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Abstract: The ever-growing appearance of infinitely divisible laws and
related processes in various areas, such as physics, mathematical biology,
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methods of sampling and sample path generation. In this survey, we review
shot noise representation with a view towards sampling infinitely divisible
laws and generating sample paths of related processes. In contrast to many
conventional methods, the shot noise approach remains practical even in
the multidimensional setting. We provide a brief introduction to shot noise
representations of infinitely divisible laws and related processes, and dis-
cuss the truncation of such series representations towards the simulation
of infinitely divisible random vectors, Lévy processes, infinitely divisible
processes and fields and Lévy-driven stochastic differential equations. Es-
sential notions and results towards practical implementation are outlined,
and summaries of simulation recipes are provided throughout along with
numerical illustrations. Some future research directions are highlighted.
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1. Introduction

Infinitely divisible laws have long been investigated actively in the literature due
to their fascinatingly rich structure. The corresponding class of stochastic pro-
cesses is the class of Lévy processes, and moreover, infinitely divisible laws also
bear deep relations to infinitely divisible processes and fields and Lévy-driven
stochastic differential equations. Over the last half-century, such stochastic pro-
cesses have grown to become widely popular across many domains. The attrac-
tiveness of such stochastic processes may be attributed to two reasons. Firstly,
they are able to capture jump discontinuities with great versatility. Through the
theory of these stochastic processes, one can construct stochastic processes with
flexible jump structures under mild technical conditions. Secondly, stochastic
processes related to infinitely divisible laws can capture dynamics beyond Gaus-
sianity. For example, the subclass of such stochastic processes with heavy-tailed
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marginal laws offers an easy solution for the modelling of heavy-tailed dynam-
ics. To mention only a handful of applications, these stochastic processes have
appeared in physical modelling for diffusion and transport [17, 98], degradation
modelling [1, 49] and various applications in finance and insurance [20, 23, 77].

As stochastic processes relating to infinitely divisible laws find increasing ap-
plications in the literature, there is a clear demand for methods of sampling
infinitely divisible laws and generating sample paths of related processes. One
potential solution is the approximation of sample paths based on classical de-
terministic time discretisation. However, a major drawback is that many ap-
plication contexts require simulation techniques which specify individual jumps
[49, 77]. For example, in insurance, claims can be modelled as downward jumps,
thus preserving jumps is necessary to observing the ruin time. This necessity for
preserving all or some of the jumps of the stochastic process serves as an addi-
tional hurdle in our quest for appropriate numerical schemes, which eliminates
such conventional methods based upon increments from consideration. There-
fore, simulation of infinitely divisible laws and related stochastic processes by
generating individual jumps seems not only ideal, but perhaps necessary in many
practical scenarios.

In physics, the term shot noise is used to describe noise resulting from the dis-
creteness of charge carriers. In electrical circuits, shot noise manifests as the spo-
radic fluctuations of current, particularly when the current is low [7, 82]. In op-
tics, shot noise manifests as the fluctuations of the number of photons detected,
most apparent in a low light environment [5, 29]. Such discrete noise is modelled
by the shot noise process, in which the arrival times of the shots or jumps follow
a Poisson process. More precisely, ifXt denotes the system’s state at time t, then
it is most commonly expressed through one of the two following representations:

• where μ(dz, ds) is a marked Poisson random measure which has a weight
at (z, s) if there is a jump at time s ≥ 0 with size z ∈ Rd\{0}, we write

Xt =

∫ t

0

∫
Rd\{0}

H(t, s, z)μ(dz, ds);

• where {Γk}k∈N is the sequence of standard Poisson arrival times indepen-
dent of the iid marks {Zk}k∈N corresponding to μ(dz, ds), we write

Xt =

+∞∑
k=1

H(t,Γk, Zk).

Here, the kernel H(t, s, z) of the shot noise process describes the level, at an
observation time t, of the shot that occurred at a previous time s. In physical
applications, it often makes sense that the influence of the shot on the physical
system decays with the passage of time. In those settings, the magnitude of the
kernel is nonincreasing in the observation time t, and often taken as exponential
decay. The shot noise phenomenon has been investigated in a wide variety of
applications, for example, in metallic conductors [7], quantum systems [6, 82]
and optics [5, 29, 97, 105]. The modelling of shot noise has also been extended
mathematically, for example, to Cox processes [15], capturing long-range de-
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pendence [13] and nonlinearity [30]. Shot noise processes have been shown to
relate to other important stochastic processes in the asymptotic regime, such as
the fractional Brownian motion [59] and nonstationary Gaussian processes [76].
Crucially, these shot noise processes have a profound connection to infinitely
divisible laws [65]. By considering the shot noise kernel as a cumulative integral
of a Lévy measure and the underlying Poisson arrival times as random steps
over the domain of the kernel rather than over time, one obtains a shot noise se-
ries representation of the infinitely divisible law characterised solely by a Lévy
measure. This straightforwardly leads to shot noise representations for Lévy
processes and infinitely divisible processes, which are in some sense analogous
to the well-known Karhunen-Loève expansion for Gaussian processes.

Paralleling advancements in the study of shot noise processes [24, 35, 40,
83, 103], shot noise representations of infinitely divisible laws and processes
have been investigated as early as the 1970s. Ferguson and Klass [31] led the
seminal effort in establishing an initial method of representing independent in-
crement processes without Gaussian components as random series. In response,
Kallenberg [50] investigated their convergence properties, while Resnick [81]
demonstrated their derivation via the Lévy-Itô decomposition of such stochas-
tic processes. Their theoretical development and appearance have since grad-
ually expanded, for instance, [36, 93, 101, 102]. In particular, Rosiński estab-
lished general necessary and sufficient conditions for almost sure convergence of
shot noise series to infinitely divisible random vectors without Gaussian compo-
nents [85]. Shot noise representation was used in [84] to study path properties
of Lévy-driven stochastic integrals. Almost sure uniform convergence for shot
noise representations of Lévy processes was investigated in the general setting
in [87]. Since then, shot noise representation has been at the forefront of the
study of a variety of relevant stochastic processes, such as the stable process
[26, 68], its generalisations via tempering [11, 42, 88], fractional stable motions
[19, 41, 53, 67] and Lévy processes of type G [104].

Perhaps, the greatest gift of shot noise representation to the study of stochas-
tic processes in the age of unprecedented computational power is its elegant and
simple solution to sample path generation. In the case of Lévy and infinitely di-
visible processes, by truncating the series representation to a finite sum, one
obtains a straightforward approximation of the stochastic process from which
approximate sample paths can be generated. Among the few sample path gener-
ation schemes [89], this has been the go-to numerical method for contemporary
applications involving Lévy processes, [49, 52, 66, 77] to name a few more ex-
amples. Moreover, truncation of shot noise can be naturally extended to the
multidimensional setting, including Lévy copulas [37, 100]. As one would ex-
pect, the widespread use of the numerical technique demands analyses of the
associated truncation error. To give some examples of particular stochastic pro-
cesses, error analyses have been performed for the stable process [12], gamma
process [49], tempered stable process [45], higher order fractional stable motion
[53] and Lévy-driven CARMA processes [54]. More general treatments of error
analysis have been studied, for example, in terms of moments [46] and Gaus-
sian approximation [3, 22]. As such, using numerical schemes based on shot
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noise representations carries the advantages of tractable generalisability to mul-
tidimensional settings and error analysis. Through the present survey, we hope
to clearly establish the practical value of numerical methods for simulating in-
finitely divisible laws and related processes based on shot noise representations.
In doing so, we demonstrate the viability of using jump models in applied con-
texts, and encourage further enrichment of the technique.

This survey aims to summarise shot noise representation with a view to-
wards sampling infinitely divisible laws and generating sample paths of related
processes. We review some preliminary notions of infinitely divisible laws and
related processes in Section 2, and offer several important examples of infinitely
divisible laws. Section 3 outlines shot noise representations of infinitely divisible
laws via the Lévy-Itô decomposition. Examples with various infinitely divisible
laws are provided. We describe the approximation of infinitely divisible laws via
truncation of shot noise representation in Section 4, along with important results
on the error. In Section 5, we discuss the truncation scheme for Lévy processes,
infinitely divisible processes and fields and Lévy-driven stochastic differential
equations. Various examples of error analysis and numerical illustrations are
presented, along with summaries of simulation recipes. Section 6 briefly visits
some practical numerical topics for computing expectations via shot noise repre-
sentations, such as various variance reduction methods and using quasi-Monte
Carlo methods. Finally, we summarise our discourse in Section 7 along with
brief suggestions for future research directions.

2. Preliminaries

We begin by reviewing some preliminaries of the theory of infinitely divisible
laws and related processes. Some well-known examples of particular interested
to the literature are given.

We introduce some notations which will be used throughout. In what follows,
we will be working under the probability space (Ω,F ,P). We denote the Borel
σ-algebra over a space S as B(S). Let N := {1, 2, · · · } and N0 := {0, 1, 2, · · · }.
Denote 〈·, ·〉 as the inner product, ‖ · ‖ as the Euclidean norm on Rd for any
d ∈ N and Rd

0 := Rd\{0}. The Dirac delta measure concentrated at x ∈ Rd is
denoted by δx. We denote the positive part of functions as (f(x))+ := 0∨ f(x).

Let
L
= represent equality in law and L (·) the law of a random vector. We denote

the indicator function of a set A as 1A(·) and sometimes as 1(· ∈ A). We refer to
the uniform distribution over (0, 1) and the exponential distribution with unit
rate as the standard uniform and exponential distributions, respectively. The
sequence {Γk}k∈N will be used throughout to denote the arrival times of the
standard Poisson process.

2.1. Infinitely divisible laws and related processes

Perhaps the most familiar definition of infinite divisibility is as follows. A law
F is said to be infinitely divisible if for every n ∈ N, there exists a sequence of
iid random vectors {Xk,n}k=1,...,n such that F = L (

∑n
k=1 Xk,n). Immediately
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from this definition, we see that if ϕ is the characteristic function of a random
vector X, then X is infinitely divisible if and only if there exists a characteristic
function ϕn for every n ∈ N such that (ϕn)

n ≡ ϕ. This criterion is often useful in
determining the infinite divisibility of a law given that we know its characteristic
function. Furthermore, the characteristic function of infinitely divisible laws
can provide even more insight through the following celebrated result on their
characterisation.

Theorem 2.1 (Lévy-Khintchine representation). A probability law F is in-
finitely divisible if and only if there exists a triple (a, S, ν), where a ∈ Rd,
S ∈ Rd×d is a symmetric nonnegative-definite matrix and ν(dz) is a measure on
Rd

0 such that ∫
Rd

0

(1 ∧ ‖z‖2) ν(dz) < +∞, (2.1)

and the characteristic function of F is given by

ϕ(θ) = exp

[
i〈θ, a〉 − 1

2
〈θ, Sθ〉

+

∫
Rd

0

(
ei〈θ,z〉 − 1− i〈θ, z〉1(0,1](‖z‖)

)
ν(dz)

]
, θ ∈ Rd.

(2.2)

Moreover, if it exists, the triple (a, S, ν) is unique.

A rigorous proof of the Theorem 2.1 can be found in [95, Section 8]. We call
the measure ν(dz) which satisfies the integrability condition (2.1) a Lévy mea-
sure. A stochastic process {Xt : t ≥ 0} in Rd with X0 = 0 a.s. is a Lévy process if

(i) it has stationary and independent increments,
(ii) it is continuous in probability, that is, for any ε > 0 and t ≥ 0, it holds

that limΔ→0 P(‖Xt+Δ −Xt‖ > ε) = 0, and
(iii) t �→ Xt is càdlàg.

While the general infinitely divisible law and Lévy process may contain a
Gaussian component, our focus is restricted to the absence of such components,
that is, when S = 0 in the Lévy-Khintchine formula (2.2). Among the most
elementary examples of Lévy processes are the Poisson process and its gener-
alisation, the compound Poisson process. The (compound) Poisson process is a
Lévy process with a (compound) Poisson marginal law. A random vector X is
distributed under a compound Poisson law if and only if it can be expressed
as the random sum X =

∑N
k=1 Yk, where N is a Poisson random variable with

rate λ > 0 and {Yk}k∈N is a sequence of iid random vectors with law ρ(dz)
independent of N , with the characteristic function

ϕX(θ) = exp

[∫
Rd

0

(
ei〈θ,z〉 − 1

)
λ ρ(dz)

]
, θ ∈ Rd. (2.3)

The connection between Lévy processes and infinitely divisible laws runs
deep. Specifically, the relationship is a correspondence. Where {Xt : t ≥ 0}
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is a Lévy process, it holds that ϕXt ≡ (ϕX1)
t, so every increment of a Lévy

process is infinitely divisible. Conversely, every infinitely divisible law admits
the existence of a Lévy process with a matching marginal law. To interpret
the Lévy-Khintchine representation in the context of Lévy processes, note that
the characteristic function ϕ (2.2) corresponds to a convolution of a Brownian
motion and many Poisson processes of different jump sizes and intensities gov-
erned by the Lévy measure ν(dz). The vector a corresponds to a linear drift
while the matrix S corresponds to the diffusion matrix of the Brownian mo-
tion. With respect to the Poisson component, the Lévy measure ν(B), for any
B ∈ B(Rd

0), corresponds to the expected number of jump sizes in B in a unit
time interval. The term i〈θ, z〉 in the integrand is a centring term for the con-
volved Poisson processes with small jump sizes, which ensures that the integral
exists in the case where ν(dz) is an infinite Lévy measure with a heavy density
near the origin. Specifically, since ‖ei〈θ,z〉 − 1‖ ∼ |〈θ, z〉| as ‖z‖ → 0, if linear
functions are not ν-integrable near the origin, then the compensation terms are
necessary and cannot be integrated separately in general. An exception is the
so-called subordinator where the Lévy measure has positive support and finite
first moment around the origin. The subordinator forms an important subclass
of Lévy processes, which can be employed to express random clocks. In this
survey, the stable process (Lévy measure (2.5)) with stability α ∈ (0, 1) without
negative jumps, tempered stable process (Lévy measure (2.6)) with stability
α ∈ (0, 1) without negative jumps and the gamma process (Lévy measure (2.9))
are examples of subordinators.

To summarise, a Lévy process is generally comprised of a diffusion compo-
nent, which is Gaussian, and a jump component, which can be decomposed into
compound and compensated Poisson components for large and small jumps, re-
spectively. For a comprehensive review of the theory of Lévy processes, we refer
the reader to [10, 95]. An important takeaway relevant to our discussion later is
as follows: an infinitely divisible random vector X characterised by the triplet
(0, 0, ν) can be understood as the (possibly infinite) sum of the jumps of a Lévy
process characterised by the same Lévy-Khintchine triple over the unit time
interval. This allows us to make sense of the concept of jumps in the context of
an infinitely divisible random vector.

A related concept to infinitely divisible laws and Lévy processes is the notion
of infinitely divisible processes [80, 84, 99]. A stochastic process is infinitely
divisible if its finite dimensional distributions are infinitely divisible. Naturally,
all Lévy processes are infinitely divisible. However, the class of infinitely divisible
processes is more general, as it includes the following. A stochastic process
{Xt : t ≥ 0} in Rd is a stochastic integral process if it can be represented in the
stochastic integral form as

{Xt : t ≥ 0} L
=

{∫
S

f(t, s) Λ(ds) : t ≥ 0

}
, (2.4)

where f is a suitable deterministic function and Λ(ds) is an independently scat-
tered infinitely divisible measure on a suitable space. We refer the reader to
Theorems 4.11 and 5.2 in [80] for details regarding the stochastic integral form
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(2.4). An important example of such a random measure is that generated by the
increments of an additive process {Zt : t ∈ S}, where S is a possibly unbounded
interval. Moreover, by imposing stationary increments, the infinitely divisible
measure corresponds to a Lévy process, which is most relevant to our discus-
sion. Stochastic integral processes driven by Lévy processes of infinity jump
activity are of interest in Section 5.2. We exclude the case of finite jump activ-
ity from the discussion, as approximations are not required in that setting. We
mention that stochastic integral processes of the form (2.4) where the integrator
is not independently scattered are also of interest in the literature, such as in
the case of a cluster compound Poisson random measure [92].

2.2. Examples of infinitely divisible laws without Gaussian
components

We provide some examples of infinitely divisible laws, and equivalently, of Lévy
processes. In particular, our definitions will be provided at the level of the Lévy
measure, as this not only exemplifies the immense utility of the Lévy-Khintchine
formula (2.2), but also sets up for their later use as demonstrations of shot noise
representations in Section 3.

We begin by noting that a compound Poisson law is an infinitely divisible
law without Gaussian components where the Lévy measure ν(dz) is finite. For
example, if ν ≡ δ1, then we have the standard Poisson distribution. Of course,
we obtain the compound Poisson process and standard Poisson process when
we consider the Lévy-Khintchine triple in the context of Lévy processes. The
compound Poisson distribution and process have found use in a variety of ap-
plications [49, 77].

We now define the stable law according to its Lévy measure [95, Section 14].
A stable law with stability α ∈ (0, 2) and scale a > 0 is an infinitely divisible law
without Gaussian components and with its Lévy measure given by

ν(B) =

∫
Sd−1

∫ +∞

0+

1B(rξ)
a

rα+1
dr σ(dξ), B ∈ B(Rd

0), (2.5)

where Sd−1 is the unit sphere of Rd and σ(dξ) a probability measure on Sd−1.
The stable law, which contains and generalises the Cauchy (α = 1) and Gaussian
(α → 2) laws, has received widespread attention in the literature due to its
usefulness as a heavy-tailed distribution. Similarly, the corresponding stable
process has also appeared in wide-ranging applications [77, 98], to name a couple.
See [94] for a comprehensive review of its properties. The simulation of stable
processes have been thoroughly studied in the literature, for example, in [47, 94].
It is important to note that the Lévy measure (2.5) is expressed in polar form,
that is, the integrand a/rα+1 captures the expected number of jumps with
magnitude r over any unit time interval, while σ(C) captures the proportion
of jumps in the set of directions C ⊆ Sd−1. The shot noise representation for
the stable law is provided in Example 3.3 and error analysis of its truncation is
given in Example 4.1.
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As a heavy-tailed distribution, the stable law does not have second-order mo-
ments for α ∈ (0, 2), and no first-order moment for α ∈ (0, 1]. One can construct
a law which preserves all moments and yet resembles many of the properties of
the stable law by truncating the Lévy density [71]. Another elegant approach
is through the exponential tempering [62, 88] of the Lévy measure (2.5), of
which we summarise in the following. Suppose we apply a polar decomposi-
tion on the stable Lévy measure νS(dz) to obtain νS(dr, dξ) = h(dr, ξ)σ(dξ),
where {h(·, ξ)}ξ∈Sd−1 is an appropriate family of Lévy measures defined on
(0,+∞) and σ(dξ) remains a probability measure on Sd−1. Then, the infinitely
divisible law without Gaussian components with Lévy measure ν(dr, dξ) =
q(r, ξ)νS(dr, dξ) is called a tempered law, where r �→ q(r, ξ) is completely mono-
tone and limr→+∞ q(r, ξ) = 0 for every ξ ∈ Sd−1. By the complete monotonicity,

the tempering function can be represented as q(r, ξ) =
∫ +∞
0+

e−rs Q(ds, ξ), where
{Q(ds, ξ)}ξ∈Sd−1 is a family of finite Borel measures on (0,+∞). Tempering the
stable Lévy measure (2.5) with the function q(r, ξ), we obtain the Lévy measure

ν(B) =

∫
Sd−1

∫ +∞

0+

1B(rξ)
1

rα+1
q(r, ξ) dr σ(dξ)

=

∫
Rd

0

∫ +∞

0+

1B(uv)
e−u

uα+1
du ρ(dv), B ∈ B(Rd

0),

(2.6)

where the measure ρ(dv) satisfies

ρ(A) =

∫
Sd−1

∫ +∞

0+

1A(ξ/s)s
α Q(ds, ξ)σ(dξ), A ∈ B(Rd

0). (2.7)

We refer the reader to [88] for the proofs for the formulas (2.6) and (2.7).
Thus, we call an infinitely divisible law without Gaussian components with Lévy
measure of the form (2.6) a tempered stable law, where α ∈ (0, 2) is the stability
parameter and the measure ρ(dv) satisfies

∫
Rd

0
‖v‖α ρ(dv) < +∞. A fascinating

attribute of the tempered stable process is that it behaves like a stable process
in short time and a Brownian motion in long time. The tempered stable process
has found applications in financial modelling [20, 66] and statistical mechanics
[17, 19]. Shot noise representations of the tempered stable law are presented
in Example 3.7 and comparison of truncation errors for the representations are
provided in Example 4.3.

