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Abstract: This is a survey of results on universal algorithms for classifi-
cation and prediction of stationary processes. The classification problems
include discovering the order of a k-step Markov chain, determining mem-
ory words in finitarily Markovian processes and estimating the entropy
of an unknown process. The prediction problems cover both discrete and
real valued processes in a variety of situations. Both the forward and the
backward prediction problems are discussed with the emphasis being on
pointwise results. This survey is just a teaser. The purpose is merely to call
attention to results on classification and prediction. We will refer the inter-
ested reader to the sources. Throughout the paper we will give illuminating
examples.
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1. Introduction

Fourty five years ago David Bailey wrote a PhD thesis under the direction of
Donald Ornstein [4] entitled “Sequential schemes for classifying and predicting
ergodic processes”. Even though the thesis was never published it was very
influential and gave rise to a great deal of work and it is our purpose to survey
some of the developments in this research program. To put things in a proper
historical perspective we will begin by reviewing the main results from that
thesis.

The general problem considered there was that of extracting as much infor-
mation as possible from a sequence of observations of a finite alphabet stationary
stochastic process X0, X1, ...Xn. He gave the first universal estimation scheme
for the evaluation of the Shannon entropy, prior to the schemes which arose
from the universal data compression algorithms of J. Ziv and A. Lempel [105].
He then showed that for each k there was a sequence of functions gn which when
applied to X0, X1, ...Xn would with probability one eventually equal YES/NO
according to the alternative “the process IS/IS NOT a k-step mixing Markov
chain”. On the other hand he showed the non existence of a similar sequence of
functions for deciding membership in the union over all k of these classes.

In contrast to the pioneering universal scheme of D. Ornstein [82] for esti-
mating the conditional probability of X0 given the infinite past {Xi : i ≤ 0}
in a sequential fashion he showed the nonexistence of such a universal scheme
for the forward problem of estimating the conditional probability of Xn+1 given
the observations X0, X1, ...Xn.

Since then much work has been done on questions of this type, by researchers
such as Scarpellini [97, 98, 99], Paul Algoet [1, 2, 3], Amir Dembo and Yuval
Peres [17], Meir Feder and Neri Merhav [50], Györfi, Kohler, Krzyzak and Walk
[24], Andrew Nobel [81], Florentina Bunea and Andrew Nobel [11] Boris Ryabko
[90], Daniel Jones, Michael Kohler and Harro Walk [35], Daniil Ryabko [92, 95,
96] Tina Felber, Daniel Jones, Michael Kohler and Harro Walk [18], Gusztáv
Morvai and Benjamin Weiss [64, 59, 72, 76], Patrizia Berti, Irene Crimaldi, Luca
Pratelli and Pietro Rigo [6], Hayato Takahashi [102], Eva Löcherbach and Enza
Orlandi [48], Ramon van Handel [31], Dariusz Kalocinski and Tomasz Steifer
[38, 39] and others and we will clearly be unable to describe all of the work that
has been done. We shall give some results from these papers and others but will
devote much of the survey to our own work. We turn now to a more detailed
description of the survey.

In the first part we concentrate on discrete (finite or countably infinite) val-
ued processes and begin by taking up the questions that relate to learning about
general features of a process in a sequential fashion. We start by addressing the
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problem of estimating the order k of a k-step Markov chain, including count-
able state chains. In contrast to Bailey’s negative result for two valued decision
schemes, we show that there is a sequence of functions gn which when applied to
the outputs X0, X1, ...Xn of any ergodic process will converge with probability
one to the order k if the process is k-step Markov and to infinity otherwise. We
will also describe some further negative results, generalizing Bailey’s, for clas-
sification of the class of processes called finitarily Markovian, where the next
output depends on a finite segment of the past but the length of this segment
is not bounded.

Following this we will describe some more general classification problems giv-
ing a variety of conditions under which one can, with eventual certainty, decide
between membership in two disjoint classes of processes. In the last part of
this section we will describe the recent striking characterization of the Shan-
non entropy of a process as essentially the only finitely observable isomorphism
invariant of a process.

Most of the next section deals with estimation problems for finitarily Marko-
vian processes (also called finite context processes or variable length Markov
processes). Before continuing the introduction we pause to give an intuitive def-
inition of this class. The memory length for a sequence of past observations
{Xi : i ≤ 0} of a process is the smallest possible 0 ≤ K(. . . , X−1, X0) ≤ ∞
such that the conditional distribution of X1 given the entire past is equal to the
conditional distribution of X1 given only X1−K , ..., X0. The least such value of
K is called the memory length. When it is finite it should have the property
that the same value is obtained for any other continuation {X ′

j : j ≤ −K}. A
process is finitarily Markovian if with probability one this K is always finite. If
it is bounded by k then the process is a Markov chain with order at most k.

We describe universal backward schemes for the estimation of this memory
length which almost surely converge to the correct value K(. . . , X−2, X−1, X0).
The forward estimation problem of the memory length is the problem of de-
termining K(X0, X1, ...Xn), based on the observations of (X0, X1, ...Xn). Here
there is no universal scheme. We will show that even within the class of two
step countable Markov chains one cannot successfully guess along a sequence
of stopping times of density one whether the minimal memory length is one or
two. We will also show that within the class of binary finitarily Markovian pro-
cesses one cannot guess for K(X0, X1, ..., Xλn) on a sequence of stopping times
λn with λn/n → 1. The last part of this section deals with the special class
of binary renewal processes and the problem of estimating the residual waiting
time until the next occurrence of the renewal state.

The second part of the survey is devoted to real valued processes. In his
thesis, Bailey [4] showed that for finite valued processes even though no scheme
can be universally successful for forward estimation any universal backward
scheme when used for forward prediction will converge almost surely in Cesaro
mean, cf. also Ornstein [82]. Several authors have extended this to bounded real
valued processes using quantization to reduce to the finite valued case see for
example Algoet [1, 3], Morvai [53], Morvai Yakowitz and Györfi [56]. Yet another
approach to the sequential prediction used a weighted average of expert schemes,
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and with these schemes the results were extended to the general unbounded
case by Nobel [80] and Györfi and Ottucsak[28], (see also the survey of Feder
and Merhav [50]). However none of these results were optimal in the sense
that moment conditions higher than those strictly necessary were assumed. We
will describe some optimal results that we recently obtained for this forward
prediction for real valued processes.

We have already mentioned the use of stopping times in devising universal
schemes and we will describe a few results of this kind in the next subsection
where we focus our attention on those processes where the conditional distri-
bution of X0 given the past becomes a continuous function of the past outputs
after a set of probability zero is omitted. Next we take up the case of Gaussian
processes which have been considered by Schäfer [100]. He constructed an algo-
rithm which can estimate the conditional expectation for every time instance n
for an extremely restricted class of Gaussian processes. A more general result
giving an estimate for the conditional mean along a stopping time sequence will
be described for stationary Gaussian (not necessarily ergodic) processes that
include a much wider class of processes than that in Schäfer [100]. The disad-
vantage of these estimators is the rapid growth of the stopping times. A more
realistic scheme will be given with a more moderate growth.

Throughout the survey we will give specific examples to illustrate the ideas.

2. Part I. Discrete valued processes

2.1. Discovering features of a process by sequential sampling

A stochastic process X = {Xn : 0 ≤ n < ∞} is determined by the joint distri-
butions of the random variables {X0, X1, ..., Xk} for all k. We will be interested
in stationary stochastic processes. These are those processes for which the joint
distribution of {Xt, Xt+1, ..., Xt+k} is the same as that of {X0, X1, ..., Xk} for
all t and all k. The simplest examples are independent identically distributed
random variables and stationary Markov chains. Stationary processes can be
uniquely extended into the past. This means that on a possibly enlarged sample
space we have random variables {Xn : −∞ < n < ∞} whose distributions are
stationary.

For notational convenience, we will use the following notation throughout
this survey Xn

m = (Xm, . . . , Xn), where m ≤ n. We shall deal primarily with er-
godic processes. These are stationary processes that cannot be decomposed into
an average of stationary processes in a non-trivial fashion. Irreducible Markov
chains are always ergodic. It is an easy consequence of Birkhoff’s ergodic the-
orem that if a process {Xn} is both stationary and ergodic, then from almost
every sample sequence of the process one can determine the joint distributions.
Indeed, in that case, for a fixed k, with probability 1, the empirical distributions
on k-tuples determined by the sample will converge to the true distribution and
the knowledge of these finite distributions gives the original process X. In brief,
with probability 1, a single sampling of an ergodic stationary process suffices to
determine the nature of the process exactly.
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A more realistic situation is one in which as time goes on we are presented
with more and more observations and we are asked to give some information
about X based on a finite sampling x0, x1, ..., xn, which will get better and
better as n increases. In this first section we will survey several kinds of specific
problems that correspond to this general situation. We will begin with a simple
problem in which we want to determine the order of K-step Markov chain, and
then go on to discuss the more basic question of determining whether or not
the process that we are observing is a Markov chain of some finite order. After
these more specific classes of processes we will discuss more general classification
problems and then conclude this section with a remarkable characterization of
the entropy of a process the unique finitely observable isomorphism invariant.
These notions will be defined below.

2.1.1. Estimating the order of a Markov chain

For a stationary stochastic process {Xn} with values in some set X , finite or
countably infinite, a word w ∈ X k of length k is called a memory word if the
conditional probability of X0 given the past is constant on the cylinder set
defined by X−1

−k = w. For a formal definition we introduce some notation for the
distributions and conditional distributions: let p(x0

−k) denote the probability of
the event X0

−k = x0
−k and let p(y|x0

−k) denote the conditional probability of the
event X1 = y given that the event X0

−k = x0
−k occurred.

Note that the random variables are denoted by capital letters and particu-
lar realizations by lower case letters. For example, p(y|X0

−k) denotes the ran-
dom variable which is a function of the random variables X0

−k taking the value
P (X1 = y|X0

−k = x0
−k) when X0

−k = x0
−k.

