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1. Introduction

Statistical inference in the study of observational data is concerned with random
(sampling) error, i.e. the fact that even a random sample does not exactly reflect
the properties of the population and that there is often considerable sample-to-
sample variation when we repeatedly draw random samples from a population.
Inferential tools based on standard errors, such as p-values and confidence inter-
vals, are to help make inductive inferences beyond the confines of a particular
sample to a population. Due to their probabilistic foundation, they require a
random process of data generation that can hypothetically be replicated. When
p-values or confidence intervals are displayed, a plausible argument should be
given that the studied sample meets the underlying probabilistic assumptions,
i.e. that it is or can be treated as a random sample. Otherwise, there are no
grounds for using these inferential tools and they become essentially uninter-
pretable (Copas and Li, 1997; Vogt et al., 2014). When using them, researchers
should therefore transparently describe how and from which parent population
the sample was drawn and, consequently, to which inferential (target) popula-
tion they want to generalize (Hirschauer et al., 2019).

This paper focuses on p-values and inductive statistical inference in terms
of estimating population quantities and generalizing from a sample to its par-
ent population.1 For example, we might have measured the average per capita
income in a sample of 10,000 randomly selected residents, but be ultimately
interested in the average per capita income in a city of one million residents. To
understand the purpose of statistical inference, one must clearly distinguish be-
tween sample quantities (estimates) and population quantities. Otherwise one
runs the risk of lurching all-too readily from the description of some sample
data that are conveniently at hand to overconfident generalizations regarding
population quantities (Matthews et al., 2017). Failing to be explicit regard-
ing the data generation process and the inferential target population fuels the
risk of rash statements regarding real-world regularities. Berk and Freedman
(2003) emphasize that statistical assumptions are empirical commitments and
that acting as if one obtained data through random sampling does not create
a random sample. Complying with the empirical procedure “random sampling”
permits using p-values as inferential aids for inductive generalizations from the
probability sample towards its parent population. Non-compliance, in contrast,
precludes a meaningful use of inferential statistics, except when deviations from
random-sampling are demonstrably ignorable or adequately corrected for.

Despite delusive significance declarations that are often attached to p-values,
their inferential content is limited even when they are applicable in principle.
In the words of McCloskey and Ziliak (1996: 98) we must realize that “[t]he
uncertainty of the estimate that arises from sampling error [is] the only kind
of uncertainty the test of significance deals with.” In other words, the p-value

1While being an issue beyond this paper’s scope, it should be noted that a probabilistic data
generation mechanism (randomization) is also the prerequisite for a meaningful interpretation
of p-values in experiments aimed at identifying causal effects within a given sample of study
(cf. Hirschauer et al., 2020).
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compares a point estimate from a particular random sample with an estimated
noise-only distribution of outcomes that would result if random error were at
work alone (Ludwig, 2005). This distribution is inherently based on the thought
experiment of statistical replication, i.e. we assume noise-only and presumably
apply the same econometric model to many other equal-sized random samples
from the same population. In brief, the p-value is the conditional probability
of re-finding an observed effect (or a larger one) in random replications if we
assumed the statistical model including the null hypothesis of zero effect to be
true. Per definition, a p-value cannot work inversely and inform us on the un-
derlying reality; i.e. “it is logically impossible to infer from the p-value whether
the null hypothesis or an alternative proposition is true. We cannot even de-
rive probabilities for hypotheses based on what has delusively become known
as ‘hypothesis testing.’ In the usual sense of the word, a p-value cannot ‘test’
or ‘confirm’ a hypothesis, but only describe data frequencies under a certain
statistical model including the null” (Hirschauer et al., 2019: 712).

Unfortunately, in the economic and social sciences, we rarely have random
samples. We often use pre-existing observational data or survey data obtained
from convenience samples that are non-random but easy to come by at low
costs (students in a classroom, volunteers on Web-platforms, people on mailing
lists assembled for other purposes, etc.). Even when we can avoid non-coverage
problems and succeed in randomly assembling subject pools (sampling frames)
from defined populations, we usually do not escape sample selection bias because
we cannot force subjects to participate. Due to non-coverage and self-selection,
participants and non-participants in a survey might be systematically different.2

In longitudinal studies, we face the additional problem of attrition when study
participants “get lost” over time. The problem of non-probabilistically sampled
data can be framed as a data problem where data are missing, but missing not
at random (cf. Little and Rubin, 2002; Mercer et al., 2017). As a consequence,
estimates of population quantities including regression coefficients as well as
the standard errors and p-values of those estimates might be biased in unknown
ways. Non-random sample selection is often obvious. Nonetheless, many studies
tacitly proceed as if they had a random sample and follow a misguided routine
of always displaying p-values for group differences and regression coefficients.3

Resulting conclusions run the risk of being grossly misleading.

Simple random sampling clearly represents a chance-based sampling design
that allows for a meaningful interpretation of p-values.4 When data collection

2Throughout this paper, we distinguish two main reasons why samples may not match
parent populations: “non-coverage,” when already the sampling frame omits certain portions
of the parent population, and “self-selection” or “non-response,” when subjects selected from
the frame can freely choose to participate or not.

