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Comment: Invariance, Causality and
Robustness
Vanessa Didelez

I would like to congratulate Peter Bühlmann on the
honor of being invited to give the Neyman Lecture. Jointly
with a number of co-authors of recent papers, he has
produced a substantial and thought-provoking body of
work in recent years around the concept of invariance.
His achievement is two-fold: He extends causal reason-
ing to involve prediction under new environments; after
several decades of existing research in the field of causal
inference; see early work in the 1970s and 1980s by Ru-
bin, Robins, Pearl, Spirtes and colleagues and the ensuing
explosion of work on this topic in bio-medical statistics,
epidemiology, computer science, sociology and political
science—this is a novel angle on causal inference, using
data in a different way with an original target of infer-
ence so far undervalued in the causal inference literature.
Vice versa, he demonstrates how causal reasoning is im-
portant to predictive modelling. It is a particular achieve-
ment of Bühlmann to have brought key ideas and concepts
of causality and causal inference to the attention of main-
stream statistics. This is not least due to linking causal
ideas, such as invariance (also known as stability (Dawid
and Didelez, 2010)), with fundamental concepts of tradi-
tional statistical inference, such as worst-case risk opti-
mization.

In the following, I will review the differences and simi-
larities of ‘classical’ causal inference and Bühlmann’s ap-
proach.

CAUSAL INFERENCE, BIAS AMPLIFICATION AND
PREDICTION

I would like to discuss some of the ideas in Bühlmann’s
paper by attempting to relate them to a phenomenon
known in the bio-medical/causal inference literature as
‘bias amplification’ (Pearl, 2010, Middleton et al., 2015,
Ding, VanderWeele and Robins, 2017). Consider a simple
linear SEM where

Y = βX + αH + ε,

and where A is a valid instrumental variable for the effect
β of X on Y (as in Bühlmann’s Figure 6 with no A → H
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and no A → Y edges, see Figure 1(a) in this commen-
tary). The classical aim of causal inference is to to es-
timate β: we may be interested in β because under the
above SEM this parameter represents the effect on Y of
fixing X at x versus fixing it at x + 1, that is, the average
causal effect β = E(Y |do(X = x +1))−E(Y |do(X = x))

(due to linearity and no interaction, the marginal and the
conditional average causal effects are the same in this spe-
cial case; but we must not forget that this does not hold for
more general models1).

In the above model, we know that (i) a linear regres-
sion of Y on X results in a biased estimator for β due to
the hidden confounder H , unless the H → X or H → Y

relations vanish; (ii) using A as an instrument to perform
two-stage least squares (2SLS) yields a consistent estima-
tor of β; (iii) regressing Y on both X and A (or partialling
out A first) typically results in even more bias than ap-
proach (i). This last phenomenon is known as ‘bias am-
plification’ (Pearl, 2010). Intuitively, the amplification oc-
curs because including the IV A as additional regressor
explains away some of the ‘free’ variability in X, with the
variability due to H remaining, and hence amplifying the
bias due to unobserved confounding by H (Greenland and
Pearl, 2011).

When using anchor regression, (i) corresponds to γ =
1, (ii) to γ = ∞, and (iii) to γ = 0. Hence, when A is
a valid instrument, we can roughly say the larger γ the
less bias we have in estimating β; at the same time (due
to Theorem 4.1) for large γ we minimise worst-case pre-
diction risk under large shift perturbations but not under
small shift perturbations.

Consider now the case where A is not a valid instrument
(see Figure 1(b) in this commentary) and

Y = βX + αH + ξA + ε,

with ξ �= 0 (note that under the shift perturbations ξA is
replaced by the shift v). In this case, we know (i′) a linear
regression of Y on X results in a ‘doubly biased’ estima-
tor for β due to the hidden confounder H and the hidden
(unused) confounder A; (ii′) using A as an instrument to
perform two-stage least-squares will also yield a biased
estimator of β as A is now not a valid IV anymore; (iii′)

1Much of the causal inference literature is concerned with robust es-
timation of a marginal causal effects under considerably weaker para-
metric assumptions than a linear SEM.
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FIG. 1. Causal DAGs, where (a) A is a valid IV for the effect of X on Y in the presence of unobserved confounding by H ; (b) A is itself a
confounder of the effect of X on Y and not a valid IV anymore; (c) A and X (with H still hidden) are useful for predicting Y in an unchanged
environment but have both no causal effect on Y .

finally, regressing Y on both X and A should result in a
less biased estimator of β than (i′). The amount of bias
and the extent to which the IV is invalid depend on ξ and
the strength of the A → X relation; when ξ is close to
zero, then (ii′) is less biased, when it is further away from
zero then (iii′) will be better for estimating β . What hap-
pens to amplification bias which occurred for ξ = 0? For
ξ �= 0, approach (iii′) will still amplify the bias due to con-
founding by H whenever the inclusion of A as regressor
reduces the unexplained variability in X more than the
unexplained variability in Y , that is, this also depends on
the A → X strength. So, interestingly, depending on the
A → Y strength and the A → X strength, there must be a
tipping point where using A as IV versus including it as
a regressor becomes less beneficial with view to bias in
estimating β .

