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Snow density estimates below the surface, used with airplane-acquired
ice-penetrating radar measurements, give a site-specific history of snow wa-
ter accumulation. Because it is infeasible to drill snow cores across all of
Antarctica to measure snow density and because it is critical to understand
how climatic changes are affecting the world’s largest freshwater reservoir,
we develop methods that enable snow density estimation with uncertainty in
regions where snow cores have not been drilled.

In inland West Antarctica, snow density increases monotonically as a
function of depth, except for possible microscale variability or measurement
error, and it cannot exceed the density of ice. We present a novel class of
integrated spatial process models that allow interpolation of monotone snow
density curves. For computational feasibility we construct the space-depth
process through kernel convolutions of log-Gaussian spatial processes. We
discuss model comparison, model fitting and prediction. Using this model,
we extend estimates of snow density beyond the depth of the original core
and estimate snow density curves where snow cores have not been drilled.
Along flight lines with ice-penetrating radar, we use interpolated snow den-
sity curves to estimate recent water accumulation and find predominantly de-
creasing water accumulation over recent decades.

1. Introduction. Antarctic snow density is directly linked with climate drivers and ice
sheet dynamics. Snow density measurements are also used in combination with airplane radar
measurements to estimate surface mass balance (SMB) over time (Medley et al. (2014)). As
defined here, SMB is the net precipitation, sublimation, melt, refreeze and wind redistribution
of snow and is directly linked to changes in climate. More accurate quantification of SMB
greatly improves our understanding of net mass balance processes, provides a direct link
to climate drivers of ice sheet mass balance and ice sheet dynamics and gives a reasonable
target for climate and ice sheet process models. Because radar estimates of SMB require
snow density measurements, accurate snow density estimation is essential. For this reason,
researchers drill and analyze snow cores to measure snow density as a function of depth
below the surface. However, snow cores often do not align with airplane flight lines with
radar measurements.

Because the density of ice, which we call ρI , is 0.917 g/cm3, snow density can only take
values between 0 g/cm3 and ρI . Moreover, below the surface snow density generally in-
creases as a function of depth, until it approaches the density of ice. Our goal here is to
provide methods for estimating the snow depth-density curve in locations without drilled
snow/ice cores while imposing appropriate functional constraints on our estimates of snow
density. In this analysis we develop models for Antarctic snow density as a function of depth
below the surface that allow for spatial interpolation. Using these models, we predict snow
density against depth in locations without data. Within this framework that shares informa-
tion from neighboring cores, we extend snow density estimates to deeper depths than were
originally drilled.
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There is a rich literature on monotonic or isotonic function estimation or regression (see
Barlow et al. (1972), Robertson, Wright and Dykstra (1988) for early discussion). This
topic has been furthered under various modeling frameworks. In the frequentist literature
these examples include splines (Ramsay (1988)) and restricted kernels (Müller and Schmitt
(1988)). In a Bayesian framework, Gelfand and Kuo (1991) and Neelon and Dunson (2004)
impose monotonicity through the prior distribution. More recently, Riihimäki and Vehtari
(2010) propose monotonic curve estimation through constrained Gaussian processes (GP).
Similarly, Lin and Dunson (2014) use Gaussian process projections to estimate monotone
curves.

Building on differential equation models for snow densification, we propose a class of
novel monotone spatial processes constructed by integrating over positive space-depth pro-
cesses with respect to depth, yielding a spatial process of monotone increasing functions.
We call this class of models monotone integrated spatial processes (MISPs). Given the size
and attributes of our dataset (discussed in Section 2.2), we choose to construct the posi-
tive space-depth process through kernel convolutions of log-Gaussian spatial processes (see
Higdon (1998, 2002) for early discussion on process convolution models for spatial mod-
eling). We compare the performance of various kernels, including Gaussian, t , asymmetric
Laplace and M-spline basis functions (Meyer (2008), Ramsay (1988)). As long as the ker-
nel is amenable to integration, we can represent the model as a constrained spatially varying
coefficient model with integrated kernels as predictors (Gelfand et al. (2003)). This model
provides simple spatial prediction of snow density curves by model-based interpolation of
basis function coefficients.

