β0.

To explain this phenomenon we provide some heuristics. In the posterior distribution
p(k | n) of equation (2.4), the dependence between variables (kr,i; 1 ≤ r ≤ R, 1 ≤ i ≤ I)
may be represented by a factor graph with potential energy function

log p(k | n) =
∑
r,i

[log f(nr,i, kr,i) + kr,i log β] +
∑
i

log Γ(k·i − β0)

+
∑
r

log Γ(θ/β + kr·)− log Γ(θ0 + k) + constant. (3.2)

The potentials collected in the first term each depend on a single variable kr,i, so the
correlation between the variables is due to the other terms. In particular, the interaction
terms of the form log Γ(θ/β+kr·) will be nearly linear in kr· when the crucial parameter
θ/β is large. Figure 2 provides a graphical illustration of this fact. Approximating these
terms by linear functions of kr· =

∑
i kr,i breaks the dependence. Thus, one might

speculate that a large value of θ/β makes computational inference of this posterior
distribution easier. Now, considering the perfect sampling algorithm of Section 2, and
the distribution pa(k) in particular, the same argument implies that a large value of θ/β
makes the columns of k approximately independent. This could lead to faster mixing
of the conditional Gibbs sampler for pa(k), and a faster running time for coupling from
the past.

4 Application

This section illustrates the inference methods of Sections 2 and 2.3 using data from
Ravel et al. (2011) on the vaginal microbiome. The data are collected in a contingency
table n where rows represent 900 different biological samples from pregnant women,
and columns represent 134 bacterial species. We split the table into a training set
ntrain, with one hundred counts per biological sample, and a test set ntest, such that
ntrain + ntest = n.
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Figure 1: Computing time. We considered the grid of parameters in Table 1. Each point
in the panels represents statistics recorded during 3 CPU hours. First and second row:
simulations with β0 = 0.1, θ0 = 1. The first row shows the number of samples obtained
per coupling step simulated, and it illustrates trends when we vary β (left panel) and
θ/β (right panel). The second row shows the number of samples obtained per iteration
of the outer while loop of Algorithm 1. Third row, simulations with β = 0.1, θ = 1. It
illustrates variations of the number of samples per coupling step across combinations of
β0 and θ0 values.

Perfect sampling was used to draw posterior samples of the latent variable k given
ntrain, which were then used to obtain Monte Carlo estimates of two Bayesian estimators
for quantities of interest: (i) the missing-in-sample mass and (ii) the missing mass for
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Figure 2: An illustration of the interaction potential log Γ(θ/β+kr·) for different values
of θ/β. Larger values of θ/β reduce the curvature of the function.

one of the biological samples. To define these quantities, let (X∗
1 , X

∗
2 , . . . ) be the atoms

of the measure μ, and let {X∗
i ; i ∈ Ir} be the set of species observed in sample r. The

missing-in-sample mass for sample r is defined by∑
i∈N\Ir

μr({X∗
i }),

i.e. the total probability of all species which have not been observed in the sample r.
The missing mass for sample r is defined by∑

i∈N\(I1∪···∪IR)

μr({X∗
i }),

i.e. the total probability of all species which have not been observed in any of the
samples. Estimators for the missing mass, such as the Good–Turing estimator, are
classical in the literature on species sampling and Bayesian nonparametric counterparts
have been studied (Good, 2000; Favaro et al., 2016).

We observe that the posterior expectation of the missing-in-sample and missing
mass are simply predictive probabilities, respectively, the probability that the next
observation from the biological sample in question is a new species for the sample, or a
new species overall. Given the data ntrain and the latent variable k, these probabilities
are available in closed form. Therefore, given perfect samples from the posterior of k
given ntrain, we can estimate the missing-in-sample and missing mass by averaging the
corresponding predictive probabilities.

Table 2 contrasts the estimates for missing-in-sample and missing mass for different
settings of the model parameters (θ, β). The estimates derived via perfect sampling
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are compared to those obtained through Markov chain Monte Carlo with the doubly
conditional Gibbs sampler of Section 2.1, as well as unbiased estimates obtained with
the method of Glynn and Rhee based on the same Gibbs sampler. In particular, we
use the first construction of the unbiased estimator defined in equation (2.13), with a
stopping time T = 1000 + Geometric(0.1). This choice was based on the observation
that the coupled Gibbs samplers tend to coalesce before 1000 transitions, making the
estimator identical with high probability to the estimator ĥGR2 described by Jacob
et al. (2020), which does not require a truncation variable T . Other versions of the
Glynn–Rhee estimator are compared in Appendix C.

The cost of computing the confidence intervals in Table 2 was different for each
method, so one should not interpret the width of the intervals as a measurement of
efficiency. For completeness, the cost of each method is quantified in Table 3 in Ap-
pendix B. As one would expect, perfect sampling was between 100 and 1000 times as
expensive as the other two methods.

The 95% confidence intervals displayed in Table 2 for the perfect sampling and
Glynn–Rhee estimators are constructed via normal approximation. In the case of β =
0.7 and θ = 1, perfect sampling becomes computationally infeasible, whereas we can
derive missing mass estimators through Glynn–Rhee method. In this example, we expect
Glynn–Rhee confidence intervals to have good coverage (see simulations in Appendix C).