In the one-dimensional setting, the CGMY law is related to the tempered
stable law, which is associated with the CGMY process introduced in [20] as a
model for asset returns, governed by the Lévy measure

ν(dz) = C
e−G|z|1(−∞,0)(z) + e−M |z|1(0,+∞)(z)

|z|1+Y
dz, (2.8)

where C > 0, G ≥ 0, M ≥ 0 and Y < 2. Clearly, the CGMY Lévy measure
(2.8) with G,M > 0 and Y ∈ (0, 2) can be expressed in terms of the tempered
stable Lévy measure (2.6) with ρ(dv) = C(GY δ{−1/G}(dv) + MY δ{1/M}(dv)).
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We mention here that shot noise representations for the tempered stable law
(Example 3.7) do not cover CGMY laws with Y ≤ 0.

An important case of the CGMY law is when Y = 0. A gamma law with
shape a > 0 and scale β > 0 is an infinitely divisible law without Gaussian
components and with the Lévy measure

ν(dz) =
a

z
e−βz dz, (2.9)

defined on (0,+∞). The gamma process has seen applications in various areas
including degradation modelling [49] and statistical mechanics [17]. We em-
phasize the distinctness of properties between the tempered stable and gamma
laws, despite both being cases of the CGMY law with finite moments of all poly-
nomial orders. For example, we will later see immense differences in their shot
noise representation (Examples 3.7 and 3.8), and the inapplicability of Gaussian
approximation for the truncation error in the case of the gamma law (Section
4.2).

Following a similar idea of tempering the stable Lévy measure (2.5), another
direction of generalising the stable law is through the layered stable law [42].
An infinitely divisible law without Gaussian components is a layered stable law
if its Lévy measure satisfies

ν(B) =

∫
Sd−1

∫ ∞

0

1B(rξ)q(r, ξ) dr σ(dξ), B ∈ B(Rd
0), (2.10)

where σ(dξ) is a probability measure on the unit sphere Sd−1 of Rd, and q :
(0,∞)× Sd−1 → (0,∞) is a locally integrable function such that

q(r, ξ) ∼
{
c1(ξ)r

−α−1, as r → 0,

c2(ξ)r
−β−1, as r → ∞,

for almost every ξ ∈ Sd−1, where c1 and c2 are σ-integrable positive functions
on Sd−1, where (α, β) ∈ (0, 2)× (0,∞) are the inner and outer stability indices,
respectively. Similarly to the tempered stable process, the layered stable process
exhibits transient behaviour across different time scales. Specifically, it behaves
as a α-stable process in short time, and as a β-stable process in long time.
When β > 2, the long time behaviour resembles a Brownian motion. Shot noise
representations of the layered stable law are presented in Example 3.9.

3. Shot noise representation of infinitely divisible laws

We work towards shot noise series representations of infinitely divisible laws
without Gaussian components. That is, we seek to represent such laws using
series with summands dependent on Poisson arrival times and random shot
markings. We build up our understanding of series representations from the
least general case to the most, with the most general formulation being the
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generalised shot noise method [85] (Theorem 3.4). We motivate series represen-
tations of infinitely divisible laws via the Lévy-Itô decomposition [81, 87], and
demonstrate that such representations are possible precisely because the laws
can be summarised entirely by the jumps of the corresponding Lévy process.

3.1. The case of finite Lévy measure

As a motivating example, we begin by offering a simple shot noise represen-
tation for the infinitely divisible random variable characterised by a finite and
absolutely continuous Lévy measure with bounded positive support [31]. Re-
call that the case of a finite Lévy measure corresponds to a compound Pois-
son distribution. Such a random variable can be thought of as the position of
the corresponding compound Poisson process at unit time. Let {Γk}k∈N be the
arrival times of a standard Poisson process. Consider a nonnegative intensity

function h such that
∫ T

0
h(s) ds < +∞ for a fixed truncation time T > 0, and

define HI(t) := inf{u ∈ [0, T ] :
∫ u

0
h(s) ds < t} as the generalised inverse of the

corresponding mean value function. Then, the random variable

+∞∑
k=1

HI(Γk)1(Γk ∈ [0,
∫ T

0
h(s) ds]) (3.1)

is well-defined and infinitely divisible with Lévy measure h(z)dz defined on
(0, T ]. This result can be verified by checking the characteristic function of the
series, which is easily computed by conditioning on the number of jumps of the

standard Poisson process over [0,
∫ T

0
h(s) ds].

With the shot noise representation (3.1), we have represented every univari-
ate infinitely divisible law with a finite and absolutely continuous Lévy measure
defined on (0, T ] as a series based on Poisson arrival times. Specifically, ifX is an
infinitely divisible random variable in R without Gaussian components and with
a finite Lévy measure ν(dz) = h(z) dz whose density has support over a positive
bounded interval (0, T ], then X is equal in distribution to the series (3.1). So
indeed, by setting HI(t) as the cumulative integral of the Lévy measure ν(dz)
and interpreting the Poisson arrival times as random steps over the domain of
HI(t), a transformed state space, rather than over time, we obtain a shot noise
representation of the infinitely divisible law without Gaussian components. This
idea naturally leads the more general inverse Lévy measure method discussed
later in Section 3.3. The subscript for the kernel HI is used to distinguish be-
tween the kernel of the inverse Lévy measure method and that of the generalised
shot noise method in Section 3.4.

3.2. Lévy-Itô decomposition

We would like to introduce the Lévy-Itô decomposition as a means to work
towards a general approach for shot noise series representation, which extends
to infinitely divisible random vectors with infinite Lévy measures. Recall that
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we can interpret infinitely divisible random variates as the unit-time increment
X1 −X0 of its corresponding Lévy process. This interpretation will prove to be
fruitful for more general shot noise representations for infinitely divisible laws
through the Lévy-Itô decomposition for Lévy processes, as first demonstrated
by Resnick [81].

For a fixed T > 0, consider a Lévy process {Xt : t ∈ [0, T ]} in Rd without
Gaussian components and with a general Lévy measure ν(dz) satisfying (2.1).
Let us define X0− := X0 and a measure μ(dz, ds) on Rd

0 × [0,+∞) such that

μ(B, J) = |{s ∈ J : Xs −Xs− ∈ B}|

=

∫
J

1B(Xs −Xs−) ds, (B, J) ∈ B(Rd
0)× B([0,+∞)).

That is, μ(B, J) is a random variable that counts the number of jumps with sizes
in B during the time interval J . Define St,n := {s ∈ [0, t] : |Xs−Xs−| > 1/n} to
be the set of points at which jumps with sizes greater than 1/n occur in [0, t].
Since X is almost surely finite on [0, t], we must have that |St,n| < +∞ almost
surely, so the set of all jumps St := ∪n∈NSt,n over [0, t] must be almost surely
at most countable. Thus, we can express

μ(B, [0, t]) =
∑
s∈St

δ(Xs−Xs−)(B) a.s.,

for every B ∈ B(Rd
0). Clearly, {μ(·, [0, t])}t≥0 forms a family of random counting

measures. We state a couple of results from [2]. Firstly, if {Nt : t ≥ 0} is a
Lévy process that is nondecreasing and Nt − Nt− takes values in {0, 1} for
every t ≥ 0, then it is a Poisson process. This naturally leads to the following
result. Let B ∈ B(Rd

0) such that ν(B) < +∞. Then, {μ(B, [0, t]) : t ≥ 0} is
a Poisson process in Rd

0 with intensity ν(B). Additionally, we can include the
case of infinite Lévy measures by replacing the assumption ν(B) < +∞ with
B not including zero in its closure, as this avoids the accumulation of infinitely
many small jumps. The upshot is that μ(dz, ds) is a Poisson random measure
on Rd

0 × [0,+∞) with intensity measure (ν × m)(dz, ds), where m(ds) is the
Lebesgue measure on R. Note that this verifies the interpretation of ν(B) as the
expected number of jumps with sizes in B ∈ B(Rd

0) over the unit interval, as

ν(B) = ν(B)m([0, 1]) = E[μ(B, [0, 1])].

Moreover, the stated result on counting jump discontinuities shows that every
Lévy process admits a Poisson random measure on Rd

0 × [0,+∞) with intensity
measure (ν × m)(dz, ds). With this understanding of the connection between
Poisson random measures and Lévy processes, it is reasonable now to present
the following case of the Lévy-Itô decomposition.

Theorem 3.1 (Lévy-Itô decomposition). Let {Xt : t ≥ 0} be a Lévy process
in Rd without Gaussian components with Lévy measure ν(dz). Where μ(dz, ds)
is the Poisson random measure on Rd

0 × [0,+∞) with intensity measure (ν ×
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m)(dz, ds) associated with X, it holds that

Xt =

∫ t

0

∫
‖z‖∈(0,1]

z(μ(dz, ds)−ν(dz)ds)+

∫ t

0

∫
‖z‖>1

zμ(dz, ds), t ≥ 0. (3.2)

We refer the reader to [95, Chapter 4] for details.
One must take care when working with the double integral term in the Lévy-

Itô decomposition; the linearity of the integral cannot be applied if the integrand
z is not integrable with respect to the relevant measures. This highlights the
importance of the compensation term v(dz)ds. In the case that z is integrable,
linearity of the integral can be applied to (3.2) to obtain

Xt =

∫ t

0

∫
Rd

0

zμ(dz, ds)−
∫ t

0

∫
‖z‖∈(0,1]

z ν(dz)ds

=

∫
Rd

0

zμ(dz, [0, t])− t

∫
‖z‖∈(0,1]

z ν(dz).

In the case where z is not integrable, define

X
(n)
t :=

∫ t

0

∫
‖z‖∈[1/n,1]

z(μ(dz, ds)− ν(dz)ds) +

∫
‖z‖>1

z μ(dz, [0, t]).

Then, we are guaranteed that z is integrable for every n ∈ N and hence we can
apply linearity of the integral to obtain

X
(n)
t =

∫
‖z‖≥1/n

z μ(dz, [0, t])− t

∫
‖z‖∈[1/n,1]

z ν(dz).

It is clear that X
(n)
t → Xt pointwise as n → +∞. Thus, we can derive a series

representation for Lévy processes by finding an appropriate representation of
μ(dz, ds) as a random sum, which is possible in principle as it is a random count-
ing measure. For the moment, suppose that μ(dz, ds) =

∑+∞
k=1 δ(Jk,Tk)(dz, ds)

almost surely, where {Jk}k∈N and {Tk}k∈N are suitable independent sequences
of random vectors in Rd and [0, T ], respectively. Then, we have that

X
(n)
t =

+∞∑
k=1

∫
‖z‖≥ 1

n

z δ(Jk,Tk)(dz, [0, t])− t

∫
‖z‖∈[1/n,1]

z ν(dz)

=

+∞∑
k=1

Jk1[1/n,+∞)(‖Jk‖)1[0,t](Tk)− t

∫
‖z‖∈[1/n,1]

z ν(dz) a.s.

Finally, by letting n → +∞, we obtain the shot noise series representation [87,
Section 1]

Xt =

+∞∑
k=1

(Jk1[0,t](Tk)− tck) a.s., (3.3)
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where {ck}k∈N is a sequence of suitable compensation vectors in Rd (sometimes
referred to as centres if the expectation of each term is used) which guarantee the
convergence of the series. In the case where the Lévy process is a subordinator,
convergence without compensation vectors is ensured, as its Lévy measure has
finite first moment about the origin. Where X1 is our infinitely divisible random
vector of interest, its shot noise representation is given by

∑+∞
k=1(Jk−ck) in law.

As demonstrated, the crux of this series representation based upon the Lévy-
Itô decomposition is the representation of the Poisson random measure associ-
ated with a Lévy process as a random sum of Dirac delta measures. That is to
say, this approach has reduced the problem of deriving the shot noise represen-
tation of Lévy processes in general settings to finding expressions of μ(dz, ds)
as random sums. We explore one such method in the following.

3.3. Inverse Lévy measure method

We would like to generalise the shot noise representation in Section 3.1 to in-
finitely divisible random variables with infinite Lévy measures with support ex-

tending to negative real numbers. In Section 3.1, we assumed
∫ T

0
h(s) ds < +∞

so that the generalised inverse of the mean value function HI is well-defined.
However, a simple extension to infinite Lévy measures is to instead define the
kernel HI(r) := inf{u ∈ (0,+∞) : ν((u,+∞]) < r} to run down from infinity
instead. This kernel is well-defined even in the case of infinite Lévy measures
since, by definition, the tail of the Lévy measure is finite. Let {Xt : t ∈ [0, 1]}
be a Lévy process in (0,+∞) without Gaussian components with Lévy measure
ν(dz). Unlike the setting of Section 3.1, we do not assume the Lévy measure
ν(dz) to admit a density on (0,+∞). As mentioned in the previous section,
our goal is to represent the Poisson random measure μ(dz, ds) with intensity
measure ν ×m associated with the Lévy process X as a random sum. We state
the following result from [87, Proposition 2.1], which will shortly prove to be
essential.

Proposition 3.2. Let M(ds) and N(dz) be Poisson random measures on Borel
spaces S and T with intensity measures μ and ν, respectively. If there exists a
measurable function h : S → T such that ν = μ ◦ h−1 on B(T ), then N(dz) is
equal in law toM◦h−1(dz). If, in addition, the Poisson random measureN(dz) is
defined on a probability space which admits the existence of a standard uniform
random variable independent of N(dz), and there exists a sequence of random
elements {Yk}k∈N on S such that

M(ds) =

+∞∑
k=1

δYk
(ds),

then there exists a sequence of random elements {Xk}k∈N defined on a common
probability space as N(dz) that is identical in law to {Yk}k∈N and

N(dz) =

+∞∑
k=1

δh(Xk)(dz) a.s.
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With this, we will now present the inverse Lévy measure method for comput-
ing a shot noise representation in the one-dimensional setting. Let {Γk}k∈N be a
sequence of standard Poisson arrival times. Then, its corresponding Poisson ran-
dom measure with intensity measure m(dz) can be expressed by

∑+∞
k=1 δΓk

(dz).
Define the marked Poisson random measure

M(dz, ds) :=
+∞∑
k=1

δ(Γk,Tk)(dz, ds),

where {Tk}k∈N are iid standard uniform random variables independent of
{Γk}k∈N. Then, it holds that M(dz, ds) is a Poisson random measure on
(0,+∞) × [0, 1] with intensity measure m ×m. Define H∗

I : (0,+∞) × [0, 1] →
(0,+∞) × [0, 1] by (y, u) → (HI(y), u), then (m × m) ◦ (H∗

I )
−1 = ν × m. By

Proposition 3.2, it holds that

μ(dz, ds)
L
=

+∞∑
k=1

δ(HI(Γk),Tk)(dz, ds). (3.4)

Substituting this representation for μ(dz, ds) into the Lévy-Itô decomposition of
Xt and following the derivation of (3.3), we obtain a shot noise representation
for X via the inverse Lévy measure method as [31, 87]

{Xt : t ∈ [0, 1]} L
=

{
+∞∑
k=1

(HI(Γk)1[0,t](Tk)− tck) : t ∈ [0, 1]

}
,

where {ck}k∈N is a sequence of suitable centres. Where the unit-time marginal
X1 is the infinitely divisible random variable of our interest, its shot noise repre-
sentation is given by

∑+∞
k=1(HI(Γk)− ck) in law. This is almost identical to the

series (3.1) except for the appearance of compensating constants, which should
be expected given the possibility of heavy intensity of the Lévy measure about
the origin.

We wish to extend the inverse Lévy measure method to the multidimensional
setting with jumps in any direction. We will loosely present LePage’s approach
[69]. Let {Xt : t ∈ [0, 1]} now be a Lévy process in Rd without Gaussian com-
ponents with Lévy measure ν(dz). We seek a representation of the associated
Poisson random measure μ(dz, ds) on Rd

0 × [0, 1] with intensity measure ν ×m
as a series like (3.4). Consider a radial disintegration of ν(dz) given by

ν(B) =

∫
Sd−1

∫ +∞

0+

1B(rξ)h(dr, ξ)σ(dξ), B ∈ B(Rd
0), (3.5)

where σ(dξ) is some probability measure on the unit sphere Sd−1 of Rd and
{h(·, ξ)}ξ∈Sd−1 is a measurable family of Lévy measures on (0,+∞). The idea
behind this disintegration is to decompose the intensities of jumps sizes by
magnitude and direction; specifically, the intensity of jumps of magnitude r > 0
in the direction ξ ∈ Sd−1 is represented by h(dr, ξ), while the proportion of
all jumps with directions in the set C ⊆ Sd−1 is given by σ(C). We define the
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generalised inverse of the tail of h((u,+∞), ξ) in the direction ξ as

HI(r, ξ) := inf{u ∈ (0,+∞) : h((u,+∞), ξ) < r}. (3.6)

Let {Uk}k∈N be a sequence of iid random vectors with law σ(dξ) on Sd−1, in-
dependent of {Γk}k∈N and {Tk}k∈N. Similarly to before, we define the marked
Poisson process

∑+∞
k=1 δ(Γk,Uk,Tk)(dr, dξ, ds) on (0,+∞)× Sd−1 × [0, 1] with in-

tensity measure m×σ×m. Define H∗
I : (0,+∞)×Sd−1×[0, 1] → Rd

0×[0, 1] such
that (r, ξ, s) �→ (HI(r, ξ)ξ, s). Due to the radial representation (3.5) of the Lévy
measure v(dz), we have that (m × σ × m) ◦ (H∗

I )
−1 = ν × m. By Proposition

3.2, it holds that [87, Section 3]

μ(dz, ds)
L
=

+∞∑
k=1

δ(HI(Γk,Uk)Uk,Tk)(dz, ds).

Substituting the expression for μ(dz, ds) into the Lévy-Itô decomposition, we
obtain

{Xt : t ∈ [0, 1]} L
=

{
+∞∑
k=1

(HI(Γk, Uk)Uk1[0,t](Tk)− tck) : t ∈ [0, 1]

}
. (3.7)

Where the unit-time marginal X1 is our infinitely divisible random vector of
interest, its shot noise representation is given by

∑+∞
k=1(HI(Γk, Uk)Uk − ck) in

law. By comparing the shot noise representations between infinitely divisible
laws and their corresponding Lévy measures, we see a correspondence in which
the series pertaining to the latter is merely the former but with uniform scatter-
ing of summands. Intuitively, the uniform scattering is necessary to preserve the
stationarity of increments. An alternative derivation of the inverse Lévy mea-
sure method in the multidimensional case can be obtained via the generalised
shot noise method of Section 3.4 in the following.

We provide the shot noise representation of the stable law obtained via the
inverse Lévy measure method [70], which is crucial from a theoretical perspective
[26, 47, 93, 94] as well as for practical use [53, 54, 68], to name a few examples.

