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Fast and Accurate Estimation of Non-Nested
Binomial Hierarchical Models Using Variational

Inference

Max Goplerud∗

Abstract. Non-linear hierarchical models are commonly used in many disciplines.
However, inference in the presence of non-nested effects and on large datasets
is challenging and computationally burdensome. This paper provides two con-
tributions to scalable and accurate inference. First, I derive a new mean-field
variational algorithm for estimating binomial logistic hierarchical models with an
arbitrary number of non-nested random effects. Second, I propose “marginally
augmented variational Bayes” (MAVB) that further improves the initial approxi-
mation through a step of Bayesian post-processing. I prove that MAVB provides a
guaranteed improvement in the approximation quality at low computational cost
and induces dependencies that were assumed away by the initial factorization
assumptions.

I apply these techniques to a study of voter behavior using a high-dimensional
application of the popular approach of multilevel regression and post-stratification
(MRP). Existing estimation took hours whereas the algorithms proposed run in
minutes. The posterior means are well-recovered even under strong factorization
assumptions. Applying MAVB further improves the approximation by partially
correcting the under-estimated variance. The proposed methodology is imple-
mented in an open source software package.

Keywords: hierarchical models, variational Bayes, marginal augmentation,
scalable statistical methodology.

1 Introduction and Motivating Example

Hierarchical models, often known as multilevel, mixed, or random effects models, are
ubiquitous in the social sciences (Gelman and Hill 2006; Rabe-Hesketh and Skrondal
2008). In political science alone, these models are used for addressing unobserved hetero-
geneity, explicitly modeling dependence between observations, allowing effects to vary
across space or time, and many other applications (e.g. Clark and Linzer 2015; Bell and
Jones 2015; Steenbergen and Jones 2002; Stegmueller 2013). They are also popular in
other fields such as educational research and psychology.

The benefits and challenges of these models can be illustrated by an increasingly
popular application for survey research in social science: Multilevel Regression and
Post-Stratification (MRP; Gelman and Little 1997; Park et al. 2004; Gao et al. 2020).
Described in more detail in Section 5, the core purpose of this method is to extrapolate
outcomes from nationally representative surveys to small geographic areas with limited
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data (e.g. city, state, or legislative district) using (i) a rich hierarchical model fit on the
national survey and the (usually) binary or binomial outcome and (ii) post-stratification
of predicted values based on the underlying population. This method has been widely
applied to a variety of questions such as measuring public opinion on a wide variety of
policies, examining ideology at the city level, and exploring determinants of vote choice
and turnout decisions (e.g. Ghitza and Gelman 2013; Lax and Phillips 2009a, 2012;
Buttice and Highton 2013; Tausanovitch and Warshaw 2014).

Early applications of these models usually additively included reasonable number of
non-nested effects (e.g. four), but subsequent work noted the inability of such models to
capture the rich complexity of the data (Ghitza and Gelman 2013). That paper increased
the complexity of the model substantially by using eighteen mostly non-nested random
effects and thus specifying a model with thousands of parameters. More broadly, the idea
of using a more complex model has led to a variety of papers implementing more complex
hierarchical models (Gelman et al. 2016; Gao et al. 2020) or relying on machine learning
methods (Bisbee 2019; Ornstein 2020; Goplerud et al. 2018). Regardless of whether one
relies on a “traditional” MRP or a recent extension, it is clear that comparing multiple
specifications in a principled way is fundamental to performing reliable inference. Given
the long history and popularity of using traditional hierarchical models when performing
MRP, it is essential that there is a method to fit those models reliably and quickly given
computational constraints for many practitioners.

Unfortunately, inference for non-linear hierarchical models—especially at the com-
plexity needed to be competitive with machine learning alternatives—can be challenging
as the likelihood function contains an intractable, high-dimensional, integral. There are
two popular methods for applied researchers (Stegmueller 2013): First, one can ap-
proximate the integral numerically (e.g. Bates et al. 2015; Rabe-Hesketh et al. 2004).
Second, one can use a fully Bayesian approach and sample from the joint distribution
of all of the parameters of the model (e.g. Carpenter et al. 2017). The key downside of
these methods is that they can be slow even on modestly sized problems, and thus it is
challenging to get estimates of reasonable quality in a modest period of time. This is a
problem of “scalability” to the large and complex models required for many empirical
applications. A key downside of non-scalable models is that common techniques such
as K-fold cross-validation or bootstrapping are prohibitively expensive.

This paper makes two contributions to tackling this problem. First, I outline a
series of new variational algorithms based on Polya-Gamma augmentation that allow
coordinate ascent variational inference to be implemented for binomial logistic regression
for an arbitrary number of (non-nested) random effects while imposing only a mean-
field factorization assumption. This extends existing work on variational methods for
this class of model, as there does not appear to be a tailored algorithm to estimate
models with more than two non-nested random effects.1 Further, the algorithm can be
implemented without assuming independence between the “fixed” (i.e. fully pooled) and
random effects.

1Generic methods for variational inference, e.g. stochastic variational inference or automatic differ-
entiation variational inference (ADVI; Kucukelbir et al. 2017), can be applied to most models, including
hierarchical ones. I compare ADVI against my “tailored” algorithms and show it performs worse.
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Second, I outline a generic procedure for improving an initial variational approxi-
mation when a parameter expansion of the underlying Bayesian model exists. I do this
by drawing a connection to “marginal augmentation” from the Markov Chain Monte
Carlo literature (e.g. Liu and Wu 1999; Van Dyk and Meng 2001) and showing that this
parameter expansion often permits a nearly costless improvement of the initial approx-
imation. The method (“marginally augmented variational Bayes”—MAVB) transforms
the initial approximation by sampling the expansion parameter and re-transforming
the original samples while maintaining the stationarity of the target posterior. This
induces dependencies between the parameters that were assumed away in estimating
the initial procedure and provides a provable guaranteed improvement upon the original
approximation.

Methodologically, this pushes forward the literature on variational inference for hi-
erarchical models by extending work in the case of a single random effect (Hall et al.
2011; Ormerod and Wand 2012; Tan and Nott 2013; Hall et al. 2019) or two non-nested
random effects (Jeon et al. 2017; Menictas et al. 2019) to the general case. The pro-
posed method requires no integration, unlike many existing methods for binary outcomes
(Ormerod and Wand 2012; Tan and Nott 2013; Jeon et al. 2017). It further provides a
link to existing work that seeks to combine Markov Chain Monte Carlo and variational
inference by stochastic optimization (e.g. Salimans et al. 2015; Ruiz and Titsias 2019;
Yin and Zhou 2018). Instead of optimizing the transformed density, MAVB transforms
the samples from the initial approximation with a partial step of MCMC using marginal
augmentation that, in practice, appears as performing a stochastic location/scale trans-
formation of the sampled parameters. This leverages a sampler that is known to mix well
in the case of fully Bayesian MCMC and lacks internal tuning parameters as its primary
goal is to find a computationally inexpensive way to improve an initial approximation.
While it bears some similarities to work on re-parameterization in hierarchical models
for variational algorithms (e.g. Tan and Nott 2013; Tan 2021), it does not fix the re-
parameterization in advance of estimation. It differs from other approaches that seek to
improve an initial approximation (e.g. linear response variational Bayes; Giordano et al.
2015) in that it has a guarantee on improving the approximation quality. Future work
could examine how such methods work alongside Polya-Gamma data augmentation.

The remainder of the paper proceeds as follows. Section 2 states multiple factor-
ization assumptions under which Polya-Gamma augmentation can be used to estimate
a variational approximation for a binomial logistic hierarchical model. Section 3 links
parameter expansion to variational Bayes and explains MAVB formally.