3While providing a comprehensive list of studies that use p-values but do not meet the
empirical commitment of random sampling is not feasible, Gomez et al. (2019); Chen and
Crown (2019), and Massenot and Pettinicchi (2018) represent some haphazardly identified
examples from a range of academic disciplines.

4Even so, one should be cautious. Over the last decades, a vast literature has evolved warn-
ing against inferential errors associated with p-values. For an introduction, see, for example,
Ziliak and McCloskey (2008); Krämer (2011); Gigerenzer and Marewski (2015); Greenland et
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deviates from simple random sampling, things become less obvious and it is
often unclear under which conditions p-values can be used as an inferential aid
at all. There is a vast variety of complex and mixed sampling designs whose
respective features need to be considered to obtain unbiased estimates of pop-
ulation quantities and standard errors (for an introduction see, for example,
Lohr, 2009). For systematic reasons, however, it seems useful to distinguish
five ideal-type sampling contexts regarding the use of frequentist tools such as
p-values: (i) simple random sampling, (ii) stratified sampling, (iii) cluster sam-
pling, (iv) sampling contaminated with selection bias, and (v) full population
surveys. All of them are discussed in this paper to facilitate the understanding
of the probabilistic pre-conditions for estimating standard errors and the corre-
sponding fact that using p-values is only meaningful when these conditions are
met.

It should be noted that formal representations throughout this paper focus
on the mean because the notation for the estimation of standard errors of other
quantities such as regression coefficients tends to become messy. The universal
argument, however, that standard errors and associated inferential tools strictly
presuppose a random process of data generation and that deviations from simple
random sampling need to be considered when estimating standard errors applies
to all estimates.

2. Sampling designs that facilitate the use of inferential statistics

2.1. Simple random sampling – the generic benchmark for
statistical inference

The most basic case of a probability sample is a simple random sample (SRS),
i.e. a subset of a population drawn with the same probability as any other con-
ceivable subset of identical size, such that each unit had equal probability of
being selected into the subset. Being an unbiased representation of the popu-
lation, a SRS permits not only the use of conventional point estimates such as
the sample mean as unbiased estimate of the population mean but also the use
of inferential statistics based on standard errors such as p-values. The standard
error of the mean for a SRS is given by:

ŜESRS =

((
1− n

N

)
· s

2

n

)0.5

, (1)

where n is the sample size, N the population size, and s2 the variance of the
sample.

al. (2016); Berry (2017); Gelman and Carlin (2017); Trafimow et al. (2018); Hirschauer et al.
(2018; 2019). The topicality of this issue is reflected in the unprecedented p-value warning of
the American Statistical Association in spring 2016 (Wasserstein and Lazar, 2016), its p-value
symposium in fall 2017, the p-value Special Issue on “Statistical inference in the 21st century:
A world beyond P < 0.05” of The American Statistician (Wasserstein et al., 2019), and the
p-value petition to retire statistical significance in Nature (Amrhein et al., 2019).
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Contrary to standard textbook representations, equation (1) includes the
finite population correction factor 1 − n/N . The finite population correction
(fpc) accounts for the fact that sampling error not only decreases with growing
sample size but also when sample size becomes large relative to the population
(Hirschauer et al., 2020). The fpc reduces the standard error and researchers
are advised to use it when a sample comprises more than 5% of the population
(Knaub, 2008). When 5% of the population are included in the sample, the
fpc reduces the standard error by 2.5% compared to the default standard error
that considers the absolute size of the sample but ignores its relative share. For
a share of 50% (75%), the reduction of the standard error increases to 29.3%
(50.0%).

2.2. Stratified sampling

In many surveys, researchers deviate from simple random draws of the popu-
lation because other sampling designs are statistically or financially more ef-
ficient. In stratified sampling, we first divide a population of size N into H
mutually heterogeneous but internally as homogeneous as possible subpopu-
lations (“strata”). When deemed appropriate, we might for example divide a
given population into several income classes. We then randomly sample from
each stratum h (h ∈ {1, 2, . . . , H}) independently. The simplest case is propor-
tionate stratified sampling where we sample an identical fraction of each stratum
(n1/N1 = n2/N2 = · · · = nH/NH), ensuring that the stratum sample size nh is
proportional to stratum size Nh. Disproportionate stratified sampling, in con-
trast, intentionally oversamples certain strata – for example those that exhibit
more variability than others – to reduce sampling error.

Contrary to proportionate stratified sampling, where each unit has equal
probability of being included into the sample, we need to consider differential
weights when a sample is systematically unrepresentative of the population such
as in disproportionate stratified sampling (Solon et al., 2013: 5). In other words,
we need to “reconfigure the sample as if it was a simple random draw of the total
population” (Friedman, 2013). The weight whi = wh = Nh/nh that is assigned
to a sampled unit i (i ∈ {1, 2, . . . , nh}) in stratum h is the reciprocal of the
probability that this unit is included in the sample. It indicates how many units
of the full population are represented by a sampled unit. If we sample a 10%-
fraction in stratum 1 and a 20%-fraction in stratum 2, then each sampled unit
in stratum 1 has weight w1 = 10 (represents 10 units), whereas each sampled
unit in stratum 2 has weight w2 = 5 (represents 5 units). When estimating a
population regression from such a sample, we need to apply, in the simplest case,
weighted least squares instead of ordinary least squares to the sample regression
to obtain unbiased point estimates (Solon et al., 2013).