Definition 2.1. We say that the empty word ∅ with length zero is a memory
word if for all i ≥ 1, all y ∈ X , all z0−i+1 ∈ X i such that p(z0−i+1, y) > 0:

p(y) = p(y|z0−i+1).

If the empty word is a memory word then it is also called a minimal memory
word.
For k ≥ 1 we say that w0

−k+1 is a memory word if p(w0
−k+1) > 0 and for all

i ≥ 1, all y ∈ X , all z−k
−k−i+1 ∈ X i such that p(z−k

−k−i+1, w
0
−k+1, y) > 0:

p(y|w0
−k+1) = p(y|z−k

−k−i+1, w
0
−k+1).

If no proper suffix of w is a memory word then w is called a minimal memory
word.

Note that the empty word is a memory word if and only if the stationary
stochatic process is independent and identically distributed. Define the set Wk

of those memory words w0
−k+1 with length k and let W∗ denote the set of all

memory words. Note that W0 is either the empty set or it conains exactly the
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empty word. Note also that if the empty word is a memory word then it is the
only minimal memory word.

For example in a k-step Markov processes all words of length k are memory
words. However, in general, a k-step Markov processes may also have shorter
memory words, cf. Bühlmann and Wyner [10]. Naturally any left extension of a
memory word is also a memory word.

Example 2.1. Consider an independent and identically distributed process {Xn}
on a countable alphabet. Then the empty word is a memory word and it is the
only minimal memory word. Now the length of the shortest minimal memory
word is zero and the length of the longest minimal memory word is also zero.

Example 2.2. Consider the binary periodic Markov chain Xn with transition
probabilities

P (Xn+1 = 1|Xn = 0) = P (Xn+1 = 0|Xn = 1) = 1.

This Markov chain yields a stationary process by choosing the initial distribution

P (X0 = 0) = P (X0 = 1) = 0.5.

This stationary process is an ergodic process. Indeed, the process has only two
possible realizations ω∞

−∞, either

ω0=1 and for 1≤ i<∞: ω−i=ωi=0 if i is odd and ω−i=ωi=1 if i is even

or

ω0=0 and for 1≤ i<∞: ω−i=ωi=1 if i is odd and ω−i=ωi=0 if i is even

each of the two realizations occures with probability 0.5 and an invariant set is
either the empty set (wich has probability zero) or it must contain both of these
realizations (in which case it has probability one). The minimal memory words
are the ‘0’ and the ‘1’. The other memory words w0

−k+1 with length k, k ≥ 2,
are those for which either

w0 = 1 and for 1 ≤ i ≤ k − 1: w−i = 0 if i is odd and w−i = 1 if i is even

or

w0 = 0 and for 1 ≤ i ≤ k − 1: w−i = 1 if i is odd and w−i = 0 if i is even.

The rest of the words have probability zero.

Example 2.3. Consider the Markov chain {Mn} with state space S = {0, 1, 2}
and transition probabilities

P (M2 = 1|M1 = 0) = P (M2 = 2|M1 = 1) = 1,

P (M2 = 0|M1 = 2) = P (M2 = 1|M1 = 2) = 0.5.
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This yields a stationary and ergodic process {Mn}. Define

Zn = I{Mn=1}.

Then {Zn} is a stationary and ergodic binary Markov chain with order 2. The
minimal memory words of the process {Zn} are the ‘1’, the ‘10’ and the ‘00’.
Note that the length of the shortest minimal memory word is one and the length
of the longest minimal memory word is two.

The next example shows that the right extension of a memory word is not
necessarily a memory word.

Example 2.4. Consider the Markov chain {Mn} with state space S = {0, 1, 2,
3, 4} and transition probabilities

P (M2 = 0|M1 = 0) = P (M2 = 1|M1 = 0) = 0.5,

P (M2 = 0|M1 = 3) = P (M2 = 2|M1 = 3) = 0.5

and

P (M2 = 3|M1 = 1) = P (M2 = 4|M1 = 2) = P (M2 = 3|M1 = 4) = 1.

This yields a stationary and ergodic process {Mn}. Let function f : S → {a, b, c}
be defined as

f(x) =

⎧⎨
⎩

c if x = 0
a if x = 1 or x = 2
b if x = 3 or x = 4.

Define
Zn = f(Mn).

Then {Zn} is a stationary and ergodic Markov chain with order 3. The mini-
mal memory words of the process {Zn} are ‘a’, ‘c’, ‘cab’ and ‘bab’. Notice that
though ‘a’ is a memory word the right extension ‘ab’, even though it has positive
probability, is not a memory word. Note that the length of the shortest mini-
mal memory word is one and the length of the longest minimal memory word is
three.

Example 2.5. Consider the Markov chain {Mn} with countably infinite state
space S = {0, 1, 2, . . . } and transition probabilities

P (M1 = n+ 1|M0 = n) =

(
1

2

)n+1

,

P (M1 = 0|M0 = n) = 1−
(
1

2

)n+1

where n ∈ S. This yields a stationary and ergodic first order Markov chain
{Mn}. Define Zn = I{Mn �=0}. Then {Zn} is a stationary and ergodic binary
renewal process with renewal state ‘0’. The minimal memory words of the process
{Zn} are ‘0’, ‘01’, ‘011’. ‘0111’, ‘01111’, . . . .



84 G. Morvai and B. Weiss

Example 2.6. Consider a stationary and ergodic binary renewal process with
renewal state ‘0’. Then any word w with positive probability which contains at
least one ‘0’ is a memory word, though not necessarily minimal. Any word w
which contains more than one ‘0’ can not be a minimal memory word.

Consider the problem of determining the order of a Markoc chain, based on
sequentially observing the outputs of a single sample {X1, X2, ..., Xn}. That is
to say we would like to have sequences of functions Ln so that Ln(X1, X2, ..., Xn)
will converge almost surely toM , in case the process is aM -step Markov process
but not a (M − 1)-step Markov chain, and to infinity otherwise.

Early work on this problem like that of Merhav, Gutman and Ziv [51], Finesso
[19, 20] Csiszár and Shields [13], Csiszár [14] and Peres and Sields [87] was
restricted to finite state processes. This enabled them to use a priori rates for
the convergence of empirical distributions and entropy estimators. Morvai and
Weiss [63] gave the first universal order estimator for countable state Markov
processes. However, in that scheme, the data segment was unnecessarily divided
into two parts. Later, in [67], a simpler, better scheme was given which does not
divide the data segment into two. To review this scheme we begin with a formal
definition of the memory length.

Definition 2.2. For a stationary time series {Xn} the (random) length K(X0
−∞)

of the memory of the sample path X0
−∞ is the smallest possible 0 ≤ K < ∞ such

that for all i ≥ 1, all y ∈ X , all z−K
−K−i+1 ∈ X i

p(y|X0
−K+1) = p(y|z−K

−K−i+1, X
0
−K+1)

provided p(z−K
−K−i+1, X

0
−K+1, y) > 0, and K(X0

−∞) = ∞ if there is no such K.

In terms of the memory words this is simply the minimal K such that X0
−K+1

is a memory word, if such a K exists, and is infinity otherwise.

Example 2.7. Consider an independent and identically distributed process {Xn}
on a countable alphabet.Then

K(X0
−∞) = 0

almost surely.

Example 2.8. Consider a stationary and ergodic first order finite or countably
infinite Markov chain {Xn}. Then

K(X0
−∞) = 1

almost surely.

Example 2.9. Consider the stationary and ergodic binary second order Markov
chain {Zn} in Example 2.3. Then

K(Z0
−∞) =

{
1 if Z0 = 1
2 if Z0 = 0

almost surely.
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Example 2.10. Consider a stationary and ergodic second order finite or count-
ably infinite Markov chain {Xn}. Then

K(X0
−∞) ≤ 2

almost surely.

Example 2.11. Consider a stationary and ergodic binary renewal process {Xn}
with renewal state ‘0’. Let τ(X0

−∞) be the smallest t ≥ 0 such that X−t = 0 and
Xi = 1 for all −t < i ≤ 0. Then

K(X0
−∞) ≤ τ(X0

−∞) + 1

almost surely. Consider the stationary and ergodic binary renewal process {Zn}
in Example 2.5. Then

K(Z0
−∞) = τ(Z0

−∞) + 1

almost surely.

The goal is now to estimate the essential supremum of the function K(X0
−∞).

The essential supremum of K(X0
−∞) is equal to the order of the Markov chain if

the process is Markov of some order and infinity otherwise. In other words, the
essential supremum ofK(X0

−∞) is the smallest k ≥ 0 such that P (Xk
1 ∈ Wk) = 1

if there is such k and infinite otherwise.
In order to describe the estimate for this function we first give a formal

definition of how to find the essential supremum of the function K(X0
−∞). For

k ≥ 0 let Sk denote the support of the distribution of X0
−k. Define

Δ0 = sup
1≤i

sup
(z0

−i+1
,x)∈Si

∣∣p(x)− p(x|z0−i+1)
∣∣ .

Define
Δ1 = sup

1≤i
sup

(z0
−i

,x)∈S1+i

∣∣p(x|z0)− p(x|z0−i)
∣∣ .

In general, define

Δk = sup
1≤i

sup
(z0

−k−i+1
,x)∈Sk+i

∣∣p(x|z0−k+1)− p(x|z0−k−i+1)
∣∣ .

If for some k, Δk = 0 then the process is a k-step Markov chain and the least
such k is the order of the chain.

Example 2.12. Consider the stationary and ergodic binary process {Xn} in
Example 2.2. Then

Δ0 = max(|p(0)− p(0|0)|, |p(0)− p(0|1)|, |p(1)− p(1|0)|, |p(1)− p(1|1)|)
= max(|0.5− 0|, |0.5− 1|, |0.5− 1|, |0.5− 0|)
= 0.5 > 0

and Δi = 0 for i ≥ 1.