Sections 4 and 5 conduct simulations and examine performance on the empirical
example (Ghitza and Gelman 2013). The latter shows dramatic gains in speed: Even
after applying MAVB and drawing 4,000 samples, the fastest variational algorithm is
nearly 60 times faster than Laplace approximation and nearly 350 times faster than
Hamiltonian Monte Carlo for the most complex models. This reduces the run time from
hours to minutes. All variational methods well-recover the posterior means. While the
strongest factorization assumptions have poor performance in terms of estimating the
posterior variance, applying MAVB corrects a large amount of the problem.

Section 5 then uses this algorithm to engage in model comparison that was com-
putationally infeasible in Ghitza and Gelman (2013). I perform 10-fold cross-validation
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across nine models ranging from having four to 18 random effects and thousands of
parameters. The process takes around 30 minutes compared to the hours needed to fit
even a single model once using existing approaches. The results provide some evidence
of over-fitting in the original specification suggesting that the most complex model does
not outperform models of intermediate complexity. I use this to draw out some guidance
for practitioners of MRP in other substantive domains.

2 Mean-Field Variational Inference for Binomial
Hierarchical Models

I focus on the following generative model that is broader than MRP but also captures the
majority of applications. For each observation i ∈ {1, · · · , N}, the researcher observes
yi “successes” out of ni trials (e.g. how many individuals in a population of size ni turn
out to vote). I model this using a binomial distribution with probability of success pi
defined via a linear predictor (ψi) put through a logistic link. Equation (1) expresses
this model using a “general design” notation (Zhao et al. 2006). Appendix A (Goplerud,
2021) shows the model using Gelman and Hill (2006)’s notation and a plate diagram.

yi|β,α ∼ Binom(ni, pi), pi =
exp(ψi)

1 + exp(ψi)
, ψi = xT

i β + zT
i α (1a)

αj |Σj ∼ N
(
0, Igj ⊗Σj

)
, Σj ∼ IW(νj ,Φj), p(β) ∝ 1 (1b)

zi,j = mi,j ⊗ zb
i,j , αT = [αT

1 , · · · ,αT
J ], zT

i = [zT
i,1, · · · , zT

i,J ] (1c)

As is standard in hierarchical models, the linear predictor consists of p “fixed” effects:
xi ∈ R

p. The hierarchical component contains J random effects indexed from j ∈
{1, · · · , J}. For each random effect j, there is a dj dimensional covariate vector indexed
by zb

i,j where z
b
i,j = 1 represents the ubiquitous “random intercept.” Each random effect

has gj groups and each observation i is assigned to exactly one group for each random
effect; define its membership for random effect j as a one-hot vector mi,j ∈ {0, 1}gj .

The notation in equation (1) stacks together the hierarchical components as follows;
first, for each random effect j, zi,j represents a dj × gj length vector (mostly sparse)
by the Kronecker product (⊗) of the group membership vector mi,j and the base co-
variate. This repeats zb

i,j once in the position corresponding to the group of which i is
a member for random effect j. This allows us to model the distribution of the entire
parameter vector for random effect j (αj ∈ R

gj ·dj ) as a multivariate normal with a
block diagonal matrix where each block is given an identical Inverse Wishart prior as
noted in equation (1)b (Σj ∈ R

dj×dj ;Φj ∈ R
dj×dj ). Using such priors is standard in the

literature on variational inference for hierarchical models (e.g. Tan and Nott 2013), al-
though extensions to more weakly informative priors are possible (e.g. Huang and Wand
2013). The compact notation in equation (1)a stacks together all random effects j into a

single vector zi ∈ R

∑J
j=1 gj ·dj that is highly sparse. It thus accommodates designs with

arbitrary patterns of crossing (non-nesting) amongst the J random effects.

A key distinguishing feature of this model as applied to MRP is that J can be large
(e.g. greater than ten) and gj ranges widely from a handful up to over a thousand (e.g.
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gj = 4 for ethnicity and gj = 1, 020 for state-ethnicity-age combinations in Ghitza and
Gelman 2013). In most applications for MRP, dj = 1 and zb

i,j = 1 (random intercept)
but sometimes dj = 2 in the case of a random slope and intercept (Gelman and Hill
2006). Regarding the other parameters, for most applications of MRP, N is often rel-
atively modest given post-stratification requirements (see Section 5) and that surveys
can be collapsed into units with identical state-demographic covariates by allowing vary-
ing ni. Thus, in many studies, N can be made smaller than 10,000 (e.g. below 5,000 in
Park et al. 2004; Ghitza and Gelman 2013). The size of β (p) is also usually modest
and below ten.

By using Polya-Gamma augmentation, the model in equation (1) can be rendered
conditionally conjugate, enabling the straightforward application of numerous standard
algorithms for Bayesian inference (Polson et al. 2013). Specifically, equation (2) from
Polson et al. (2013) states that for any a, b > 0 the following identity holds, where
fPG(ω|b, c) denotes the Polya-Gamma density with parameters b and c. The definition of
a Polya-Gamma variable as a weighted infinite convolution of Gamma random variables
is also shown.

exp(ψ)a

[1 + exp(ψ)]
b
= 2−b

∫
exp(sψ − ψ2/2ω)fPG(ω|b, 0)dω, s = a− b/2 (2a)

ω ∼ PG(b, c) := ω =
1

2π2

∞∑
k=1

Zk

(k − 1/2)2 + c2/(4π2)
, Zk

i.i.d.∼ Gamma(b, 1) (2b)

Thus, the complete data likelihood can be expressed as follows where Ω denotes
the N × N diagonal matrix of the corresponding ωi, X, Z stack the data for each
observation into N × p and N ×

∑J
j=1 djgj design matrices, and s is a N × 1 vector

with [s]i = yi − ni/2.

p(y,Ω|α,β) ∝ exp

(
sT [Xβ +Zα]− 1

2
[Xβ +Zα]

T
Ω [Xβ +Zα]

) N∏
i=1

fPG(ωi|ni, 0)

(3)

Noting the result from Polson et al. (2013) that the full conditional of
ωi|y,α,β, {Σj}Jj=1 has a Polya-Gamma distribution PG(ni,x

T
i β + zT

i α), it immedi-
ately follows that a Gibbs Sampler exists to sample all of the parameters in the model
where the full conditionals on β and α are normal and Σj is Inverse Wishart.

2.1 Variational Inference

The first contribution of this paper is to use the Polya-Gamma representation above to
find a tractable variational algorithm to approximate the joint posterior of
p(β,α, {Σj},Ω|y) and thus the joint posterior on the parameters excluding Ω. Blei
et al. (2017) provides a recent review of these methods. Equation (4) formulates the
problem where X denotes some (restricted) set of distributions to optimize over. It can
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be equivalently expressed as finding the closest distribution in X to the true posterior
in terms of KL-divergence. For notational simplicity, denote θ = {β,α, {Σj}Jj=1,Ω}.

q∗(θ) = argmax
q(θ)∈X

ELBOq(θ) where ELBOq(θ) = Eq(θ) [ln p(y,θ)]−Eq(θ) [ln q(θ)] (4)

A common method for solving this problem is known as “coordinate ascent varia-
tional inference” (CAVI; Blei et al. 2017). It maximizes or increases the target ELBO
with respect to some sub-block of θ. By cycling through θ repeatedly, a local optimum
can be obtained. The choice of restriction X is crucial to the accuracy of the approxi-
mation method; an extremely popular choice is a “mean-field” factorization assumption
where blocks of parameters are assumed to be independent.

Leveraging the existence of a Gibbs Sampler, Result 1 states that the augmented
posterior on q(θ) can be approximated using a number of mean-field assumptions with
no further restrictions on distributional form, all updates having closed analytical forms,
and for arbitrary J, dj , gj . Appendix A provides the full derivations as well as noting
how to back out the corresponding Gibbs Sampler.