Stratified sampling needs also to be considered when estimating sampling
variability. Compared to a SRS of size n, stratified sampling, where n =

∑
nh,

reduces sampling error. The estimated standard error of the mean, for example,
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is given by (cf. Lohr, 2009: 79):

ŜEStrat =

(∑ N2
h

N2
· Nh − nh

Nh
· s

2
h

nh

)0.5

, (2)

where s2h is the sample variance within each stratum h.

When estimating the standard error for stratified samples, we consider the
within-strata variance but not the variance between strata because we inde-
pendently draw a random sample from each stratum. This is why, compared to
simple random sampling, the reduction of the standard error is the more pro-
nounced the smaller the variance within the strata and the greater the variance
between them. Equation (2) uses a finite population correction (Nh−nh)/Nh =
1−nh/Nh. This correction considers that sampling error not only decreases with
growing stratum sample size but also when stratum sample size becomes large
relative to stratum size. Since the correction applies within each stratum, it can
be used to make stratified sampling still more efficient: it reduces the standard
error when strata with high variability are oversampled. Such oversampling can
also be seen as an intentional use of low weights for strata with high variability.
Using wh = Nh/nh, this can be shown by rewriting equation (2) as:

ŜEStrat =
1

N
·
(∑

Nh · (Nh − nh) ·
s2h
nh

)0.5

=
1

N
·
(∑

wh · (Nh − nh) · s2h
)0.5

We may summarize that stratified sampling is a special case of random sam-
pling. Not only are the probabilistic pre-conditions for estimating standard er-
rors and using p-values met, but standard errors and p-values can be adjusted
downwards. If we neglected this downward adjustment and used the default
standard error for a SRS, we would base our inferential reasoning on inflated
p-values and therefore be too conservative in our judgement (for example, in
conventional “hypothesis testing”) – insofar as we find it useful to resort to
p-values and p-value thresholds as inferential aids at all.

2.3. Cluster sampling

Cluster sampling (e.g. area sampling) is used in practice because randomly sam-
pling from preselected segments of the population (“clusters”) is usually much
cheaper and more convenient than randomly sampling from the full population
(Lohr, 2009: 167). There is a superficial similarity of cluster sampling to strat-
ified sampling because both subdivide a population of size N into exhaustive
subpopulations (segments). However, earmarking the fundamental difference in
the sampling design, we use G to denote the number of segments that are now
called “clusters.” The difference to stratified sampling is that, instead of ran-
domly drawing observational units from each segment of the population, we
now adopt a hierarchical approach to data collection: in a primary step, we
draw a random sample of g clusters from the population of G clusters, which
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are therefore called “primary sampling units” (psus). In a second step, we ran-
domly select observational units, which are called “secondary sampling units”
(ssus), from the previously selected clusters. Both stages of data collection need
to be accounted for when estimating population quantities and standard errors.
Lohr (2009: 168) warns that “[o]ne of the biggest mistakes made by researchers
using survey data is to analyze a cluster sample as if it were an SRS. Such
confusion usually results in the researchers reporting standard errors that are
much smaller than they should be.”

A simple variant of cluster sampling is one-stage cluster sampling where all
observational units (ssus) within the selected clusters (psus) are surveyed. When
this is too costly, two-stage cluster sampling is applied; i.e. instead of fully
surveying selected clusters, we draw a SRS of units from each selected cluster.
A frequently used form of cluster sampling is two-stage area sampling. Let’s
assume we are interested in measuring per capita income in a country with
50 provinces. Area sampling would imply, for example, that in a first step we
randomly select ten provinces. In the second step, we then draw random samples
of residents merely in the ten previously selected provinces.

Analogous to stratified sampling, we need to consider differential weights
when estimating population quantities from cluster samples that are system-
atically unrepresentative of the population. The appropriate weight is still the
reciprocal of a unit’s probability of being included into the sample. However,
this probability now derives from the probability that a cluster is selected in the
first stage and the (conditional) probability that a unit within a selected cluster
is sampled in the second stage. For dealing with cluster samples in the regres-
sion context, adequate methods account for between-cluster and within-cluster
variability. Keywords in this context are hierarchical, multilevel, random effects
or mixed effects models (McNeish and Harring, 2017: 856; see McCulloch et al.,
2008 for methodological details).

Whereas stratification decreases sampling error compared to a SRS, the op-
posite is generally true for cluster sampling. Lohr (2009: 166) illustrates why:

“Members of the same cluster tend to be more similar than elements selected at
random from the whole population – [. . . ]; residents of the same nursing home
tend to have similar opinions of the quality of care. These similarities usually
arise because of some underlying factors that may or may not be measurable
– [. . . ]. Thus, we do not obtain as much information about all nursing home
residents in the United States by sampling two residents in the same home as
by sampling two residents in different homes, [. . . ].”