We highlight three additional contributions motivated by this dataset. Because snow den-
sity can only take values between 0 g/cm3 and ρI , we model these spatially-varying monotone
curves in a unique hierarchical generalized linear model framework that corresponds to com-
monly used constrained differential equations for snow densification (see, e.g., Herron and
Langway (1980), Hörhold et al. (2011), Verjans et al. (2020)). In contrast to these common
approaches, our approach allows this density curve to change its attributes to vary spatially.
Snow density measurements are expected to be heteroscedastic because density measure-
ments are taken as an average over some length of the core and are thus more certain when
averaged over greater lengths. Moreover, the data come from four separate field campaigns,
and, although their measurement methods are similar, we expect some differences in the
measurement error associated with each group. To account for these patterns in variability,
we consider models for the variance that account for the length of the core used for the mea-
surement and allow model uncertainty to depend on the group that took the measurement.
Lastly, we apply the approach of Keeler et al. (2020) to estimate SMB as a function of time,
using snow density curve predictions at locations with airplane acquired radar measurements
and providing a much richer recent history of water accumulation over the Antarctic ice
sheets.

We continue this manuscript by discussing snow densification, including the differential
equation framework that we adapt for our model and its relationship with surface mass
balance in Section 2.1. We explore the snow density dataset that motivates our statistical
contributions in Section 2.2 and comment briefly on the ice-penetrating radar data used
to estimate SMB. Then, we present the class of integrated spatial process models in Sec-
tion 3. Following our proposed methods, we give our final model for Antarctic snow den-
sity, including a discussion of our model comparison approach, model fitting and spatial
interpolation in Section 4. We then analyze the results of our model in Section 5 and
conclude our paper with final comments and a discussion of possible extensions in Sec-
tion 6.
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2. Snow density: Physics and data.

2.1. Snow densification and surface mass balance. Previous efforts to model the varia-
tion of snow density with depth take various forms, building upon the physics of densification
(Cuffey and Paterson (2010)), empirical fits to data using exponential functions (Miège et al.
(2013)) or a combination of the two (Herron and Langway (1980), Hörhold et al. (2011),
Verjans et al. (2020), White et al. (2020)). The hybrid approach by Herron and Langway
(1980) is the most widely used model. Changes in density ρ over depth x are generally mod-
eled using a special case Bernoulli’s differential equation,

(2.1)
d

dx
log

(
ρ

ρI − ρ

)
= z(x)

with solution, using integrating factors,

log
(

ρ(x)

ρI − ρ(x)

)
= α +

∫ x

0
z(t) dt,

ρ(x) = ρI

eα+∫ x
0 z(t) dt

1 + eα+∫ x
0 z(t) dt

,

(2.2)

where α is a constant determined by the density at depth 0 and z(x) is a positive function
that varies over depth. In most literature (see, e.g., Herron and Langway (1980), Hörhold
et al. (2011), Verjans et al. (2020)), z(x) is modeled as a piecewise constant function. To
represent the positive function of depth z(x) more generally, we consider kernel convolutions
of log-Gaussian spatial processes (LGPs) in Section 3.

Ice sheet surface mass balance (SMB) refers to the net sum of all changes in mass
added to an ice sheet’s surface within a given year, encompassing solid precipitation, melt-
ing/refreezing snow, blown snow and sublimation processes. Due to below freezing temper-
atures year-round and the relatively small fraction of sublimation in most regions (Lenaerts
et al. (2012)), SMB in West Antarctica is reasonably approximated simply with falling and
wind-blown snow. The classical method of measuring SMB in remote and extreme envi-
ronments, like Antarctica, involves collecting ice cores, determining an age-depth scale us-
ing seasonal markers in snow/ice physical properties and chemistry and integrating snow/ice
density over annual intervals to determine the total mass input (typically in water-equivalent
depth) for a given year. These methods present some limitations, with low spatial coverage
being one of the most important. Due to the extreme environments present in Antarctica, its
lack of access and the expense of data collection, relatively few annually resolved records
of SMB exist in West Antarctica with frequent clustering of coring sites. This sparsity, com-
bined with the fact that point measurements at times are representative of only a few square
kilometers (Banta et al. (2008), Eisen et al. (2008)), limits the applicability of conclusions
drawn from ice core studies.

An important advancement to address this limitation is the use of ice-penetrating radar sur-
veys to image internal layering in the snow subsurface, providing much-needed spatially dis-
tributed coverage of SMB estimates (Koenig et al. (2014)). This method, however, is unable
to provide information about the depth-density relationship of the snow, and snow density
information is needed to produce SMB estimates. This necessitates independent estimates of
density to expand the utility of SMB radar methods.