Result 1 (Existence of CAVI). Consider the three factorization assumptions:

Scheme I: “Strong Factorization” — X1 = q(β)
∏J

j=1 q(αj)q(Σ)q(Ω)

Scheme II: “Partial Factorization” — X2 = q(β)q(α)q(Σ)q(Ω)
Scheme III: “Limited Factorization” — X3 = q(β,α)q(Σ)q(Ω)

For the model in equation (1) and for each choice of Xk above, each step of the CAVI
algorithm can be implemented exactly in closed form, with no additional assumptions.
For each Xk, the optimal approximation for q(β,α) is multivariate normal, q(Σ) is
the product of J independent Inverse Wishart densities, and q(Ω) is the product of N
independent Polya-Gammas.

Algorithm 1 explicitly outlines the updates for Scheme I. Experiments showed that
convergence could be improved at little computational cost by jointly updating the mean
parameters of q(β) and q(α); see Appendix C for discussion. All models estimated in
the paper use this acceleration technique.

This improves upon existing mean-field schemes for logistic hierarchical models in
a number of ways. First, for any of the factorization assumptions, no further distri-
butional assumptions are required (cf. Ormerod and Wand 2012; Tan and Nott 2013
assuming normality). Second, most existing algorithms for binomial outcomes require
the repeated evaluation of (low) dimensional integrals at each iteration whose number
scales with gj (cf. Ormerod and Wand 2012; Tan and Nott 2013; Jeon et al. 2017).
Extending these algorithms to J > 2 would likely incur significant computational costs
as the number of those integrals increases. None of the schemes in Result 1 require inte-
gration at any step as the Polya-Gamma augmentation turns inference into iteratively
performing weighted ridge regression. In the models considered in this paper, the major
bottleneck as one moves from Scheme I to Scheme III is in calculating the variance term
of q(β,α); even relying on a (sparse) Cholesky decomposition, this involves inverting
an increasingly dense lower triangular matrix as weaker independence assumptions are
imposed. Appendix E disaggregates the run-time of Algorithm 1 by stage and scheme.
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Algorithm 1 CAVI for Scheme I.

Set Priors of Inverse Wishart: {νj ,Φj}Jj=1; Set Number of Iterations: T

Initialize Variational Parameters: {b̃i, c̃i}Ni=1 (for Polya-Gamma); μ̃β , Λ̃β , μ̃α, Λ̃α

(for β,α); {ν̃j , Φ̃j}Jj=1 (for Σj)
For t in 1, · · · , T

1. Update Polya-Gammas - q
(
{ωi}Ni=1

)
: b̃i = ni, c̃i =

√
Eq(α,β)

[
(xT

i β + zT
i α)2

]
2. Update q(β) ∼ N(μ̃β , Λ̃β):

Λ̃β =

(
N∑
i=1

Eq(ωi)[ωi]xix
T
i

)−1

,

μ̃β = Λ̃βX
T

(
N∑
i=1

(
yi −

ni

2

)
− Eq(ωi)[ωi] · zT

i Eq(α)[α]

)

3. Update q (αj) ∼ N(μ̃α,j , Λ̃j,α), where Tj stacks the block diagonal expectation
of the precision on the random effects (Σ−1

j ):

Λ̃α,j =

(
Tj +

N∑
i=1

Eq(ωi)[ωi]zi,jz
T
i,j

)−1

, Tj = Eq(Σj)

[
Igj ⊗Σ−1

j

]

μ̃α,j = Λ̃α,jZ
T
j

[
N∑
i=1

(
yi −

ni

2

)
− Eq(ωi)[ωi]

(
xT
i Eq(β)[β] +

∑
�:{1,··· ,J}\j

zT
i,�Eq(α�)[α�]

)]

4. Update q
(
{Σj}Jj=1

)
: ν̃j = νj + gj , Φ̃j = Φj +

∑gj
g=1 Eq(αj,g)

[
αj,gα

T
j,g

]
5. Check for convergence, evaluate ELBO (see Appendix A for derivation).

Most importantly, the ability to choose between Schemes I, II, and III allows the
researcher to smoothly trade-off computational cost and accuracy as in Menictas et al.
(2019)’s work on J = 2 for linear mixed effects models. Scheme I with its strong im-
plied factorization assumptions is immediately scalable to huge datasets with large J
or gj . However, the downside is that the strong factorization assumptions will likely
degrade performance. Scheme III provides the ability to avoid these strong assump-
tions at a somewhat increased computational cost. The ability to avoid such factor-
ization assumptions for arbitrary J > 1 and binomial outcomes appears to be a new
result. The expectation is that it will have the best performance. Scheme II is a com-
promise between the two extremes, and other hybrid approaches are possible such as
applying re-parameterizations to the augmented posterior (e.g. Tan and Nott 2013; Tan
2021).
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3 Marginally Augmented Variational Bayes

The second major contribution of the paper is demonstrating that there is a compu-
tationally cheap way of improving the initial approximation resulting from Schemes I,
II, or III. The key intuition, formalized below, is that once an initial approximation
q(θ) is found, one can draw samples from this approximation, perform a single step of
Markov Chain Monte Carlo through (some of) the parameters, and thereby “improve”
the sample. Some existing work in computer science (e.g. Salimans et al. 2015; Ruiz
and Titsias 2019) has leveraged this point to attempt to optimize over the intractable
improved density which can be computationally expensive.

By contrast, this paper explores the idea that if one can find a transition kernel with
good mixing, then simply doing a single partial step can provide considerable gains at
limited computational cost. While many samplers can be employed for this purpose,
initial experiments suggested that the key problem was the independence assumptions
in q(β,α) and thus I chose to focus on marginal augmentation and parameter expansion
as it is inexpensive to use in fully Bayesian MCMC to improve a Gibbs Sampler, has
demonstrated strong performance in hierarchical models, lacks internal tuning parame-
ters, and was explicitly designed to link the fixed and random effects together (Liu and
Wu 1999; Van Dyk and Meng 2001; Gelman et al. 2008). I focus on logistic hierarchical
models although the procedure is itself much more general; Section 6 discusses some
broader implications and Appendix B formulates the results in a more general fashion.

The key idea behind parameter expansion is to create an “over-parameterized” model
where certain additional parameters (ξ) are introduced such that they (i) maintain
the observed data model but (ii) are not identifiable from the observed data itself.
A careful choice of parameter expansion allows the construction of algorithms that have
either faster mixing for MCMC (Liu and Wu 1999; Van Dyk and Meng 2001) or faster
convergence for deterministic algorithms such as EM (Liu et al. 1998). The intuition
behind its effectiveness is that it allows “moves” (either via sampling steps in MCMC or
parameter updates in EM) in the un-identified space that can break or escape the strong
associations between parameter blocks (e.g. β and α) that slow down mixing (Liu and
Wu 1999) or lead to the algorithm getting “stuck” for many iterations near boundary
conditions (e.g. a small sampled Σj shrinking αj,g leading to a small Σj , etc.; Gelman
et al. 2008). Liu et al. (1998) provide a useful explanation of parameter expansion in
the context of EM as a “covariance adjustment” to the estimated parameters.

In the case of hierarchical models, the most popular parameter expansion appears as
a location and/or scale transformation of the random effects (e.g. Van Dyk and Meng
2001). The location transformation, for example, allows the random effects to have a
non-zero mean: αj,g ∼ N(μj ,Σj). Note that it is not possible to estimate μj from the
observed data but that it could be estimated if αj,g were known. Implementation is
simple and appears as a location or scale transformation of the sampled parameters
that leads to very large gains in performance (e.g. Van Dyk and Meng 2001; Gelman
et al. 2008).