The increase of the sampling error in cluster sampling occurs even when we
use equal selection probabilities for all ssus that facilitate a conventional (“self-
weighting”) calculation of unbiased point estimates analogous to a SRS.5 There

5The literature cautiously states that cluster sampling “generally” increases standard er-
rors. This is because units in natural clusters such as geographical areas often share environ-
mental influences that make them more homogeneous than units that are randomly selected
from the full population. Measuring this homogeneity, we would find that cluster members
exhibit positive intra-cluster correlations. The opposite can be imagined in principle; i.e. the
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are two approaches of obtaining equal probabilities for all observational units
(ssus): (i) we use probabilities proportional to cluster size when selecting clusters
(psus) and then sample the same absolute number of ssus in each psu, or (ii) we
use a fixed probability for selecting psus and then sample an identical fraction of
ssus in each psu (one-stage clustering is a special case of this approach). Imagine
a population of size 2,000 that is divided into 5 large psus à 200 and 10 small
psus à 100. Approach (i) implies that sampling a large psu is twice as likely as
sampling a small psu (e.g. 0.2 vs. 0.1). An equal number of ssus (e.g. 50), is
then sampled in each psu – corresponding to a fraction of 0.25 in large psus and
a fraction of 0.5 in small psus. The resulting probability of ssus being selected
would be 0.05, both for ssus in large psus (0.05 = 0.2 ·0.25) and for ssus in small
psus (0.05 = 0.1 · 0.5). In approach (ii), an equal weight could be obtained, for
example, by using an equal probability of 0.1 for selecting psus and sampling
an identical 50%-fraction of ssus within each psu. While both approaches are
self-weighting, Lohr (2009: 220) notes that approach (ii) is expected to produce
an even larger sampling error than approach (i).

In one-stage clustering with clusters of equal size N/G that are selected with
equal probability, estimating the standard error of the mean is straightforward
(cf. Lohr, 2009: 171):

ŜEClust 1 = 1/
N

G
·

((
1− g

G

)
· s

2
t

g

)0.5

, (3)

where s2t is the between-psu variance of cluster totals.
Equation (3) shows that in one-stage clustering, the standard error depends

on the between-psu variance but not the within-psu variance. This is because
there is no within-psu sampling error when we measure all ssus in the preselected
psus. Even when we maintain the assumption of equal-sized clusters that are
selected with equal-probability, the standard error formula becomes complex in
two-stage clustering: we now need to consider the between-psu and the within-
psu variance because sampling error results from two sources: from sampling
g clusters in the first stage and from sampling n/g units within each selected
cluster in the second stage (cf. Lohr, 2009: 185):

ŜEClust 2 = 1/
N

G
·
((

1− g

G

)
·s

2
t

g
+

1

g2

∑
iε sampled clusters

N2

G2
·
(
1− n/g

N/G

)
· s2i
n/g

)0.5

,

(4)
where s2i is the within-psu variance of sampled observations from the ith sampled
cluster, and n is the total sample size.6

If we analyzed the data as if they were obtained from a simple random draw of
the full population, we would mistakenly estimate the standard error according

units within a cluster could be less homogeneous than randomly selected units and exhibit
negative intra-cluster correlations. While this is unlikely in natural clusters, it might occur in
artificial clusters (Lohr, 2009: 173ff).

6 When all clusters are selected in the first stage, we, again, have stratified sampling.
Aligning the notation (g = G = H, N/G = Nh, n/g = nh, s2i = s2h), equation (4) can
correspondingly be reduced to equation (2).
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to equation (1). Basing the estimation of standard errors in a cluster sample –
be it for a mean or a regression coefficient – on the SRS assumption7 generally
leads to an underestimation. This underestimation is sometimes quantified by
the so-called “design effect,” i.e. the ratio of the sampling variance that results
from the cluster sampling design to the sampling variance of a SRS of the same
size (Kish, 1965: 161). Often, correct standard errors are several times larger
than the default standard errors that presume SRS. While the design effect tells
us by how much we would underestimate the variance if we erroneously used the
formula for a SRS of the same n, “it is not a way to avoid calculating variances:
You need an estimate of the variance from the complex design to find the design
effect” (Lohr, 2009: 309).

It should be noted that the confusingly similar term “cluster-robust estima-
tion of standard errors” is used in a different research context. For example, we
might know that data were collected in a SRS design, but an ex-post analysis
of the data might nonetheless reveal intra-cluster correlations. The literature
on “cluster-robust estimation” focuses on this ex-post identification of clusters.
For an introduction see Cameron and Trivedi (2005: 829–845, 2009: 323–329 and
306–311); Cameron and Miller (2015) or MacKinnon (2019) and the literature
referenced therein. Contrary to the consideration of the data collection design
“cluster sampling” where the number of clusters must be finite and known, the
cluster-robust estimation of standard errors is based on the assumption that the
total number of clusters is very large (goes to infinity).8 The two approaches do
generally not coincide. It is therefore essential to distinguish the two research
contexts. A small example illustrates why: when data were collected by others,
researchers might ignore the particular design. While it is common in such cir-
cumstances to try to circumvent the problem by using cluster-robust standard
errors, such approaches might be flawed. Imagine a researcher who ignores that
the data resulted from stratified sampling and finds ex post that observations
are similar in certain segments (e.g. provinces). These provinces might then be
considered as clusters and a cluster-robust estimation based on the usual as-
sumption that the total number of clusters goes to infinity would find standard
errors that are larger than conventional standard errors. They should be smaller,
however, because in the stratified sampling design each province was selected.