86 G. Morvai and B. Weiss

Example 2.13. Consider the stationary and ergodic binary process {Zn} in
Example 2.3. Then

Δ0 > 0,

Δ1 > 0,

and Δi = 0 for i ≥ 2.

Example 2.14. Consider the stationary and ergodic binary renewal process
{Zn} in Example 2.5. Then Δi > 0 for all i ≥ 0.

We would like to define a statistic to estimate Δk. The key fact which we
will use is the pointwise ergodic theorem. It follows from that theorem that
with probability one, for all fixed k, the empirical distributions on k-tuples
determined by the sample taken from 0 up to time n will converge as n tends
to infinity to the true distribution. However at any finite stage we only have a
finite sample at our disposal. It follows that we have to make sure that we have
seen a specific k-block enough times to be sure that we are close to the truth.
Here is the procedure in detail. (Cf. Morvai and Weiss [67].)

We denote the usual empirical distribution estimates for the conditional dis-
tributions p(x|z0−k+1) from the samples Xn

0 as p̂n(x|z0−k+1). (In other words,
p̂n(x|z0−k+1) is the ratio of the number of occurrences of the string (z0−k+1, x)
in the observed Xn

0 to the number of occurrences of the string z0−k+1 in Xn
0 .)

These p̂’s are functions of Xn
0 , but we suppress this dependence.

As we have said we only want to consider this statistic if the sample afforded
us is sufficiently large. One kind of such restriction is the following one.

For a fixed 0 < γ < 1 let Sn
k denote the set of strings with length k + 1

which appear more than n1−γ times in Xn
0 . These are the strings which occur

sufficiently often so that we can rely on their empirical distribution. Now define
the empirical version of Δ0 as follows:

Δ̂n
0 = max

1≤i≤n
max

(z0
−i+1

,x)∈Sn
i

∣∣p̂n(x)− p̂n(x|z0−i+1)
∣∣ .

Define the empirical version of Δ1 as follows:

Δ̂n
1 = max

1≤i≤n
max

(z0
−i

,x)∈Sn
1+i

∣∣p̂n(x|z0)− p̂n(x|z0−i)
∣∣ .

In general, define the empirical version of Δk as follows:

Δ̂n
k = max

1≤i≤n
max

(z0
−k−i+1

,x)∈Sn
k+i

∣∣p̂n(x|z0−k+1)− p̂n(x|z0−k−i+1)
∣∣ .

By ergodicity, the empirical conditional probabilities tend to the true conditional
probabilities. Now it is immediate that for any fixed k, by ergodicity,

Δ̂n
k ≥ Δk

2
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eventually almost surely. Now the key idea is that if the process is not Markov
of any order then for any fixed k ≥ 0,

Δ̂n
k ≥ Δk

2
> 0

eventually almost surely and if the process is Markov with order M then for
each 0 ≤ k < M ,

Δ̂n
k ≥ Δk

2
> 0

eventually almost surely, and for each k ≥ M not just

lim
n→∞

Δ̂n
k = Δk = 0

almost surely, but Δ̂n
k tends to zero with a rate. Thus define an estimate χn

for the order from samples Xn
0 as follows. Let 0 < β < 1−γ

2 be arbitrary. Set
χ0 = 0, and for n ≥ 1 let χn be the smallest 0 ≤ k < n such that

Δ̂n
k ≤ n−β

if there is such a k and n otherwise. The algorithm works because if the process
is not Markov of any order or Markov but k is smaller than the order then Δ̂n

k

will be bounded away from zero eventually almost surely and so Δ̂n
k will be

greater than n−β eventually almost surely while if k is greater than or equal to
the order of the Markov chain then Δ̂n

k tends to zero with a rate, that is, Δ̂n
k

will not be greater than n−β eventually almost surely.

The next theorem asserts that this estimator is pointwise universally consis-
tent.

Theorem 2.1 (Morvai and Weiss [67]). For any ergodic, stationary process
{Xn} taking values from a finite or countably infinite alphabet if the observed
process is Markov then the sequence of estimators χn converges to the order of
the Markov chain almost surely and if the observed process is not Markov of any
order then the sequence of estimators χn tends to infinity almost surely. In other
words, for any ergodic, stationary process {Xn} taking values from a finite or
countably infinite alphabet the sequence of estimators χn converges almost surely
to the essential supremum of the memory function K(·).

Now if M > 0 is arbitrary but fixed then for the class of all stationary and
ergodic processes χn < M eventually if the process is Markov with order less
than M and χn ≥ M eventually almost surely otherwise, cf. Morvai and Weiss
[67]. A result in Morvai and Weiss [67] assserts that even when we restrict at-
tention to countable second order Markov chains there is no universal estimator
for the length of the shortest memory word that converges even in probability.

For further reading on related topics see also [16] and [88].
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2.1.2. Classification for special processes

In this subsection we take up classification problems which seem simpler since
all that we want to do is to determine if our observations are coming from a
certain class or not. Here is how to formalize the situation.

Let X be discrete (finite or countably infinite) alphabet. Let {Xn} be a
stationary and ergodic time series.

If G is a subclass of all stationary and ergodic binary processes then a se-
quence of functions gn : {0, 1}n → {Y ES,NO} is a classification for G in prob-
ability if limn→∞ P (gn(X1, . . . , Xn) = Y ES) = 1 for all processes in G, and
limn→∞ P (gn(X1, . . . , Xn) = NO) = 1 for all processes not in G.

Similarly, gn : {0, 1}n → {Y ES,NO} is a classification for G in a pointwise
sense if gn(X1, . . . , Xn) = Y ES eventually almost surely for all processes in G,
and gn(X1, . . . , Xn) = NO eventually almost surely for all processes not in G.
Of course, if gn is a classification in a pointwise sense then it is a classification
in probability but a classification in probability is not necessarily a classification
in a pointwise sense.

For the class Mk of k-step mixing Markov chains of fixed order k, there are
pointwise estimators of the type we have just described. Bailey [4] gave such a
scheme for independent processes (k = 0) and indicated how to generalize the
result for the class of Mk.) For the class Mmix =

⋃∞
k=0 Mk of mixing Markov

chains of any order, Bailey showed that no such classification exists.

Theorem 2.2. (Bailey [4]) There is no sequence of functions

gn : {0, 1}n → {Y ES,NO}

such that for all stationary and ergodic binary processes {Xn}

gn(X1, . . . , Xn) = Y ES eventually almost surely

if process {Xn} is in Mmix, and

gn(X1, . . . , Xn) = NO eventually almost surely

if the processes {Xn} is not in Mmix.

See Ornstein and Weiss [84] for some further results on this kind of ques-
tion. For a generalization of this non-existence result of Bailey see Morvai and
Weiss [61]. Now consider the class of finitarily Markovian processes. These are
processes such that with probability one we will encounter a memory word but
their lengths are not bounded. Simple examples of such processes are renewal
processes where as we look back as soon we see a recurrent event we will have
a memory word in our hand.

Definition 2.3. The stationary time series {Xn} is said to be finitarily Marko-
vian if K(X0

−∞) is finite (though not necessarily bounded) almost surely.
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In other words the stationary and egodic discrete process {Xn} is finitar-
ily Markovian if and only if P (

⋃∞
k=0{X0

−k+1 ∈ W∗}) = 1 where W∗ denotes
the set of all memory words of the process. This class includes all finite order
Markov chains (mixing or not) and many other processes such as the finitarily
deterministic processes of Kalikow, Katznelson and Weiss [37].

Here is another example which includes all binary renewal processes with
finite expected inter-arrival time. Let {Mn} be any stationary and ergodic first
order Markov chain with finite or countably infinite state space S. Let s ∈ S be
an arbitrary state with P (M1 = s) > 0. Now let Xn = I{Mn=s}. The resulting
binary time series {Xn} is stationary and ergodic. It is also finitarily Markovian.
(Indeed, the conditional probability P (X1 = 1|X0

−∞) does not depend on values
beyond the first (going backwards) occurrence of one in X0

−∞ which identifies
the first (going backwards) occurrence of state s in the Markov chain {Mn}.)
The resulting time series {Xn} is not a Markov chain of any order in general.
(Indeed, consider the Markov chain {Mn} with state space S = {0, 1, 2} and
transition probabilities P (M2 = 1|M1 = 0) = P (M2 = 2|M1 = 1) = 1, P (M2 =
0|M1 = 2) = P (M2 = 1|M1 = 2) = 0.5. This is the same Markov chain as
in Example 2.3 and it yields a stationary and ergodic Markov chain {Mn}.
The resulting time series Xn = I{Mn=0} will not be Markov of any order. The
conditional probability P (X1 = 0|X0

−∞) depends on whether until the first
(going backwards) occurrence of one you see an even or odd number of zeros.)

A result in Morvai and Weiss [61] asserts that there is no classification for
membership in the class of binary finitarily Markovian processes. The result
applies to both pointwise classifications and classifications in probability. For
details see Morvai and Weiss [61].

In contrast to the negative result on classification for the class of finitarily
Markovian processes, one can construct a classification rule for the class of
renewal processes since in the case of the class of binary renewal processes (with
renewal state zero) it is enough to check if each of the words from the countable
set {0, 01, 011, . . . } is a memory word, cf. Morvai andWeiss [73]. For more results
see D. Ryabko [93, 94] or Morvai and Weiss [71, 76].

2.1.3. On classifying general processes

The general problem of when can one discriminate between two classes of pro-
cesses has been studied by several authors. In order to obtain positive results
the testing schemes considered are not restricted to being simply two valued as
were the schemes considered in the previous section. Some sufficient conditions
for this to be possible were given by A. Dembo and Y.Peres in [17] and more
general ones by A. Nobel in [81]. Here is a brief description of one of Nobel’s
result. First a formal definition of what is meant by a testing scheme.