Example 3.3 (Inverse Lévy measure method for stable random vector). Let
X be a stable law with Lévy measure (2.5). Then, by the inverse Lévy measure
method, it holds that

X
L
=

+∞∑
k=1

((
αΓk

a

)−1/α

Uk − ck

)
, (3.8)

where {Uk}k∈N is a sequence of iid random vectors with distribution σ(dξ)
and {ck}k∈N is a sequence of suitable centres given in Theorem 3.4. If σ(dξ) is
isotropic or the Lévy measure ν(dz) satisfies

∫
Rd

0
(1∧‖z‖) ν(dz) < +∞, then the

infinite series (3.8) converges almost surely without the centres {ck}k∈N.

3.4. Generalised shot noise method

We will now present the generalised shot noise method [85, 87], which generalises
the inverse Lévy measure method of Section 3.3.
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Theorem 3.4 (Generalised shot noise method). Suppose a Lévy measure ν(dz)
on Rd

0 can be decomposed as

ν(B) =

∫ +∞

0+

P(H(r, U) ∈ B) dr, B ∈ B(Rd
0), (3.9)

where U is a random vector in some space U and H : (0,+∞) × U → Rd
0 is

such that for every u ∈ U , r �→ ‖H(r, u)‖ is nonincreasing. Then, the following
statements hold.

(i) It holds that

X
L
=

+∞∑
k=1

(H (Γk, Uk)− ck) , (3.10)

where X is an infinitely divisible random vector without Gaussian com-
ponents with the Lévy measure ν(dz), {Γk}k∈N are the arrival times of
the standard Poisson process, {Uk}k∈N are iid copies of U independent of
{Γk}k∈N, and {ck}k∈N is a sequence of suitable centres in Rd. Moreover,
we can take

ck :=

∫ k

k−1

E
[
H(s, U)1(0,1](‖H(s, U)‖)

]
ds, k ∈ N.

If additionally, the Lévy measure ν(dz) on Rd
0 satisfies

∫
‖z‖>1

‖z‖ ν(dz) <
+∞, then we can instead take ck =

∫ k

k−1
E[H(s, U)] ds for every k ∈ N.

(ii) If a := lims→+∞
∫ s

0+

∫
‖z‖≤1

zP(H(r, U) ∈ dz) dr exists in Rd, then it holds

that
∑+∞

k=1 H (Γk, Uk) is an infinitely divisible random vector characterised
by the Lévy-Khintchine triplet (a, 0, ν).

A rigorous proof of the generalised shot noise method can be found in [87],
along with the almost sure convergence of the series (3.10). Moreover, there
exist independent random sequences {Γk}k∈N and {Uk}k∈N such that the equal-
ity (3.10) holds almost surely. This result not only generalises the inverse Lévy
measure method, but as the decomposition (3.9) of the Lévy measure is not
unique, the generalised shot noise method can be used to derive distinct shot
noise representations of the same infinitely divisible random vector. In partic-
ular, Theorem 3.4 can be used to derive the inverse Lévy measure, rejection,
thinning and Bondesson’s methods for shot noise representation of an infinitely
divisible random vector, as follows.

Proposition 3.5 (Inverse Lévy measure, rejection, thinning and Bondesson’s
methods). Let ν(dz) be a Lévy measure on Rd

0 such that

ν(B) =

∫
Sd−1

∫ +∞

0+

1B(rξ)h(dr, ξ)σ(dξ), B ∈ B(Rd
0), (3.11)

where σ(dξ) is a probability measure on the unit sphere Sd−1 of Rd and
{h(·, ξ)}ξ∈Sd−1 is a measurable family of Lévy measures on (0,+∞). Let {Γk}k∈N
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be a sequence of standard Poisson arrival times, and {Uk}k∈N a sequence of iid
random vectors under σ(dξ) independent of {Γk}k∈N. Then, an infinitely di-
visible random vector X without Gaussian components with the Lévy measure
ν(dz) has the following representations.

(i) Inverse Lévy measure method [31, 69]: Define

HI(r, ξ) := inf{u ∈ (0,+∞) : h((u,+∞), ξ) < r}, (r, ξ) ∈ (0,+∞)×Sd−1.
(3.12)

Then, it holds that

ν(B) =

∫ +∞

0+

P(HI(r, U)U ∈ B) dr, B ∈ B(Rd
0),

where U distributed under σ(dξ). Hence, by Theorem 3.4, we have

X
L
=

+∞∑
k=1

(HI (Γk, Uk)Uk − c1,k) , (3.13)

where {c1,k}k∈N is a sequence of suitable centres. (Note that [31] only
establishes the univariate case.)

(ii) Rejection method [87]: Let νp be a Lévy measure on Rd
0 such that

νp(B) =

∫
Sd−1

∫ +∞

0+

1B(rξ)hp(dr, ξ)σ(dξ), B ∈ B(Rd
0),

where {hp(·, ξ)}ξ∈Sd−1 is a measurable family of Lévy measures on (0,+∞)
such that for every ξ ∈ Sd−1, h(·, ξ) is absolutely continuous with respect
to hp(·, ξ) and satisfies (dh/dhp) ≤ 1. Define

Hp(r, ξ) := inf{u ∈ (0,+∞) : hp((u,+∞), ξ) < r},
(r, ξ) ∈ (0,+∞)× Sd−1.

Then, it holds that

ν(B) =

∫ +∞

0+

P

(
Hp(r, U)1

(
dh

dhp
(Hp(r, U), U) > V

)
U ∈ B

)
dr,

B ∈ B(Rd
0),

where U distributed under σ(dξ) and independent of V , a standard uniform
random variable. Hence, by Theorem 3.4, we have

X
L
=

+∞∑
k=1

(
Hp (Γk, Uk) 1

(
dh

dhp
(Hp (Γk, Uk) , Uk) > Vk

)
Uk − c2,k

)
,

(3.14)
where {Vk}k∈N is a sequence of iid standard uniform random variables and
{c2,k}k∈N is a sequence of suitable centres.

(iii) Thinning method [85]: Suppose {F (·, ξ)}ξ∈Sd−1 is a family of probability
measures on (0,+∞) such that for every ξ ∈ Sd−1, h(·, ξ) is absolutely
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continuous with respect to F (·, ξ). Then, it holds that

ν(B) =

∫ +∞

0+

P

(
V 1

(
dh

dF
(V, U) > r

)
∈ B

)
dr, B ∈ B(Rd

0),

where (V, U) is distributed under F (dv, ξ) × σ(dξ). Hence, by Theorem
3.4, we have

X
L
=

+∞∑
k=1

(
Vk1

(
dh

dF
(Vk, Uk) > Γk

)
Uk − c3,k

)
, (3.15)

where {(Vk, Uk)}k∈N is a sequence of iid copies of (V, U) and {c3,k}k∈N is
a sequence of suitable centres.

(iv) Bondesson’s method [12]: Suppose that the Lévy measure h(·, ξ) can be
decomposed as

h(B, ξ) =

∫ +∞

0+

G(B/g(r, ξ), ξ) dr, (B, ξ) ∈ B(Rd
0)× Sd−1,

where {G(·, ξ)}ξ∈Sd−1 is a family of probability measures on (0,+∞) and
{g(·, ξ)}ξ∈Sd−1 is a family of nonincreasing functions from (0,+∞) to
(0,+∞). Then, it holds that

ν(B) =

∫ +∞

0+

P(g(r, U)V U ∈ B) dr, B ∈ B(Rd
0),

where (V, U) is distributed under G(dv, ξ) × σ(dξ). Hence, by Theorem
3.4, we have

X
L
=

+∞∑
k=1

(g (Γk, Uk)VkUk − c4,k) , (3.16)

where {(Vk, Uk)}k∈N is a sequence of iid copies of (V, U) and {c4,k}k∈N is
a sequence of suitable centres.

Thus, we see that the generalised shot noise method allows us to choose from
different shot noise representations of the same infinitely divisible law due to
the nonuniqueness of the decomposition (3.9) of the Lévy measure. We remark
that alternative series representations of Lévy processes exist. One such example
is via the Karhunen-Loève expansion [38], leading to a Fourier-like series with
infinitely divisible coefficients, which can be approximated via the truncation of
shot noise representation (Section 4).

3.5. Examples

Armed with several different shot noise representation methods, we provide
examples of shot noise representations of infinitely divisible laws. We begin by
revisiting Example 3.3 of the stable law.

Example 3.6 (Shot noise representations for the stable law). The shot noise
representation (3.8) can also be obtained via Bondesson’s method, for instance,
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with G ≡ δ{+1} and h(r, ξ) = a/(αrα), as well as with the rejection method with
the trivial choice hp(·) ≡ h(·). While the thinning method can be applied, with
F (dr, ξ) = e−r dr for example, it is significantly elapsed by the representation
(3.8) in terms of elegance and practicality.

Next, in contrast to this lack of choice regarding shot noise representations for
the stable law, we consider several shot noise representations for the tempered
stable law.

Example 3.7 (Shot noise representations of tempered stable law). We first
consider shot noise representations of the tempered stable law based on the
thinning, rejection and inverse Lévy measure methods which we have seen pre-
viously in Proposition 3.5 [45]. For every α ∈ (0, 2) and r > 0, define

Hα(r) :=

(
αr

mα,ρ

)−1/α

, (3.17)

where mα,ρ :=
∫
Rd

0
‖v‖α ρ(dv) and ρ(dv) is defined as in (2.7). Define the fol-

lowing kernels:

H1(r,v) := inf

{
u ∈ (0,+∞) :

∫ +∞

u

mα,ρ
e−s/‖v‖

sα+1
ds > r

}
v

‖v‖

H2(r, w,v) := w1

⎛⎝r ≤ mα,ρ
‖v‖
λ

exp
[
−1−λ

‖v‖ w
]

wα+1

⎞⎠ v

‖v‖ ,

H3(r, w,v) := w1

⎛⎝r ≤ mα,ρΓ(λ1)

(
‖v‖
λ2

)λ1 exp
[
−1−λ2

‖v‖ w
]

wα+λ1

⎞⎠ v

‖v‖ ,

H4(r, u,v) := Hα(r)1
(
e−Hα(r)/‖v‖ > u

) v

‖v‖ ,

where λ, λ2 ∈ (0, 1] and λ1 > 0. Let {W (2)
k }k∈N be a sequence of independent

exponential random variables with rate λ/‖Vk‖, and {W (3)
k }k∈N a sequence of

independent gamma random variables with shape λ1 and scale ‖Vk‖/λ2. Define
the series

X1 :=

+∞∑
k=1

(H1(Γk, Vk)− c1,k), (3.18)

X2 :=

+∞∑
k=1

(
H2

(
Γk,W

(2)
k , Vk

)
− c2,k

)
, (3.19)

X3 :=

+∞∑
k=1

(
H3

(
Γk,W

(3)
k , Vk

)
− c3,k

)
, (3.20)

X4 :=

+∞∑
k=1

(H4(Γk, Uk, Vk)− c4,k), (3.21)
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where {cj,k}k∈N, j = 1, 2, 3, 4, are sequences of suitable centres in Rd. Then, for
j = 1, 2, 3, 4, the series Xj converges almost surely and is equal in law to the
tempered stable law with parameters α and ρ(dv). The first two representations
are derived from the thinning method and the latter two are derived from the
rejection and the inverse Lévy measure methods, respectively.

Yet another shot noise representation for the tempered stable law is Rosiński’s
representation [88], which can be verified via the generalised shot noise method
(Theorem 3.4) but falls outside of the methods described in Proposition 3.5.
Let {Wk}k∈N, {Uk}k∈N and {Vk}k∈N be mutually independent sequences of iid
standard exponential, standard uniform random variables and random vectors
in Rd

0 with distribution ‖v‖αρ(dv)/mα,ρ, respectively. Then, where {Γk}k∈N is a
sequence of standard Poisson arrival times and k0 and z0 are suitable constants
depending only on α and ρ, we have that the series

+∞∑
k=1

[(
Hα(Γk) ∧WkU

1/α
k ‖Vk‖

) Vk

‖Vk‖
−Hα(k)k0

]
+ z0 (3.22)

converges almost surely and is equal in law to the tempered stable law with
parameters α and ρ(dv). Along with the aforementioned representations (3.18)–
(3.21), the shot noise representation (3.22) shares the advantages of being ex-
plicit and exact.

Note that the shot noise representations for the tempered stable law in Ex-
ample 3.7 with ρ(dv) = C(GY δ{−1/G}(dv) + MY δ{1/M}(dv)) do not cover the
case of the CGMY law with Y ≤ 0. With Y < 0, the CGMY law becomes
compound Poisson. For the case when Y = 0, which leads to the gamma law,
we present its shot noise representations [87, Section 6] as follows.

Example 3.8 (Shot noise representations of gamma law). Let X be a gamma
law with Lévy measure (2.9). Let {Γk}k∈N be standard Poisson arrival times.
Then, it holds that

(i) by the inverse Lévy measure method,

X
L
=

1

β

+∞∑
k=1

E−1
1 (Γk/a), (3.23)

where E1(x) :=
∫ +∞
x

u−1e−u du denotes the exponential integral function

and E−1
1 its inverse.

(ii) by the rejection method with h(r) = ae−βr/r and hp(r) = a/r(1 + βr),

X
L
=

1

β

+∞∑
k=1

1

eΓk/a − 1
1

(
eΓk/a

eΓk/a − 1
exp

[
− 1

eΓk/a − 1

]
> Vk

)
, (3.24)

where {Vk}k∈N is a sequence of iid standard uniform random variables.
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(iii) by the thinning method with F (dr) = βe−βr dr,

X
L
=

1

β

+∞∑
k=1

Vk1 (ΓkVk < a) , (3.25)

where {Vk}k∈N is a sequence of iid standard exponential random variables.
(iv) by Bondesson’s method with G(du) = βe−βu du and g(r) = e−r/a,

X
L
=

1

β

+∞∑
k=1

e−Γk/aVk, (3.26)

where {Vk}k∈N is a sequence of iid standard exponential random vari-
ables.

Of the shot noise representations of the gamma law above, the easiest series
to work with is perhaps the one associated with Bondesson’s method (3.26), first
appearing in [12]. By contrast, the most difficult series from an implementation
point of view is the one resulting from the inverse Lévy measure method. Com-
paring this to the case of the stable law (Example 3.3) where we saw that the
inverse Lévy measure method yields the most convenient representation, it is
clear that there is an advantage to having a variety of shot noise representation
methods such as those in Theorem 3.4 and Proposition 3.5. We mention that
the inverse Lévy measure method (3.23) is employed in [63] to describe shot
noise representations for the variance gamma law and process. Next, we present
shot noise representations of a layered stable law [42].

Example 3.9 (Shot noise representations of a layered stable law). Let X be a
layered stable law with the Lévy measure (2.10) and

q(r, ξ) = r−α−11(0,1](r) + r−β−11(1,∞)(r).

Let {Γk}k∈N be standard Poisson arrival times independent of a sequence
{Vk}k∈N of iid random vectors distributed under σ(dξ). Denote z0 := E[V1]
and {bk}k∈N a sequence of suitable centring constants depending only on β.
Then, it holds that

(i) by the inverse Lévy measure method,

X
L
=

+∞∑
k=1

[(
(βΓk)

−1/β 1(0,1/β](Γk)

+

(
αΓk + 1− α

β

)−1/α

1(1/β,+∞)(Γk)

)
Vk − bkz0

]
.

(ii) assuming α < β, by the rejection method,

X
L
=

+∞∑
k=1

[
(αΓk)

−1/α1

(
dνα,βσ,q

dνασ

(
(αΓk)

−1/αVk

)
≥ Uk

)
Vk − bkz0

]
,
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where {Uk}k∈N is a sequence of iid standard uniform random variables
independent of the other random sequences and

dνα,βσ,q

dνασ
(z) = 1(0,1](‖z‖) + ‖z‖α−β1(1,+∞)(‖z‖) ≤ 1.

(iii) assuming α < β, by the rejection method,

X
L
=

+∞∑
k=1

[
(βΓk)

−1/β1

(
dνα,βσ,q

dνβσ

(
(βΓk)

−1/βVk

)
≥ Uk

)
Vk − bkz0

]
,

where {Uk}k∈N is a sequence of iid standard uniform random variables
independent of the other random sequences and

dνα,βσ,q

dνβσ
(z) = ‖z‖β−α1(0,1](‖z‖) + 1(1,+∞)(‖z‖) ≤ 1.

These examples of shot noise representations are only a handful of the ap-
plications of shot noise methods in the literature, and the derivation of shot
noise representations and their usage in sampling and simulation are still on-
going topics of research. We remark that shot noise series is the only known
representation of infinitely divisible laws in many cases, with the multivariate
stable law and its generalisations as such examples. In the following, we dis-
cuss a truncation scheme for sampling via shot noise representations and the
associated error analysis.

4. Truncation of shot noise representations

We have seen in Section 3 that for shot noise representations, the summand
H(Γk, Uk) in (3.10) corresponds to jumps associated with the Lévy measure. In
particular, as ‖H(·, ξ)‖ is nonincreasing, the summands are expressed in the de-
scending order of jump magnitudes. Naturally, this implies that the first finitely
many (large) jumps account for significantly more variation of the infinitely
divisible random vector than the remaining smaller jumps [44]. With the vali-
dated notion that the shot noise series can be reasonably approximated by its
partial sums, our shot noise representation established previously provides us
with a powerful method to approximating infinitely divisible laws for sampling.
Namely, we do so by truncating the series representation to a finite sum. Simu-
lation via shot noise is well scalable to higher dimensional settings (for example,
see [96]). Simulation via a finite truncation approach in the case of infinite jump
intensity is typical for shot noise processes [73, 74]. In what follows, we describe
a particular truncation scheme in more detail and provide examples and error
analysis.

Let X be an infinitely divisible random vector without Gaussian components
and with an infinite Lévy measure ν(dz). To provide intuition for approximations
via shot noise representation, we describe two finite truncation schemes with the
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inverse Lévy measure method. Suppose a shot noise representation forX is given
by

X
L
=

+∞∑
k=1

HI(Γk, Uk)Uk,

where the random sequences are as in Proposition 3.5 (i). While we have as-
sumed a scenario in which the compensation constants are not required for
simplicity, it should be noted that their presence does not lead to any substan-
tial difference in the analysis. Immediately, one may approximate X by only
including the summands corresponding to the index set {1, 2, · · · , n} for a fixed
truncation parameter n ∈ N rather than the entire infinite series. This is simple
to implement, and it is clear that greater accuracy can be obtained by increas-
ing n. However, there are two important aspects of this deterministic truncation
scheme to consider. Firstly, by fixing n, we are conditioning on the number of
jumps of the approximation, which may be undesirable for certain applied con-
texts in which the number of jumps is required to remain random. Secondly,
while we can see that by truncating the series, we discard all jumps below some
magnitude, for the direction ξ ∈ Sd−1 this threshold magnitude is given by
HI(Γn, ξ), which is random.

An alternative truncation scheme is to instead perform summation with re-
spect to the random index set {k ∈ N : Γk ≤ n}, where n > 0 is the truncation
parameter. We refer to this framework as the Poisson truncation approxima-
tion, which differs with the deterministic truncation scheme described previ-
ously by allowing the index set to depend on the underlying Poisson arrival
times. In this way, we no longer condition on the number of jumps, but rather
for each direction ξ ∈ Sd−1, we include all jumps with magnitudes greater or
equal to the deterministic threshold HI(n, ξ). This fixed threshold immediately
gives an indication of the error. Equivalently, in every direction ξ ∈ Sd−1, this
truncation method exactly simulates the tail of the Lévy measure ν(dz) over
(HI(n, ξ),+∞).