We apply approaches from Keeler et al. (2020) to estimate surface mass balance in central
West Antarctica over recent decades using estimates of snow density to 40 meters below the
surface. This approach consists of computer vision algorithms, principally based on Radon
transforms and peak finding, to pick annual snow layers in radar images to estimate annual
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FIG. 1. (Top-Left) Location of core sites with colors indicating campaign. The gray line shows flight lines with
ice-penetrating radar measurements, and arrows labeled with letters A, B and C, indicate sites where we illustrate
snow density and SMB estimation. (Top-Right) Number of density measurements at each core plotted against core
length (maximum depth) in m. (Bottom) Density measurements over depth by core, grouped by campaign. Note
that the depth scales of these measurement types differ greatly. The black line indicates the density of solid ice.

SMB. The method first performs Radon transforms on iterative local subsections of an in-
put echogram image, followed by a subroutine to identify peaks in the radar return strength
of individual radar traces (typically corresponding to annual snow layers). These peaks are
then grouped into laterally-continuous layers based on the integrated angle brightnesses de-
termined in the Radon transform step and similarities in peak position, width and magnitude.
Subsequent layers are assigned probabilities of representing annual layers based on layer
length and return brightness. Monte Carlo simulations using these probabilities, combined
with the depth-density profiles generated using the methods outlined in this paper, produce
individual annual SMB distributions for each trace location in the radar image.

2.2. Data. Here, we discuss the data characteristics and constraints that influence our
modeling decisions. Our dataset consists of 57 snow/ice cores at ns = 56 locations, each with
many density measurements. We index density measurements ρ(si , x) by the core si , where
s indicates the location and i indexes replication at site s and by depth x. We let S denote the
collection of core sites. The locations of the snow cores si ∈ S , the flight lines with ground
penetrating radar, the number of measurements in each core nsi , the length of the core xmax,si
and the measured density ρ(si , x) as a function of depth are plotted in Figure 1. Most cores
have between 20 and 1000 measurements, and, in total, the dataset contains N = 14,844
measurements.

These cores come from four field campaigns (indexed by c(si )), namely, the East Antarctic
Plateau (Albert et al. (2004)), the Siple Dome project (Lamorey and Cooper (2002)), the
Satellite Era Accumulation Traverse (Burgener et al. (2013)) and the U.S. portion of the
International Trans-Antarctic Scientific Expedition (Mayewski et al. (2005)). In this paper
we refer to these different campaigns as EAP, SDM, SEAT and U.S., respectively. As these



560 P. A. WHITE, D. G. KEELER AND S. RUPPER

FIG. 2. Example of an ice-penetrating radar image. The visible layering represents seasonal variations in snow
properties, causing reflections of radar pulses back to the transceiver. These annual layers, combined with snow
depth-density estimates, are used to estimate annual SMB. Image from (Paden et al. (2019)).

projects were distinct undertakings, precise methods and techniques of density measurement
differ somewhat between them, although most are similar.

The traditional and most commonly used method involves measuring the mass and vol-
ume of core sections. Density variability, however, relies not only on the mass and volume
measurements themselves but also on the length of the core section used. Longer core sec-
tions smooth higher-frequency changes into a single bulk estimate, while increasingly small
core sections better resolve short-term fluctuations. Density measurements made in the field
are necessarily on long sections (typically one meter), while measurements performed in a
lab are often over a few centimeters. The accuracy and precision of density measurements,
therefore, depend on both the method and resolution of the measurements. Given the data
attributes discussed, we consider combinations on variance models that account for: (1) the
length of the core that is used to obtain that measurement and (2) the field campaign that
obtained the density measurement.

Ice-penetrating radar permits nondestructive imaging of the snow sub-surface. Seasonal
variations (in, e.g., air temperature, dust deposition, compaction rates, etc.) result in differ-
ences in the electromagnetic properties of snow deposited in summer compared to that in
winter (Alley et al. (1990)). These contrasts act as reflection horizons for electromagnetic
pulses sent from ground-based or airborne active radar systems (Fujita et al. (1999)). The
combined reflected radar signals from repeated pulses of a moving radar system can, there-
fore, image the subsurface annual layering in Antarctic snow (see Figure 2).