Definition 1 generalizes this parameter expansion to the arbitrary J case, where the
Mj notation is bookkeeping to note which element of xi (and β) corresponds to each
element of zb

i,j (and αj,g).
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Definition 1 (Expansions for Hierarchical Models). Define a set of expansion parame-
ters ξ that consists, for each j, of a mean shift μj ∈ R

dj and a scale shift Rj ∈ R
dj×dj

such that Rj is invertible. I use superscript X to denote the “expanded” parameters.

The mapping between θX and θ for a fixed ξ is denoted as tξ(θ
X) and listed below.

Mj is a p× dj matrix such that [Mj ]a,b = 1 if the covariate corresponding to [zi,j ]b is
the same as the covariate for [xi]a. All other elements of Mj are zero. For simplicity,
assume that each element of zi corresponds to some variable in xi, i.e. that each column
of Mj has exactly one non-zero element.

[
β,α, {Σj}Jj=1,Ω

]
= tξ([β

X ,αX , {ΣX
j }Jj=1,Ω

X ]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β = βX +

∑J
j=1 MjRjμj

αj,g = Rj

(
αX

j,g − μj

)
Σj = RjΣ

X
j RT

j

Ω = ΩX

The augmented model is listed below for an important special case treated in detail
(“Mean Expansion”) in the empirical analysis. The full expansion (“Translation Expan-
sion”) is also listed.

• Mean Expansion: Assume all Rj = Idj .

ln p(yi|ωi,β
X ,αX) ∝ sT [XβX +ZαX ]− 1/2[XβX +ZαX ]TΩ[XβX +ZαX ]

p(βX) ∝ 1, αX
j,g|ΣX

j ,∼ N
(
μj ,Σ

X
j

)
, p(ΣX

j ) ∼ IW (νj ,Φj)

• Translation Expansion:

ln p(yi|ωi,β
X ,αX)

∝ sT [XβX +ZRαX ]− 1/2[XβX +ZRαX ]TΩ[XβX +ZRαX ]

R = blockdiag
(
{Igj ⊗Rj}Jj=1

)
, p(βX) ∝ 1, αX

j,g|ΣX
j ∼ N

(
μj ,Σ

X
j

)
p(ΣX

j ) ∼ IW (νj ,R
−1
j ΦjR

−T
j )

Given such an expanded version of the hierarchical model, there are two ways to
improve the algorithms in this paper. First, drawing on Jaakkola and Qi (2007), it is
possible to accelerate convergence of Algorithm 1 using “parameter expanded variational
Bayes” (PX-VB). Appendix C derives a new application of PX-VB to the models in
Result 1 and shows it can often improve the algorithm’s convergence by decreasing the
number of iterations required at effectively no computational cost as, functionally, it
involves centering the random effects to be mean zero and adjusting the mean of q(β)
correspondingly.

The main use of parameter expansions in this paper, however, is to improve the
quality of the approximation by “improving” q(θ) by performing one step of marginal
augmentation where the expansion parameters ξ are sampled and then the components
of θ are re-sampled. Definition 2 outlines the procedure in a general case. The notation
and procedure mirrors that in Liu and Wu (1999).
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Definition 2 (Marginally Augmented Variational Bayes—MAVB). Given an initial
approximation q(θ), a proper prior on the expansion parameter p0(ξ), and a one-to-one
and differentiable transformation such that tξ(θ

X) = θ, create a new approximation
q̃(θ) using the following procedure:

1. Sample θ ∼ q(θ) and ξ0 ∼ p0(ξ).

2. Create θX = t−1
ξ0

(θ).

3. Sample a new ξ1 as follows where Jξ(θ
X) is the Jacobian of tξ with respect to θX

and p(θ|y) denotes the true posterior distribution.

ξ1 ∼ p
(
ξ|θX ,y

)
∝ p(tξ(θ

X)|y) · |Jξ(θX)| · p0(ξ)

4. Define θ̃ = tξ1(θ
X) = tξ1

(
t−1
ξ0

(θ)
)

Theorem 1 states a key result for MAVB.

Theorem 1 (Guaranteed Improvement with MAVB). For any (proper) choice of prior
p0(ξ), the MAVB approximation q̃(θ) has a better ELBO than the initial approximation:

ELBOq̃(θ) ≥ ELBOq(θ)

The proof is in Appendix B and uses two lemmas from existing results. First, The-
orem 1 in Liu and Wu (1999) demonstrates the transformation to generate MAVB
maintains the stationarity of the posterior. Second, a data processing inequality noted
by various authors (e.g. Ruiz and Titsias 2019) showing that this transformation which
keeps the true posterior invariant results in a better approximating distribution.

It is known from the data augmentation literature that an increasingly diffuse prior
on the expansion parameters (“working prior”) allows for the parameters themselves to
“decide” the best expansion parameter ξ rather than being weighed down by the prior
(e.g. Liu and Wu 1999, p. 1268), and I conjecture that a similar intuition applies for
MAVB. Thus, in all applications, I use an improper prior (i.e. p0(ξ) ∝ 1); Appendix B
discusses the validity of this prior using existing theory (Liu and Wu 1999; Van Dyk and
Meng 2001), provides the result for a proper prior on ξ, and notes Algorithm 2 can be
found as the limit of a proper working prior p0(μj) ∼ N(0, τ2I) as τ → ∞. Algorithm 2
shows how MAVB is implemented using the mean expansion noted in Definition 1.2

Thus, for this model and relying only on a location transformation, MAVB has
a simple form that, as shown later, can result in considerable improvements in the
performance of Scheme I. As noted in the earlier discussion, the presentation of MAVB
in Algorithm 2 illustrates the close relationship to the location transformation noted

2MAVB for “Translation Expansion” (i.e. Rj is not fixed) is more delicate and thus not explored
here, as it requires a specific choice of prior on Σj and a specific choice of improper working prior to
be tractable; see Van Dyk and Meng (2001) for details. Examining whether this could be used with
proper priors is an interesting area for future research.
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Algorithm 2 Applying MAVB to Non-Linear Hierarchical Models.

Set the Number of Samples Desired: M
Estimate q(θ) using CAVI (e.g. Algorithm 1)
For m in 1, · · · ,M

1. Draw θ(m) ∼ q(θ)
2. Sample the expansion parameters μj for each j

μ̃j ∼ N

(
1

gj

gj∑
g=1

α
(m)
j,g ,

1

gj
Σ

(m)
j

)

3. Adjust the initial draws to get the improved sample θ̃(m)

α̃
(m)
j,g = α

(m)
j,g − μ̃j , β̃(m) = β(m) +

J∑
j=1

Mjμ̃j

earlier: It can be thought of a “stochastic” location transformation given that mean of
the expansion parameter is the mean of the sampled αj,g.

Some additional remarks are in order: First, if MAVB is applied to an approximation
resulting from Scheme I (i.e. with independence assumed between β and α), the result-
ing approximation will not imply such an assumption. Consider the correlation between
αj,g and β in Algorithm 2. Before applying MAVB, the two parameters are indepen-
dent by assumption. After applying MAVB, they have a non-zero posterior correlation
because of the shared dependence on μ̃j . While not sufficient to restore all missing
dependencies (e.g. components of β that are not included in any random effect), this
can at least address some of the shortcomings of Scheme I. MAVB can be applied to
the outputs of Scheme II and III, although the expectation is that the improvement
for these schemes should be less pronounced given that more of those dependencies are
estimated directly.

Second, the cost of implementing MAVB is quite modest, unlike existing approaches
that attempt to optimize over the improved density (e.g. Ruiz and Titsias 2019). After
drawing a sample from q(θ), all that is needed to perform MAVB is drawing

∑
j dj

univariate Gaussians (22 in the largest model considered in this paper [Model 9]), some
summation of the sampled random effects and then subtracting off the sampled ex-
pansion parameter μ̃j . Note that this MAVB procedures do not require sampling the
Polya-Gammas as they are left un-transformed by the algorithm nor does the cost of
MAVB depend on the size of the data (N) directly; even if gj is large, MAVB will still
be fast.