We may summarize that a cluster sampling design is another special case of
random sampling where the probabilistic pre-conditions for estimating standard
errors and using p-values are met. However, cluster samples usually produce

7It should be noted that even in a SRS design, we need to use “heteroscedasticity-robust”
standard errors when the dispersion of observations is different in different segments of the
population.

8Cameron and Miller (2015: 23) note that, when this is not the case, even cluster-robust
standard errors can be downwards-biased. At the same time, the number of observed clusters
should be small relative to the population of clusters. Noting that many economic datasets
do not meet this condition, Abadie et al. (2017) find that cluster-robust standard errors are
often upwards-biased. This raises the question of how cluster-robust standard errors are to be
estimated in the SRS case when there is a finite population of clusters (e.g. 20 geographical
areas) and a number of observed clusters (e.g. 10) that is not small relative to the population
(cf. Cameron and Miller, 2015).
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larger sampling errors than SRSs. Hence, standard errors and p-values need
to be adequately adjusted upwards. If we neglected this upward adjustment
and used the default standard error for a SRS, we would base our inferential
reasoning on wrongly deflated p-values and therefore be too confident and, even
worse, be too confident to an unknown degree in our judgements (for example,
in conventional “hypothesis testing”) – insofar as they are based on p-values
and p-value thresholds in the first place.

3. Sampling designs that preclude the use of inferential statistics

3.1. Convenience samples contaminated by bias from non-coverage
and self-selection

Observational data are often tacitly analyzed as if they were obtained through
random sampling even when a non-random selection mechanism was at work.
Such approaches can be seriously flawed. Trafimow (2019: 344) unmistakably
warns that “it is the rare study that uses sampling that is completely random
and where each participant sampled is independent of the other participants
sampled. Without making assertions about exactly how often these assumptions
are importantly violated, there can be little doubt that the violation prevalence
is considerable. In that case, no inferential statistical procedures, [. . . ], are com-
pletely valid. [. . . ] The notion that inferential statistical procedures may some-
times, and even often, be inappropriate, may be tough medicine for reviewers
and editors to swallow. But the medicine nevertheless is therapeutic. Another
option is to use methods for addressing violations of independence or random
sampling [. . . ], while keeping in mind that these have their own assumptions
and drawbacks.”

Using data from non-probability convenience samples is common in econo-
metric studies (Miller, 2017). For example, researchers often ask people who
happen to be present in certain venues to participate in a survey. In behav-
ioral economics and psychology, the most notorious instance are students from
Western, Educated, Industrialized, Rich, and Democratic (WEIRD) countries
who happen to be in a particular researcher’s classroom (Henrich et al., 2010).
Other examples are passers-by in shopping-malls, users of social media, people
who happen to be on some mailing list or who explicitly agree to be included in
some data base that assembles volunteers for surveys. On Web- platforms, for
example, respondents can be recruited at low costs from non-probability panels
of individuals who volunteer to participate in many different surveys for money.
Amazon’s Mechanical Turk is a prominent example. To put it more systemat-
ically: non-coverage, i.e. when certain segments of the population are omitted
from the sampling frame, is one instance that leads to a non-probabilistic sample
composition. But even when we succeed in avoiding non-coverage and obtaining
a sampling frame that contains a random pool of subjects, we usually do not
escape self-selection because people can freely decide whether to respond to a
survey or not. Selection problems can arise in all sampling designs and need to be
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accounted for in addition to the design-specific estimation procedures described
in Section 2. Because inclusion into a sampling frame and response are rarely
random (i.e. data are missing but missing not at random), the characteristics
of participants and non-participants may be systematically different (selection
bias). Therefore, sample quantities may tell us little about the population quan-
tities of interest. In regression analysis, we run the risk of misestimating coeffi-
cients and standard errors in unknown ways unless we adequately correct for the
selection bias that results from the violation of independent random sampling
(cf. Rosenthal and Rosnow, 2009: book 3).

Given the trend of decreasing survey participation (often not more than 20%
or even much less) and the increasing recruitment of respondents from volunteer
Web-platforms, Public Opinion Quarterly published a Special Issue on “Survey
Research, Today and Tomorrow” in 2017 (Vol. 81). The Special Issue puts a
particular focus on the question of how to deal with the non-probability samples
resulting from these developments. Its editor notes:

“To survive, surveys need to maintain their ‘value proposition.’ One important
part of this proposition is that surveys gather information that is generalizable
from the measured sample to a well-defined population” (Miller, 2017: 205–207).

With a view to the increasing use of non-probability samples obtained from vol-
unteer platforms, he states that “[t]here have been prominent clashes between
advocates for the probability and nonprobability approaches. Those who sup-
port the probability sampling method observe that they have probability theory
to support their population inferences, while the advocates for volunteer panels
rely on inductive modeling that has no comparable theoretical foundation.” In
response, the supporters of non-probability panels stress that their approaches
work well enough in many practical research contexts and counter that actu-
ally achieved samples do very rarely come up to the presumed probabilistic
requirements anyway.