In the case that the shot noise representation does not correspond to the
inverse Lévy measure method, while the shape of the domain simulated via
Poisson truncation may not necessarily be as simple, it still holds that the
simulated region is deterministic with finite measure and thus can still provide
an indication of the error. We see that the Poisson truncation approximation
of an infinitely divisible random vector is in essence an approximation by a
compound Poisson random vector. In the form of the generalized shot noise
method of Theorem 3.4, the partial Levy measure described via the Poisson
truncation {k ∈ N : Γk ≤ n}, say νn(dz), is given by

νn(B) =

∫ n

0+

P(H(r, U) ∈ B)dr, B ∈ B(Rd
0),

for n ∈ N. Hence, the total mass that the Poisson truncation describes is
νn(R

d
0) = n. Hereafter, we focus on the setting of the Poisson truncation method

and reserve the notation νn for such a truncated Levy measure via the Poisson
truncation approximation.



Numerical aspects of shot noise representation 225

Note that the average number of summands under Poisson truncation is n,
since the Γk’s in the index set {k ∈ N : Γk ≤ n} corresponds to the arrival times
of the standard Poisson process on [0, n]. However, this may be merely an upper
bound for the average number of jumps, as for example, some summands may
evaluate to zero in the case of the rejection and thinning methods (see (3.14)
and (3.15), respectively). Consider the case when the infinitely divisible random
vector without Gaussian components has a finite Lévy measure ν(dz), that is, is
a compound Poisson random vector. As the total jump intensity ν(Rd

0) < +∞
is originally finite, the shot noise representation must almost surely have a finite
number of nonzero terms. So in this case, there is no need to artificially truncate
the series representation (3.10), that is,

+∞∑
k=1

(H (Γk, Uk)− ck)
L
=

N∑
k=1

(
H
(
V(k), Uk

)
− ck

)
, (4.1)

where N is a Poisson random variable with rate ν(Rd
0) and {V(k)}k∈{1,··· ,N} is

a sequence of order statistics of N iid uniform random variables on (0, ν(Rd
0)).

The representation (4.1) provides an alternative random sum representa-

tion of compound Poisson random vectors, compared to X
L
=
∑N

k=1 Yk, where
{Yk}k∈N is a sequence of iid random vectors distributed under ν(dz)/ν(Rd

0).
While the latter representation presents the jump structure as iid random vec-
tors, the shot noise representation (4.1) decomposes the jumps in decreasing
order of contribution to variation. For the sampling of the compound Poisson
law, the random sum (4.1) may be more advantageous to implement if sampling
the random sequence {Yk}k∈N is not as computationally convenient, which is
often the case in multidimensional settings.

One should also note that by the memoryless property of the exponential
distribution, the two sets of Poisson arrival times {Γk : Γk ≤ n, k ∈ N} and
{Γk : Γk ∈ (n,m], k ∈ N} are independent for every n < m. Consequently,
we can consider the Lévy measures (ν − νn)(dz) and (νn − νm)(dz) as corre-
sponding to independent components of the Lévy process with Lévy measure
ν(dz). This fact may be useful for incrementally simulating a Lévy process
based on the domain of its Lévy measure, as well as for the analysis of error
(Section 5.2).

As an example of error analysis, we can consider the mean-squared error as-
sociated with the Poisson truncation of shot noise representation. Denote ν(dz)
and μ(dz, ds) as the Lévy measure and Poisson random measure associated
with the infinitely divisible random vector of interest, and denote νn(dz) and
μn(dz, ds) as that of its Poisson truncation approximation. Assume the Lévy
measure ν(dz) is isotropic. The truncation error for the shot noise representa-
tion (3.10) is expressed as the tail series

+∞∑
k=1

H(Γk, Uk)−
∑

{k∈N:Γk≤n}
H(Γk, Uk) =

∑
{k∈N:Γk>n}

H(Γk, Uk).
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By Theorem 3.1 and the Itô-Wiener isometry, the mean-squared error is given
by

E

⎡⎢⎣
∥∥∥∥∥∥

∑
{k∈N:Γk>n}

H(Γk, Uk)

∥∥∥∥∥∥
2
⎤⎥⎦ = E

[∥∥∥∥∥
∫ 1

0

∫
Rd

0

z ((μ− μn)

− (ν − νn)1(0,1](‖z‖))(dz, ds)
∥∥∥∥∥
2]

=

∫
Rd

0

‖z‖2 (ν − νn)(dz),

(4.2)

for every n > 0. For the case where the Lévy measure ν(dz) is not isotropic,
application of the Itô-Wiener isometry in (4.2) can still be invoked in the case of
the inverse Lévy measure method for n sufficiently large such that the support
of (ν − νn)(dz) is contained in the unit ball. As an example, we present the
evaluation of the mean-squared truncation error (4.2) for the isotropic stable
law in the following.

Example 4.1. Consider the Poisson truncation of the shot noise representation
of the stable vector (3.8) obtained via the inverse Lévy measure method [12,
Section 4]. Suppose that the measure σ(dξ) is isotropic, that is, ck ≡ 0. As
(ν − νn)(dz) = 1(‖z‖ ≤ (αn/a)−1/α)ν(dz), the mean-squared error (4.2) of the
Poison truncation approximation is given by

E

⎡⎢⎣
∥∥∥∥∥∥

∑
{k∈N:Γk>n}

(
αΓk

a

)−1/α

Uk

∥∥∥∥∥∥
2
⎤⎥⎦ =

∫
‖z‖≤(αn/a)−1/α

‖z‖2 ν(dz)

= a2/α
α1−2/α

2− α
n1−2/α,

(4.3)

for every n > 0. As mentioned previously, the mean-squared error (4.3) still holds
if σ(dξ) is not isotropic for sufficiently large n > 0 satisfying (αn/a)−1/α < 1.
We see that in the case of the stable random vector, mean-squared conver-
gence of the Poisson truncation approximation is very fast for α close to zero,
so truncating the series (3.8) to a relatively small number of terms provides a
good approximation. However, for α close to two, convergence is much slower
and thus, to achieve a level of accuracy, significantly more summands must be
computed. This is intuitive; increasing α leads to thinner tails and hence the
magnitudes of the largest jumps decrease. Consequently, the variation explained
by the largest jumps becomes diluted. In the univariate case, it is suggested [12]
that the approximation can be improved by the inclusion of a normal random
variable with variance given by (4.3). This idea is the basis for Gaussian ap-
proximation of the truncation error (Section 4.2), which can be extended to the
multivariate setting. Alternatively, investigation of the truncation error for the
representation for stable laws can be found in [8, 9] in terms of optimal bounds
for the variation.
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The idea that the first few summands of the shot noise representation (3.10)
accounts for a large amount of variation has useful applications outside of sam-
pling (Section 6). For instance, it has been shown in [14] that absolute continuity
of the law of the first few summands guarantees the absolute continuity of the
entire shot noise series.

4.1. Comparisons among shot noise representations

We compare among the errors from Poisson truncation approximations of the
various shot noise representation methods established in Proposition 3.5. Con-
sider the following general result [46].

Theorem 4.2. Assume the setting of Proposition 3.5. Fix n > 0. Let νk,n(dz),
k = 1, 2, 3, 4, be the Lévy measures of the partial sums obtained from inverse
Lévy measure (3.13), rejection (3.14), thinning (3.15) and Bondesson’s (3.16)
methods over the index set {k ∈ N : Γk ≤ n}, respectively. Then, the following
hold:

(i) If ν(Rd
0) ≥ n, then νk,n(R

d
0) = n for k = 1, 2, 3, 4.

(ii) For every x > 0 and C ∈ B(Sd−1),

νk,n((x,+∞)C) ≤ ν1,n((x,+∞)C) ≤ ν((x,+∞)C), k = 2, 3, 4.

(iii) For every q ≥ 0 such that
∫
‖z‖>1

‖z‖q ν(dz) < +∞,∫
Rd

0

‖z‖q νk,n(dz) ≤
∫
Rd

0

‖z‖q ν1,n(dz) < +∞, k = 2, 3, 4.

(iv) For every q ≥ 2,∫
Rd

0

‖z‖q(ν − ν1,n) (dz) ≤
∫
Rd

0

‖z‖q (ν − νk,n)(dz), k = 2, 3, 4.

Note that the above result holds for the general Lévy measure ν(dz). The
result (i) echoes our understanding of Poisson truncation in simulating a mass
n irrespective of the underlying shot noise representation, and that truncation
of distinct representations corresponds to the simulation of different regions of
the Lévy measure ν(dz). By (ii), it is clear that under the Poisson truncation
method, no method presented in Proposition 3.5 can simulate the tail of the Lévy
measure more accurately than the inverse Lévy measure method. Moreover, in
light of (i), we deduce that the other methods simulate regions of the Lévy mea-
sure closer to the origin. By (iii), we see that the inverse Lévy measure method
captures more variation of the jumps than the other methods. The result (iv) is
also useful, as for q = 2, the integrals correspond to the variances of discarded
jumps, which can be viewed as representative of the error associated with the
approximation. The smaller the variance, the better the approximation. Thus,
we see that at least under the Poisson truncation scheme, the Lévy measure
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method is preferred over the others. The main drawback to the inverse Lévy
measure method is that the tail of the Lévy measure may not be conveniently
invertible (for instance, see Example 3.8), however in such cases one may still
numerically invert the Lévy measure as required [46]. If the numerical inversion
of the tail of the Lévy measure is computationally expensive, then one would
prefer not to use the inverse Lévy measure method. Additionally, the error of
numerical inversion may accumulate in the series.

While Theorem 4.2 only addresses inverse Lévy measure, rejection, thinning
and Bondesson’s methods for any Lévy measure, it appears that the result
extends beyond those methods. As an example, the following demonstrates that
the result holds in the case of Rosinski’s series representation for the tempered
stable law [45].

Example 4.3 (Comparisons among shot noise representations of the tempered
stable law). Assume the setting of Example 3.7. Let νk,n(dz), k = 1, 2, 3, 4, 5,
denote the Lévy measure corresponding to the Poisson truncation of the shot
noise representation by the inverse Lévy measure method (3.18), the thinning
method (3.19) and (3.20), the rejection method (3.21) and Rosiński’s represen-
tation (3.22), respectively.

(i) It holds that for every (x,C) ∈ (0,+∞)× B(Sd−1),

νk,n((x,+∞)C) ≤ ν1,n((x,+∞)C), k = 2, 3, 4, 5,

and

ν4,n((x,+∞)C) = ν

(((
αn

mα,ρ

)−1/α

∨ x,+∞
)
C

)
,

ν5,n((x,+∞)C) =

(
αn

mα,ρ
xα ∧ 1

)
ν((x,+∞)C).

(ii) It holds that for every q ≥ 0 such that
∫
‖z‖>1

‖z‖q ν(dz) < +∞,∫
Rd

0

‖z‖q νk,n(dz) ≤
∫
Rd

0

‖z‖q ν1,n(dz) ≤
∫
Rd

0

‖z‖q ν(dz), k = 2, 3, 4, 5.

We observe that the inverse Lévy measure method outperforms the methods
of Proposition 3.5, as expected due to Theorem 4.2, but as well as Rosiński’s
shot noise representation. We also state the Lévy measure ν5,n(dz) as follows.
Recall from Section 2.2 that the Lévy measure for the tempered stable law can
be written in polar form as ν(dr, dξ) = r−α−1q(r, ξ)dr σ(dξ), which is often
provided as such. Then, it holds that [22]

ν5,n(dr, dξ) = hn(r, ξ)dr σ(dξ),

where

hn(r, ξ) =

⎧⎪⎨⎪⎩n

(
r−1q(r, ξ)− rα−1

∫ +∞

r

s−α−1q(r, ξ) ds

)
, r ∈ (0, n−1/α),

r−α−1q(r, ξ), r ≥ n−1/α.
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From this, one can proceed with error analysis by investigating the Lévy measure
corresponding to the truncation error.

Example 4.4 (Truncation of shot noise representations of the gamma law).
Assuming the setting of Example 3.8. Let νk,n(dz), k = 1, 2, 3, 4, denote the Lévy
measure corresponding to the Poisson truncation of the shot noise representation
by the inverse Lévy measure (3.23), the rejection (3.24), the thinning (3.25) and
Bondesson’s (3.26) methods, respectively. We present computations relating to
the error of the approximations [54, Section 5.4] as follows.

(i) For every x > 0, it holds that

∫ +∞

x

νk,n(dz) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n ∧ aE1(βx)), if k = 1,

aE1

(
(en/a − 1)−1 ∨ βx

)
, if k = 2,∫ +∞

βx
(n ∧ a/u)e−u du, if k = 3,

a
(
E1(βx)− E1(βxe

n/a)
)
, if k = 4.

(ii) It holds that

∫ +∞

0+

z νk,n(dz) =
a

β
×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−E−1

1 (n/a), if k = 1,

e−(en/a−1)−1

, if k = 2,
n
aγ(2, a/n) + e−a/n, if k = 3,

1− e−n/a, if k = 4.

(iii) The variance of the discarded jumps is given by

σ2
k,n := σ2−

∫ +∞

0+

z2 νk,n(dz) = σ2×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ
(
2, E−1

1 (n/a)
)
, if k = 1,

γ
(
2, (en/a − 1)−1

)
, if k = 2,

γ (2, a/n)− n
aγ(3, a/n), if k = 3,

e−2n/a, if k = 4,

where σ2 :=
∫ +∞
0+

z2 v(dz) = a/β2 and we denote γ(a, x) :=
∫ x

0+
ua−1e−u du

as the lower incomplete gamma function for a > 0 and x > 0.

The result (iii) corresponds to Theorem 4.2 (iv) on the variance of the dis-
carded jumps. Without direct comparison, we already know from Theorem 4.2
that the variance associated with the inverse Lévy measure method cannot be
outperformed by the other methods examined.

To mention a more recent example of Poisson truncation error analysis, it is
found in [72] that in the case of the t-distribution, the mean-squared truncation
error for the inverse Lévy measure and rejection methods are both bounded by
2ν/(π(n− 1)), where ν is the degrees of freedom parameter.

4.2. Gaussian approximation of small jumps

In the Poisson truncation approximation of an infinitely divisible random vec-
tor, as the norm of the kernel r �→ ‖H(r,v)‖ in (3.10) is nonincreasing, we



230 S. Yuan and R. Kawai

discard jumps of sizes within some neighbourhood about the origin. Under an
appropriate method (for example, the inverse Lévy measure method), suppose
the truncation parameter is sufficiently large so only jumps of magnitudes less
than a small ε > 0 are discarded. Then, the variance of the discarded jumps is
given by

σ2(ε) :=

∫
‖z‖<ε

‖z‖2 ν(dz) < +∞. (4.4)

A natural idea to pursue is to approximate the discarded jumps by a Gaussian
random vector [12]. This is particularly practical when the shot noise represen-
tation of the infinitely divisible random vector converges slowly, that is, when
r �→ ‖H(r,v)‖ decreases slowly, as is the case with stable random vectors with
stability α close to two (Example 4.1).

In what follows, we restrict ourselves to the one-dimensional setting. Specifi-
cally, let X be an infinitely divisible random variable with Lévy measure ν(dz)
and Xε the truncation approximation of X with jump sizes of |z| < ε discarded.
Define the error, consisting of the discarded small jumps, as

Xε := X −Xε. (4.5)

We seek the conditions in which it is valid to approximate Xε/σ(ε) with a
standard normal random variable, as such a Gaussian approximation cannot be
applied for every infinitely divisible law, with the Poisson distribution being a
simple counterexample. We examine some notions from [3] on this matter. A
necessary and sufficient condition for the Gaussian approximation of discarded
jumps to hold is as follows.

Theorem 4.5 (Gaussian approximation of discarded jumps). Let σ(ε) and
Xε be defined as in (4.4) and (4.5), respectively. Then, we have that Xε/σ(ε)
converges in law to the standard normal distribution as ε → 0 if and only if for
every c > 0,

σ(cσ(ε) ∧ ε) ∼ σ(ε), (4.6)

as ε → 0.

A sufficient yet more verifiable condition is given in [3, Proposition 2.1], which
shows that a Gaussian approximation of the discarded jumps is valid when its
variation decreases at a rate slower than its upper bound. If σ(ε)/ε → +∞ as
ε → 0, then the condition (4.6) holds. Moreover, if the Lévy measure ν(dz) does
not have any atoms in a neighbourhood about the origin, then this condition is
equivalent to the condition (4.6).

There is a profound relation between the decay of the generalised inverse
of the tail of the Lévy measure to the validity of approximating the discarded
jumps by a normal random variable [3, Proposition 2.2]. Suppose the Lévy mea-
sure ν(dz) is symmetric and infinite. By symmetry, the kernel (3.12) for the
inverse Lévy measure method is independent of the direction and simplifies to
HI(r) = inf{u ∈ (0,+∞) : 2ν((u,∞)) < r} for r > 0. If, for every a > 0, it holds
that limt→∞ HI(t+a)/HI(t) = 1, then Xε/σ(ε) converges in law to the standard
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normal distribution as ε → 0. For example, it is straightforward to show that
the stable distribution satisfies this condition. Thus, the error from truncation
asymptotically behaves like a normal random variable. However, not every in-
finitely divisible distribution enjoys the benefit of Gaussian approximation, as
the gamma law is a counterexample where the small jumps are infinitely ac-
tive yet not intense enough to resemble Brownian infinite variation [3, 12]. For
Gaussian approximation of discarded jumps in the case of higher dimensions
with more general methods than the inverse Lévy measure method, we refer the
reader to [22].

In the light of Theorem 4.2 (iv), the error analysis of Poisson truncation
can be revisited from the perspective of Gaussian approximation of the error
[46]. Suppose that the Poisson truncation error of an infinitely divisible random
variable can be approximated by a normal random variable. Denote the Lévy
measure associated with the Poisson truncation of each of the shot noise repre-
sentation methods in Proposition 3.5 as νk,n(dz), k = 1, 2, 3, 4. Then, for each
of the methods, the normal random variable which approximates the discarded
jumps has the variance

σ2
k,n :=

∫
R0

z2 (ν − νk,n)(dz), k = 1, 2, 3, 4.

Recall Theorem 4.2 (iv), in which we have seen that σ1,n ≤ σk,n holds for
k = 2, 3, 4, where k = 1 corresponds to the inverse Lévy measure method. Thus,
no normal random variable used in approximating the error of the methods ex-
amined has a lower variance than that associated with the inverse Lévy measure
method. This can be interpreted as the inverse Lévy measure method being an
optimal approximation in the L2 sense, in comparison to the other methods un-
der Poisson truncation. It is worth noting that this discussion is also important
in higher dimensions.

5. Numerical schemes via truncation of shot noise representation

So far, we have focused primarily on infinitely divisible laws without Gaussian
components, with glimpses of shot noise representation for Lévy processes in
Sections 3.2 and 3.3. We have seen the correspondence between infinitely di-
visible laws and Lévy processes reflected in their shot noise representations. In
Section 4, we have discussed the method of approximating infinitely divisible
random vectors via the truncation of shot noise representation. In this section,
we focus entirely on the technique of Poisson truncation of shot noise represen-
tations for simulating Lévy processes (Section 5.1), infinitely divisible processes
(Section 5.2) and fields (Section 5.3) and Lévy-driven stochastic differential
equations (Section 5.4). For simulation purposes, while the truncation of shot
noise representation is useful for infinitely divisible laws and Lévy processes,
often times it is merely optional among a wider array of numerical methods
available. However, for infinitely divisible processes and Lévy-driven stochastic
differential equations, truncation of shot noise representations offers a very ef-
fective approach due to the necessity of jump-based approximation in distilling
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the structure of the stochastic process in general. As a means of demonstrating
the effectiveness of truncation of shot noise representation, we provide various
numerical illustrations along the way.