Third, while MAVB is guaranteed to increase performance, the quality of MAVB
is difficult to ascertain analytically in most complex models. However, insights come
from simpler cases: In a stylized hierarchical model, Liu and Wu (1999) show that
marginal augmentation results in perfect sampling. In the more realistic case where Σj

is not fixed and J = 1, studies show that certain forms of marginal augmentation result
vastly improved mixing of MCMC samplers (Van Dyk and Meng 2001; Gelman et al.
2008). Thus, there is reason to be optimistic about the ability of MAVB to improve
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initial approximations as the scale/location transformations in fully Bayesian marginal

augmentation seem to provide quite considerable benefits over simple Gibbs samplers.

Overall, while MAVB is likely to be helpful in improving the variational schemes in

this paper, it is not a panacea. Its major benefit appears to be in “connecting” blocks of

parameters that were assumed to be independent in a way that is guaranteed to improve

the approximation quality at a very limited computational cost. The key limitation is

that its speed and scalability depends on it not returning to the observed data (y).

Interestingly, this suggests a “stronger” version of MAVB that could be performed by

implementing one full sweep of the Gibbs Sampler, i.e. sampling Polya-Gammas and

cycling through all full conditionals, and then performing marginal augmentation. If this

were to be performed many times, the samples would converge to the true posterior by

standard properties of MCMC. While this might raise its own computational concerns,

exploring this is an interesting area of future research.

4 Simulation Study

I perform a simulation study to assess the accuracy of the proposed methods. I compare

my variational algorithms against two gold standards (Laplace approximation using

blme - Bates et al. 2015; Chung et al. 2015; HMC in STAN using brms; Bürkner 2017) and

Automatic Differentiation Variational Inference (ADVI; Kucukelbir et al. 2017).3 The

latter is a useful comparison as it is easily implemented in STAN and is a generic approach

to approximate complex models. I show results using its mean-field approximation (MF)

and full rank (FR). To begin, I conducted a simulation where the linear predictor ψi

was generated using the following scheme (J = 2).

Draw the fixed effects β ∼ N(0, [0.2]
2
I10)

For each group g ∈ {1, · · · , 10}, draw the random intercept α1,g ∼ N(0, 1)

For each group g′ ∈ {1, · · · , 10}, draw the random intercept α2,g ∼ N(0, 1)

For each observation i ∈ {1, · · · , 1000}, assign at random to groups g, g′. Draw its
fixed effect xi ∼ N(0,Σ) where Σj,j′ = 0.5|j−j′|; j, j′ ∈ {1, · · · , 10}. Draw yi such
that:

yi ∼ Bern(pi), pi =
exp(xT

i β + α1,g[i] + α2,g′[i])

1 + exp(xT
i β + α1,g[i] + α2,g′[i])

3Using blme allows for an identical Inverse Wishart prior to be added to the Laplace approximation;
models are fit using optimx’s nlminb algorithm (Nash and Varadhan 2011) that returned noticeably
better performance. brms generates a model that can be manually adapted to place an Inverse Wishart
prior as this is not permitted in the default options in pre-written STAN models at the time of writing
(e.g. rstanarm or brms).
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All models are fit with a standard Inverse Wishart prior of IW(dj + 1; Idj ) on Σj .
I run each variational algorithm until the change in the ELBO is less than 10−8 or the
largest parameter changes by less than 10−5. For the HMC and MAVB methods, I draw
4,000 samples from the (approximate) posterior.

Table 1 reports four measures of performance; the first two measures compare the
point estimates (posterior mean) against HMC. The third measure compares the full
posterior using a measure of “accuracy” that modifies the integrated absolute error
(e.g. Faes et al. 2011). Formally, this is defined as 1− 1

2

∫∞
−∞ |qk(θ)− qHMC(θ)|dθ. I use

kernel density estimation with a range over the shared support of the samples (bkde,
KernSmooth; Wand and Ripley 2020) and then approximate the integral. Finally, to
understand how the estimates of uncertainty fare against the unknown truth, I examine
the “frequentist coverage”: Does an interval of ± 1.96 times the standard deviation
of the parameter contains the truth? A value of around 0.95 would indicate correct
coverage at the expected frequentist level.

Bias RMSE Accuracy Coverage
FE RE FE RE FE RE FE RE

Laplace −0.000 0.005 0.007 0.056 0.966 0.847 0.950 0.878
HMC 0.949 0.960
ADVI (MF) −0.002 0.003 0.041 0.074 0.775 0.781 0.796 0.830
ADVI (FR) −0.000 0.001 0.048 0.108 0.921 0.881 0.969 0.948
Scheme I −0.000 0.004 0.007 0.034 0.870 0.706 0.862 0.736
Scheme II −0.000 0.004 0.007 0.030 0.870 0.844 0.862 0.871
Scheme III −0.000 0.004 0.007 0.026 0.936 0.948 0.923 0.934

MAVB +
Scheme I −0.000 0.004 0.008 0.034 0.932 0.948 0.922 0.938
Scheme II −0.001 0.005 0.007 0.031 0.933 0.955 0.916 0.940
Scheme III −0.000 0.004 0.007 0.027 0.937 0.963 0.922 0.942

Note: This reports the bias (Bias), root mean squared error (RMSE) of the estimated posterior
means against those estimated from HMC. The distance between the distributions (Accuracy) and
frequentist coverage (Coverage) are reported; see the main text for an explanation of these measures.
The statistics are disaggregated by fixed (FE) and random effects (RE). All results are created using
all relevant parameters in each simulation and then averaged across one hundred simulations. ADVI
(MF) uses the mean-field approximation; ADVI (FR) uses the full rank approximation in Kucukelbir
et al. (2017).

Table 1: Results from Simulations.

The results are promising; looking at the bias and RMSE, the variational methods
perform well; they have very small bias against the means estimated from HMC and an
RMSE that is quite small, comparable to the Laplace approximation, and out performs
both ADVI implementations.

Examining accuracy and frequentist coverage shows more separation across the
methods. The accuracy and coverage of Scheme I are noticeably lower than the Laplace
approximation. However, applying MAVB results in noticeable improvements in accu-
racy (around 6% for fixed effects; and nearly 25% for random effects) and increases
coverage by similar amounts to near nominal levels. After this improvement, Scheme I
is comparable to the best approximate method (Laplace approximation) having slightly
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lower accuracy for the fixed effects but noticeably better accuracy and coverage for the
random effects. Scheme II has somewhat better initial performance but is also boosted
considerably by applying MAVB.

Scheme III—the factorization that does not assume independence between q(α)
and q(β)—performs nearly as well as the Laplace approximation (and better in terms
of the random effects) before applying MAVB. Applying MAVB results in only slight
improvements (e.g. a 1–2% boost in accuracy and coverage for the random effects).

Appendix D conducts additional simulations. First, I vary the magnitude of the true
coefficients by changing the variance of the fixed and random effects. After applying
MAVB, the coverage of the variational methods is near nominal (i.e. above 0.90) in
all cases except when the variance of the true distribution of the fixed effects is larger
where MAVB is insufficient to obtain nominal coverage on the fixed effects (0.80–0.85)
although the coverage on the random effects remains good. While this is worthy of
future exploration, I conjecture this occurs because of the large magnitudes of the
linear predictors (with 5–95% interval of around −5.9 to 5.5 vs. −2.7 and 2.3 in the
simulations in Table 1) and the highly bimodal distribution of pi. It may be that a
pass over the observed data and one full sweep of MCMC (discussed in Section 3 as a
“stronger” MAVB) could result in more significant improvements in coverage.