Definition 2.4. A sequence of measurable functions φn : Rn → [0, 1], n > 1,
will be called a testing scheme. A testing scheme is continuous if each of its
constituent functions is continuous. Families of ergodic processes, H0 and H1,
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are discernible with probability one if there exists a testing scheme such that:

φn(X
n
1 ) → i

with probability one exactly when X ∈ Hi.

With this definition Nobel proves:

Theorem 2.3. (Nobel [81]) Two families, H0 and H1, of stationary ergodic
processes are continuously discernible if the following two conditions are satis-
fied. (i) H0

⋃
H1 is contained in a countable union of uniformly tight subsets of

the space of real valued stationary processes, Ms. (ii) There exist two families
U1, U2, ..., V1, V2, .. ⊂ Ms such that: (a) each Ui, Vj is contained in E, the er-
godic processes, and closed in Ms; (b) H0 ⊂ U =

⋃
i Ui and H1 ⊂ V =

⋃
i Vi:.

(c) U
⋂
V = ∅.

Here is another result of this type drawn from [103]. One of the motivations
was the desire to recognize in an effective way when a process is a function
of a Markov chain. These are very popular today in the mathematical biology
literature under the name “Hidden Markov Models” (HMM). In [21] one can
find a very nice characterization of these processes as those which can be defined
by a finite number of finite dimensional stochastic matrices. Essentially the same
characterization was rediscovered several years later by A. Heller in [32]. There
has been much work in finding methods for determining the best HMM to
fit some given data. In light of this it is natural to ask – can one determine
membership in this class or not by successive observations of {X1, X2, ...Xn}.
D. Bailey showed in his thesis [4] that this is not even possible for the class of
all k-step Markov chains (k arbitrary, fixed number of states). In [61] we give a
similar negative result for another extension of the class of all Markov chains –
the finitary Markov processes.

On the other hand, if one restricts the order and the size of the state space
then there are guessing schemes gn which will converge almost surely and test
for membership, see for example [44], [13]. (In these papers there are integer
valued schemes which are shown to converge to the least k such that the process
is a k-step Markov chain, and with an a priori bound on the value of k this
can be used to produce a two valued scheme which tests for membership in the
class).

One can find such schemes for any family of ergodic processes with uniform
rates in the ergodic theorem and a variant of this can be used for the class of
all ergodic HMM where there is an a priori bound on the number of states in
the Markov chain.

Let F denote some family of ergodic stochastic processes on a fixed state
space S with a finite number of symbols. Identify these processes with the shift
invariant measures on the compact space, SZ , of bi-infinite sequences of ele-
ments from S. On this space of measures put the weak* topology to obtain a
compact space. Convergence in this topology coincides exactly with convergence
of all finite dimensional distributions. We will be concerned mainly with ergodic
measures, since by the ergodic decomposition almost every sequence produced
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by any stationary process is a typical sequence for some ergodic process. On the
ergodic processes we take the induced topology. Thus when we speak of a closed
family of ergodic processes we mean closed in this relative topology.

The estimation scheme will be based on the properties of the empirical dis-
tribution of k-blocks in n-strings based on the alphabet S. Let us introduce the
following notation for this empirical distribution. Let b ∈ Sk be a fixed k-block
and u ∈ Sn an n-string, then define

D(b|u) = |{1 ≤ i ≤ n− k + 1 : u[i, ..., i+ k − 1] = b}|/(n− k + 1).

Definition 2.5. A closed family of ergodic stochastic processes F has uniform
rates, if for every k ∈ N , and every ε > 0 there is some n = n(k, ε) such that for
all P ∈ F we have that P{u ∈ Sn : |P (b)−D(b|u)| < ε , for all b ∈ Sk} > 1−ε.

With this definition, for any closed family with uniform rates, a guessing
scheme with two values, {YES,NO}, can be constructed which will almost surely
stabilize on YES if the process belongs to F and to NO in the contrary case. To
this end let F be a family with uniform rates, and fix a sequence εk such that
it is summable.

Let nk = n(k, εk) be the sequence which the definition supplies for us, and
define gn as follows:

For n in the range [nk, nk+1 − 1] if for some P ∈ F we have that

|P (b)−D(b|x1, x2, ...xnk
)| < εk for all b ∈ Sk

then set gn(x1, x2, ...xn) = Y ES and if not set gn(x1, x2, ...xn) = NO.
With this definition we have that if the closed family of ergodic processes,

F , has uniform rates and the gn are defined by (3.4)-(3.6) then for almost
every realization of a process P from the family F we have that eventually
gn(x1, x2, ...xn) = YES, while for almost every realization of an ergodic process
that is not in F eventually gn(x1, x2, ...xn) = NO.

It is not hard to show that if K is a compact set of ergodic distributions then
K has uniform rates.

For example, all Markov processes defined by transition matrices of a fixed
size and a uniform positive lower bound on their entries, have uniform rates,
since the set is clearly compact and consists of ergodic processes only. We can
now formulate a theorem which is sufficiently general and whose assumptions
are purely toplogical.

Theorem 2.4. (Weiss [103]) If the family of ergodic processes, E, is closed
(in the set of all ergodic processes) and is also σ-compact, then there are gn
such that for almost every realization of a process P from the family E we have
that eventually gn(x1, x2, ...xn) = YES, while for almost every realization of an
ergodic process that is not in E eventually gn(x1, x2, ...xn) = NO.

Note that in constract to Nobel’s result the hypotheses refer only to the class
E , and not to its complement which would be needed to apply his theorem.

As examples of this theorem one can take all ergodic Markov processes with a
fixed number of states. The σ-compactness can be seen by taking for the Kk all
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those ergodic Markov processes defined by transition matrices where if an entry
is non zero it is at least 1/k. In a similar fashion one sees that all ergodic hidden
Markov models with a fixed number of states and a bound on the window size
of the function satisfy the hypotheses of the theorem. For further reading on
related topics see [5], [34], [17], [84], [47], [103],[91], [71], [22] and [42].

2.1.4. Finite observability and entropy

We can put the questions that we have been considering in a yet more general
framework. For simplicity we will consider only finite valued processes in this
subsection. If J is a function of ergodic processes taking values in a metric space
(Ω, d), then we say that J is finitely observable (FO) if there is some sequence
of functions Sn(x1, x2, ..., xn) that converges to J(X) for almost every realiza-
tion of the process X, for all ergodic processes. A weaker notion would involve
convergence in probability of the functions Sn to J rather than convergence
almost everywhere. The particular labels that a process carries play no role in
the following and so we may assume that all our processes take values in finite
subsets of Z.

Here are some examples of FO functions. If J(X) = E{X0} is the expected
value of X0 then the basic pointwise ergodic theorem of G. D. Birkhoff implies
that J is FO via the estimators Sn(x1, x2, ..., xn) = (x1 + x2 + ...+ xn)/n.

This may easily be generalized as follows. Denote by P the shift-invariant
probability measures on ZZ with support on a finite number of symbols and the
topology of convergence in finite dimensional distributions. This means that a
sequence of probability measures μn converges to a limiting measure μ if and
only if for each finite block b the measures μn([b]) of the finite cylinder sets
defined by the block b converge to μ([b]). Then to each finite-valued stationary
process there will correspond a unique element of P, namely its distribution
function DIST(X). This function is also FO by the same argument, replacing
the arithmetic averages of the xi by the empirical distributions of finite blocks.
Next consider the memory order L(X) of a process. This equals the minimal
m such that the process is an m-Markov process, and +∞ if no such m exists.
(Note that L(X) is a number associated with the distribution of process X.) In
§2.1 it is shown that this function is FO.

A better-known example is the Shannon entropy of a process. Here, several
different estimators Sn are known to converge to the entropy; cf.[4, 106, 84, 85,
46]. The expected value of X0 will clearly change if we change the labeling of
our states but the Shannon entropy is not sensitive to such changes. In fact
it is invariant under a very broad notion of equivalence of processes which we
proceed to describe.

Processes X and X′ are isomorphic if there is a stationary invertible coding
going from one to the other. More formally, let us denote the bi-infinite sequence
...x−2, x−1, x0, x1, x2, ... by x∞

−∞, and the shift by T where (Tx)n = xn+1 for
all n. A coding from X to X′ is a mapping φ defined on the sequences x∞

−∞
with values in X′, which maps the probability distribution of the X random
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variables to that of the X′ random variables. It is stationary if almost surely
φT = T ′φ, where T ′ is the shift on X′. Finally, it is invertible if it is almost
surely one-to-one. In this case it is not hard to see that the inverse mapping,
where defined, will yield a stationary coding from X′ to X.

While the definition of the entropy of a process was given by C. Shannon [101]
it was the great insight of A. Kolmogorov [45] that it is in fact an isomorphism
invariant. This enabled him to solve an outstanding problem in ergodic theory;
namely, he proved that independent processes with differing entropies are not
isomorphic. Since that time entropy has turned out to be fundamental in many
areas of ergodic theory. It is perhaps somewhat surprising that no new invariants
of that kind were discovered and the next theorem of Ornstein and Weiss [86]
explains this to some extent:

Theorem 2.5. (Ornstein and Weiss[85]) If J is a finitely observable function,
defined on all ergodic finite-valued processes, that is an isomorphism invariant,
then J is a continuous function of the entropy.

Note that there is no a priori assumption about the nature of the func-
tion J , such as measurability. An even stronger version of the theorem replaces
isomorphism by the more restricted notion of finitary isomorphism. These are
isomorphisms where the codings, in both directions, depend only on a finite (but
variable) number of the variables. These are codings that are continuous after
the removal of a null set. About ten years after Kolmogorov’s result D. Ornstein
[83] showed the converse; namely, independent processes with the same entropy
are isomorphic. This was strengthened to finitary isomorphism by M. Keane
and M. Smorodinsky [41], and is a strictly stronger notion than isomorphism,
since there are many examples of processes that are isomorphic but not finitarily
isomorphic.