It is possible to simulate the posterior predictive distribution given ntrain, by drawing
k from its posterior and then simulating the CRF urn scheme. This two-step procedure
was applied to sample replicates of ntest, with the same row margins. Figure 3 shows
the posterior distribution of the number of new species discovered, for two different
settings of the model parameters. The observed statistic in ntest is marked on the plot.
As expected the parameters affect the prediction.

5 Conclusions

The hierarchical Pitman–Yor process is a popular model for dependent random proba-
bility measures. However, the behavior of MCMC methods for posterior inference is not
well-understood. This paper proposes three new inference algorithms –a Gibbs sampler,
a method for unbiased estimation, and a perfect sampler– which provide different levels
of reliability. It is difficult to rigorously evaluate the convergence of the Markov chain
sampler. The Glynn–Rhee method eliminates the bias of traditional MCMC estimators.
The perfect sampler, on the other hand, provides the strongest guarantees but has a
random running time.

Availability of multiple computational methods for inference under the hierarchical
Pitman–Yor process facilitates the use of the model in data analyses. Our simulation
study suggests the use of the doubly-collapsed Gibbs sampler and the application of
the Glynn-Rhee framework, among the procedures that we tested in our manuscript,
as effective tools for data analyses like those presented in Section 4. The comparison of
data analyses repeated leveraging different algorithms to approximate the posterior, is
a viable solution to validate their implementations. This includes the evaluation of the
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Figure 3: Posterior distribution of the number of species discovered in the test set under
two different parameter settings. In each case, θ0 = 1 and β0 = 0.1. The value observed
in the test set is marked with a vertical line.

number of MCMC iterations necessary to approximate the posterior and the assessment
of potential bias of the MCMC estimates. A major advantage of the coupling from the
past sampler is that it permit straightforward comparisons between exact samples and
other approaches to approximate the posterior distribution.

Also, MCMC algorithms can be easily modified, for example to include a prior dis-
tribution on the hierarchical Pitman–Yor process parameters (θ, β, θ0, β0), or to produce
posterior inference under other variants of the hierarchical model. In these cases, as we
discussed, the Glynn-Rhee methodology, appears more flexible compared to coupling
of Markov chains for exact sampling. Indeed, the application of this methodology al-
lows the analyst to build on MCMC procedures, without the restrictive monotonicity
requirements of the Propp and Wilson approach (Propp and Wilson, 1996).

One advantage of the perfect sampler is that it allows us to evaluate the running
time by numerical simulations. We found that there are regions of the parameter space
in which the algorithm terminates quickly and others in which the computational bur-
den to obtain posterior samples increases substantially. These regions are separated by
a relatively sharp boundary. The problematic regions correspond to values of the pa-
rameters for which we expect posterior inference to be harder, based on the analytic
expression of p(k | n).

We focused on applications where the dishes assigned to each customer, in the CRF
analogy, are directly observed, as in the human microbiome dataset of Section 4. In
many applications of the hierarchical Pitman–Yor distribution, the dishes assigned to
each customer are not observed and instead represent latent variables, such as clus-
ter membership indicators in a mixture model. The collapsed Gibbs sampler and the
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Missing-in-sample mass
Perfect sampling Gibbs sampling Glynn–Rhee

θ = 1, β = 0.1 1.40× 10−2

(±1.71× 10−4)
1.40× 10−2

(±1.50× 10−4)
1.33× 10−2

(±6.09× 10−5)
θ = 5, β = 0.2 6.59× 10−2

(±2.60× 10−3)
6.79× 10−2

(±7.67× 10−4)
5.74× 10−2

(±2.59× 10−4)
θ = 5, β = 0.7 – 1.38× 10−1

(±4.17× 10−3)
7.75× 10−2

(±8.26× 10−4)

Missing mass
Perfect sampling Gibbs sampling Glynn–Rhee

θ = 1, β = 0.1 2.84× 10−5

(±3.48× 10−7)
2.83× 10−5

(±3.04× 10−7)
2.92× 10−5

(±1.34× 10−7)
θ = 5, β = 0.2 8.69× 10−5

(±3.35× 10−6)
8.95× 10−5

(±1.01× 10−6)
1.07× 10−4

(±5.16× 10−7)
θ = 5, β = 0.7 – 1.52× 10−4

(±4.63× 10−6)
1.40× 10−4

(±1.59× 10−6)

Table 2: Bayes estimators of the missing-in-sample and missing mass in the first bio-
logical sample with 95% confidence intervals. Two parameters are fixed at θ0 = 1 and
β0 = 0.1.

conditional Gibbs sampler in Section 2 were originally designed with such models in
mind. Appendix D describes two examples of algorithms that leverage and adapt the
doubly conditional Gibbs sampler for posterior inference with a mixture model, where
the assigned dishes in the CRF representation are latent variables. Although the perfect
sampler defined here could be employed within a larger Gibbs sampler, in practice this
would not be efficient due to the large computational cost compared to the Markov
chain sampler it is based on. On the other hand, using coupled Markov chains for unbi-
ased estimation in the context of mixture models appears as an attractive complement
to MCMC for posterior inference, for example on the number of clusters, predictive
probabilities, and other summaries of interest.
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