Second, to examine simulations in a more realistic case, I fit a simple MRP model on
the data from Ghitza and Gelman (2013) with random effects for age, income, ethnicity
and state (Model 1 from Table 2, below) and take the parameter estimates from the
Laplace approximation as “ground truth” to create simulated outcomes. It shows a
similar pattern although with weaker performance across the board—Scheme I after
applying MAVB outperforms ADVI (Mean Field) across all measures with noticeable
improvements in accuracy (10%) and is comparable to ADVI (Full Rank). Scheme III
performs the best of all approximate methods, including beating the Laplace and ADVI
(Full Rank). The values of the linear predictor are relatively modest in this case (90%
of the HMC posterior means are between −0.67 and 1.99) and more comparable to
those in the simulations in Table 1. This provides further evidence that for reasonably
sized linear predictors, the variational approximations perform well and are improved
by MAVB.

Finally, I examine the sensitivity of the algorithm to initial values to see if there is
evidence of arriving at different local optima. I find little evidence of this for the models
considered in this paper given reasonable random initializations, although researchers
should check for this in their own applications.

5 Application: Estimation for Complex MRP

This section re-analyses the results in Ghitza and Gelman (2013) where I compare my
results against Hamiltonian Monte Carlo (HMC). I then conduct 10-fold cross-validation
using Scheme I to examine which model seems to be most appropriate to use for the
final predictive task. I find that, contrary to the decision in Ghitza and Gelman (2013),
a model with intermediate complexity is preferred.
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5.1 Brief Explanation of MRP

Before proceeding, I provide a brief explanation of MRP (see, e.g. Park et al. 2004;
Lax and Phillips 2009b; Ghitza and Gelman 2013 for more detailed explanations). The
key problem is that while it is easy to gather a representative survey at the national
level, it is very expensive to gather a sufficiently large and representative survey at sub-
national units (e.g. states) or sub-types of respondents (e.g. by race, education, income,
their interactions, etc.). Further, the number of observations in any sub-group may be
very small, rendering a direct analysis of their values unreliable (Lax and Phillips 2009b;
Warshaw and Rodden 2012; Buttice and Highton 2013). However, the most substantively
important questions exactly rely on drawing inferences about those sub-groups. MRP
provides a model-based procedure to attempt to reliably estimate these sub-group effects
by providing a principled way to extrapolate the nationally representative survey.

MRP is a two-step procedure. First, the researcher estimates a hierarchical model
(“multilevel regression”) on the initial survey including covariates such as demographic
characteristics and indicators for the relevant geographic unit (e.g. state) to get esti-
mates for various “types” of respondents (e.g. age-income-ethnicity by state). The hier-
archical model usually has a binomial or binary outcome. The second step calculates the
expected response for each demographic-state profile. These can be examined directly
or aggregated to get a measure of opinion at the desired geographic level (e.g. state).
The aggregation or “post-stratification” occurs by taking a weighted average of those
sub-group predictions from the known joint distribution in the population from some
ground truth such as the Census. This paper has focused on the first step (“multilevel
regression”).

Ghitza and Gelman (2013) apply this method to explore the decision to turn out
to vote and party choice by age-race-income-state sub-groups in the 2004 and 2008
American presidential elections. They note that traditional MRP includes the random
effects linearly and thus may be failing to capture important complexities or interac-
tions between demography and geography. They thus fit a highly complex model with
eighteen random effects and nearly 4,000 parameters on a dataset with around 4,000
observations. After doing so, they draw a variety of subtle and nuanced conclusions
about the behavior of particular demographic sub-groups. For example, they qualify
the conventional wisdom to show that turnout increases were concentrated amongst
non-white younger voters instead of younger white voters (Ghitza and Gelman 2013,
p. 771–772).

5.2 Estimating Complex Hierarchical Models

I begin by performing a direct comparison of Schemes I, II, and III against the gold
standard approaches applied to Ghitza and Gelman (2013). To illustrate the many
specifications available to the researcher, Table 2 shows nine possible specifications
ranging from a simple MRP model with no interactions to the preferred model in Ghitza
and Gelman (2013) (Model 9). I round yi and ni to the nearest integer to facilitate
interpretation as a standard binomial regression. The intermediate models represent
varying complexities that allow for some, but not all, interactions.
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Model
(1) (2) (3) (4) (5) (6) (7) (8) (9)

State 	 • • • • • • • •
Age 	 • • • • • • • •
Eth 	 • • • • • • • •
Inc 	 	 	 	 	 	 	 	 	
Region • • • • •
State * Age 	 	 	 	 	 	
State * Eth 	 	 	 	 	 	
State * Inc 	 	 	 	 	 	
Eth * Age 	 	 	 	 	 	 	
Eth * Inc 	 	 	 	 	 	 	
Inc * Age 	 	 	 	 	 	 	
Region * Age 	 	 	 	 	
Region * Eth 	 	 	 	 	
Region * Inc 	 	 	 	 	
State * Eth * Age 	 	
State * Eth * Inc 	 	 	
State * Inc * Age 	
Eth * Inc * Age 	 	 	 	

Number of Parameters
74 139 198 864 945 1026 2047 2864 3885

Run Time of Model in Minutes
Laplace - 2004 0.2 0.9 2.2 5.1 13.4 27.0 38.4 50.1 81.1
Laplace - 2008 0.2 0.8 2.2 5.5 12.1 23.9 37.0 52.5 84.9
HMC - 2004 113.8 131.5 166.9 199.9 326.6 288.6 375.4 430.0 469.0
HMC - 2008 101.5 132.4 174.1 196.6 353.8 327.3 307.9 402.5 463.8

Note: This table summarizes nine possible models to predict voter turnout. All models include six
fixed effects: an intercept, (standardized) individual income, state-level income, state-level Repub-
lican vote share and the interaction between individual income and the latter two variables. Ghitza
and Gelman (2013) use Model 9. The first panel indicates which random effects are included; a
hollow diamond (�) indicates that only a random intercept is used. A solid circle (•) indicates that
a random intercept and a random slope allowing for the effect of (standardized) individual income to
vary by group are included. The number of parameters is the number of fixed effects, random effects,
and variance components for the random effects. The run times are for a Laplace approximation
using blme (Bates et al. 2015; Chung et al. 2015) and HMC in STAN (via brms; Bürkner 2017). All
models were run on an instance with 16 GB of memory and 4 cores. HMC was estimated using four
chains distributed in parallel.

Table 2: Nine Possible Models for Predicting Turnout via MRP.

It clearly shows the scale of the difficulty for applied researchers: Fitting the pub-

lished model (Model 9) takes hours using either specification on a machine similar to

that available for many applied researchers (a Microsoft Azure instance; Ubuntu, 4

cores, 16 GB of RAM). Methods that require fitting the model repeatedly to facilitate

common tasks as bootstrapping, model comparison via cross-validation, or ensemble

analysis (Van der Laan et al. 2007, see Ornstein 2020 for an application to MRP) are
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clearly prohibitively expensive for all except the simplest models using the Laplace
approximation.

Figure 1 illustrates the improvement after applying the variational algorithms to
each model in Table 2 and performing MAVB. All reported times include estimation of
the variational algorithm and drawing 4,000 samples using MAVB. Appendix E shows
the time for estimation and MAVB separately; it takes around thirty seconds for Scheme
I on the most complex model.

Figure 1: Speed of Estimation. Each figure plots the run-time of each of the five methods
(Laplace approximation, Hamiltonian Monte Carlo [HMC], Schemes I–III with drawing
4,000 samples using MAVB). The reported times are averaged across the 2004 and 2008
elections. The left figure shows the time in minutes on a linear scale; the right figure
reports the same information on a log-scale. Models 1–9 are described in Table 2. All
models are fit on a computer with 16 GB of RAM and 4 cores.