It is natural to ask what happens when we restrict attention to smaller fam-
ilies of processes. That is, we now suppose that the finitely observable isomor-
phism invariant is only defined on a particular class and ask can one find any
new invariants. Y. Gutman and M. Hochman ([23]) have proved a rather general
theorem which shows that for many natural examples of classes of processes the
answer remains negative. These classes include the main classes of the various
mixing types. We will content ourselves with formulating just two of their results
here.

Theorem 2.6 (Gutman and Hochman [23]). If J is a finitely observable in-
variant on one of the following classes:

1. the Kronecker systems (the class of systems with pure point spectrum),
2. the zero entropy weakly mixing processes,
3. the zero entropy mildly mixing processes,
4. the zero entropy strongly mixing processes,

Then J is constant.

For the class of irrational rotations the general problem is still open but they
did obtain a partial result.
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Theorem 2.7 (Gutman and Hochman [23]). For every finitely observable in-
variant J on the class of irrational rotations, there is a Borel set Θ ⊆ [0, 1)
of full Lebesgue measure such that J assigns the same value to processes aris-
ing from rotations by angles in Θ. In particular, there is no complete finitely
observable invariant for irrational rotations.

2.2. Estimation for finitarily Markovian processes

In this section we will concentrate on the class of finitarily Markov processes
and discuss several specific estimation problems for them. For our first problem
we take up the basic question of detection of memory words (cf. Morvai and
Weiss [65]). This problem has been discussed often in the context of modelling
processes but mostly only for finite alphabet processes. We will show here how
it relates to prediction questions.

To begin with, recall that K was the minimal length of the context that
determines the conditional probability. Consider the problem of estimating the
value of K, both in the backward sense, where we observe more and more of the
past and in the forward sense, where one observes successive values of {Xn} for
n ≥ 0 and asks for the least value K such that the conditional distribution of
Xn+1 given {Xi}ni=n−K+1 is the same as the conditional distribution of Xn+1

given {Xi}ni=−∞. We will not restrict to the finite alphabet case and include the
possibility that the process takes countably infinite values.

Similar questions have been studied by Bühlman and Wyner in [10] but only
for the case of finite alphabet finite order Markov chains. The possibility of
countable alphabets complicates matters significantly. The reason is that while
for finite alphabet Markov chains empirical distributions converge exponentially
fast and one can establish universal rates of convergence for countable alphabet
Markov chains no universal rates are available at all.

As for the classification problem, namely determining whether the observed
process is finitarily Markovian or not, in Morvai and Weiss [61] it was shown that
there is no classification rule for discriminating the class of finitarily Markovian
processes from the other ergodic processes that are not.

In the first subsection we will review how to determine the value of K(X0
−∞)

from observations of increasing length of the data segments X0
−n. We will de-

scribe a universal consistent estimator which will converge almost surely to the
memory lengthK(X0

−∞) for any ergodic finitarily Markovian process on a count-
able state space. Then we turn our attention to the forward estimation problem.
This is the attempt to determine K(Xn

−∞) from successive observations of Xn
0 .

The stationarity means that results in probability can be carried over automat-
ically. However, almost sure results present serious problems as we have already
mentioned previously. For more results in related to these questions of what can
be learned about processes by forward observations see Ornstein and Weiss [84],
Dembo and Peres [17], Nobel [79], and Csiszár and Talata [15].

In this last paper the authors define a finite context to be a memory word
w of minimal length, that is, no proper suffix of w is a memory word. An
infinite context for a process is an infinite string with all finite suffixes having
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positive probability but none of them being a memory word. They treat there
the problem of estimating the entire context tree in case the size of the alphabet
is finite. For a bounded depth context tree, the process is Markovian, while for an
unbounded depth context tree the universal pointwise consistency result there
is obtained only for the truncated trees which are again finite in size. This is in
contrast to the results discussed here which deal with infinite alphabet size and
consistency in estimating memory words of arbitrary length. It is this generality
that forces us to restrict to estimating at specially chosen times.

Finally, in the last subsection we will discuss estimating the residual waiting
time in binary renewal processes. Recall that the classical binary renewal process
is a stochastic process {Xn} taking values in {0, 1} where the lengths of the
runs of 1’s between successive zeros are independent. These arise for example,
in the study of Markov chains since the return times to a fixed state form
such a renewal process. In many applications, the occurrences of a zero, which
represent the failure times of some system which is renewed after each failure,
are of importance and so the problem arises of estimating when the next failure
will occur. Since this is usually unbounded this problem is rather difficult. We
will give a rather detailed discussion of this problem and defer a more detailed
description of the results to the subsection itself.

2.2.1. Estimation of the memory length for finitarily Markovian processes

Let {Xn} be stationary and ergodic finitarily Markovian with finite or countably
infinite alphabet X . In this subsection we will first show how to determine the
value of K(X0

−∞) from observations of increasing length of the data segments
X0

−n. We will describe a universal consistent estimator which will converge al-
most surely to the memory length K(X0

−∞) for any ergodic finitarily Markovian
process on a countable state space.

In order to estimate K(X0
−∞) (for the definition cf Definition 2.2) some ex-

plicit statistics are needed to be defined. These will be the same as those that we
used when estimating its essential supremum in finding the order of a Markov
chain. For the convenience of the reader we brifly repeat their definition. (Cf.
e.g. Morvai and Weiss [65] or [73].) The first is a measurement of the failure of
w0

−k+1 to be a memory word. For the empty word ∅ with length zero Δ0(∅) is
defined as

Δ0(∅) = sup
1≤i

sup
{z0

−i+1
∈X i,x∈X :p(z0

−i+1
,x)>0}

∣∣p(x)− p(x|z0−i+1)
∣∣ .

If Δ0(∅) = 0 then the process is independent and identically distributed. In
general, for any k ≥ 1 and for any word w0

−k+1 ∈ X k, Δk(w
0
−k+1) is defined as

Δk(w
0
−k+1) =

sup
1≤i

sup
{z−k

−k−i+1
∈X i,x∈X :p(z−k

−k−i+1
,w0

−k+1
,x)>0}

∣∣p(x|w0
−k+1)− p(x|z−k

−k−i+1, w
0
−k+1)

∣∣ .
This vanishes precisely when w0

−k+1 is a memory word.
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Example 2.15. Consider the stationary and ergodic binary process {Xn} in
Example 2.2. Then

Δ0(∅) = max(|p(0)− p(0|0)|, |p(0)− p(0|1)|, |p(1)− p(1|0)|, |p(1)− p(1|1)|)
= max(|0.5− 0|, |0.5− 1|, |0.5− 1|, |0.5− 0|)
= 0.5 > 0,

Δ1(1) = 0 and Δ1(0) = 0.

Example 2.16. Consider the stationary and ergodic binary process {Zn} in
Example 2.3. Then

Δ0(∅) > 0,

Δ1(0) > 0,

Δ1(1) = 0,

Δ2(10) = 0

and
Δ2(00) = 0.

Example 2.17. Consider the stationary and ergodic binary renewal process
{Zn} in Example 2.5. Then

Δ0(∅) > 0,

Δ1(0) = 0,

Δ1(1) > 0,

Δ2(01) = 0

Δ2(11) > 0

Δ3(011) = 0

Δ3(111) > 0

etc.

An empirical version of this based on the observation of a finite data segment
X0

−n is needed. Let p̂−n(x|w0
−k+1) denote tne usual empirical version of the

conditional probability p(x|w0
−k+1) from samples X0

−n. These p̂’s are functions
of X0

−n, but the dependence is suppressed to keep the notation manageable.
For a fixed 0 < γ < 1 let Ln

k denote the set of strings with length k+1 which
appear more than n1−γ times in X0

−n. Now the empirical version of Δ0(∅) is as
follows:

Δ̂n
0 (∅) = max

1≤i≤n
max

(z0
−i+1

,x)∈Ln
i

∣∣p̂−n(x)− p̂−n(x|z0−i+1)
∣∣ .

For any k ≥ 1 and for any word w0
−k+1 ∈ X k the empirical version of Δk is as

follows:

Δ̂n
k (w

0
−k+1) =

max
1≤i≤n

max
(z−k

−k−i+1
,w0

−k+1
,x)∈Ln

k+i

∣∣p̂−n(x|w0
−k+1)− p̂−n(x|z−k

−k−i+1, w
0
−k+1)

∣∣ .
By ergodicity, the ergodic theorem implies that almost surely the empirical
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distributions p̂ converge to the true distributions p and so for any w0
−k+1 ∈ X k,

lim inf
n→∞

Δ̂n
k (w

0
−k+1) ≥ Δk(w

0
−k+1) almost surely.

The key idea is that if w0
−k+1 is not a memory word then

lim inf
n→∞

Δ̂n
k (w

0
−k+1) ≥ Δk(w

0
−k+1) > 0

almost surely and if w0
−k+1 is a memory word then not just

lim
n→∞

Δ̂n
k (w

0
−k+1) = Δk(w

0
−k+1) = 0

almost surely, but Δ̂n
k (w

0
−k+1) tends to zero with a rate.

Now we review a test for w0
−k+1 to be a memory word. Let 0 < β < 1−γ

2

be arbitrary. Let NTESTn(w
0
−k+1) = Y ES if Δ̂n

k (w
0
−k+1) ≤ n−β and NO

otherwise. Note that NTESTn depends on X0
−n. (‘N’ in NTEST stands for

‘negative’ since the data segment grows in negative (backward) direction.) By
Morvai and Weiss [65], eventually almost surely, NTESTn(w

0
−k+1) = Y ES if

and only if w0
−k+1 is a memory word. Now we define an estimate χn for K(X0

−∞)
from samples X0

−n as follows. Set χ0 = 0, and for n ≥ 1 let χn be the smallest
0 ≤ k < n such that NTESTn(X

0
−k+1) = Y ES if there is such and n otherwise.