5.1. Simulating Lévy processes

The inverse Lévy measure method established in Section 3.3 presents us with a
shot noise representation (3.7) for a Lévy process {Xt : t ∈ [0, 1]} in Rd with-
out Gaussian components. Recall that this is indeed a shot noise representation
for the infinitely divisible random vector X1, except the summands are scat-
tered uniformly and the centres are subtracted in proportion over the unit time
interval.

We begin by briefly describing the general shot noise method for additive
processes, which generalise Lévy processes by relaxing the property of stationary
increments. Consider an additive process described by a more general Lévy-Itô
decomposition [95, Chapter 4]

Xt =

∫ t

0

∫
‖z‖∈(0,1]

z(μ(dz, ds)− ν(dz)λ(s)ds)−
∫ t

0

∫
‖z‖>1

zμ(dz, ds), t ≥ 0,

where λ(·) ≥ 0 is a nonnegative function with support including [0, T ] for a
fixed T > 0 and μ(dz, ds) is a Poisson random measure on Rd

0 × [0,+∞) with
intensity measure ν(dz)λ(s)ds. Suppose the Lévy measure ν(dz) satisfies the
decomposition (3.9). By a change of variable, it holds that for every (B,S) ∈
B(Rd

0)× B([0, T ]),∫
S

∫
B

ν(dz)λ(s)ds =

∫ +∞

0+

P(H(r, U) ∈ B) dr

∫
S

λ(s) ds

=

∫ +∞

0+

P

(
H

(
r∫ T

0
λ(s) ds

, U

)
∈ B

)
dr

∫
S
λ(s) ds∫ T

0
λ(s) ds

.

Thus, by scattering the summands in (3.10) according to the density λ(·)/∫ T

0
λ(s) ds instead of uniformly, and replacing Γk by Γk/

∫ T

0
λ(s) ds, we obtain

the shot noise representation for the additive process as

{Xt : t ∈ [0, T ]} L
=

{
+∞∑
k=1

(
H

(
Γk∫ T

0
λ(s) ds

, Uk

)
1[0,t](Sk)

− ck

∫ t

0

λ(s) ds

)
: t ∈ [0, T ]

}
,

(5.1)

where {Sk}k∈N is a sequence of iid random variables with density λ(·)/
∫ T

0
λ(s) ds

and {ck}k∈N is a suitable sequence of centres. In particular, by considering the
case where λ ≡ 1, we obtain the series representation for any Lévy process over
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[0, T ] based on the generalised shot noise method (Theorem 3.4) as

{Xt : t ∈ [0, T ]} L
=

{
+∞∑
k=1

(
H

(
Γk

T
, Uk

)
1[0,t](Tk)− tck

)
: t ∈ [0, T ]

}
, (5.2)

where {Tk}k∈N is a sequence of iid uniform random variables on (0, T ) inde-
pendent of the other random sequences. It is known [87, Theorem 5.1] that the
infinite series (5.2) converges almost surely and uniformly on [0, T ]. Moreover,
there exists a version of the random sequences in the right hand side of (5.2)
such that the equality holds almost surely.

We also mention Lévy processes of type G, which admit special shot noise
representations related to the inverse Lévy measure method of Section 3.3. A
Lévy process {Xt : t ≥ 0} in R is said to be of type G if its increments can be

represented in law as Xt2 −Xt1
L
= V 1/2G for t1 < t2, where V is a nonnegative

infinitely divisible random variable with Lévy measure ν(dz) and G is a standard
normal random variable. With HI(·) defined in (3.6) but independent of the
directional argument, it holds that [86]

{Xt : t ∈ [0, T ]} L
=

{
+∞∑
k=1

GkHI

(
Γk

T

)1/2

1[0,t](Tk) : t ∈ [0, T ]

}
, (5.3)

where {Γk}k∈N is a sequence of standard Poisson arrival times, {Gk}k∈N is a
sequence of iid standard normal random variables and {Tk}k∈N is a sequence
of iid uniform random variables over (0, T ) such that the random sequences are
mutually independent. We refer to [104] for results on error analysis for Poisson
truncation of the shot noise representation (5.3). We also mention that the Lévy
process of type G admits the subordinated Brownian motion representation

{Xt : t ≥ 0} L
= {BVt : t ≥ 0}, where {Bt : t ≥ 0} is a standard Brownian

motion in R and {Vt : t ≥ 0} is a subordinator with Lévy measure ν(dz). Thus,
an alternative simulation method to the Poisson truncation of the shot noise
representation (5.3) is via the truncation of a shot noise representation for the
subordinator {Vt : t ≥ 0}.

With the knowledge of shot noise representations of Lévy and additive pro-
cesses and Poisson truncation from Section 4, we have a powerful and general
method for simulating their sample paths. All general as well as specific Poisson
truncation error analyses for infinitely divisible laws from Section 4 carry over to
the case of Lévy and additive processes. In particular, Gaussian approximation
of discarded jumps holds for the case of Lévy and additive processes by includ-
ing a Brownian motion (and its deterministically time-changed version), instead
of a normal random vector, scaled by the variance (4.4) of the small jumps [3].
The conditions for the one-dimensional setting as well as their multidimensional
generalisations (Section 4.2) apply in this setting.
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5.1.1. Simulation recipes

The implementation of Poisson truncation of shot noise representation is attrac-
tively clear-cut. Hereafter, we focus on Lévy processes, as the generalisation to
additive processes is rather trivial in light of (5.1) and (5.2). Due to the uniform
scattering of jumps along the time interval [0, T ], it is little more than simply
a matter of independently sampling the random sequences appearing in the se-
ries (5.2) and evaluating the shot noise kernel H. To generate the sequence of
Poisson arrival times {Γk}k∈N, one may take advantage of the fact that the in-
terarrival times are iid standard exponential random variables {Ek}k∈N. Based
on the Poisson truncation of the shot noise representation (5.2), we describe the
simulation recipe for generating approximate sample paths of the Lévy process
in Rd over the time interval [0, T ] as follows.

Step 1. Generate a standard exponential random variable E1. If E1 ≤ nT ,
then assign Γ1 ← E1. Otherwise, return the degenerate zero process
as the approximate sample path and terminate the algorithm.

Step 2. While Γk ≤ nT , generate a standard exponential random variable Ek+1

and assign Γk+1 ← Γk+Ek+1. Denote this sequence as {Γk}k∈{1,··· ,N},
where N satisfies ΓN ≤ nT < ΓN+1.

Step 3. Generate iid uniform random variables {Tk}k∈{1,··· ,N} on (0, T ).
Step 4. Generate iid random vectors {Uk}k∈{1,··· ,N} with the distribution spec-

ified by the shot noise representation (5.2).
Step 5. For every k ∈ {1, · · · , N}, compute the jump Jk ← H(Γk/T, Uk).
Step 6. Sort {(Jk, Tk)}k∈{1,··· ,N} to obtain {(J(k), T(k))}k∈{1,··· ,N} such that

T(1) < · · · < T(N).
Step 7. Assign X0 ← 0 and T(0) ← 0. For every k ∈ {1, · · · , N}, assign Xk ←

Xk−1 + J(k) − (T(k) − T(k−1))
∑N

j=1 cj .
Step 8. Return {X0, X1, · · · , XN} as the position of the approximate sample

path at the sample times {T(0), T(1), · · · , T(N)}.

In the case where the centres {ck}k∈N are not necessary for the almost sure
convergence of the shot noise series (5.2), the assignments in step 7 simplify to
Xk ← Xk−1+J(k). We can alternatively sample the Poisson arrival times in the
spirit of the compound Poisson representation (4.1), as follows.

Step 1. Generate a Poisson random variable N with rate nT . If N = 0, then
return the degenerate zero process as the approximate sample path
and terminate the algorithm.

Step 2. Generate N iid uniform random variables {Vk}k∈{1,...,N} on (0, nT )
and sort in ascending order to obtain {V(k)}k∈{1,...,N}.

Step 3. Generate iid uniform random variables {Tk}k∈{1,··· ,N} on (0, T ).
Step 4. Generate iid random vectors {Uk}k∈{1,··· ,N} with the distribution spec-

ified by the shot noise representation (5.2).
Step 5. For every k ∈ {1, · · · , N}, compute the jump Jk ← H(V(k)/T, Uk).
Step 6. Sort {(Jk, Tk)}k∈{1,··· ,N} to obtain {(J(k), T(k))}k∈{1,··· ,N} such that

T(1) < · · · < T(N).
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Step 7. Assign X0 ← 0 and T(0) ← 0. For every k ∈ {1, · · · , N}, assign Xk ←
Xk−1 + J(k) − (T(k) − T(k−1))

∑N
j=1 cj .

Step 8. Return {X0, X1, · · · , XN} as the position of the approximate sample
path at the sample times {T(0), T(1), · · · , T(N)}.

Note that in the above simulation recipes, we work under the truncation
{k ∈ N : Γk ≤ nT} instead of {k ∈ N : Γk ≤ n} to simulate a mass n of the
Lévy measure per unit time (recall Theorem 4.2 (i)). While the two simulation
recipes offered only differ in the method for sampling Poisson arrival times, we
highlight some contrasting features which may be important in practice. The
second simulation recipe, based on the conditional uniformity of Poisson arrival
times, is simpler to implement. In particular, the lack of a need for a while loop
makes the this recipe more natural to implement from a functional program-
ming perspective. In contrast, the first recipe based on successive exponential
sampling carries the advantage of easy modification for adaptive truncation.
That is, one may continually sample summands until some criterion, which may
dynamically update, is reached. The second recipe based on conditional unifor-
mity of Poisson arrivals does not share this advantage, as resampling the Poisson
random variable for the number of jumps with a larger rate does not guarantee a
greater number of jumps. Additionally, previous jump timings cannot be reused
and would require complete resampling from scratch, which would become a
source of inefficiency. Hence, in some scenarios, there are grounds to prefer one
recipe over the other.

5.1.2. Numerical illustrations

In what follows, we provide numerical examples of approximate sample paths
for some representative Lévy processes of both theoretical and practical inter-
ests. We first demonstrate the truncation scheme for the gamma process in
Figure 1 based on Bondesson’s method described in Example 3.8 (iv), with
different truncation parameters to illustrate the convergence and error of the
Poisson truncation method. The estimates for the unit-time marginal in Fig-
ure 1 suggest that the approximate sample paths based on the truncation of
Bondesson’s shot noise representation for the gamma process (3.26) converge
very fast in n. This has already been verified by Example 4.4 (the k = 4 case),
in which the mean and variance of the truncation error converge to zero ex-
ponentially fast. Thus, despite the inapplicability of Gaussian approximation
of the discarded jumps for the gamma process (Section 4.2), the exponential
mean-squared convergence of this method makes such accuracy considerations
superfluous.

Recall that the shot noise representation of the stable law is provided in Ex-
ample 3.3, and the discussion of the mean-squared error of its truncation is given
in Example 4.1. We provide sample paths of the 2-dimensional stable process
with the isotropic Lévy measure in Figure 2. From our numerical illustration, we
see that lower values of the stability parameter correspond to larger jumps (Fig-
ure 2 (a)), while higher values of the stability parameter correspond to smaller
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Fig 1. Sample paths of the gamma process with a = 10 and β = 1 generated by truncation of
Bondesson’s shot noise representation (3.26) over a common probability space. The trunca-
tion parameters are n = 10, 50, 100, 1000. As the summands of the representation (3.26) are
positive, the sample paths are increasing with n. The estimates for the unit-time marginal
X1 (that is, the rightmost levels) are 6.02889, 9.26361, 9.32527 and 9.32562 (to 5 decimal
places), respectively. As the latter sample paths are difficult to distinguish in plot (a), the plot
(b) is zoomed near the terminal time in so as to visualise the slight gap between the sample
paths for n = 100 (lower) and n = 1000 (higher).

jumps and resemble closer to a Brownian motion (Figure 2 (c)). In contrast to
the case of the gamma process, the mean-squared convergence remains slower
than exponential. As such, Gaussian approximation of the discarded jumps (Sec-
tion 4.2) can be practical for enhancing the accuracy of the simulation in this
case.

We provide sample paths of the tempered stable process with the isotropic
Lévy measure based on Rosiński’s series representation (3.22) in Figure 3 below.
Comparing with Figure 2, we see that the jumps of the tempered stable sample
paths tend to be smaller, which is expected from the exponential tempering
of the Lévy measure. This is most prominent for α = 0.5, where the stable
sample paths (Figure 2 (a)) see jumps with magnitudes easily exceeding 100,
while the tempered stable counterparts (Figure 3 (a)) do not observe jumps
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Fig 2. Examples of approximate sample paths of the 2-dimensional stable process with the
isotropic Lévy measure based on the truncation of the shot noise representation (3.8). The
other parameters are a = 1, n = 105 and T = 1. The mean-squared errors (4.3) are (a) 5.33×
10−15, (b) 10−5 and (c) 3.76 × 10−2 (3 significant figures). The smallest jump magnitudes
included in the truncations are (a) 4 × 10−10, (b) 10−5 and (c) 3.54 × 10−4 (3 significant
figures). Each plot contains 10 iid sample paths.

with magnitudes greater than one, due to the random truncation WkU
1/α
k ‖Vk‖

in every summand of (3.22).

We mention here that for the stable process, allowing the stability parameter
α : [0,+∞) → (0, 2) to vary with time leads to the multistable process. Shot
noise representations for the multistable processes can be found in [66, 67].
Defined similarly is the tempered multistable process, for which the CGMY
process [20] with Lévy measure (2.8) is an example of. Shot noise representations
for tempered multistable processes are provided in [66]. Another example of
representing Lévy processes via their shot noise series is the case of t-distributed
increments [72].
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Fig 3. Examples of approximate sample paths of the 2-dimensional tempered stable process
with the isotropic Lévy measure based on the truncation of Rosiński’s series representation
(3.22). The other parameters are a = 1, n = 105 and T = 1. Each plot contains 10 iid sample
paths.

5.1.3. Discussion

We discuss some aspects of simulation by Poisson truncation of shot noise rep-
resentations. To begin with, we remark that simulating Lévy processes based
on the thinning method (Proposition 3.5 (iii)) may be computationally taxing
for obtaining a large number of jumps. This is due to the decreasing acceptance
probability as the summation index k increases. For example, in the case of the
thinning method for the gamma process (Example 3.8), the acceptance proba-
bility for taking the k-th summand as a jump is given by P(ΓkVk < α). As a
result, significantly more computations are required to obtain a large quantity
of jumps compared to, say, the inverse Lévy measure method. This explains
the absence of exponential convergence rates of the thinning method (3.25) in
the case of the gamma process (Example 4.4), that are enjoyed by the other
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methods (3.23), (3.24) and (3.26). Nevertheless, the thinning method plays a
crucial role from a theoretical point of view. For instance, it is used in [99] to
discuss the boundedness of infinitely divisible processes. As such, different shot
noise representations have different potential and use. For example, while the
truncation of the shot noise representation by the inverse Lévy measure method
simulates a Lévy process by discarding its smallest jumps, the truncation of a
representation by the rejection method illustrates the relationship between a
Lévy process with another.

The Poisson truncation approximation of a Lévy process is able to preserve
various key properties from the original process. For example, the discontinuity
of sample paths clearly hold for both the original Lévy process and its Poisson
truncation approximation. As the largest jumps of a Lévy process without Gaus-
sian components account for the majority of the variation, some key moment
properties are retained by the Poisson truncation approximation. In the case
of the tempered stable and gamma processes, the sample paths resulting from
Poisson truncation retain the finiteness of moments of all polynomial orders.
Meanwhile, for the stable process, marginal moments of order [α,+∞) remain
infinite even after Poisson truncation. Similarly, the extremal behaviour remains
unchanged after Poisson truncation as it is attributed to the largest jumps [43].

It is well-known that the finiteness of the total variation of a Lévy process
without Gaussian components with Lévy measure ν(dz) depends on the finite-
ness of the integral

∫
Rd

0
(‖z‖∧1) ν(dz). In particular, a sufficiently intense activity

of small jumps is the only possible source of infinite variation. Truncation of shot
noise representation cuts off all small jumps and thus necessarily leads to sample
paths of finite variation, so this property is preserved for finite variation Lévy
processes. However, sample paths of infinite variation, such as that of stable and
tempered stable processes with stability α ∈ [1, 2), will result in finite variation
after applying Poisson truncation. We mention that in this case, the total varia-
tion of the Poisson truncation approximation diverges fastest in the case of the
inverse Lévy measure method, echoing the dominance we saw in Theorem 4.2
(iii) but with the integrand ‖z‖ ∧ 1 instead. The lack of preservation of infinite
variation means that even though the truncation of shot noise representation
leads to sample paths based on individual jumps, the resulting paths cannot
be employed in full for investigating sample path properties. From the perspec-
tive of simulation, this is not an issue, as the compromise of generating finite
variation approximations of the Lévy process is implied by the very nature of
numerical investigation.

Before closing this subsection, we mention a possible disadvantage of the trun-
cation method for sample path generation of Lévy processes. When sample path
generation via increments is possible, one important distinction between such a
scheme and that of a Poisson truncation method is that in the latter, a termi-
nal time T is fixed beforehand and cannot be extended during the simulation,
whereas in the former, one can keep piling on as many increments as desired,
possibly until some condition is fulfilled. An example of when this distinction
is important is through a comparison between the settings of [106] and [18]. In
the former, Poisson truncation of shot noise representation is used to generate
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sample paths of an inverse subordinator. In that setting, the goal of evaluating
immobility periods requires the observation of jumps, thus rendering the trun-
cation method as ideal and the incremental method as inappropriate. In [18],
however, evaluations of the inverse subordinator at any time t > 0 is required, so
if the subordinator (before inversion) has yet to reach t, one must keep adding
increments until that level is reached. This is illustrated in Figure 4. Thus, in
such a scenario, sample path generation by increments should be preferred.

Fig 4. Comparison between generating sample paths to estimate the first crossing time inf{t >
0 : Xt > 1} by simulation via (a) jumps and (b) increments. The Poisson truncation method
corresponds to (a), with T = 4. The particular realisation does not reach the unit threshold,
thus one would need to rerun the simulation with larger T . For simulation via unit increments
(b), one could simply keep piling on increments until the unit threshold is reached.

5.2. Simulating infinitely divisible processes

So far, we have studied approximations of Lévy processes via truncation of shot
noise representations. We will now generalise the technique further to approx-
imate stochastic processes governed by Lévy-driven stochastic integrals of the
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form (2.4), which is a large class of infinitely divisible processes. We emphasise
that our focus is on the case where the driving Lévy process is of infinite jump
activity, as otherwise, exact simulation methods are readily available. The tech-
nique revolves around the partitioning the stochastic process based on the the
sizes and timings of the underlying jumps, as we will present shortly in (5.5).
Shot noise representation is perhaps even more pertinent to the construction and
approximation of infinitely divisible processes, which often requires the consid-
eration of individual jumps more so than Lévy processes for both theoretical
and numerical purposes.

Suppose we want to simulate the stochastic process {Xt : t ∈ [0, T ]} in Rd

such that the marginal is described by the stochastic integralXt =
∫
T f(t, s) dLs,

where T ⊆ R and {Ls : s ∈ T } is a Lévy process with an infinite Lévy measure
ν(dz) with a decomposition (3.9). This corresponds to the stochastic integral
form (2.4) where the integrator is a Lévy process. Naturally, each jump of the
underlying Lévy process at time s is modulated by s �→ f(t, s), so we have a
Lévy-Itô decomposition of the form

Xt =

∫
T

∫
Rd

0

f(t, s)z(μ(dz, ds)− ν(dz)ds1(0,1](‖z‖)), (5.4)

where μ(dz, ds) is the Poisson random measure on Rd
0 × T associated with

{Ls : s ∈ T } and ν(dz)ds is the corresponding compensator. Various theoreti-
cal developments for infinitely divisible processes and their series representations
have been established, such as their spectral representations [80] and path prop-
erties [84, 99]. Much like in the case of Lévy processes, shot noise representations
for infinitely divisible processes converge almost surely uniformly under suitable
technical conditions [4]. Moreover, if the probability space is rich enough, then
one can choose the random sequences such that the shot noise representation is
almost surely equal to the infinitely divisible process [90].