How does this relate to anchor regression? Above, I
was considering estimation of the causal effect parame-
ter β . Anchor regression instead focusses on minimising
worst-case prediction risk across different and new en-
vironments. As I understand it, estimation of the causal
parameter β is most relevant for predicting Y in new en-
vironments where X is made completely independent of
H , which corresponds to the truncation principle (Spirtes,
Glymour and Scheines, 2000)—these are not the shift
perturbations of Section 4.3 for which anchor regression
has the optimality property of Bühlmann’s Theorem 4.1.
While causal reasoning about the relation between X and
Y typically assumes that we can fix the value of X itself by
an intervention, the shift perturbations instead formalise
that the value of A is changed or replaced by the new
environment and that this then shifts all other variables.
Note that under a shift perturbation X retains an associa-
tion with H so that the biased estimator from (i′) may still
be useful for prediction in such a new environment. I will
discuss the prediction aspect next.

PREDICTION AND CHANGING ENVIRONMENTS

A key insight underlying invariant prediction and an-
chor regression is to make explicit the need to be clear
whether a prediction task is aimed at the same or at a dif-
ferent environment; obviously, the quality of prediction in
a new environment depends on what is known, or can be
inferred, about how the new environment is different from
the training environment(s). Any background knowledge

on stable aspects across new and old environments should
be exploited. The invariance principle is much more gen-
eral than causal relations; but if we are prepared to as-
sume an underlying causal structure, then we know which
invariances to expect under what type of perturbations or
interventions.

Consider the standard task of predicting Y under un-
changed environments. To illustrate this, assume that A

is a valid IV and that X has in fact no causal effect
(Bühlmann’s Figure 6 with no X → Y , no A → H and no
A → Y edges, see Figure 1(c) in this commentary). In the
absence of measurements on H , to minimise prediction
error we should use both X and A as regressors, that is,
use method (iii). This is because X is informative for H ,
and hence useful for predicting Y ; and A is also predictive
of Y due to its conditional association with Y given the
collider X, that is, together with X the variable/indicator
A becomes informative for H , and hence for Y ; conse-
quently, in a regression of Y on (A,X) both variables
will typically have nonzero regression coefficients despite
none of them being a cause of Y in Figure 1(c). In terms
of anchor regression, the case of new environments being
the same as the old environments occurs when the shift
perturbations are zero; hence, the optimal choice is γ = 0
which coincides with the above reasoning and shows that
for ordinary prediction (under unchanged environments)
any conditionally associated predictors are relevant. In
summary, for pure prediction an IV would simply be used
as a regressor instead of 2SLS; bias amplification is not
an issue as the aim is not to consistently estimate a causal
effect.

The predictive role of A and X holds while the data
generating process for (X,H,Y ) under different environ-
ments A remains the same, but they may lose this prop-
erty under certain changes. For instance, as discussed ear-
lier, in a different experimental environment we might
change the way how X is generated and make it inde-
pendent of H ; then X becomes entirely uninformative
for H , and hence for Y , and similarly A will no longer
be informative for Y given X. If X is not a cause of Y

(Figure 1(c)) it is useless for prediction under such mod-
ified environments. Shift perturbations lie somewhere in
between: with no shift we have unchanged environments
and with large shifts we get closer to an experimental set-
ting (if the shift affects X). What cannot be represented
by shifts is an intervention that fixes X at some value near
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its mean. Shifts do not render the variables of an SEM en-
tirely independent of their graph parents, but they weaken
the dependence. While the classical task of prediction (in
unchanged environments) appears almost the ‘opposite’
of causal inference and can in principle easily be autom-
atized, the novel task of prediction under changing envi-
ronments require some careful causal thinking—to what
extent it can also be automatized is a difficult question,
and I would call for caution. A key structural assumptions
underlying anchor regression, to be justified in any given
application, and hence not automatic, is that the anchor
A must be exogenous, that is, not itself causally affected
by other variables in the system. For example, if the dif-
ferent environments are different hospitals, and it depends
on the socioeconomic background of patients which hos-
pital they attend, then it is unlikely that ‘hospital’ can be
used as anchor.

A DEFINITION OF CAUSALITY?

In Section 6, Bühlmann discusses whether causality
could be defined in terms of invariance. I would like to
put the emphasis differently, namely on the importance
of formalising the changes relevant to the research ques-
tion. Classically, causal inference wants to asses effects of
interventions, that is, quite extreme changes to a system.
For instance, we might ask how health would improve in
a population if everyone stopped smoking as could be en-
forced by a complete ban of cigarettes. The importance
of well-defined interventions for practically useful causal
analyses in epidemiology in terms of targets for action has
received much attention (Hernan, 2016). In contrast, it has
sometimes been criticised that humans cannot in practice
intervene in many causal relations and, therefore, a defi-
nition of causation in terms of effects of interventions is
besides the point (Pearl, 2009). However, in my view it
is important to envisage some change, like the new envi-
ronments of Bühlmann, in order to clarify the need for,

and the aim of, causal inference. This change does not
need to be ‘human-made’, it could be due to different or
changing circumstances. Bühlmann’s approach nicely il-
lustrates this: if we want to simply predict Y under un-
changed environments (γ = 0), we can use any associ-
ations (see earlier example in the context of Figure 1(c)
above); but if we want to make predictions for changing
environments we better start to apply causal principles
and look for exogeneities. A key role falls to defensible
assumptions about when what is, and what is not, invari-
ant or stable under those changes; a thorough and deep
understanding of these concepts is essential.
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