What we do in the attempt to correct for selection bias is best understood
when looking back to stratified and cluster sampling. In both sampling designs,
we knew ex ante the selection probabilities and the ways in which the data
generating process was systematically different from a simple random draw of
the full population. We therefore also knew how to “reconfigure” the sample
to make it comparable to a simple random draw and ensure that the variable
distribution in the sample matches the distribution in the parent population
on average. When the composition of the sample is influenced by non-coverage
and/or self-selection, we do not know these probabilities ex ante. We only know
that (certain types of) people might be included into the sample with differ-
ing probabilities, depending on individual characteristics (age, sex, education,
income etc.) that may be observable or not. Sample selection models are used
to ex post control for these selection probabilities. They are based on the as-
sumption that we know all confounding variables which might play a role in
subjects’ participation in a survey and that we have observations for these vari-
ables, both from participants and non-participants (no unmeasured confound-
ing).
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From the late 1970s, an extensive literature developed that concerned it-
self with selection problems.9 Two important research contexts were addressed:
(i) experimental research where the identification of causal relationships is com-
promised when randomization is not fully successful (e.g. due to dropouts after
randomization or quasi-experimental designs), and (ii) survey research where
the unbiased estimation of population quantities is impaired when random sam-
pling is not warranted due to non-coverage and/or non-response. In the last
two decades, a particular focus was put on selection problems in Web-surveys
and, methodologically, on propensity score methods, which were imported to
the survey context from (quasi-)experimental research. Propensity score mod-
els are probably the most intuitive way to address selection bias. In experi-
mental research, propensity score models focus on causal inferences within the
group of experimental subjects (internal validity). In this context, they are used
to deal with the problem of unbalanced confounders across treatment groups.
Mercer et al. (2017: 253) explicitly liken selection processes in survey research
and experimental research:

“A probability-based survey is essentially a randomized experiment where the
pool of subjects is the set of units on the sampling frame and the treatment
is selection into the survey. Unlike experiments where we observe outcomes on
both treated and untreated subjects, in surveys we observe outcomes only on the
selected units, with the expectation that there should be no difference between
selected and non-selected units.”

In the survey context, propensity score models ideally use all selection-relevant
variables to estimate subjects’ probability (the “propensity score”) of partici-
pation as opposed to non-participation (Heckman et al., 1997). Similar to the
ex-ante known selection probabilities in stratified and cluster sampling, these
ex-post estimated probabilities are then used to reconfigure the sample by cor-
recting for any imbalances between those who are in the final sample and those
who are not. Propensity scores are therefore also called “balancing scores,” con-
ditional on which the distribution of confounders in the participation-group
is assumed to match the distribution in the non-participation group (Austin,
2011). This can be associated with the notion of “missing data” (cf. Mer-
cer et al., 2017): in random sampling, where “data are missing completely at
random” (MCAR), unit selection is unconditionally independent of the vari-
able of interest (no confounding). No corrections are therefore needed. Using
propensity scores to “remedy” selection problems, in contrast, is an attempt
to make unit selection independent of the variable of interest conditional on
observed confounders. This corresponds to the notion of “data missing at ran-
dom” (MAR). When not all confounders are observed, it is not possible to
adequately correct for selection bias. This corresponds to the notion of “data

9A review of this vast literature is beyond this paper’s scope (see e.g. Heckman, 1976;
1979; Greene, 1981; Berk, 1983; Winship and Mare, 1992; Heckman et al., 1997; Stolzenberg
and Relles, 1997; Vella and Verbeek, 1999; Lee and Marsh, 2000; Shadish et al., 2002; Kalton
and Flores-Cervantes, 2003; Luellen et al., 2005; Rosenbaum, 2010; Austin, 2011; Brick, 2013;
Valliant et al., 2013; Guo and Fraser, 2015; Imbens and Rubin, 2015; Mercer et al., 2017).
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missing not at random” (MNAR), which rules out the use of inferential statis-
tics.

Let us look at a stylized example to illustrate how propensity score methods
work in principal: we are interested in the mean of a target variable y (e.g.
per capita income) in a population with N = 10, 000 subjects. We presumable
constructed an appropriate sampling frame that comprises 1,000 subjects (500
males and 500 females) and addressed a survey to all subjects on this sampling
frame. The response rate was only 15%, resulting in a sample size of n = 150.
In this sample, we find nm = 100 males (a 20%-share of the male population
on the sampling frame), but only nf = 50 females (a 10%-share of the female
population on the sampling frame). Assuming that gender is the only variable
that affects selection (this is a critical assumption that we make for the sake of
simplicity), we would equate the two gender shares with selection probabilities
(propensity scores). That is, we would act on the assumption that males selected
themselves into the sample with propensity 0.2 (= 100/500), whereas females
did so with propensity 0.1 (= 50/500). To put it the other way round, each
male in the sample has a weight wm = 5 (represents five males on the sampling
frame) whereas each female has a weight wf = 10 (represents ten females on the
sampling frame). Let’s further assume that the mean among the 100 sampled
males is ym = 7, whereas the mean among the 50 sampled females is yf = 4.
This corresponds to a conventional sample mean y = 6 = (100 · 7 + 50 · 4)/150.
To correct for the fact that gender is not equally distributed across participants
and non-participants (oversampling of males, undersampling of females), we
resort to the weights derived from the propensity scores. Doing so, we obtain
an estimate for the population mean of ŷ = 5.5 = (5 · 100 · 7 + 10 · 50 · 4)/1, 000
(weights-corrected sample mean).