3. Monotone integrated spatial process. In this section we present the class of mono-
tone integrated spatial processes (MISP) for estimating monotone snow density curves. We
define z(s, x) > 0 to be a positive space-depth analog to z(x) in (2.2). Using the integral of
z(s, x), with respect to depth, we model the mean function of snow density μ(s, x) as

(3.1) log
(

μ(s, x)

ρI − μ(s, x)

)
= w(s, x) = α(s) +

∫ x

0
z(s, t) dt.
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This constrains the mean function μ(s, x) ∈ (0, ρI ) to be monotone increasing. To explore its
properties here and in the Supplementary Material, we define w(s, x) to be the untransformed
MISP. We clarify, however, that we only use μ(s, x), a transformation of non-Gaussian pro-
cesses, as the mean snow density.

As a brief aside, we mention a few of the mathematical properties of the MISP. Because
z(s, x) > 0, for any x′ > x, we know w(s, x′) > w(s, x). That is, w(s, x) is monotone in-
creasing as a function of x for any location s. By standard real analysis, because w(s, x) is
a monotone function over any interval (0, T ), it is differentiable almost everywhere on that
interval by Lebesgue’s theorem for the differentiability of monotone functions. In addition to
being differentiable almost everywhere, the covariance of w(s, x) is nonseparable and depth
nonstationary, and there are explicit relationship between the mean and covariance (Hefley
et al. (2017)) (see the online Supplementary Material White, Keeler and Rupper (2021)).
Thus, this model provides a very flexible class of monotone functions.

To construct a positive space-depth process z(s, x), we use kernel convolutions (Higdon
(1998, 2002)). The integrated space-depth function is∫ x

0
z(s, t) dt =

∫ x

0

∫
R

k(t − u)z∗(s, u) dudt,

=
∫
R

∫ x

0
k(t − u)z∗(s, u) dt du,

=
∫
R

(
K(x − u) − K(0 − u)

)
z∗(s, u) du,

(3.2)

where k(·) is the smoothing kernel (a scaled PDF) with corresponding scaled CDF K(·) and
z∗(s, u) is a spatial LGP for every depth u. Thus, our proposed method is a kernel convolution
model using differences of CDFs as kernels. For computational feasibility with N > 104 and
because the mean density function appears relatively smooth, we reduce the depth dimension-
ality of the space-depth process using process convolutions with a selection of depth-ordered
knots xmin = 0 ≤ ξ1 ≤ · · · ≤ ξJ ≤ xmax = maxsi xmax,si . However, we do not reduce dimen-
sionalilty over space. In this framework we can express the space-depth random function
w(s, x) as a linear model,

w(s, x) = α(s) +
J∑

j=1

Kj(x)z∗
j (s)

= α(s) + K(x)T z∗(s),

(3.3)

where Kj(x) = ∫ x
0 kj (u− ξj ) du and kj (·) and z∗

j (s) are kernels and independent spatial log-
Gaussian processes associated with each knot ξj . The vectors K(x) and z∗(s) contain J ele-
ments of integrated kernels Kj(x) and log-Gaussian process elements z∗

j (s) for j = 1, . . . , J .
Importantly, the kernels kj (·) need not be symmetric, and there are potential computational
benefits to using truncated kernels, as this induces sparseness in K(x).

To complete this model, we must specify several components: the number of knots J ,
the spatially-varying intercept α(s), the smoothing kernels kj (·) > 0 and the spatial log-
Gaussian processes z∗

j (s), j = 1, . . . , J . The properties of this space-depth model are de-
termined by these selections. We consider specifying kj (·) using Normal, t and Asymmetric
Laplace probability distributions with full support (R) as well as M-spline bases. M-spline
bases are, in fact, probability densities, as they are scaled to integrate to one (Ramsay (1988)),
and, when integrated, M-splines bases yield I-spline bases common to monotone regression.
Thus, monotone I-splines models are a special case of (3.3) and induce sparseness in K(x).
M-splines bases naturally induce sparseness, but using truncated probability distributions can
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provide the same desirable sparseness in “big-data” settings. We discuss the M-spline basis
function in more detail in the Supplementary Material. We make model selections based on
out-of-sample predictive performance (see Section 4.1).

4. Methods and models.

4.1. Model selection. To compare different models, we carry out 19-fold cross-validation
for each model considered because our data come from 57 snow cores, and, holding out three
cores, each model fitting is a convenient choice. Our modeling goal is estimating the entire
snow density function at locations without drilled snow cores. In our comparison, therefore,
we weight predictive performance measures by the length of the core that each hold-out
measurement represents. Our model comparison measures, therefore, correspond to approx-
imated integrated error measures common to density or function estimation (see, e.g., Fryer
(1976), Marron and Wand (1992)).