As shown on a linear scale, the time to estimate either the Laplace approximation
or Hamiltonian Monte Carlo dwarfs that of any of the variational schemes. The right
panel shows the results on a log-scale to allow for clearer comparisons; it shows that
Scheme I remains remarkably fast estimating even Model 9 in around one minute versus
hour(s) for either gold standard method. The performance of Schemes II and III degrade
somewhat—taking around fifteen minutes to fit. This is still very reasonable, but may
still be onerous if repeated fitting is required as in cross-validation.

The quality of the approximation is also crucial to assess. As the truth is unknown,
I do this by comparing all methods against HMC as this seeks most directly to sample
the posterior.4 Figure 2 begins by comparing the point estimates pooling across the

4This method is, of course, itself approximate as it may fail to accurately sample the posterior.
Experiments suggested that setting “adapt delta” to 0.99 was required to eliminate all divergent tran-
sitions (except for one in Model 3 in 2004).
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18 models. As there are thousands of parameters to plot, I simplify the picture in
the following way; I plot the absolute magnitude of the estimates averaged across j:
ᾱj = 1

gj

∑gj
g=1 |αj,g| in solid circles and shade the background of the plot based on

the density of the individual |αj,g|. This prevents the domination of the j with smaller
numbers of groups (e.g. age, income, etc.) in the visualization. I also separately mark
the fixed and random effects.

Figure 2: Comparing Posterior Means. This figure plots the absolute value of estimated
mean value from Schemes I–III and the Laplace approximation on the horizontal axis
against the absolute value of the posterior mean from Hamiltonian Monte Carlo [HMC]
on the vertical axis. Each parameter is plotted as a thin grey point; the average of
the values inside each random effect are shown as larger points. The axes are on a
square-root scale.

Consider first the Laplace approximation; it nearly exactly recovers the point
estimates—its solid points and shading lie very near to the 45-degree line. For the
variational methods, Scheme I is highly correlated with the posterior (ρ = 0.996 for ᾱj ;
ρ = 0.964 for the raw |αj,g|) although less so than the Laplace approximation. Schemes
II and III show tight coupling with the estimates from HMC and are effectively equally
accurate to the Laplace approximation. This matches the conventional wisdom that
variational methods typically well-recover the posterior means.

Figure 3 presents an analogous figure for the posterior variability, plotting the stan-
dard deviation of each parameter. It smooths across random effects in the same way as
Figure 2. In interpreting this figure, note that points in the upper left quadrant (above
the 45-degree line) indicate worrying performance as the posterior variability is below
that coming from the HMC estimates.

Again consider first the Laplace approximation; the standard deviation of its point
estimates are often tightly clustered near the 45-degree line but there are a number of
random effects that are noticeably smaller (above the 45-degree line).

The performance for the variational algorithms is rather mixed, by comparison.
Looking at Scheme I, almost all points show a too small standard deviation—with
many random effects being considerably too small. Scheme III, however, improves the
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Figure 3: Comparing Posterior Variability. This figure plots the estimated standard
deviation from Schemes I–III and the Laplace approximation on the horizontal axis
against the standard deviation of the posterior distribution from Hamiltonian Monte
Carlo [HMC] on the vertical axis. Each parameter is plotted as a thin grey point; the
average of the values inside each random effect are shown as larger points.

situation markedly. While slightly smaller—especially for points with large standard
deviations–it tracks the 45-degree line closely and has better performance than the
Laplace approximation. As expected, Scheme II is somewhat of an intermediate case;
improving some parameters but still having significant problems.

Overall, therefore, Schemes I and II fall into the usual problem of understating
posterior variance. By contrast, Scheme III appears to do rather well and lacks the
obvious problems of lack of posterior variability versus a fully Bayesian baseline. This
corroborates results from Menictas et al. (2019) that estimating q(β,α) jointly performs
well for (linear) hierarchical models with J > 1.

Finally, I show how these estimates change when using MAVB. I focus on the effect
on posterior variability as the means are not materially affected by MAVB; Appendix E
shows the analogous figure. Figure 4 presents the distribution of the gap between the
variability between the HMC estimates and the other methods where negative values
indicates a smaller standard deviation for the competitor methods. Any point below
the dotted line indicates that that percentile of effects has a smaller standard deviation
than the HMC estimates. To make results interpretable, I report the percentage gap,

e.g.
(
sdLaplacek − sdHMC

k

)
/sdHMC

k · 100 for all parameters k in (β,α). To ensure that

random effects with small gj are counted, it presents the averaged statistic across g as
in Figures 2 and 3.

The results provide clear evidence for the important role of MAVB. Considering first
random effects in the left panel, it is first worth noting that the Laplace approximation—
commonly used by researchers—has poor performance for a number of parameter blocks
(e.g. the lower percentiles). Scheme I shows a clear lack of variability in the posterior



642 Fast Estimation of Binomial Hierarchical Models

Figure 4: Improvements from MAVB. This figure plots the percentile of the gap between
the standard deviations estimated via Hamiltonian Monte Carlo [HMC] and the approx-

imate methods. The percentage gap, i.e.
(
sdLaplacek − sdHMC

k

)
/sdHMC

k · 100, is shown.

A negative value on the vertical axis indicates that the corresponding percentile has a
smaller variance than HMC. A vertical shift upward of the line indicates the variance
of the parameters has increased. The solid markers indicate the deciles and extremes of
the distribution. The dashed line with hollow triangles represents the estimates without
using MAVB. The red line with solid circles represents the results after using MAVB.

estimates with all estimates being estimated at least 20% too precisely and around half
of all estimates having less than 75% of the variability estimated in the fully Bayesian
setting. After applying MAVB, the (red) solid line shows a considerable improvement al-
though still markedly below the HMC estimates and performing worse than the Laplace
approximation. Large improvements are seen for the fixed effects (β) where the esti-
mates of the variability go from extremely poor to being much closer to the Laplace
approximation which, itself, is markedly below the HMC coverage.

Scheme III is worth also considering in detail; even before applying MAVB, it has
stronger performance than the Laplace approximation in that its curve has a much less
poor “tail” (i.e. its worst blocks are around 25% too small vs around 60% for the Laplace
approximation). MAVB provides some additional gains ensuring that most parameter
blocks are only around 10% too small in terms of their variability. Scheme II is again
somewhat intermediate; after applying MAVB, it is broadly comparable to the Laplace
approximation.

To provide another interpretation of the role of MAVB, consider the accuracy mea-
sure in Section 4 that measures similarity between two distributions, averaged within
and then across parameter blocks: The Laplace approximation performs relatively well
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(90%). Scheme I performs poorly (43%) because it clearly fails to capture the poste-
rior variance. MAVB increases this considerably (68%) although it still falls below the
Laplace approximation. Scheme III, however, out-performs the Laplace approximation
(95%) with a slight improvement from MAVB (97%).

Appendix E provides some additional results. First, it breaks apart Figure 3 by the
type of random effect; the main implication is that the initial lack of variability from
Scheme I is most pronounced for the fixed effects and random effects with small gj (age,
ethnicity, income). The improvements for MAVB for those random effects are large and
resolve the much of the negative gap.

Second, it examines the linear predictor (i.e. xT
i β+zT

i α). It shows that MAVB has
little effect, although all schemes perform well. In addition to closely estimating the
posterior mean (Scheme I has a bias of −0.002 vs HMC), the standard deviation is also
fairly close (bias of −0.013 or about −2%), especially compared to the gaps seen in
Figure 4. A conjecture would be that MAVB as implemented here has little impact on
the linear predictor as it is more about building correlations between parameter blocks,
but the “stronger” MAVB noted above might address such limitations.