Theorem 2.8 (Morvai and Weiss [65]). Let {Xn} be a stationary and ergodic
finitarily Markovian process taking values from a finite or countably infinite
alphabet. Then

χn(X
0
−n) = K(X0

−∞)

eventually almost surely.

Now we turn our attention to the forward estimation problem where we
are allowed to use growing segments of successive observations of Xn

0 . Since
when the word is a memory word one can use conditional independence and
hence specific rates, either going backward or forward, and if the word is not a
memory word one can use the forward ergodic theorem instead of the back-
ward, it makes sense to define the forward version of the previous test as
PTESTn(w

0
−k+1)(X

n
0 ) = NTESTn(w

0
−k+1)(T

nXn
0 ) where T is the left shift

operator. (‘P’ in PTEST stands for ‘positive’ since the data segment grows in
positive (forward) direction.) Now by Morvai and Weiss [65], eventually almost
surely, PTESTn(w

0
−k+1) = Y ES if and only if w0

−k+1 is a memory word.
PTEST tests a single word if it is a memory word or not. It is also possible

to test a countable list of words (instead of a single word) if all of the words on
the list are memory words or not, cf [73].

Now we shall examine how well can one estimate the local memory length
for finite order Markov chains. In the case of finite alphabets this can be done
with stopping times that eventually cover all time epochs (cf. Morvai and Weiss
[65]). However, as soon as one goes to a countable alphabet, even if the order
is known to be two and we are just trying to decide whether the Xn alone is a
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memory word or not, there is no sequence of stopping times which is guaranteed
to succeed eventually and whose density is one, cf. Morvai and Weiss [65].

Theorem 2.9. (Morvai and Weiss [67]) There are no strictly increasing se-
quence of stopping times {λn} and estimators {hn(X0, . . . , Xλn)} taking the
values one and two, such that for all countable alphabet Markov chains of order
two

lim
n→∞

λn

n
= 1 almost surely

and

hn(X0, . . . , Xλn) = K(Xλn
0 ) eventually almost surely.

We discussed that we cannot achieve density one in the forward memory
length estimation problem even in the class of Markov chains on a countable
alphabet. Now we shall show something similar in the class of binary (i.e. 0, 1)
valued finitarily Markov processes. We will assume that there is given a sequence
of estimators and stopping times, (hn, λn) that do succeed to estimate success-
fully the memory length for binary Markov chains of finite order and construct
a finitarily Markovian binary process on which the scheme fails infinitely often.
Here is a precise statement:

Theorem 2.10. (Morvai and Weiss [65]) For any strictly increasing sequence
of stopping times {λn} and sequence of estimators {hn(X0, . . . , Xλn)}, such that
for all stationary and ergodic binary Markov chains with arbitrary finite order,

lim
n→∞

λn

n
= 1 almost surely

and

hn(X0, . . . , Xλn) = K(Xλn
0 ) eventually almost surely

there is a stationary, ergodic finitarily Markovian binary time series such that

K(Xn
−∞) ≤ n eventually almost surely

and with positive probability

hn(X0, . . . , Xλn) �= K(Xλn
−∞) infinitely often.

We emphasize that in the final counterexample process Xn that was con-
structed in Morvai and Weiss [65], eventually almost surely K(Xn

−∞) ≤ n and
K(Xn

−∞) = K(Xn
0 ). For further reading cf. [73], [60] and [65].

2.2.2. On estimating the residual waiting time

In this subsection we investigate the possibility of giving a universal estimator
at time n for the residual waiting time to the next zero in the binary renewal
process {Xn}.
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As for motivation consider a big system, e.g. a telephone exchange or a com-
puter system. The sytem can be either in a good state or in a bad state. When
the system breaks down (the system gets into a bad state) it is restarted (re-
newal). We observe the sequence of the states (good or bad states) of the system
and observing these states to a certain time we would like to give an estimate
to the residual waiting time to the next bad state / renewal. More precisely, we
would like to estimate the conditional expectation of the residual waiting time
until the next such renewal state without prior knowledge of the distribution.

Consider the renewal process {Xn} with renewal state ‘0’. (For a formal defi-
nition see Morvai and Weiss [68].) We will assume that the process is stationary
and ergodic. Even though our primary interest is in one sided processes, station-
arity implies that there exists a two sided process with the same statistics and
we will use the two sided version whenever it is convenient to do so. Note that
these renewal processes are finitarily Markovian processes. Indeed, any word
with positive probability from {0, 01, 011, 0111, . . . } is a memory word, though
not necessarily a minimal one.

Our interest is in the waiting time to renewal (the state 0) given some previous
observations, in particular given Xn

0 . We introduce the notation τ(Xn
−∞) as the

look back time for the last zero occurred in Xn
−∞. Formally put

τ(Xn
−∞) = the t ≥ 0 such that Xn−t = 0, and Xi = 1 for n− t < i ≤ n.

If a zero occurs in Xn
0 then τ(Xn

−∞) depends only on Xn
0 and so we will also

write for τ(Xn
−∞), τ(Xn

0 ) with the understanding that this is defined only if a
zero occurs in Xn

0 .
Now for the classical binary renewal process {Xn} define σi as the length of

runs of 1’s starting at position i. Formally put

σ0 = max{0 ≤ l : Xj = 1 for 0 < j ≤ i+ l}.

σ1 = max{0 ≤ l : Xj = 1 for 1 < j ≤ 1 + l}

and in general put

σi = max{0 ≤ l : Xj = 1 for i < j ≤ i+ l}.

For a simple example consider

(X0, X1, . . . , X11) = (1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1).

Then

σ0 = 1

σ1 = 0

σ2 = 1

σ3 = 0
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σ4 = 4

σ5 = 3

σ6 = 2

σ7 = 1

σ8 = 0

and σ9, σ10 and σ11 are not yet defined.
For k = 0, 1, . . . let pk denote the conditional probability that given X0 = 0

it will be followed exactly by k ones until the next zero. Formally put

pk = P (σ0 = k|X0 = 0).

Our goal is to estimate E(σn|Xn
0 ) without prior knowledge of the distribution

function of the process. In earlier works such as [43] attention is restricted to
those renewal processes which arise from Markov chains with a finite number
of states. In that case the problem is much easier since the probabilities pk
decay exponentially and one can use this information in trying to find not only
the distribution but even the hidden Markov chain itself. We are considering
the general case where the number of hidden states might be infinite and this
exponential decay no longer holds in general.

For the estimator itself it is most natural to use the empirical distribution
observed in the data segment X0, X1, . . . , Xn. However if there were an insuf-
ficient number of occurrences of 1-blocks of length at least τ(X0, X1, . . . , Xn)
then we do not expect to give a good estimate. In particular if no block of that
length has occurred yet, clearly no intelligent estimate can be given. For this
reason we will estimate only along stopping times.

Unfortunately, there is no strictly increasing sequence of stopping times {ξn}
with density one, and sequence of estimators {hn(X0, . . . , Xξn)}, such that for
all binary classical renewal processes the error

|hn(X0, . . . , Xξn)− E(σξn |(X0, . . . , Xξn)|

tends to zero almost surely as n tends to infinity, without higher moment as-
sumptions on the pk’s. To obtain a positive result some higher moment assump-
tions on the pk’s are needed, cf. Morvai and Weiss [68]. Note also that the process
is stationary means that the first moment of the pk’s must be finite. Further-
more, in order that the expected value of σ0, that is, E(σ0) (not conditioned on
the event that X0 = 0) be finite the second moment of the pk’s has to be finite.

Now we describe the stopping times and the estimators. Define ψ as the
position of the first zero, that is, ψ = min{t ≥ 0 : Xt = 0}. Let 0 < δ < 1 be
arbitrary. Define the stopping times ξn as

ξ0 = ψ,

ξ1 = min
{
k > ξ0 :

∣∣{ψ ≤ i < k : τ(Xi
0) = τ(Xk

0 )
}∣∣ ≥ k1−δ

}
,

ξ2 = min
{
k > ξ1 :

∣∣{ψ ≤ i < k : τ(Xi
0) = τ(Xk

0 )
}∣∣ ≥ k1−δ

}
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and in general let

ξn = min
{
k > ξn−1 :

∣∣{ψ ≤ i < k : τ(Xi
0) = τ(Xk

0 )
}∣∣ ≥ k1−δ

}
.

These are the successive times i when the value t = τ(Xi
0) has occurred

previously enough times so that we can safely estimate the residual renewal
time by empirical distributions derived from observations already made. We
also need to fix κn as the index where reading backwards from Xξn we will

have seen for the first time ≥ ξ1−δ
n occurrences of an i with τ(Xi

0) = τ(Xξn
0 ).

Formally put

κ1 = max{K :
∣∣∣{K ≤ k < ξ1 : τ(Xk

0 ) = τ(Xξ1
0 )

}∣∣∣ = �ξ1−δ
1 },

κ2 = max{K :
∣∣∣{K ≤ k < ξ2 : τ(Xk

0 ) = τ(Xξ2
0 )

}∣∣∣ = �ξ1−δ
2 }

and in general, let

κn = max{K :
∣∣∣{K ≤ k < ξn : τ(Xk

0 ) = τ(Xξn
0 )

}∣∣∣ = �ξ1−δ
n }.

For n > 0 define our estimator hn(X0, . . . , Xξn) at time ξn as

h1(X0, . . . , Xξ1) =
1

�(ξ1)1−δ

ξ1−1∑
i=κ1

I{τ(Xi
0)=τ(X

ξ1
0 )}σi,

h2(X0, . . . , Xξ2) =
1

�(ξ2)1−δ

ξ2−1∑
i=κ2

I{τ(Xi
0)=τ(X

ξ2
0 )}σi

and in general, define

hn(X0, . . . , Xξn) =
1

�(ξn)1−δ

ξn−1∑
i=κn

I{τ(Xi
0)=τ(Xξn

0 )}σi.