We let all model parameters be θ and use Markov chain Monte Carlo (MCMC) to ob-
tain M posterior samples from the posterior distribution of θ . For each posterior sample
θ (m), m = 1, . . . ,M , from our Markov chain Monte Carlo model fitting we generate a cor-
responding prediction ρ(m)(si , x) for each hold-out observation ρ(si , x) from the posterior
predictive distribution. We propose several criteria for comparing predictions to hold-out
data: predictive squared and absolute error as well as a strictly proper scoring rule (Gneiting
and Raftery (2007)), the continuous ranked probability score (CRPS) (see Brown (1974),
Matheson and Winkler (1976), for early discussion on CRPS). We estimate CRPS using the
empirical CDF of posterior predictions ρ(m)(si , x) (Krüger et al. (2016)), which we denote
CRPS(F̂ (si , x), ρ(si , x)),

(4.1)
1

M

M∑
j=1

∣∣ρ(j)(si , x) − ρ(si , x)
∣∣ − 1

2M2

M∑
m=1

M∑
m′=1

∣∣ρ(m)(si , x) − ρ(m′)(si , x)
∣∣,

where ρ(m)(si , x) represents the mth sample from the posterior predictive distribution for
core si and depth x. Unlike squared or absolute error, which only use the posterior mean,
CRPS compares the entire posterior predictive distribution to hold-out values and rewards
predictive distributions concentrated on the correct value.

To define integrated squared and absolute errors, we use the maximum depth xmax,si of the
core si and number of measurements nsi at si . We define integrated squared error (ISE) as

(4.2)
∑
s∈S

∑
i

xmax,si

nsi

∑
x

(
1

M

M∑
m=1

ρ(m)(si , x) − ρ(si , x)

)2

.

Similarly, we defined integrated absolute error (IAE)

(4.3)
∑
s∈S

∑
i

xmax,si

nsi

∑
x

∣∣∣∣∣ 1

M

M∑
m=1

ρ(m)(si , x) − ρ(si , x)

∣∣∣∣∣.
We do not define an integrated (or weighted) CRPS because CRPS naturally incorporates
model uncertainty (including weighting) probabilistically by accounting for the entire poste-
rior predictive distribution.

We now present a summary of our model comparison, deferring a complete outline of the
results to the Supplementary Material. The final model uses piecewise constant M-spline ker-
nels kj (·), corresponding to a linear I-spline, with five interior knots at five, 15, 30, 45 and
75 meters. To write this model as (3.3), we must include an additional knot at zero meters.
The knot locations were chosen through model selection among a variety of knot selections.
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These depth knots capture expected changes in densification patterns due to the interplay
of particle rearrangement and plasticity changes at critical densities (Herron and Langway
(1980), Hörhold et al. (2011)). The spatially-varying intercept α(s) and the log-Gaussian
processes z∗

j (s) are specified independently with exponential covariance using the great-circle
distance, denoted d(s, s′), with shared spatial decay parameter φ and unique scale parameters
σ 2

j . The Gaussian process intercept and log-Gaussian process coefficients are centered on
a unique scalar means. The mean function is nested within a truncated-Normal distribution
with campaign-specific variance, scaled by the length of the core each measurement repre-
sents. The model is described in detail in Section 4.2 with prior distributions discussed in
Section 4.3.

4.2. Hierarchical model. Here, we present the model for snow density with the best out-
of-sample predictive performance. We constrain the mean function to lie between 0 g/cm3

and the density of ice ρI using a generalized logistic function with ρI as a maximum. Our
hierarchical model for snow density is

ρ(si , x) ∼ T N
(
μ(s, x), τ 2

c(si )
nsi

xmax,si
,0,∞

)
, ρ(si , x) > 0

log
(

μ(s, x)

ρI − μ(s, x)

)
= α(s) + K(x)T z∗(s), μ(si , x) ∈ (0, ρI ]