We look to truncate the infinitely divisible process {Xt : t ∈ [0, T ]} (5.4)
based on jump timings and sizes of the underlying Lévy process {Ls : s ∈ T }
via shot noise representation in order to obtain independent simulatable and
error components for analysis. If Leb(T ) < +∞, that is, when the domain of the
jump timings is bounded, we require no truncation on the index set. Otherwise,
we introduce a nondecreasing sequence {Tn}n∈N of connected subintervals of T
such that ∪n∈NTn = T and Leb(Tn) < +∞. That is, the parameter n represents
a truncation based on time timings. For the truncation over jump sizes, we note
that the finite measure νm(dz) :=

∫m

0+
P(H(r, U) ∈ dz) dr is the Lévy measure

of the Poisson truncation approximation of the Lévy process {Ls : s ∈ Tn} with
respect to the index set {k ∈ N : Γk ≤ mLeb(Tn)}, for every n ∈ N. That is,
m ∈ N fulfils the role of a finite truncation parameter on the Lévy measure
ν(dz). We remark that for any fixed m, the impact of the truncation on the
sizes of the surviving jumps depends on the shot noise representation used, in
the same vein as our discussion in Section 4.1. We decompose the stochastic
process as [55]

Xt = Xt(m,n) +Qt(m) +Rt(m,n), t ∈ [0, T ], (5.5)
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where

Xt(m,n) :=

∫
Tn

∫
Rd

0

f(t, s)z (μm − νm1(0,1](‖z‖))(dz, ds),

Qt(m) :=

∫
T

∫
Rd

0

f(t, s)z ((μ− μm)− (ν − νm)1(0,1](‖z‖))(dz, ds),

Rt(m,n) :=

∫
T \Tn

∫
Rd

0

f(t, s)z (μm − νm1(0,1](‖z‖))(dz, ds),

Intuitively, the component Xt(m,n) corresponds to large jumps over Tn, Qt(m)
corresponds to small jumps over T , and Rt(m,n) corresponds to large jumps
larger over T \Tn. Since the regions of jump sizes and timings simulated by each
component form a disjoint union, the stochastic processes on the right hand side
of (5.5) can be treated independently thanks to the independent scattering of
the Poisson random measure μ(dz, ds).

As νm(Rd
0)Leb(Tn) = mLeb(Tn) < +∞ for every (m,n) ∈ N2, the former

component {Xt(m,n) : t ∈ [0, T ]} can be treated as the principal simulatable
component of the approximation by the Poisson truncation with the shot noise
representation

{Xt(m,n) : t ∈ [0, T ]} L
=

{ ∑
{k∈N:Γk≤Leb(Tn)m}

[
f(t, Tk)H

(
Γk

Leb(Tn)
, Uk

)

− ck

∫
Tn

f(t, s) ds

]
: t ∈ [0, T ]

}
,

(5.6)

where {Tk}k∈N is a sequence of iid uniform random variables on Tn, and the
other random sequences are as in (3.10). For generating sample paths of the
infinitely divisible process based on the Poisson truncation approximation (5.6)
over sample points 0 = t0 < t1 < · · · < tJ−1 < tJ = T , we provide the numerical
recipe as follows:

Step 1. Generate a standard exponential random variable E1. If E1 ≤
mLeb(Tn), then assign Γ1 ← E1. Otherwise, return the degenerate
zero process as the approximate sample path and terminate the algo-
rithm.

Step 2. While Γk ≤ mLeb(Tn), generate a standard exponential random vari-
able Ek+1 and assign Γk+1 ← Γk+Ek+1. Denote this as {Γk}k∈{1,··· ,N},
where N satisfies ΓN ≤ mLeb(Tn) < ΓN+1.

Step 3. Generate a sequence {Tk}k∈{1,··· ,N} of iid uniform random variables
on Tn.

Step 4. Generate a sequence {Uk}k∈{1,··· ,N} of suitable iid random variables.

Step 5. For every j ∈ {1, · · · , J}, assign LH,α,n
tj ←

∑N
k=1(fn(tj , Tk)H(Γk/

Leb(Tn), Uk)− ck
∫
Tn

f(tj , s) ds).



Numerical aspects of shot noise representation 243

Step 6. Return {0, LH,α,n
t1 , · · · , LH,α,n

tJ } as the positions of the approximate
sample path at the sample times {0, t1, · · · , tJ}.

We can consider the residual components {Qt(m) : t ∈ [0, T ]} and {Rt(m,n) :
t ∈ [0, T ]} as the error processes to analyse. In particular, if the kernel f(t, ·) is
square-integrable and essentially uniformly bounded for every t ∈ [0, T ], and the
kernel of the shot noise representation H(·, ξ) satisfies some suitable technical
conditions, then the stochastic process {Qt(m) : t ∈ [0, T ]} comprising of small
jumps can be approximated by a Gaussian process in the same vein as Section
4.2. For more details, we refer the reader to [55].

In what follows, we demonstrate this approximate sample path generation
method along with error analysis using the examples of higher order fractional
stable motion (Section 5.2.1) and Lévy-driven continuous-time autoregressive
moving average (CARMA) processes (Section 5.2.2). In both of those cases, for
simplicity we restrict ourselves to the univariate setting with T = R, and typi-
cally consider the Poisson truncation based on the inverse Lévy measure method,
so νm(dz) = 1(η(m),+∞)(‖z‖)ν(dz), where η(m) = sup{r > 0 :

∫
‖z‖>r

ν(dz) >

m}. We also discuss Lévy-driven Ornstein–Uhlenbeck processes as interesting
cases in which simulation by increments may be preferred over truncation of
shot noise representation (Section 5.2.3).

5.2.1. Fractional stable motion

The higher order fractional stable motion, which generalises the higher order
fractional Brownian motion, was defined in [53]. Let {Lα,+

t : t ≥ 0} be a stable
process in R with stability parameter α ∈ (0, 2) and a symmetric Lévy measure

ν(dz) :=
αcα
2

1

|z|α+1
dz,

where cα := (Γ(1−α) cos(πα/2))−1 for α ∈ (0, 2)\{1} and c1 := 2/π. We extend
the stable process temporally by defining another stable process Lα,− similarly

such that Lα,− L
= Lα,+, and defining {Lα

t : t ∈ R}, where Lα
t := Lα,+

t 1(t ≥
0) + Lα,−

−t−1(t < 0). Let n ∈ N and H ∈ (n − 1, n)\{1/α} such that H /∈ Z.
We define the n-th order fractional stable motion with Hurst parameter H by
{LH,α,n

t : t ∈ R}, where

LH,α,n
t :=

∫
R

fn(t, s;H,α) dLα
s , t ∈ R, (5.7)

with the higher order moving average kernel

fn(t, s;H,α) :=
1

Γ(H − 1/α+ 1)

(
(t− s)

H−1/α
+

−
n−1∑
k=0

(
H − 1/α

k

)
(−s)

H−1/α−k
+ tk

)
.
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As α → 2, LH,α,n converges towards an n-th order fractional Brownian motion.
We call LH,α,1 a linear fractional stable motion.

Using the framework of the decomposition (5.5) based on the inverse Lévy
measure method with the truncation on jump timings Tκ := (κ, T ] (where we
denote the truncation parameter as κ instead of n to avoid notational conflict),
we decompose the higher order fractional stable motion as

LH,α,n
t = LH,α,n

t (m,κ) +Qt(m) +Rt(m,κ). (5.8)

The following shot noise representation of {LH,α,n
t (m,κ) : t ∈ [0, T ]} offers a

clear solution to its simulation. Let {Γk}k∈N be a sequence of standard Poisson
arrival times, {Tk}k∈N a sequence of iid uniform random variables on (−κ, T ),
{Uk}k∈N a sequence of iid random variables uniformly distributed on S0, such
that all random sequences are mutually independent. Then, we have that [53,
Lemma 6.1]

LH,α,n(m,κ)
L
=

{ ∑
{k∈N:Γk≤m(T+κ)}

(
Γk

(T + κ)cα

)−1/α

Ukfn(t, Tk;H,α)

: t ∈ [0, T ]

}
.

(5.9)

For generating sample paths of the higher order fractional stable motion based
on the Poisson truncation approximation (5.9), we follow the numerical recipe
described previously in Section 5.2 but with the shot noise representation (5.9)
instead. Examples of this sample path generation scheme for the higher order
fractional motion are provided in Figure 5 below. We observe the versatility of
the higher order fractional stable motion for generating rough paths (Figure 5
(a)) as well as aggregated smooth paths (Figure 5 (c)).

We remark on the scenario where the sample paths of the stochastic integral
process are almost surely unbounded on every finite interval of positive length,
which happens whenever the integrand of the stochastic integral is explosive.
For instance, in the case of the higher order fractional stable motion (5.7), this
occurs when α ∈ (0, 2∧(1/(n−1))) and H ∈ (n−1, n∧(1/α)) [53, Theorem 4.1].
In such a case, it is nonsensical to use truncation of shot noise representation to
simulate the stochastic integral process, and even misleading if done so without
the knowledge of sample path unboundedness. This is because truncation to a
finite Lévy measure will almost surely produce a bounded sample path, which
would otherwise be unbounded in the absence of truncation. For this reason, we
advise to check that the stochastic process is almost surely bounded over [0, T ]
prior to generating its sample paths.

We now turn our attention to the stochastic process {Qt(m) : t ∈ [0, T ]} con-
sisting of the small jumps over (+∞, T ]. Let us further decompose this stochastic
process as

Qt(m) = Yt(m) + Zt(m),
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Fig 5. Sample paths of first, second and third-order fractional stable motions via the trunca-
tion approximation (5.9). The other parameters are α = 1.7, κ = 5 and m = 100. Time steps
are of size 10−3.

where

Yt(m) :=

∫ t

0

∫
|z|≤η(m)

(t− s)H−1/α

Γ(H − 1/α+ 1)
z (μ(dz, ds)− ν(dz)ds1(0,1](|z|)),

and

Zt(m) :=

∫ 0

−∞

∫
|z|≤η(m)

fn(t, s;H,α)z (μ(dz, ds)− ν(dz)ds1(0,1](|z|)).

Since the kernel f(t, s;H,α) in Zt(m) can be written without (·)+, it is continu-
ously differentiable with respect to t. The following result gives us the asymptotic
behaviour of Qt(m), and validates its approximation via a fractional Brownian
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motion [53, Theorem 6.3]. Let {Bt : t ∈ R} be a temporally extended standard
Brownian motion in R and denote σ(m) := (

∫
|z|≤η(m)

|z|2 ν(dz))1/2.

(i) If α ∈ (1/n, 2) and H ∈ ((n − 1) ∨ (1/α), n), then as m → +∞, it holds
that{

Yt(m)

σ(m)
: t ∈ [0, T ]

}
→
{∫ T

0

(t− s)
H−1/α
+

Γ(H − 1/α+ 1)
dBs : t ∈ [0, T ]

}
,

where the convergence is weak convergence in C ([0, T ],R), the space of
continuous functions from the compact interval [0, T ] to R, endowed with
the uniform metric.

(ii) If α ∈ (0, 2) and H ∈ (n − 1, n), then {Zt(m) : t ∈ [0, T ]} converges in
probability to the degenerate zero process uniformly on [0, T ] as m → +∞.

(iii) If α ∈ (2/3, 2) and H ∈ (n+1/α−3/2, n), then as m → +∞, it holds that{
Zt(m)

σ(m)
: t ∈ [0, T ]

}
L→
{∫ 0

−∞
fn(t, s;H,α) dBs : t ∈ [0, T ]

}
.

Moreover, if n ≥ 2, α ∈ (2/3, 2) and H ∈ (n+1/α−3/2, n), then the weak
convergence holds true in C ([0, T ],R).

Additionally, by noting that we can write fn(t, s;H,α) = fn(t, s;H − 1/α+
1/2, 2), the previous result gives us that if α ∈ ((1/n) ∨ (2/3), 2) and H ∈
((n+ 1/α− 3/2) ∨ (1/α), n), then{

Qt(m)

σ(m)
: t ∈ [0, T ]

}
L→
{∫ T

−∞
fn(t, s;H − 1/α+ 1/2, 2) dBs : t ∈ [0, T ]

}
,

asm → +∞. That is, we are able to approximate the stochastic process {Qt(m) :
t ∈ [0, T ]} with an n-th order fractional Brownian motion. Finally, we state an
asymptotic analysis of the limiting error process {Rt(κ) : t ∈ [0, T ]}, where
Rt(κ) := limm→+∞ Rt(m,κ). The following statements hold [53, Theorem 6.4].

(i) The finite dimensional distribution of {Rt(κ) : t ∈ [0, T ]} converges in
probability to zero as κ → +∞. Moreover, if α ∈ (1, 2), then the conver-
gence can be strengthened to convergence in probability to the degenerate
zero process uniformly on [0, T ].

(ii) For every κ > 0, as λ → +∞, it holds that

λαP

(
sup

t∈[0,T ]

|Rt(κ)| > λ

)
→ cα

∫ −κ

−∞
|fn(T, s;H,α)|α ds.

Moreover, the supremum over [0, T ] can be replaced by a maximum over
a finite number of observation times in [0, T ].

Thus, we see the error process can be made arbitrarily close to the degenerate
zero process by increasing κ, and that the tail of supt∈[0,T ] |Rt(κ)| resembles that
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of a Pareto distribution. We have therefore successfully approximated the higher
order fractional stable motion.

This method of approximation for infinitely divisible processes is rather sys-
tematic. To summarise, we do so by firstly considering a domain of the Lévy
measure for which it is finite, which is analogous to an approximation via Pois-
son truncation of shot noise representation. If possible, Gaussian approximation
can be additionally used on remaining components to obtain greater accuracy.
The remaining stochastic process {Rt(m,κ) : t ∈ [0, T ]} is treated as the error
of the approximation, for which we analyse its properties.

We briefly mention the tempered stable generalisation of the higher order
fractional stable motion. By replacing the Lévy measure of the driving process
in the stochastic integral (5.7) with that of a symmetric tempered stable Lévy
measure

ν(dz) =
αcα
2

e−β|z|

|z|α+1
dz, z ∈ R, (5.10)

where β > 0 is a tempering parameter, we obtain the higher order fractional
tempered stable motion. Its properties, such as persistent autocorrelations and
behaviour in short and long time regimes, are investigated in [19]. A shot noise
representation in the vein of (5.9) is given by [19, Section 6]{ ∑

{k∈N:Γk≤m(T+κ)}

((
Γk

(T + κ)cα

)−1/α

∧
(
EkR

1/α
k

β

))
Ukfn(t, Tk;H,α)

: t ∈ [0, T ]

}
,

(5.11)

where {Ek}k∈N is a sequence of iid standard exponential random variables and
{Rk}k∈N is a sequence of iid standard uniform random variables, such that all
random sequences are mutually independent. This shot noise truncation is not
surprising at all, given Rosiński’s series representation (3.22) for the tempered
stable law.

An alternative fractional tempered stable motion is studied in [41], where the
Lévy measure of the driving process in the stochastic integral (5.7) is once again
replaced by a tempered stable Lévy measure (5.10), but the first-order moving
average kernel f1 is also replaced, by a Volterra kernel

K(t, s;H,α) := cH,α

((
t

s

)H−1/α

(t− s)H−1/α

−
(
H − 1

α

)
s1/α−H

∫ t

s

uH−1/α−1(u− s)H−1/α du

)
1[0,t](s),

(5.12)

where H ∈ (1/α− 1/2, 1/α+ 1/2), α ∈ (0, 2) and cH,α is a constant depending
only on H and α. Note that as the kernel in this fractional tempered stable mo-
tion is distinct from the higher order fractional tempered stable motion discussed
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in [19, Section 6], the former is not simply a lower-order version of the latter.
The fractional tempered stable motion based on the Volterra kernel (5.12) does
not integrate over negative time, so within the context of the decomposition
(5.5), the truncation parameter on time is degenerate (κ = 0). Consequently,
the error analysis is simplified as the stochastic process {Qt(m) : t ∈ [0, T ]}
of the small jumps also has no negative time component, and the component
{Rt(m,κ) : t ∈ [0, T ]} is irrelevant. Similarly to the moving average kernel, the
Volterra kernel can capture selfsimilar dynamics. However, unlike the moving
average kernel, there is no obvious generalisation of the Volterra kernel that can
preserve its key properties.

5.2.2. Lévy-driven CARMA processes

We now turn to a numerical scheme for generating approximate sample paths of
Lévy-driven CARMA processes via Poisson truncation of shot noise representa-
tion [54]. Lévy-driven CARMA processes naturally generalise Gaussian CARMA
processes so as to capture asymmetry and heavy tails in a variety of physical
and social science settings. We begin defining the Lévy-driven CARMA process
as follows. Fix a1, · · · , ap, b0, · · · , bp−1 ∈ R such that bq = 1, q ≤ p − 1 and
bk = 0 for k > q, and define the polynomials a(z) := zp + a1z

p−1 + · · ·+ ap and
b(z) := b0 + b1z + · · ·+ bqz

q in such a way that a(z) and b(z) have no common
roots. Define A ∈ Rp×p by

A :=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1

⎤⎥⎥⎥⎥⎥⎦ .

Denote the eigenvalues of A as λ1, · · · , λp ∈ R, that is, a(z) =
∏p

k=1(z − λk).
Let {Lt : t ∈ R} be a temporally extended univariate Lévy process in same
sense as in Section 5.2.1. Define ep ∈ Rp as the unit vector in the p-th direction
and b := [b1, b1, · · · , bp−1]

ᵀ ∈ Rp. A Lévy-driven CARMA process in R of order
(p, q) with p > q is defined as {Yt : t ∈ R}, where Yt := 〈b, Xt〉 and {Xt : t ∈ R}
is a stochastic process in Rp satisfying

Xt2 = eA(t2−t1)Xt1 +

∫ t2

t1

eA(t2−s)ep dLs, t1 ≤ t2.

Under suitable technical conditions, the Lévy-driven CARMA process {Yt : t ∈
R} is strictly stationary, and can be expressed as a linear combination of the
real and dependent Lévy-driven Ornstein–Uhlenbeck processes as follows:

Yt =

p∑
k=1

b(λk)

a′(λk)

∫ t

−∞
eλk(t−s) dLs, t ∈ R.
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Note that the CARMA(1, 0) process corresponds to the Lévy-driven Ornstein–
Uhlenbeck process, which we will discuss exclusively in Section 5.2.3 due to their
special feature with respect to sample path generation.

We first consider the stable CARMA process. Specifically, the driver {Lt :
t ∈ R} is a temporally extended stable process with Lévy measure

ν(dz) = αcα

(
1 + β

2
1(0,+∞)(z) +

1− β

2
1(−∞,0)(z)

)
dz

|z|α+1
, z ∈ R0,

where β ∈ [−1, 1] if α ∈ (0, 1) ∪ (1, 2) and zero if α = 1. We define a constant
λα,β,m := βcαη(m)1−αα/(α − 1), which is used in a correction term to cen-
tre the error term Qt(m) when α ∈ (0, 1). Approximation and error analysis
for this case is provided as follows. Define the function g(u) :=

∑p
k=1 1(u ≥

0)eλkub(λk)/a
′(λk). In the context of the decomposition (5.5) for the stable

CARMA process based on the inverse Lévy measure method and the trunca-
tion on the jump timings Tn := (n, T ], the following statements hold [54, Section
4]:

(i) It holds that

{Yt(m,n) : t ∈ [0, T ]} L
=

{ ∑
{k∈N:Γk≤m(T+n)}

(
Γk

(T + n)cα

)−1/α

g(t− Uk)rk

− 1(1,2)(α)λα,β,m

∫ T

−n

g(t− s) ds : t ∈ [0, T ]

}
,

(5.13)

where {Γk}k∈N is a sequence of standard Poisson arrival times, {Uk}k∈N is
a sequence of iid uniform random variables on (−n, T ), {rk}k∈N a sequence
of iid random variables such that P(V1 = 1) = (1+β)/2 and P(V1 = −1) =
(1− β)/2, and that all random sequences are mutually independent.