Note that κn ensures that we take into consideration exactly �(ξn)1−δ pieces
of occurrences. The n-th estimate is simply the average of the residual waiting
times that we have already observed in the data segment Xξn

κn
when we were at

the same value of τ as we see at time ξn.

Example 2.18. Fix δ = 0.25. Let X12
0 = 1000101001100. Note that ψ = 1.

Calculate the τ ’s to get

τ(X1
0 ) = 0

τ(X2
0 ) = 0

τ(X3
0 ) = 0

τ(X4
0 ) = 1

τ(X5
0 ) = 0
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τ(X6
0 ) = 1

τ(X7
0 ) = 0

τ(X8
0 ) = 0

τ(X9
0 ) = 1

τ(X10
0 ) = 2

τ(X11
0 ) = 0

τ(X12
0 ) = 0.

Calculate the σ’s to get

σ0 = 0

σ1 = 0

σ2 = 0

σ3 = 1

σ4 = 0

σ5 = 1

σ6 = 0

σ7 = 0

σ8 = 2

σ9 = 1

σ10 = 0

σ11 = 0.

Now calculating the ξ’s one gets

ξ0 = ψ = 1

ξ1 = 8

ξ2 = 11

ξ3 = 12.

Calculating ξn
n ’s one gets

ξ1
1

=
8

1
= 8

ξ2
2

=
11

2
= 5.5

ξ3
3

=
12

3
= 4.

Calculate �ξ1−δ’s to get

�ξ1−δ
1  = �81−0.25 = 5

�ξ1−δ
2  = �111−0.25 = 7
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�ξ1−δ
3  = �121−0.25 = 7

Calculating the κ’s one gets

κ1 = 1

κ2 = 1

κ3 = 2.

Finally calculate the h’s to get

h1(X
8
0 ) =

σ1 + σ2 + σ3 + σ5 + σ7

5
=

0 + 0 + 1 + 1 + 0

5
=

2

5

h2(X
11
0 ) =

σ1 + σ2 + σ3 + σ5 + σ7 + σ8

6
=

0 + 0 + 1 + 1 + 0 + 2

6
=

4

6

h3(X
12
0 ) =

σ2 + σ3 + σ5 + σ7 + σ8 + σ11

6
=

0 + 1 + 1 + 0 + 2 + 0

6
=

4

6
.

Theorem 2.11. (Morvai and Weiss [68]) Assume
∑∞

k=0 k
α+1pk < ∞ for some

α > 2. Let 0 < δ < min(1− 2/α, 1/3). Then

lim
n→∞

ξn
n

= 1

and

lim
n→∞

|hn(X0, . . . , Xξn)− E(σξn |X0, . . . , Xξn)| = 0

almost surely.

Note that the fact that ξn/n tends to one means that we are estimating on a
sequence that has density one, in other words, we rarely fail to give an estimate.

Note that both hn and ξn depend on δ and so on α. We also constructed a
more involved sequence of stopping times ξ∗n and estimator h∗

n(X0, . . . , Xξ∗n) the
constructions of which do not depend on a-priori knowledge of the α and we
also managed to reduce our assumption from α > 2 to α > 1, cf. Morvai and
Weiss [68]. We also constructed intermittent schemes for estimating the residual
waiting time to the next zero for all binary stationary and ergodic processes.
The scheme consists of a sequence of stopping times λn and estimators fn(X

λn
0 ).

For all binary stationary and ergodic processes,

lim
n→∞

∣∣∣fn(Xλn
0 )− E(σλn |Xλn

0 )
∣∣∣ = 0

almost surely. If the process turnes out to be a binary renewal process then

lim
n→∞

λn

n
= 1

almost surely. Cf. Morvai and Weiss [74]. For further reading see [75] and [78].
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3. Part II. Estimation for real valued processes

In the first part of this survey we dealt exclusively with discrete valued processes.
In this part we will deal with real valued processes. If the one dimensional
marginal distribution is continuous then with probability one in a finite number
of observations there will be no repetitions. This means that in order to be
able to use any of the methods that we were considering before we will have to
introduce quantizers which will group the data so that there will be repetitions.
We will discuss in this section several positive results for the forward prediction
problem for real valued processes. The first of these is based on an observation
of Bailey that despite the fact that a backward scheme when used in the forward
direction needn’t converge pointwise it may be that it converges in Cesaro mean.
The subsequent last section is based on the idea of intermittent estimation.
This means that we do not predict at every time instant, but when we do predict
we want to be certain that eventually our predictions are optimal.

3.1. Pointwise sequential estimation of the conditional expectation
in Cesaro mean

In this section we consider the problem of estimating the conditional expectation
E(Xn|Xn−1

0 ) from a single sample of length n. (For the origin of this problem cf.
Cover [12].) We observe a longer and longer finite segment of the single sample
path X∞

0 and from the data segment Xn−1
0 we want to estimate the conditional

expectation E(Xn|Xn−1
0 ). Unfortunately this can not be done even for binary

processes as the next theorem shows.

Theorem 3.1. (Bailey [4], Ryabko [89]) For any estimator {Ên(X
n−1
0 )} there

is a stationary ergodic binary-valued process {Xi} such that

lim sup
n→∞

|Ên(X
n−1
0 )− E(Xn|Xn−1

0 )| > 0

with positive probability.

(Cf. Györfi, Morvai, and Yakowitz [27] also.)
In his thesis, Bailey [4] constructed a backward estimator Ê−n(X

−1
−n) which

tries to approximate E(X0|X−1
−n). It turned out that to estimate the conditional

expectation of a fixed random variable X0 is possible as the next theorem shows.

Theorem 3.2. (Bailey [4], Ornstein [82]) For the backward estimator Ê−n(X
−1
−n)

constructed in Bailey [4] (cf. Ornstein [82] also) and for all stationary and er-
godic binary processes {Xi}

lim
n→∞

|Ê−n(X
−1
−n)− E(X0|X−1

−n)| = 0

almost surely.

(Algoet [1], Morvai [53], Morvai, Yakowitz and Györfi [56] have extended this
from binary processes to bounded real-valued stationay and ergodic processes.
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Györfi et. al. [24] and Algoet [3] extended the above result further to unbounded
real-valued stationary processes.)

In his thesis, Bailey [4] (cf. Ornstein [82] also) indicated how Maker’s (also
known as Breiman’s) generalized ergodic theorem can be used to turn the back-
ward estimator into a forward estimator for which the error will tend to zero in
Cesaro average.

Theorem 3.3. (Maker [49], Breiman [8, 9], Algoet [2]) Consider a stationary
and ergodic dynamical system with the usual left shift oparator T . Let fn be a
sequence of real valued functions such that

lim
n→∞

fn = f

almost surely. If in addition

E(sup
n≥1

|fn|) < ∞

then

lim
n→∞

1

n

n∑
i=1

fi(T
iω) = E(f)

almost surely.

Note that if the fn’s are bounded then the condition E(supn≥1 |fn|) < ∞ is
trivially true. Now combine the above theorems with

fn = |Ê−n(X
−1
−n)− E(X0|X−1

−n)|

and
f = 0

to get

lim
t→∞

1

t

t∑
i=1

∣∣∣Êi(X
i−1
0 )− E(Xi|Xi−1

0 )
∣∣∣ = 0 almost surely

where Êi(X
i−1
0 ) = Ê−i(X

−1
−i )(T

iω) cf. also Ornstein [82]. Several authors have
extended this from binary processes to bounded real valued processes using
quantization to reduce to the finite valued case see for example Algoet [1, 3],
Morvai [53], Morvai, Yakowitz and Györfi [56]. The extension to the unbounded
case turned out to be difficult because of the requirement of the integrability of
the supremum in Maker’s theorem.

A different approach to the sequential prediction uses a weighted average
of simple estimators called ‘experts’, cf. e.g. Györfi and Lugosi [25]. The simple
estimators can be partition-based, kernel-based etc. (cf. e.g. Györfi and Ottucsák
and Walk [29]) The weight of an expert in the weighted average depends on
its past performance as an estimator of the next outcome. These schemes are
constructed directly as forward schemes and with these, results were extended
to the general unbounded case by Nobel [80] and Györfi and Ottucsák[28].
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Theorem 3.4. (Györfi and Ottucsák[28]) Let {Xn} be stationary and ergodic
real-valued process with E

(
|X0|4

)
< ∞. Then for the estimator Ên(X

n−1
0 ) de-

fined in [28] (which is based on the idea of combining simple estimators called
‘experts’):

lim
t→∞

1

t

t∑
i=1

∣∣∣Êi(X
i−1
0 )− E(Xi|Xi−1

0 )
∣∣∣2 = 0 almost surely

and

lim
t→∞

1

t

t∑
i=1

∣∣∣Êi(X
i−1
0 )−Xi

∣∣∣2 = E
(∣∣E(X0|X−1

−∞)−X0

∣∣2) almost surely.

(In fact, Györfi and Ottucsák considered a little bit more general framework
when side information is also available, cf. [28], but for the case of simplicity we
stated their result in a little bit simpler setting.) However none of these results
were optimal in the sense that moment conditions higher than those strictly
necessary were assumed. In our work [70] we have obtained optimal results by
managing to prove the integrability of the supremum for the backward estimator
and it is these results that we shall now review briefly. (For the the algorihm
cf. Morvai, Yakowitz and Györfi [56], Algoet [3] and Morvai and Weiss[70].) Let
{Xn} be a real-valued doubly infinite stationary ergodic time series.

Since the process is real-valued and the scheme is based on pattern matching,
quantization is needed. Let [·]k denote the quantizer

[x]k =

⎧⎨
⎩

0 if −2−k < x < 2−k

−i2−k if −(i+ 1)2−k < x ≤ −i2−k for some i = 1, 2, . . .
i2−k if i2−k ≤ x < (i+ 1)2−k.