α(s) ∼ GP
(
γ0, σ

2
0 exp

(−φd
(
s, s′))), α(s) ∈ R

z∗
j (s)

ind∼ LGP
(
γj , σ

2
j exp

(−φd
(
s, s′))), z∗

j (s) > 0,

(4.4)

where T N (·, ·,0,∞) is a Gaussian error model truncated below by 0 using core-specific
weights constructed with the maximum depth xmax,si and the number of density measure-
ments nsi , scaled by a campaign-specific scale parameter τ 2

c(si )
. While the truncation is nec-

essary to provide the proper support for ρ(si , x) > 0, in practice, the truncation does very
little because observations are not close to 0 g/cm3, given that estimated variances are small.
Therefore, we refer to μ(s, x) as a mean function rather than a location function. The GPs
for α(s) and log(zj (s)) are independent with shared decay parameter φ, unique scale pa-
rameters σ 2

0 ,. . . ,σ 2
6 and location parameters γ0,. . . ,γ6. Importantly, because each z∗

j (s) is a
log-Gaussian process, they each have a multiplicative rather than additive errors. Here, the
mean of the model is a scaled inverse-logit tranformation of a MISP using M-spline kernels
with five interior knots (six knots in terms of (3.3) discussed in Sections 3 and 4.1). The
mean function μ(s, x) is not indexed by i because it does not depend on the core; however,
the variance of the model is dependent on the core si and the campaign c(si ) that analyzed
the core.

4.3. Prior distributions, model fitting and interpolation. To complete the model, we
specify prior distributions for all model parameters. In this setting, standard mean-zero prior
distributions for γ0, . . . , γ6 would suggest a model with high surface density and rapid snow
densification. Our goal in selecting a prior distribution was choosing a model that would pro-
duce very flexible snow density estimates. Here, we assume the following prior distributions:

γ0 ∼ N (−0.5,1), γj ∼ N (−1.5,1) for j = 1, . . . ,6,

σ 2
0 ∼ IG(10,3), σ 2

j ∼ IG(4,3) for j = 1, . . . ,6,

φ ∼ Uniform
(
10−5,10−1)

, τ 2
c(si ) ∼ Gamma(1,100) for all c(si ),

(4.5)
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FIG. 3. Prior predicted mean snow density curves under (Left) our proposed model and (Right) zero-mean prior
distributions.

where N , IG(·, ·) and Gamma are Normal, Inverse-Gamma and Gamma Distributions, re-
spectively. Here, we use the parameterization of IG(a, b), indicating a mean b/(a − 1) and
Gamma(a, b), that has expectation a/b.

Although these prior distributions are informative and nonstandard, we select them so
that the mean prior surface density is between 0.35–0.4 g/cm3 and so that simulations from
the prior distribution yield plausible and flexible snow density curves. In Figure 3 we plot
1000 realizations of the mean snow density simulated from our prior distribution and under
a more standard, mean-zero model. Note that the zero-mean model generates informative
and unrealistic density curves that put prior weight on near-ice density at shallow depths.
Thus, our seemingly more informative prior is less informative and more realistic in the data
space, while allowing great flexibility. We also highlight that there are several large jumps
in the samples from the noninformative specification because the mean-zero normal random
variables, when exponentiated, can be quite large and induce very rapid changes in the mean
function. These changes in the function are particularly visible at knot locations. Lastly, we
choose the prior distribution for φ, the common decay parameter for α(s) and log(zj (s)), to
be uniform between 10−5 and 10−1 to allow a wide range of possible values.

We sample from the posterior distribution, π(θ |ρ), where ρ denotes all density mea-
surements, using Hamiltonian Monte Carlo (HMC), implemented in Stan (Carpenter et al.
(2017)). While several model parameters can be sampled in closed form using a Gibbs Sam-
pler, the spatial random effects cannot, and using HMC improved the mixing of spatial ran-
dom effects. Letting θ be all model parameters, this model fitting approach yields M samples
from the posterior distribution.

We use each of the posterior samples (θ (1), . . . , θ (M)) to estimate snow density at hold-
out locations and depths sampling from the posterior predictive distribution, via composition
sampling (Tanner (1996)). That is, for every posterior sample θ (m), we simulate from the data
model (4.4) to get posterior predictions for every hold-out ρ(si , x). When estimating snow
densities at unobserved locations, however, we estimate μ(s, x) rather than a noisy version of
the mean. In conjunction with ice-penetrating radar measurements, estimated snow density
curves can then be used to estimate a history of surface mass balance at that location using
the methods discussed in Section 2.1, as we demonstrate in Section 5.