This highly stylized example corresponds to post-stratification; i.e. we use
the selection-relevant characteristic “gender” to define population strata (i.e. a
“male stratum” and a “female stratum”) and then put the differing self-selection
probabilities of males and females, which are beyond our control, on a level with
intentional selection probabilities that we might have used in a disproportion-
ate stratified sampling design. Hence, the same formulas as in the stratification
case apply and equation (2) can be used to estimate the standard error of the
mean in our stylized example (cf. de Leeuw et al., 2008: 317–341) for the es-
timation of standard errors under various versions of weight corrections). Our
example was simple because gender was the only variable affecting selection and
because there was one selection probability for all males and one selection prob-
ability for all females on the sampling frame. Compared to that, participation
in real surveys may be much more complex and depend on multiple, and po-
tentially interacting, confounding variables (including the target variable itself)
that might furthermore affect participation in a non-linear fashion. Individual
participation propensities will therefore often differ between many subjects. As
a consequence, simple weighting schemes as the one described above do not
suffice any more to account for the biased sample composition introduced by
self-selection. More elaborate propensity score models try to accommodate these
complexities by considering all potentially relevant characteristics to calculate
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individual participation probabilities, which, in turn, are considered when es-
timating population parameters and standard errors. Contrary to the outcome
in our stylized example, standard errors that are adjusted for self-selection are
often larger than those resulting from the assumption that there is no problem
with a biased composition of the sample (Copas and Li, 1997).

While the formal presentation of propensity score models or other sample se-
lection models that deal with the problem of data that are missing but missing
not at random is beyond this paper’s scope (cf. e.g. Little and Rubin, 2002),
it should be recognized that we need to be generally wary of miss-specifying
the selection model. When groups with distinct characteristics are completely
missing in the sample or when we do not know, or are not able to measure,
all selection-relevant variables, we cannot properly correct for selection bias.
While emphasizing that correction methods should be used whenever sufficient
data are available, Cuddeback et al. (2004: 22) note that “failing to use these
methods when appropriate is different than failing to use them when data for
non-participants are unavailable, which is common. In this latter case, sam-
ple selection models are obviously of no use.” Of course, researchers can never
be completely sure that they know all selection-relevant variables. And often
the necessary data from non-participants will simply be lacking. Even when
considerable amounts of data are available from non-participants, one should
remain skeptical whether all confounding variables that affect selection were
adequately considered. Going beyond conventional routines, this needs to be
explicitly reflected in the interpretation of results to avoid overconfident infer-
ential reasoning.

We may summarize that we often use convenience samples because we are
unable to comply with the “empirical commitment” of randomly sampling units
from a defined parent population. This is due to two obstacles: first, lacking ac-
cessibility to the population or insufficient budgets may prevent researchers from
constructing appropriate sampling frames that cover the entire target popula-
tion. Second, even in appropriate sampling frames, uncontrolled self-selection is
likely to produce biased samples. Ignoring whether and how a sample was prob-
abilistically composed from a defined population rules out the use of standard
errors and p-values because no sampling distribution can be envisaged. In some
rare cases, we may have enough information from non-participants to correct
for selection bias, which, in turn, rehabilitates the probabilistic foundations for
using inferential statistics (Levay et al., 2016). However, when we are not able
to perform the necessary corrections, which is likely to be more often the case in
practical research than the literature implies, we should refrain from delusively
insinuating that the composition of the sample is unbiased. Instead, we should
openly communicate that we have to do without inferential statistics, and limit
ourselves to descriptive analysis (see the above quote by Trafimow, 2019). While
inductive inferences based on comprehensible scientific arguments are of course
feasible in such circumstances, p-values are meaningless and cannot be used as
inferential aids in the inductive exercise of generalizing from the sample to the
parent population.
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3.2. Full population surveys (100% samples)

Since statistical inference is concerned with sampling error and generalizations
from random samples to parent populations, there is neither need nor room
for statistical inference when we already have data for an entire population.
Vogt et al. (2014: 243) note that this is quite common, for example, when ana-
lyzing aggregated economic data. They also provide an illustrative example of
a study that looks at the association between mean education levels and birth
rates in all UNmember states. Since there is nothing to infer, displaying p-values
does not make sense. Instead, one should simply describe the population quan-
tities including regression coefficients. This intuitive fact is formally reflected in
the finite population correction (fpc) 1− n/N , as used in equation (1). Instead
of implicitly assuming that a sample was drawn from an infinite population –
or at least that a small sample of size n was drawn from a very large population
of size N – the fpc considers that sampling error decreases when the fraction of
the population that is contained in the sample becomes large (Hirschauer et al.,
2020). Having data for a full population (n = N) corresponds to a fpc of zero,
which leads a corrected standard error of zero. This is consistent because there
is no sampling error when the “sample” covers 100% of the population.