5.3 Choosing an Optimal Model

Finally, I return to the substantive analysis in Ghitza and Gelman (2013). A key question
when performing MRP is the complexity of the accompanying model. Even with the
regularization implied by the hierarchical effects, it is still possible to over-fit to the
survey sample (Goplerud et al. 2018). The reported analysis relies on Model 9 without
exploring this possibility. The computational burden needed to estimate multiple models
and thereby engage in model testing and checking is often onerous for the applied
researcher. I thus use the ability to rapidly fit variational approximations to deploy a
standard model comparison technique (cross-validation) and examine whether a model
of intermediate complexity should be preferred. Table 3 reports a number of statistics
on model fit.

The first two rows (LOO and WAIC) are popular tools for deciding between non-
nested Bayesian models (Vehtari et al. 2017). Details on their exact calculation can
be found in the relevant articles (Gelman et al. 2014; Vehtari et al. 2017), but both
are designed to be approximations to cross-validation that do not require fitting the
Bayesian model repeatedly.

Fortunately, both have diagnostics to assess whether the underlying approximations
are reliable; unfortunately, the diagnostics tests fail in this setting. Almost all mod-
els report unacceptable violations of the underlying assumptions for both the LOO
and WAIC, and the associated software explicitly encourages the user to resort to
K-fold cross-validation. On the other hand, variational inference provides a fast ap-
proximate method. The final row of the table (VI-CV) reports the average deviance
(twice the negative log-likelihood) of the held-out predictions after conducting 10-fold
cross-validation where observations are allocated to each fold with equal probability
using Scheme I. Formally, if observation i has a prediction p̂i, the individual deviance
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Method
Models

Time
1 2 3 4 5 6 7 8 9

2004 Election
LOO 11659 11339 11296 11150 11163 11164 11155 11170 11129 2504
WAIC 11658 11336 11292 11107 11115 11113 11083 11074 10968 2503
VI-CV 28.617 28.518 28.508 28.488 28.498 28.499 28.499 28.508 28.508 21

2008 Election
LOO 11651 11270 11236 11095 11112 11118 11113 11111 11094 2463
WAIC 11651 11268 11233 11060 11073 11075 11053 11030 10957 2462
VI-CV 26.963 26.846 26.839 26.813 26.817 26.821 26.824 26.829 26.820 20

Note: This table reports statistics for model fit. The first two rows for each election report fit
statistics on the model estimated via Hamiltonian Monte Carlo that approximate cross-validation;
the “LOO” information criterion and the WAIC information criterion (Gelman et al. 2014; Vehtari
et al. 2017). The third row reports the average out-of-sample deviance from a model fit using
Scheme I. For all statistics, smaller is better and the best value is bolded. The time in minutes for
each row to be estimated is shown in the final column; this includes estimation time and the time
needed to estimate the relevant fit statistic.

Table 3: Cross-Validation to Choose Optimal Model.

is −2 [yi ln(p̂i) + (ni − yi) ln(1− p̂i)]. Observations with ni = 0 are excluded from the
reported average. Model 4 is also selected if Schemes II or III are used.

The results are interesting and push against the decision to use Model 9; it finds that
while Model 1 performs noticeably worse than all other models, it is not necessarily best
to use the most complex model. Indeed, an intermediate model—Model 4—performs
the best although the differences in the error are quantitatively small between Models
4 and 9.

Appendix E provides a more detailed exploration against a “Bayesian gold stan-
dard.” Using a new set of folds, it fits Models 1, 4, and 9 using ten-fold cross-validation
and performing HMC and the Laplace approximation on each fold. This is extremely
time intensive—taking around ten days to complete the whole process. It confirms that
cross-validated HMC, Laplace approximation, and Scheme I all select Model 4. The
out-of-sample predictions between Scheme I and HMC are highly correlated (0.998).
This gives some confidence that the results of the variational method can be used in
lieu of prohibitively expensive classical cross-validation. When it is too expensive to
conduct such an analysis, relying on methods such as simulation-based calibration (e.g.
Yao et al. 2018) may be a feasible way to assess whether the variational approximation
“successfully” approximated the posterior.

Returning to Table 2, the major feature that distinguishes Model 4 from less complex
models is interactions between the core random effects (age, ethnicity, income) and
state. This matches a reasonable expectation from political science that demographics
are likely to vary across state but the complex higher-order interactions between region
and three-way-interactions do not seem to add much predictive power.

These results are useful to practitioners of MRP in three ways; first, complex hier-
archical models can now be compared against other state-of-the-art machine learning
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methods versus relying on a very simple model (analogous to Model 1) due to computa-
tional costs (Bisbee 2019; Ornstein 2020). Thus, it is an interesting and open question
whether methods such as BART are actually superior for MRP tasks (Bisbee 2019) or
whether properly specified complex hierarchical models can be competitive. Second, it
suggests that interactions between demographics and state characteristics are important
to include although the evidence for going extremely “deep” and adding many higher-
order interactions appears more limited. Finally, even if one prefers to fit a Bayesian
model for the final regression, the ability to quickly search between models allows the
researcher to narrow down a set of plausible candidate models for final exploration and
model testing.

6 Conclusion

This paper provided a new set of variational algorithms that, leveraging Polya-Gamma
data augmentation (Polson et al. 2013), require only a mean-field assumption to estimate
a logistic hierarchical regression with an arbitrary number and size of random effects.
It provided multiple factorization assumptions; Scheme I required the independence
of the fixed effects and each block of random effects whereas Scheme III relaxed that
assumption at the expense of increased computational cost. All methods seemed to quite
accurately capture the posterior means in even complex models. As expected in both
simulations and real data, Scheme I performed worse–especially in terms of understating
posterior variance for many random effects.

The paper also provided a generic way to improve the performance of Scheme I, and
Schemes II and III to a lesser extent. By leveraging the existence of a parameter expan-
sion of the underlying model either by allowing the means of the random effects to be
non-zero or by imposing some translation, one can use a marginal augmentation sam-
pler to improve the posterior approximation. This procedure (“marginally augmented
variational Bayes”; MAVB) showed promising performance when applied to Scheme I:
It increased the variance of the estimated approximations to be closer to the samples
drawn using a fully Bayesian procedure, although still remaining too small on real data.
However, given its speed even on complex models, MAVB provides a cheap way to make
Scheme I a more viable approximation to the true posterior. It is also worth noting that
Scheme III performed very well—often beating the very popular Laplace approximation
on both real and simulated data.

Future work could proceed in at least two directions. First, the algorithms here can
be naturally extended to count and multinomial outcomes providing a more unified
approach to variational estimation of non-linear hierarchical models. Extending the
model to include a weakly informative prior such as Huang and Wand (2013) is also an
important extension.

Second, the usefulness of MAVB should be explored both theoretically and in the
context of other models. As noted earlier, there is nothing about using MAVB that
is specific to logistic hierarchical models per se. Indeed, this idea of “improving” an
approximation by pushing it through a Markov transition kernel can be generalized to
a wide variety of MCMC samplers and models. It thus opens a question of which Markov
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transition density to use for other models that do not admit marginal augmentation.
A reasonable conjecture is that as the mixing of the sampler improves, the transformed
sample will be closer to the true posterior.

Supplementary Material

Supplementary Material (DOI: 10.1214/21-BA1266SUPP; .pdf). The supporting infor-
mation contains derivations of the variational algorithm (Appendix A), formal defini-
tions and proofs of MAVB (Appendix B), results on accelerating CAVI using PX-VB
and joint updates of certain parameters (Appendix C), additional simulations (Ap-
pendix D), and additional analyses on Ghitza and Gelman (2013) (Appendix E).

Open-source statistical software to implement the algorithms in this paper is avail-
able on GitHub as noted in the acknowledgements. Materials to replicate the analyses in
the paper can be found at the following link: https://doi.org/10.7910/DVN/DI19IB.
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