5. Results. Using Stan, we run our MCMC sampler for 55,000 iterations. We discard
the first 5000 iterations, yielding 50,000 posterior samples on which we base our posterior
inferences. In the Supplementary Material we demonstrate that the MCMC is well behaved.
In total, this model fitting takes approximately 24 hours using one Intel(R) Xeon(R) Gold
6142 CPU @ 2.60 GHz processor.
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FIG. 4. Violin plots of posterior samples for all spatially-distributed random effects.

5.1. Posterior summaries. Based on 50,000 posterior samples, we provide violin plots
for the posterior distributions for spatial terms, α(s) and log(z∗

j (s)), in Figure 4. We defer
other posterior summaries to the Supplementary Material but note that the campaign-specific
variances differ significantly, suggesting that these campaigns contributed different levels of
noise to the data.

For some sites the posterior distributions are more diffuse, particularly for coefficients
(z∗

j (s)) that correspond to I-spline bases at greater depths. This generally happens when a
snow core is shallow and does not extend past one or more of the interior knots. For example,
the EAP cores are two-meter snow pits. For such cores, as discussed in Section 3, estimation
of z∗(s) relies on information shared from nearby cores that have deeper observations. In
addition, when the estimated snow density μ(s, x) is close to ρI , even large changes in z∗

j (s)
may have little effect on μ(s, x). For both of these reasons, estimates of z∗

j (s) are generally
more variable for larger j (see Figure 4).

The SDM cores, labeled 4–10, have lower and more uncertain estimated intercepts α(s)
than other sites, meaning that the estimated surface density is lower relative to other sites.
These cores are geographically and thus climatically isolated. For this reason it is unsurpris-
ing that they appear different than other cores, but these estimates are not incompatible with
the estimates of other cores, cores 28–30, for example.

5.2. Interpolation and extension of snow density curves. In this section we show two util-
ities of this model: (1) extending snow density estimates beyond the depth of the original core
and (2) estimating snow density curves at locations where snow cores have not been drilled.
Both tasks are scientifically important, as the first task aids in studying a longer history of
the Antarctic ice sheets while the second task allows us to estimate water accumulation in
locations where we have not drilled snow cores.

For the first task we use cores 6, 24 and 42 (see Figure 1) as an illustration. Each core
represents a unique scenario. Core 6 comes from a very tight cluster of deep snow cores from



566 P. A. WHITE, D. G. KEELER AND S. RUPPER

FIG. 5. Estimated snow density down to 140 m for (Left) Core 6, (Center) Core 24 and (Right) Core 42. The
mean function is plotted in blue, 95% credible intervals on the mean as a polygon with red boundaries, 95%
posterior prediction intervals in black dashed lines (using the correct campaign-specific scale parameter and
assuming the same data spacing present in each core) and density measurements plotted as purple points.

the SDM project drilled near the coast with neighboring cores extending to nearly 100 meters
that aid in precise estimation of snow densities at deeper depths. In coastal areas, densification
generally occurs more rapidly due to slightly higher temperatures; therefore, there is a smaller
difference between the density of ice and observed densities, making density estimates more
precise. Core 24 is a 13.5 meter SEAT core in a data-rich area; however, in this region there
are not many deep cores. Core 42 is a U.S. snow core that is slightly longer than 50 meters
but is not in a relatively data-rich area. For each core we estimate the mean snow density
μ(s, x) down to 140 meters (see Figure 5).

Because core 6 is near many deep cores, the estimated density curve is very precise, even
though it only extends to 30 meters. The estimated snow density estimates for core 24 are
very precise to about 40 m but become less certain at greater depths because neighboring
cores lend less information at those depths. Compared to cores 6 and 24, core 42 lies in
a data-poorer region with only four other cores within a 500 km range. Thus, our density
estimates are much less certain beyond the range of measured density.

For the second task we estimate snow density along much of the flight line where ice-
penetrating radar measurements were taken (see Figures 1 and 2). Due to low data quality at
some locations, we were unable to obtain reliable SMB estimates. We estimate snow density
down to 40 meters because, due to radar signal attenuation, these are the only densities useful
for estimating SMB. Based on these snow density estimates along the flight line, we apply
approaches from Keeler et al. (2020), briefly discussed in Section 2.1, to estimate SMB (with
standard error) over recent decades. We focus on three locations without drilled snow cores,
labeled “A,” “B” and “C” in Figure 1, to illustrate how estimated snow densities can be
leveraged to estimate SMB (see Figure 6). Sites A and B show two of the most negative SMB
trends (−14.1 and −12.2 mm w.e./yr., on average), while site C has one of the most positive
estimated SMB trends, 0.7 mm w.e./yr, on average.