Nonetheless, the fpc is frequently ignored and p-values are displayed in re-
gressions that analyze data from entire populations. To justify this procedure,
the frequentist statistician must somehow introduce the notion of a sampling
distribution and a sampling error. This implies imagining an infinite “unseen
parent population” (or “superpopulation”) and a generating process from which
one has presumably observed one noisy random realization (Hirschauer et al.,
2018). In so doing, the observed full population becomes in imagination a sample
of a (parent) superpopulation. Even back in the 80s, Denton (1988: 167) noted
that this is a rhetorical device (also known as “great urn of nature”) that does
not evoke wild enthusiasm from everybody. However, some random process of
data generation – and not just a record of empirical data – has to be presumed
for frequentist inferential tools such as p-values to make sense.

When we have observations for an entire population of interest, adopting
the notion of a superpopulation may sometimes be comprehensible. Researchers
could imagine, for example, a quasi-stable real-world system whose operative
regularities, while being possibly limited to a finite time interval, exceed the
time interval over which the population data were collected. In the above UN
example, this would imply envisaging regularities that not only produced the
association between mean education levels and birth rates in all UN member in
the period for which the data were collected but that will also be at work in the
next period(s). Obviously, the plausibility of such an assumption and thus the
validity of generalizing claims supported by p-values can only be assessed when
the time interval over which the data generating system is presumably at work
is clearly defined.

Sometimes a random process of data generation is even assumed in the case
of non-probability samples. Imagine, for example, a researcher who addresses a
survey to the 100 students who happen to be in the classroom on a Monday
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morning. We know that such convenience samples might be seriously biased
and tell us little about the population quantities of interest. Assuming in such
research contexts that there is a random process of data generation does not
facilitate statistical inference in any conventional sense of the word. It requires
considering the sample as the finite inferential target population. That is, in-
stead of generalizing towards a broader (numerically larger) parent population
of students, inferences would be limited to the unseen superpopulation in terms
of a random process that is valid for exactly these 100 students and from which
one has presumably observed one realization. No statistical inferences beyond
the sample of the 100 students can be made (Hirschauer et al., 2019).

Unfortunately, the presumption of a superpopulation often remains implicit.
Sometimes its necessity may even not be realized by researchers themselves who,
due to engrained disciplinary habits, engage more or less automatically in “sta-
tistical significance testing” whenever comparing groups or running a regression
model. Researchers who display p-values in the analysis of non-random sam-
ples or full-populations data should explicitly discuss why and how they base
their inferential reasoning on the notion of a superpopulation. This is but a
specification of the general desideratum that researchers explicitly describe the
sampling process as well as the population of interest from which the random
sample comes and to which they want to generalize (cf. Abadie et al., 2014).

4. Conclusion

The p-value is sometimes seen as conclusive piece of evidence. However, in recent
years a plethora of publications have warned against inferential errors associated
with such views. This includes the p-value warning of the American Statistical
Association (Wasserstein and Lazar, 2016), a Special Issue in The American
Statistician (Wasserstein et al., 2019), the widely supported p-value petition
to retire statistical significance in Nature (Amrhein et al., 2019), and the Con-
sensus Report on Reproducibility and Replicability in Science of the National
Academies of Sciences (2019). Following up on these warnings, this paper fo-
cused on the often overlooked fact that the very pre-conditions for using p-values
are not met when specific sampling designs are ignored or when empirical studies
are based on non-probability convenience samples. Uncorrected non-probability
samples rule out using p-values because inferential statistics concerned with
generalizing towards a broader population are conceptually based on the notion
of repeated random sampling (statistical replication) and a resulting sampling
distribution. When there is no random sampling, there is no sampling distri-
bution and no random sampling error. Random data generation is therefore a
necessary condition for a meaningful application of standard errors and p-values.
When data do not satisfy this probabilistic requirement, p-values are essentially
uninterpretable.

Critically reflecting on the conceptual pre-conditions for using p-values is
important for two reasons: first, it calls to mind the nature of statistical infer-
ence, which – even if applicable – solely deals with the uncertainty of estimates
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caused by random error, and which is therefore only a part of scientific inference.
Second, it is important because much of econometric research uses data from
convenience samples that are not probabilistically obtained from well-defined
populations. Convenience samples are affected by one of the two following draw-
backs (or both): first, the units on the sampling frame are conveniently chosen
but not probabilistically selected from the target population (non-coverage).
Due to non-coverage, there are unknown differences between the units who are
on the sampling frame and those who are not. Second, the units that are on
the sampling frame select themselves with unknown probability into the final
convenience sample which, if not corrected for, leads to self-selection bias. While
these two features often occur jointly in practical research, each of them suffices
to rule out a meaningful use of p-values. To ensure successful scientific commu-
nication, non-probability samples must therefore be clearly distinguished from
probability samples: (i) When researchers succeed in achieving probability sam-
ples, they should transparently state from which population the sample was
drawn, and consequently, to which population they want to make inductive in-
ferences (generalizations). Without providing such basic information, inference
statements are nebulous, at best – and without value, at worst. (ii) When re-
searchers are limited to using non-probability samples that preclude the use
of inferential statistics they should be clear about it and refrain from display-
ing p-values. Displaying inferential statistics in circumstances where population
inferences cannot be supported by probability theory is likely to cause over-
confident inductive conclusions. Alas, it still seems a widespread spontaneous
reflex among researchers who often do not explicitly question whether there is
a chance model upon which to base statistical inference.
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