(ii) As m → +∞, it holds that{
1

σ(m)

(
Qt(m) + 1(0,1)(α)λα,β,m

∫ T

−∞
g(t, s) ds

)
: t ∈ [0, T ]

}
L→
{∫ T

−∞
g(t− s) dBs : t ∈ [0, T ]

}
.

If q < p−1, then the convergence can be strengthened to weak convergence
in C ([0, T ];R).

(iii) The finite dimensional distributions of {Rt(n) : t ∈ [0, T ]} converges in
probability to zero as n → +∞. If α ∈ (1, 2), then the convergence can be
strengthened to the convergence in probability uniformly on [0, T ].

(iv) It holds that for every n > 0 as λ → +∞,

λαP

(
sup

t∈[0,T ]

|Rt(n)| > λ

)
→ cα

∫ −n

−∞
sup

t∈[0,T ]

|g(t− s)|α ds.
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So clearly, the error component {Qt(m) : t ∈ [0, T ]} is asymptotically Gaus-
sian while the error component {Rt(n) : t ∈ [0, T ]} asymptotically has a Pareto-
tailed distribution, just as for the higher order fractional stable motion in Section
5.2.1. The latter is unsurprising due to the presence of the stable driver. Fol-
lowing the simulation recipe outlined in Section 5.2 but based on the shot noise
representation (5.13) instead, we provide approximate sample paths in Figure
6. From the generated sample paths, we observe the mean-reverting property of
the CARMA process in diminishing the impact of jumps over time.

Fig 6. Examples of sample paths of the stable CARMA(2, 1) process with λ1 = −1.2, λ2 =
−0.5, α = 0.8 and β = 0, based on the truncation approximation (5.13). Time steps are of
size 10−3.

Next, we consider the case where the driving Lévy process {Lt : t ∈ R}
without Gaussian components is centred and has finite second-order moments.
Specifically, we demand that the characteristic function follows the form

E
[
eiθLt

]
= exp

[
t

∫
R0

(
e−iθz − 1− iθz

)
ν(dz)

]
, t ≥ 0,
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such that the infinite Lévy measure satisfies
∫
R0

z2 ν(dz) < +∞. We now deviate
from the inverse Lévy measure method and leave the underlying shot noise
representation general. We state the results on the error processes from the
decomposition (5.5) as follows [54, Proposition 5.3]:

(i) The error process {Qt(m) : t ∈ [0, T ]} converges in probability to the
zero process uniformly on [0, T ] as m → +∞. Moreover, where σ2(m) :=∫
R0

z2 νm(dz), if for every c > 0

lim
m→+∞

1

σ2(m)

∫
{|z|>cσ(m)}

z2 (ν − νm)(dz) = 0,

then it holds that{
Qt(m)

σ(m)
: t ∈ [0, T ]

}
L
=

{∫ T

−∞
g(t− s) dBs : t ∈ [0, T ]

}
.

Additionally, if q < p − 1, then the convergence can be strengthened to
weak convergence in the space C ([0, T ];R).

(ii) It holds that for every m > 0, the error process {Rt(m,n) : t ∈ [0, T ]}
converges in probability to the zero process uniformly on [0, T ] as n → +∞.

By (ii), we see that the error component {Qt(m) : t ∈ [0, T ]} can be approxi-
mated by a Gaussian process. Moreover, it has been shown that when possible,
including the Gaussian approximation in the simulation for {Yt : t ∈ [0, T ]}
not only improves precision, but is also necessary to preserve the second-order
structure [54, Proposition 5.3].

In conclusion, we see that the general idea of decomposing a Lévy measure in
terms of its jump magnitudes and timings is a powerful tool that can be applied
systematically for approximating sample paths of infinitely divisible processes.

5.2.3. Lévy-driven Ornstein–Uhlenbeck process

We now consider the Lévy-driven Ornstein–Uhlenbeck (OU) process, which can
be thought of as a special case of the Lévy-driven CARMA process with (p, q) =
(1, 0) but with an additional centring parameter. This class of infinitely divisible
processes deserves special attention in the context of numerical methods, as
exact simulation methods by increments are available in some cases, which may
be preferred over the Poisson truncation of shot noise representation.

Let {Lt : t ≥ 0} be a Lévy process without Gaussian components and with
Lévy measure ν(dz). The Lévy-driven OU process {Xt : t ≥ 0} is described by
the stochastic differential equation

dXt = λ(μ−Xt) dt+ dLt, (5.14)

where λ > 0 and μ ∈ Rd. The explicit solution is given by

Xt = e−λtX0 + μ
(
1− e−λt

)
+

∫ t

0

e−λ(t−s) dLs. (5.15)
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In light of this stochastic integral representation, the Lévy-driven OU process
is an infinitely divisible process.

The OU process is typically defined by its invariant law limt→+∞ L (Xt).
In the case where the invariant law is Gaussian, the driver of the OU process
(5.14) is a Brownian motion, which is outside the scope of the present survey. It
is known that [95, Theorem 17.5] if the Lévy measure ρ(dz) of the driving pro-
cess {Lt : t ≥ 0} satisfies the integrability condition

∫
‖z‖>2

ln ‖z‖ ρ(dz) < +∞,

then there exists a Lévy-driven OU process (5.15) such that the invariance
law limt→+∞ L (Xt) exists and is selfdecomposable and infinitely divisible with

the Lévy measure ν(B) = λ−1
∫
Rd

∫ +∞
0

1B(e
−sz) ds ν(dz), for B ∈ B(Rd

0). Con-
versely, every selfdecomposable law admits the unique existence of a Lévy-driven
OU process such that the Lévy measure of its Lévy driver satisfies the afore-
mentioned integrability condition [95]. For simplicity, we focus on the univariate
setting. Where w(z) is the Lévy density of the unit-time marginal L1 of the driv-
ing Lévy process, it is related to u(z) by the equation

w(z) = −λ

(
u(z) + z

∂

∂z
u(z)

)
. (5.16)

A (non-Gaussian) stable OU process is defined as the Lévy-driven OU process
such that its invariant law limt→+∞ L (Xt) is a (non-Gaussian) stable law. If
the invariant law is a stable law with the one-sided Lévy density u(z) = az−α−1

on (0,+∞) with α ∈ (0, 1), then the driving process admits the Lévy density
w(z) = λaαz−α−1 on (0,+∞), according to the relation (5.16), that is, the
driving process is a stable subordinator with stability α, but with scale λaα.
Combining results from Example 3.3 and Section 5.2, we have the shot noise
representation

{Xt : t ∈ [0, T ]} L
=

{
e−λtX0 + μ

(
1− e−λt

)
+

+∞∑
k=1

e−λ(t−Tk)

(
Γk

λaT

)−1/α

1[0,t](Tk) : t ∈ [0, T ]

}
,

(5.17)

where {Γk}k∈N is a sequence of standard Poisson arrival times independent of
{Tk}k∈N, a sequence of iid uniform random variables on (0, T ). Sample paths
based on the Poisson truncation of the shot noise representation (5.17) are
provided in Figure 7 below. Similar to our numerical illustrations of the stable
CARMA process in Figure 6, we also observe mean-reverting behaviour in the
sample paths of the stable OU process. In contrast, the driving Lévy process in
this case is a stable subordinator, thus we see that all jumps in the sample paths
of Figure 7 are in the positive direction. Similarly to the case of the stable process
in Figure 2, the jumps associated with a lower stability parameter (Figure 7 (a))
are significantly larger.

An interesting property of the stable OU process is that the Lévy measures
of the invariant law and the driving process both correspond to a stable law
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Fig 7. Examples of approximate sample paths of the stable OU process (5.15) based on trun-
cation of the shot noise representation (5.17). Other parameters are fixed at a = 1, μ = 1,
λ = 1, X0 = 1 and T = 100. The truncation parameter is fixed at n = 100 and time steps are
of size 10−3.

with stability α, though with different scales. This invariance of the stability
parameter between the Lévy measures does not hold in general, as we see in the
following.

Consider a tempered stable OU process such that its invariant law
limt→+∞ L (Xt) is a tempered stable law with Lévy density u(z) = ae−βzz−α−1

on (0,+∞) with α ∈ (0, 1). From the relation (5.16), the Lévy density of the
unit-time marginal L1 of the driving process is given by

w(z) = λaα
e−βz

zα+1
+ λaβ

e−βz

z(α−1)+1
, z ≥ 0. (5.18)

Thus, for α ∈ (0, 1), the Lévy driver {Lt : t ≥ 0} is the superposition of a
tempered stable subordinator with stability α and scale λaα, and a compound
Poisson process with Lévy density λaβz−αe−βz, which is indeed a gamma den-
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sity scaled by a factor of λa. This leads to the shot noise representation [58, 88]

{Xt : t ∈ [0, T ]} L
=

{
e−λtX0 + μ

(
1− e−λt

)
+

+∞∑
k=1

e−λ(t−Tk)

((
Γk

λaT

)−1/α

∧
(
WkU

1/α
k

β

))
1[0,t](Tk)

+

+∞∑
k=1

eΓ̃k−λtGk1[0,t](Γ̃k) : t ∈ [0, T ]

}
,

(5.19)

where, in addition to the random sequences appearing in Rosiński’s series rep-
resentation (3.22), {Γ̃k}k∈N is a sequence of Poisson arrival times with intensity
λaβαΓ(1−α) independent to {Γk}k∈N, and {Gk}k∈N is a sequence of iid gamma
random variables with shape 1−α and rate β. Examples of sample paths based
on the Poisson truncation of the shot noise representation (5.19) are provided in
Figure 8 as follows. As expected, the jumps of the tempered stable OU process
tend to be smaller than those of its stable counterpart in Figure 7 (a). We see
from the plots in Figure 8 that the parameter λ controls the intensity of the
mean-reverting property.

For α ∈ (1, 2), by the relation (5.16), the driving process {Lt : t ≥ 0} is
instead a superposition of two independent tempered stable processes, one with
stability α and scale λaα, and another with stability α − 1 and scale λaβ. A
shot noise representation similar to (5.19) is available, however intricate cen-
tring terms must appear. For the sake of simplicity, consider the case where the
invariant law of the OU process limt→+∞ L (Xt) is a symmetric tempered sta-
ble law, so that the independent tempered stable processes forming the driving
Lévy process are also symmetric. As almost sure convergence without centres is
guaranteed, the shot noise series for the symmetric tempered stable OU process
with stability α ∈ (1, 2) is given by

{Xt : t ∈ [0, T ]} L
=

{
e−λtX0 + μ

(
1− e−λt

)
+

+∞∑
k=1

e−λ(t−Tk)

((
Γk

λaT

)−1/α

∧
(
WkU

1/α
k

β

))
Vk1[0,t](Tk)

+

+∞∑
k=1

e−λ(t−T̃k)

((
(α− 1)Γ̃k

λaβT

)−1/(α−1)

∧
(
W̃kŨ

1/(α−1)
k

β

))
Ṽk1[0,t]

(
T̃k

)
: t ∈ [0, T ]

}
,

where the familiar random sequences are the same as those in the representation
(5.19), and the random sequences distinguished by the tilde are independent
copies of the corresponding sequences.
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Fig 8. Examples of approximate sample paths of the tempered stable OU process (5.15) based
on truncation of the shot noise representation (5.19). Other parameters are fixed at α = 0.7,
a = 1, β = 1, μ = 1, X0 = 1 and T = 100. The truncation parameter is fixed at n = 100 and
time steps are of size 10−3.

With the availability of shot noise series representations for the stable (5.17)
and tempered stable OU processes (5.19), we immediately have an easy method
for sample path generation by Poisson truncation. As usual, this entails trunca-
tion errors due to the discarded jumps, and a decomposition of the stochastic
integral process in the same vein as (5.5) can be performed to analyse the error.
The kernel s �→ e−λ(t−s)1[0,t](s) is square-integrable and uniformly bounded for
every t, which conveniently permits Gaussian approximation of the discarded
jumps. Alternatively, as the domain of integration over time is bounded, it may
be easier to investigate the mean-squared error. Consider an infinitely divisible
process {

∫ t

0
f(t, s) dLs : t ∈ [0, T ]}, where {Lt : t ∈ [0, T ]} is a Lévy process

with an isotropic Lévy measure ν(dz) such that it has the shot noise represen-
tation (5.2) without the centring terms. Then, a shot noise representation for
the infinitely divisible process can be obtained by simply including f(t, Tk) as
a factor in each of the summands. For the Poisson truncation approximation,
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the Itô-Wiener isometry can be applied in the same vein as (4.2) to express the

mean-squared error as E[|Qt(m)|2] =
∫ t

0
|f(t, s)|2 ds

∫
R0

|z|2 (ν − νn)(dz), where

Qt(m) previously defined in (5.5) integrates over [0, T ] instead of (−∞, T ]. This
result can be straightforwardly generalised to the case of a multivariate Lévy
integrator similarly to (4.2). We see that as long as the integrand f(t, s) is
square-integrable, the quality of the Poisson truncation is characterised by the
Lévy integrator.

Yet another representation is avaliable via the Markovian property, for which
exact sample path generation of the Lévy-driven OU process is possible in some
cases. Specifically, where Δ denotes the size of the time step, it holds that

X(n+1)Δ = e−λΔXnΔ + μ
(
1− e−λΔ

)
+

∫ (n+1)Δ

nΔ

e−λ((n+1)Δ−s)dLs

L
= e−λΔXnΔ + μ

(
1− e−λΔ

)
+

∫ Δ

0

e−λ(Δ−s)dLs,

(5.20)

where the equality in law holds by the independence and stationarity of the
Lévy driver. In the one-dimensional setting, exact time-discretisation schemes
based on (5.20) for the stable OU process with stability α ∈ (0, 2) and the
tempered stable OU process with stability α ∈ (0, 1) are possible, as a stable
random variable Sα,a in R with stability α and scale a can be exactly simulated
through the well-known representation

Sα,a
L
=

(
aΓ(1− α)

α cos(V )

)1/α

sin(α(V + π/2))

(
cos(V − α(V + π/2))

E

)(1−α)/α

,

(5.21)
where V is a uniform random variable on (−π/2, π/2) independent of E, a
standard uniform random variable. For α ∈ (0, 1), the transition law of the
tempered stable OU process consists of a compound Poisson random variable
and a tempered stable random variable with stability α. The latter of which can
be generated exactly by an acceptance-rejection algorithm on Sα,a (5.21), so an
exact time-discretisation scheme for sample path generation is readily available
[57].

Therefore, we see that there is a reasonable basis for turning to the classical
recursive sampling by increments as opposed to by Poisson truncation of shot
noise representation. However, there are two bases for which one may prefer
using Poisson truncation of shot noise representation. Firstly, if the application
context requires the observation of jumps, such as in insurance mathematics,
then simulation via increments cannot be applied. Secondly, the Markovian suc-
cessive representation (5.20) may not offer an exact sampling scheme for all OU
processes. For instance, there is yet an exact sampling method for tempered sta-
ble random variables with stability α ∈ (1, 2), which appears in the transition
law for the tempered stable OU process with α ∈ (1, 2). As a result, the simula-
tion method by increments for this case does not carry the advantage of being
exact [58]. Moreover, the problem of sampling of multivariate stable random
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vectors hinders multidimensional generalisations of the recursive scheme based
on the Markovian representation (5.20) in practice.

Before moving on, we briefly mention that stochastic integral processes with
respect to Lévy processes of type G also admit shot noise representations based
on (5.3). Thus, similar Poisson truncation schemes can be used for their sam-
ple path generation. Mean-squared error bounds for the truncation of shot noise
representation for such stochastic integral processes are provided in [86, 104], in-
cluding for schemes based upon subordinated Gaussian representations of Lévy
processes of type G.

5.3. Simulating infinitely divisible fields

We consider the real harmonisable multifractional Lévy motion (RHMLM) [27,
64] as an example of the simulation of an infinitely divisible field via a shot noise
representation. The RHMLM is defined by

X(x) =

∫
Rd

e−i〈x,ξ〉 − 1

‖ξ‖h(x)+d/2
L(dξ), x ∈ Rd,

where L(dξ) is a Lévy random measure without Gaussian components with
control measure ν(dz) on C and the function h : Rd → (0, 1) varies in the place
of the Hölder exponent.

If the control measure ν(dz) is finite, then a shot noise representation for the
RHMLM is given by [27]

{X(x) : x ∈ Rd} L
=

{
+∞∑
k=1

f

(
x,

(
Γk

cdν(C)

)1/d

Uk

)
Zk : x ∈ Rd

}
, (5.22)

where {Γk}k∈N is a sequence of arrival times of the standard Poisson process,
{Uk}k∈N is a sequence of iid uniform random vectors on Sd−1, and {Zk}k∈N is
a sequence of iid random vectors distributed according to ν(dz)/ν(C) such that
all random sequences are mutually independent, and cd := 2πd/2/(Γ(d/2)d).
Note that the shot noise representation (5.22) is distinct from the shot noise
representations we have seen thus far. In particular, for the generalised shot
noise representation (3.10), the Poisson arrival times simulate the Lévy mea-
sure through a random walk on the space of jump sizes, while in (5.22), the
Poisson arrival times simulate a random walk over the space of jump positions.
Armed with a shot noise representation (5.22) for the RHMLM, a straight-
forward sample path generation method is to simulate the first n summands.
Denoting {X(n)(x) : x ∈ Rd} as this approximation, it was found in [64] that
for q ≥ p and every n ≥ q/2 + q(maxK h)/d+ 1, it holds that

E

[∥∥∥X −X(n)
∥∥∥q
p,K

]
≤ Cq

Dn,q(minK h)

nq(minK h)/d
,

where ‖ · ‖p,K denotes Lp norm over a compact set K ⊂ Rd, Cq is a constant
independent of n and Dn,q(y) = Γ(n+ 1− q/y − qy/d)q/2+qy/d/Γ(n+ 1).
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When the control measure is infinite, it was suggested in [64] to separate the
RHMLM in terms of large jumps and small jumps, where the former component
can be simulated via the shot noise representation (5.22), while under certain
technical conditions, the latter can be approximated by a Gaussian field in the
same vein as Sections 4.2 and 5.2. We remark that the Poisson truncation scheme
described in Section 4 can be applied if the removal of the conditioning on the
number of jumps is desired.

5.4. Simulating Lévy-driven stochastic differential equations

As we have applied the theory of shot noise representations to approximations
of a large class of infinitely divisible processes (Section 5.2), the next natural
step is in generalising the method to approximating Lévy-driven stochastic dif-
ferential equations (SDEs). Working towards a Poisson truncation method of
approximating Lévy-driven SDEs, we first establish the setting of multivariate
Lévy-driven SDEs of the form

dXt = μ(t,Xt) dt+ σ(t,Xt) dBt + θ(t,Xt−) dLt, t ≥ 0, (5.23)

where {Bt : t ≥ 0} is an l-dimensional Brownian motion, {Lt : t ≥ 0} is
an l-dimensional Lévy process with Lévy measure ν(dz) and the coefficients
μ : [0,+∞) × Rd → Rd and σ, θ : [0,+∞) × Rd → Rd×l are continuous. A
sufficient condition for the unique existence of the solution to the SDE (5.23) is
for the coefficients to satisfy linear growth and Lipschitz conditions [2, Section
6.2].