We plot the estimated SMB curves and time-averaged SMB estimates in Figure 7 along the
flight line. Overall, we see lower SMB at latitudes closer to the south pole. For each estimated
SMB curve, we estimate the trend over time using a weighted linear model and using the
inverse squared standard error as weights. We plot the estimated trends in SMB in a histogram
and at their locations on the flight line in Figure 8. Approximately 90% of the sites along these
flight lines have estimated negative slopes. Overall, these results suggest generally negative
trends in SMB across the central West Antarctic ice sheet. The preponderance of negative
SMB trends is particularly noteworthy, as this region has experienced pronounced warming
during the same time period (Bromwich et al. (2013)). As the moisture carrying capacity of
air increases with temperature, the inverse relationship of SMB and air temperature in this
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FIG. 6. (Top) Estimates of snow density for sites A, B and C, plotted in order left to right. (Bottom) Estimates of
surface mass balance corresponding to the above estimates of snow density and ice-penetrating radar signals.

region suggests changes in atmospheric moisture transport are the dominant driver of the
observed SMB trends.

6. Conclusions and future work. We have presented a novel class of spatial models for
monotone curve estimation. For theses data we constructed this model through kernel convo-
lutions that enables prediction of snow density below observed depths and at locations where
snow cores have not been drilled. Using 19-fold cross-validation, we selected a weighted
spatially-varying generalized linear model using M-spline bases for the kernel convolution,
where the coefficients of the integrated kernels are modeled using independent log-Gaussian
processes. We have demonstrated how this model estimates snow density below observed

FIG. 7. (Left) Estimated mean SMB (mm w.e./yr), averaged over all years (Right) Estimated mean SMB over all
years, colored by latitude.
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FIG. 8. Estimated trend in mean SMB (mm w.e./yr) (Left) plotted by location and (Right) in histogram with red
vertical line at 0.

levels and where no data has been acquired. Using these snow density estimates, we have es-
timated surface mass balance over the recent past and find generally negative trends in SMB
over the West Antarctic Ice Sheets.

In this analysis we did not account for the time of density measurement. In future work
we will account for time differences between the time of radar measurement and the snow
core drilling through a spatiotemporal model. However, the demonstrated ability to interpo-
late snow densification rates has several applications relevant to the cryospheric community.
As demonstrated, the extension of density profiles to arbitrary spatial locations is useful in
estimating local annual SMB using ice-penetrating radar, greatly expanding the spatial den-
sity and coverage of these measurements over traditional coring techniques. Similarly, quan-
tifying the total mass loss in Antarctica and similar regions is a primary target within the
community, with critical implications for sea-level rise (IPCC (2013)). A primary method for
determining net mass loss uses laser altimetry to measure changes in ice sheet surface ele-
vation but also requires accurate estimates of snow density to estimate mass changes (Li and
Zwally (2011)). The laser altimetry method, in particular, is a focus of several national and
international laboratories and organizations, highlighted by NASA’s recent ICESat-2 satel-
lite launch in 2018 and the ongoing ESA CryoSat-2 laser altimeter mission (Tedesco et al.
(2014)). Lastly, to improve snow density estimation, we will consider extensions of White
et al. (2019), where we consider sites that would sequentially minimize integrated error cri-
teria over regions of Antarctica.

A natural extension of our proposed framework could increase the number of knots in-
cluded in the MISP and provide shrinkage on the integrated kernel coefficients through an
autoregressive prior distribution (see Lang and Brezger (2004)). This approach would likely
reduce the model’s sensitivity to knot selection. More importantly, this extension would en-
able the automation of this approach for other applications.
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SUPPLEMENTARY MATERIAL

Supplement to “Hierarchical integrated spatial process modeling of monotone West
Antarctic snow density curves” (DOI: 10.1214/21-AOAS1443SUPPA; .zip). We provide
data and code to obtain final model results.

Supplement to “Hierarchical integrated spatial process modeling of monotone West
Antarctic snow density curves” (DOI: 10.1214/21-AOAS1443SUPPB; .pdf). We explore
covariance of the MISP model, detail M- and I-spline basis functions, present detailed model
comparison, and give extended model fitting results.
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