Sample path generation for solutions to the general SDE is more difficult than
for stochastic integral processes. In short, this is because stochastic integral pro-
cesses discussed in Section 5.2 are described explicitly, whether Markovian or
not, over the time interval of interest, leading to straightforward implementa-
tion and error analysis. In contrast, the solution to the general SDE can only be
described implicitly, that is, the state Xt appears in both sides of (5.23), thus
requiring a recursive scheme. The exception is the very rare case when a closed-
form solution for the SDE is available, such as the examples of the Lévy-driven
OU process and Doléans-Dade stochastic exponential. We have seen the explicit-
ness of the OU process in Section 5.2.3, which leads to its simulation in the form
of a stochastic integral process (2.4). For the latter, consider the Lévy-driven
Doléans-Dade stochastic exponential as described by the SDE dXt = Xt− dLt.
By Itô’s lemma for discontinuous semimartingales, the explicit solution is avail-
able as

Xt = X0 exp

[
−t

∫ +∞

−1

z ν(dz) +

∫ t

0

∫ +∞

−1

ln(1 + z)μ(dz, ds)

]
,

if the support of the Lévy measure ν(dz) is the half-line (−1,+∞). The stochas-
tic exponential can be simulated through the shot noise representation of the
integral on the right hand side (see [51, Section 4.1]). More recently, exact meth-
ods based on rejection sampling have been developed [34, 79], which can exactly
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simulate a class of univariate jump-diffusion processes with finite jump intensity
without the need for recursion.

As usual with the study of differential equations, the immediate approach
when met with the problem of investigating solutions to the SDE (5.23) is via the
deterministic time-discretisation paradigm. The shortfall here is that simulation
of the underlying Lévy integrator via increments does not observe jumps, which
renders such a method inappropriate for certain practical scenarios, such as in
the case of insurance models where individual claims often need to be observed.
In order to incorporate the information of individual jumps for approximations
of better quality, jump-adapted time-discretisation, where the discretisation of
time includes jump timings, is preferred [16, 75].

With jump-adapted methods, the necessity for computing a finite number of
time steps requires the underlying jump component to correspond to a finite
Lévy measure. In the case of the infinite Lévy measure, the only solution is via
truncation to obtain a compound Poisson approximation of the jump compo-
nent [61]. When possible, the accuracy of the numerical scheme can be improved
via a Gaussian approximation of the discarded jumps [3, 22]. In the case where
the discretisation of time includes deterministic and random jump times, care-
ful balance between the order of the scheme for the Gaussian component and
the truncation of the Lévy measure for the jump component is desired, as the
overall rate of convergence is only as fast as the slowest component [60]. In
the case where the driver is a subordinated Lévy process, the Euler method in
which the subordinator is approximated by truncation of its shot noise repre-
sentation is studied in [91]. We also mention here the recent emergence of an
alternative approach to approximating SDEs driven by Marcus-type Lévy noise
via homogenisation of deterministic maps [21].

The basic framework for simulating SDEs via Poisson truncation is described
as follows [48]. Denote νn(dz) as the Lévy measure corresponding to the Poisson
truncation of the shot noise series (5.2). For example, if the shot noise series
we truncate corresponds to the inverse Lévy measure method in the isotropic
case, then νn(dz) = 1[ε(n),+∞)(‖z‖)ν(dz), where the cutoff threshold ε(n) for
the magnitude of jumps is decreasing towards zero in n by the definition of
the kernel (3.6). Thus, the corresponding approximation for the solution to
the Lévy-driven SDE (5.23) is described by the following SDE as a mixture of
integrals and a summation

X
(n)
t = X0 +

∫ t

0

μ
(
s,X(n)

s

)
ds+

∫ t

0

σ
(
s,X(n)

s

)
dBs

−
∫ t

0

θ
(
s,X(n)

s

)
ds

∑
{k∈N:Γk≤nT}

ck

+
∑

{k∈N:Γk≤nT}
θ
(
Tk, X

(n)
Tk−

)
H

(
Γk

T
, Uk

)
1[0,t](Tk).

(5.24)

For the numerical scheme to produce sample paths of the solution process to
the SDE (5.24), one may combine the almost surely finite number of jump
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timings of the Poisson truncation for the jump component and strong Taylor
approximation for the drift and diffusion components (see [78, Section 8.2]).

Numerical methods and error analysis for Lévy-driven SDEs via the trunca-
tion of its Lévy measure in full generality are still on-going research. For other
promising directions of future research, we conjecture that the shot noise rep-
resentation has the potential to offer effective numerical methods for stochastic
delay differential equations with jumps [25], backward stochastic differential
equations with jumps [32, 33] and stochastic partial differential equations with
jumps [28, 39].

6. Computation of expectations via shot noise representation

For the practical use of models involving infinitely divisible laws and related
processes, it is often crucial to be able to approximate relevant expectations,
such as estimating probabilities and moments. As mentioned earlier, theoret-
ical discussions have taken advantage of the importance of the initial arrival
times [14]. In our context, this fact can be effectively exploited for numerically
approximating expectations [44, 56]. Moreover, techniques involving changing
the underlying probability measure [52, 56] are also useful. In what follows,
we discuss some topics relevant to shot noise representations for approximating
expectations.

Throughout, we assume that an infinitely divisible random vector of our in-
terest admits the shot noise representation (3.10). Crucially for the succeeding
discussion, recall that the arrival times {Γk}k∈N of the standard Poisson pro-
cess equal in law to successive summations of iid standard exponential random
variables, that is,

{Γ1,Γ2,Γ3, · · · } L
=

{∑1

k=1
Ek,

∑2

k=1
Ek,

∑3

k=1
Ek, · · ·

}
, (6.1)

where {Ek}k∈N is a sequence of iid standard exponential random variables. As
the first (inter-)arrival time E1 appears in all summands {H(Γk, Uk)}k∈N, it
accounts for a large portion of the variation of the underlying randomness. Sim-
ilar statements can be said of the first few exponential interarrival times. We
remark that Lévy processes and more general infinitely divisible processes are
within our scope through the arrival times {Γk}k∈N in their shot noise represen-
tations, such as (5.2), (5.9) and (5.13). Moreover, as information on individual
jumps are perhaps even more crucial in the case of infinitely divisible processes,
the following discussions are even more pertinent for the aforementioned more
general setting.

6.1. Effective dimension on interarrival exponentials

Intuitively, in the case of a shot noise representation (3.10), the faster the kernel
‖H(·, ξ)‖ decays, the greater the proportion of variation explained by the first
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few exponential random variables {E1, · · · , En} (6.1). This leads to the notion
that in many cases, the variation can be captured by only considering a lower
dimension of the exponential interarrival times {Ek}k∈N. This idea is formalised
in [44] through the cumulative explanatory ratio (CER), which is interpreted as
the proportion of the variance explained by the first few dimensions. Where X is
an infinitely divisible random vector in Rd without a Gaussian component and
f : Rd → R is a continuous function, suppose we want to compute E[f(X)] pro-
vided that Var(f(X)) is finite. The CER associated with the first n interarrival
times is defined by

CERn :=
Cov(Xf (n), Xf (0))

Var(Xf (0))
, (6.2)

where, for natural numbers n ∈ {1, · · · , N},

Xf (n) := f

(∑N

k=1

(
H

(∑k∧n

l=1
El +

∑k

l=k∧n+1
E′

l , Uk

)
− ck

))
L
= f

(∑N

k=1
(H(Γk, Uk)− ck)

)
=: Xf (0),

where {E′
k}k∈N is an iid copy of the sequence of exponential interarrival times

{Ek}k∈N.
A high CER (6.2) corresponds to a low effective dimension structure of the

shot noise representation. This is a desirable property, as rather than using
Monte Carlo methods with the convergence rate O(n−1/2), quasi-Monte Carlo
methods can be reliably used on the first few interarrival times to achieve the
faster convergence rateO(n−1(lnn)d) in practice. This is in contrast to problems
with high-dimensionality, for which the speed improvement may often be too
marginal to justify the use of quasi-Monte Carlo methods for such problems. The
CER (6.2) for stable random variables and a modified CER for the randomised
quasi-Monte Carlo method for the gamma random variable were investigated
in [44], which were found to be remarkably high with only the first few terms
of their shot noise series. Thus, quasi-Monte Carlo methods are applicable for
greater accuracy in expectation computations.

6.2. Stratification on interarrival exponentials

We describe the variance reduction method of stratifying the exponential inter-
arrival times {Ek}k∈N (6.1), as investigated in [56]. We present the technique
of stratified sampling when computing a random variable F involving a shot
noise representation, say (3.10), which is built upon the sequence {Ek}k∈N.
For simplicity, we only consider the stratification of the first interarrival time
E1. Fix M ∈ N and partition (0,+∞) = ∪M

m=1Bm so B1 = (0, b1], B2 =
(b1, b2], · · · , BM = (bM−1,+∞) with 0 < b1 < b2 < · · · < bM−1 < +∞,
such that pm := P(E1 ∈ Bm) = 1/M for every m ∈ {1, · · · ,M}. For every
m, let {Fm,k}k∈N be a sequence of iid random variables with the distribution
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L (F |E1 ∈ Bm). Then, where nm denotes the number of samples from the m-th
stratum, the random variable

M∑
m=1

pm
1

nm

nm∑
k=1

Fm,k

is an unbiased estimator for the expectation E[F ], with estimator variance

VarP

(
M∑

m=1

pm
1

nm

nm∑
k=1

Fm,k

)
=

1

n

M∑
m=1

p2m
α2
m

qm
,

where qm := nm/n. The minimal variance (
∑M

m=1 pmσm)2 is achieved with the

allocation qm = pmσm/(
∑M

m=1 pmσm), where σ2
m := VarP(F |E1 ∈ Bm) is the

stratum variance. It should be noted that the stratified sampling technique can
be extended to further interarrival times. However, the extension may be compu-
tationally taxing with only marginal returns due to the low effective dimension
of the shot noise representation (Section 6.1) and the rapid growth of strata
with the Monte Carlo dimension [44].

6.3. Importance sampling and control variates on interarrival
exponentials

Next, we outline the variance reduction methods of control variates and im-
portance sampling [56]. We assume the same simplified scenario considered
in Section 6.2. Fix n ∈ N and define E(n) := [E1, · · · , En]

ᵀ of (6.1) and
λ := [λ1, · · · , λn]

ᵀ ∈ (−∞, 1)n. We parametrise the first n interarrival times
as {Ek/(1− λk)}k∈{1,··· ,n}, thus in turn we parametrise the random variable of
interest F as F (λ). Define a family of probability measures {Qλ}λ∈(−∞,1)n by

dQλ

dP

∣∣
σ(E(n))

:=
e〈λ,E(n)〉

EP[e〈λ,E(n)〉]
=

n∏
k=1

(1− λk)e
λkEk , P-a.s.

Note that Qλ(Ek ∈ B) = P(Ek/(1 − λk) ∈ B) and Qλ(F (0) ∈ B) = P(F (λ) ∈
B) for every B ∈ B(R). It holds that for every θ := [θ1, · · · , θn]ᵀ ∈ Rn,

EP[F (0)] = EP

[
F (0)−

〈
θ, E(n) − EP

[
E(n)

]〉]
(6.3)

= EQλ

[
dP

dQλ

∣∣
σ(E(n))

(
F (0)−

〈
θ, E(n) − EP

[
E(n)

]〉)]
(6.4)

= EP

⎡⎣⎛⎝ n∏
k=1

exp
[
− λk

1−λk
Ek

]
1− λk

⎞⎠(
F (λ)−

n∑
k=1

θk

(
Ek

1− λk
− 1

))⎤⎦ .

Introducing the subtraction term in the expectation in (6.3) with equality is
referred to as the method of control variates. The change of measure in (6.4)
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is referred to as the method of importance sampling. The estimator variance is
given by

V (λ,θ) := VarQλ

(
dP

dQλ

∣∣
σ(E(n))

(
F (0)−

〈
θ, E(n) − EP

[
E(n)

]〉))
= EP

[(
n∏

k=1

e−λkEk

1− λk

)(
F (0)−

〈
F (0), E(n) − 1n

〉)2]
− (EP[F (0)])2,

where 1n := [1, · · · , 1]ᵀ ∈ Rn. For example, for the method of control variates
(λ = 0) applied only to the first interarrival time E1 (n = 1), the optimal
parameter can be derived as θ∗ = CovP(F (0), E1). For the method of importance
sampling alone (θ = 0), stochastic approximation techniques may be employed
for searching an optimal parameter.

6.4. Importance sampling on all individual jumps

Yet another importance sampling method, different from the one considered in
Section 6.3, can be constructed using more information of the sample path via
density transformations between individual jumps [52]. Let ({Xt : t ≥ 0},P) and
({Xt : t ≥ 0},Q) be Lévy processes in Rd characterised by triples (γP, A, νP)
and (γQ, A, νQ), respectively. Given some technical conditions on the distance
between the two laws, it holds that the probability measures P and Q are equiv-
alent and

dP

dQ

∣∣∣
Ft

= eUt , Q-a.s.,

where the stochastic process {Ut : t ≥ 0} in R satisfies

Ut = 〈η, X̃t〉 −
t

2
〈η, Aη〉 − t〈γQ,η〉

+ lim
ε→0

[ ∑
(s,‖Xs−Xs−‖)∈(0,t]×(ε,+∞)

ϕ(Xs −Xs−)

− t

∫
‖z‖>ε

(
eϕ(z) − 1

)
νQ(dz)

]
, Q-a.s.,

(6.5)

where X̃t = Xt −
∑

s∈(0,t](Xs −Xs−), ϕ := ln dνP/dνQ and the vector η ∈ Rd

satisfies γQ−γP−
∫
‖z‖≤1

z (νQ−νP)(dz) = Aη. Moreover, the stochastic process

{Ut : t ≥ 0} is uniformly convergent in t on any bounded interval Q-a.s. and
EQ[e

Ut ] = EP[e
−Ut ] = 1 for every t ≥ 0.

For simplicity, we present the one-dimensional case. Suppose we want to
evaluate EP[F ], where F is a random variable involving the sample path of the
Lévy process {Xt : t ∈ [0, T ]}. As it holds that EP[F ] = EQ[e

UTF ], we can
estimate our quantity of interest via a Monte Carlo iteration of the latter, that
is,

lim
n→+∞

1

n

n∑
k=1

eUk,TFk = EP[F ], Q-a.s.,
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where {Fk}k∈N is a sequence of iid copies of the random variable F and {Uk,t :
t ∈ [0, T ]}k∈N is a sequence of iid copies of {Ut : t ∈ [0, T ]}. Observe from
(6.5) that generating the sample path {Ut : t ≥ 0} requires the jumps of
the Lévy process, so generally the implementation of the computation signif-
icantly benefits from, or more precisely, often requires shot noise represen-
tation, for instance, infinitely divisible processes driven by the Lévy process
{Xt : t ≥ 0}.

7. Concluding remarks

In this survey, we have summarised shot noise representation with a view to-
wards sampling infinitely divisible laws and generating sample paths of related
processes. In particular, we reviewed the important aspects of shot noise rep-
resentation through the rather scenic route of the Lévy-Itô decomposition ap-
proach. We provided shot noise representations of various popular laws and
stochastic processes in the literature. Through our description of the trunca-
tion of shot noise representation, a general and systematic method for simu-
lation and computation of expectations was discussed. Examples of simulation
recipes were provided, and the key results for error analysis and our numerical
demonstrations should provide the confidence that truncation of shot noise rep-
resentation does not simply satisfy the need to be accurate, but also the desire
for a straightforward and computationally feasible approach for simulation in
practice.

We hope that the present survey makes clear the practicality of numerical
methods for simulating infinitely divisible laws and related processes based on
shot noise representations, and encourages future development into expanding
the technique. We reiterate that the approximation of Lévy-driven SDEs and
more general shot noise processes via truncation of shot noise representation is
still the subject of further research. As mentioned previously, future directions
for this area of research include numerical schemes for stochastic delay differen-
tial equations, backward stochastic differential equations and stochastic partial
differential equations with jumps based on shot noise representations. As shot
noise representation not only yields a viable method of sample path generation
for a wide-range of stochastic processes, but can also provide insights into their
properties, we expect further studies of such stochastic processes will continue
to invoke shot noise representation techniques. For this reason, the investigation
of shot noise representations and their truncation will remain in priority for the
foreseeable future.
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formation of Lévy processes. Monte Carlo Methods and Applications,
12(2):171–186, 2006. MR2237672

[53] R. Kawai. Higher order fractional stable motion: hyperdiffusion with heavy
tails. Journal of Statistical Physics, 165(1):126–152, 2016. MR3547838

[54] R. Kawai. Sample path generation of Lévy-driven continuous-time autore-
gressive moving average processes. Methodology and Computing in Applied
Probability, 19(1):175–211, 2017. MR3611540

[55] R. Kawai. A general approach to sample path generation of infinitely
divisible processes via shot noise representation. Statistics & Probability
Letters, 174:109091, 2021. MR4237482

[56] R. Kawai and J. Imai. On Monte Carlo and Quasi-Monte Carlo meth-
ods for series representation of infinitely divisible laws. In Monte Carlo
and Quasi-Monte Carlo Methods 2010, pages 471–486. Springer, 2012.
MR3173852

[57] R. Kawai and H. Masuda. Exact discrete sampling of finite variation tem-
pered stable Ornstein–Uhlenbeck processes.Monte Carlo Methods and Ap-
plications, 17(3):279–300, 2011. MR2846498

[58] R. Kawai and H. Masuda. Infinite variation tempered stable Ornstein–
Uhlenbeck processes with discrete observations. Communications in
Statistics-Simulation and Computation, 41(1):125–139, 2012. MR2844707
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MR1935481

[64] C. Lacaux. Series representation and simulation of multifractional
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Lévy processes of type G. Stochastic Processes and their Applications,
101(1):113–125, 2002. MR1921444

[105] B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer. Photon shot noise limits
on optical detection of neuronal spikes and estimation of spike timing.
Biophysical Journal, 104(1):51–62, 2013.

[106] S. Yuan and R. Kawai. Asymptotic degeneracy and subdiffusivity. Jour-
nal of Physics A: Mathematical and Theoretical, 53(9):095002, 2020.
MR4071126

https://www.ams.org/mathscinet-getitem?mr=3495683
https://www.ams.org/mathscinet-getitem?mr=0544194
https://www.ams.org/mathscinet-getitem?mr=1782492
https://www.ams.org/mathscinet-getitem?mr=0428438
https://www.ams.org/mathscinet-getitem?mr=1921444
https://www.ams.org/mathscinet-getitem?mr=4071126

	Introduction
	Preliminaries
	Infinitely divisible laws and related processes
	Examples of infinitely divisible laws without Gaussian components

	Shot noise representation of infinitely divisible laws
	The case of finite Lévy measure
	Lévy-Itô decomposition
	Inverse Lévy measure method
	Generalised shot noise method
	Examples

	Truncation of shot noise representations
	Comparisons among shot noise representations
	Gaussian approximation of small jumps

	Numerical schemes via truncation of shot noise representation
	Simulating Lévy processes
	Simulation recipes
	Numerical illustrations
	Discussion

	Simulating infinitely divisible processes
	Fractional stable motion
	Lévy-driven CARMA processes
	Lévy-driven Ornstein–Uhlenbeck process

	Simulating infinitely divisible fields
	Simulating Lévy-driven stochastic differential equations

	Computation of expectations via shot noise representation
	Effective dimension on interarrival exponentials
	Stratification on interarrival exponentials
	Importance sampling and control variates on interarrival exponentials
	Importance sampling on all individual jumps

	Concluding remarks
	Acknowledgments
	References