(Cf. Algoet [3].) Let [Xn
m]k denote ([Xm]k, . . . , [Xn]

k).

Example 3.1. Assume that X0 = 1
23 . Then

[X0]
1

=

[
1

23

]1
= 0

[X0]
2

=

[
1

23

]2
= 0

[X0]
3

=

[
1

23

]3
=

1

23

[X0]
4

=

[
1

23

]4
=

1

23
.

Example 3.2. Assume that X0 = π and X1 = 0. Then

[X1
0 ]

1
= ([X0]

1
, [X1]

1
) = ([π]1, [0]1) = (3, 0)
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[X1
0 ]

2
= ([X0]

2
, [X1]

2
) = ([π]2, [0]2) = (3, 0)

[X1
0 ]

3
= ([X0]

3
, [X1]

3
) = ([π]3, [0]3) = (

25

8
, 0)

[X1
0 ]

4
= ([X0]

4
, [X1]

4
) = ([π]4, [0]4) = (

25

8
, 0).

The sequences λk−1, Rk−1 and τk are defined recursively (k = 1, 2, . . . ). Put
λ0 = 1 and R0 = 0. Let τ1 be the time between the occurrence of the pattern

[X−1]
1

at time −1 and the last occurrence of the same pattern prior to time −1. More
precisely, let

τ1 = min{t > 0 : [X−1−t]
1 = [X−1]

1}.
Put

λ1 = τ1 + λ0.

Define
R1 = X−τ1 .

Let τ2 be the time between the occurrence of the pattern

([X−λ1 ]
2, . . . , [X−1]

2) = [X−1
−λ1

]2.

at time −1 and the last occurrence of the same pattern prior to time −1. More
precisely, let

τ2 = min{t > 0 : [X−1−t
−λ1−t]

2 = [X−1
−λ1

]2}.
Put

λ2 = τ2 + λ1.

Define

R2 =
X−τ1 +X−τ2

2
.

In general, let τk be the time between the occurrence of the pattern

([X−λk−1
]k, . . . , [X−1]

k) = [X−1
−λk−1

]k.

at time −1 and the last occurrence of the same pattern prior to time −1. More
precisely, let

τk = min{t > 0 : [X−1−t
−λk−1−t]

k = [X−1
−λk−1

]k}.
Put

λk = τk + λk−1.

Define

Rk =
1

k

∑
1≤j≤k

X−τj .

(Cf. Morvai and Weiss [70], Algoet [3] and Morvai et. al. [56].)
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Example 3.3. Let X−1
−9 = (X−9, X−8, . . . , X−2, X−1) = 010010010. Note that

λ0 = 1, R0 = 0. The τ ’s are:

τ1 = 2

τ2 = 3

τ3 = 3.

The λ’s are:

λ0 = 1

λ1 = τ1 + λ0 = 3

λ2 = τ2 + λ1 = 6

λ3 = τ3 + λ2 = 9.

The X−τ ’s are:

X−τ1 = X−2 = 1

X−τ2 = X−3 = 0

X−τ3 = X−3 = 0.

The R’s are:

R0 = 0

R1 =
1

1

∑
1≤j≤1

X−τj =
1

1
= 1

R2 =
1

2

∑
1≤j≤2

X−τj =
1 + 0

2
=

1

2

R3 =
1

3

∑
1≤j≤3

X−τj =
1 + 0 + 0

3
=

1

3
.

To obtain a fixed sample size t > 0 version, let κt be the maximum of non-
negative integers k for which λk ≤ t. For t > 0 put

R̂−t = Rκt .

Note that
R̂−t = Rk as long as λk ≤ t < λk+1

and R̂−t depends solely on X−1
−t .

Example 3.4. Let X−1
−9 = (X−9, X−8, . . . , X−2, X−1) = 110111011. Note that

λ0 = 1, R0 = 0. The τ ’s are:

τ1 = 1

τ2 = 3

τ3 = 4.

The λ’s are:



On universal algorithms for classifying and predicting 109

λ0 = 1

λ1 = τ1 + λ0 = 2

λ2 = τ2 + λ1 = 5

λ3 = τ3 + λ2 = 9.

The X−τ ’s are:

X−τ1 = X−1 = 1

X−τ2 = X−3 = 0

X−τ3 = X−4 = 1.

The R’s are:

R0 = 0

R1 =
1

1

∑
1≤j≤1

X−τj =
1

1
= 1

R2 =
1

2

∑
1≤j≤2

X−τj =
1 + 0

2
=

1

2

R3 =
1

3

∑
1≤j≤3

X−τj =
1 + 0 + 1

3
=

2

3
.

The kappa’s are:

κ1 = 0

κ2 = 1

κ3 = 1

κ4 = 1

κ5 = 2

κ6 = 2

κ7 = 2

κ8 = 2

κ9 = 3.

The R̂’s are:

R̂−1 = 0

R̂−2 = 1

R̂−3 = 1

R̂−4 = 1

R̂−5 =
1

2

R̂−6 =
1

2
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R̂−7 =
1

2

R̂−8 =
1

2

R̂−9 =
2

3.

Algoet [3] managed to prove that R̂−t converges to E(X0|X−1
−∞) almost surely

provided that E|X0| is finite. For a somewhat weaker result see Györfi et. al.
[24]. However none of them was able to prove the integrability of the supremum
of the estimates R̂−t in case of unbounded random variables. This missing link
was proved by Morvai and Weiss [70] under the condition that

E
(
|X0| log+(|X0|)

)
< ∞.

(What is more, we proved that merely having E|X0| < ∞ is not enough, cf.
[70].)

For t > 0 consider the estimator R̂t as

R̂1(ω) = R̂−1(T
1ω),

R̂2(ω) = R̂−2(T
2ω)

and in general
R̂t(ω) = R̂−t(T

tω)

which is defined in terms of

(X0, . . . , Xt−1)

in the same way as
R̂−t(ω)

was defined in terms of
(X−t, . . . , X−1).

(T denotes the left shift operator.)
The next example shows how the left shift operator T works. We will use

these numerical calculations later.

Example 3.5. Let

X8
0 (ω) = (X0(ω), X1(ω), . . . , X7(ω), X8(ω)) = 110111011.

Then

X−1(T
1ω)=X0(ω)=1

(X−2(T
2ω), X−1(T

2ω))=(X0(ω), X1(ω))=(1, 1)

(X−3(T
3ω), X−2(T

3ω), X−1(T
3ω))=(X0(ω), X1(ω), X2(ω))=(1, 1, 0)

(X−4(T
4ω), X−3(T

4ω), . . . , X−1(T
4ω))=(X0(ω), X1(ω), . . . , X3(ω))=(1, 1, 0, 1)
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X−1
−5 (T

5ω)=X4
0 (ω)=(1, 1, 0, 1, 1)

X−1
−6 (T

6ω)=X5
0 (ω)=(1, 1, 0, 1, 1, 1)

X−1
−7 (T

7ω)=X6
0 (ω)=(1, 1, 0, 1, 1, 1, 0)

X−1
−8 (T

8ω)=X7
0 (ω)=(1, 1, 0, 1, 1, 1, 0, 1)

X−1
−9 (T

9ω)=X8
0 (ω)=(1, 1, 0, 1, 1, 1, 0, 1, 1)

The next example shows how to calculate the estimator R̂t for t = 1, 2, . . . .
We will use the same data as in the previous example. The numerical calculations
in the previous example are useful as auxiliary calculations for the next one.

Example 3.6. Let

X8
0 (ω) = (X0(ω), X1(ω), . . . , X7(ω), X8(ω)) = 110111011.

Then

R̂1(ω) = R̂−1(T
1ω) = Rκ1(T

1ω) = R0(T
1ω) = 0

R̂2(ω) = R̂−2(T
2ω) = Rκ2(T

2ω) = R1(T
2ω) =

1

1
= 1

R̂3(ω) = R̂−3(T
3ω) = Rκ3(T

3ω) = R0(T
3ω) = 0

R̂4(ω) = R̂−4(T
4ω) = Rκ4(T

4ω) = R1(T
4ω) =

0

1
= 0

R̂5(ω) = R̂−5(T
5ω) = Rκ5(T

5ω) = R2(T
5ω) =

1 + 0

2
=

1

2

R̂6(ω) = R̂−6(T
6ω) = Rκ6(T

6ω) = R2(T
6ω) =

1 + 1

2
= 1

R̂7(ω) = R̂−7(T
7ω) = Rκ7(T

7ω) = R1(T
7ω) =

1

1
= 1

R̂8(ω) = R̂−8(T
8ω) = Rκ8(T

8ω) = R2(T
8ω) =

0 + 1

2
=

1

2

R̂9(ω) = R̂−9(T
9ω) = Rκ9(T

9ω) = R3(T
9ω) =

1 + 0 + 1

3
=

2

3
.

The estimator R̂t may be viewed as an on-line predictor of Xt. This predictor
has special significance not only because of potential applications, but addition-
ally because Bailey [4] (cf. B. Ryabko [89] also) proved that it is impossible to
construct estimators R̂t such that always |R̂t−E(Xt|Xt−1

0 )| → 0 almost surely.

Theorem 3.5. (Morvai and Weiss [70]) Let {Xn} be stationary and ergodic.
Assume that E

(
|X0| log+(|X0|)

)
< ∞. Then

lim
t→∞

1

t

t∑
i=1

∣∣∣R̂i − E(Xi|Xi−1
0 )

∣∣∣ = 0 almost surely

and

lim
t→∞

1

t

t∑
i=1

∣∣∣R̂i −Xi

∣∣∣ = E
(∣∣E(X0|X−1

−∞)−X0

∣∣) almost surely.
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In the above theorem we assumed that X0 was not merely in L1 but in
L log+ L. Indeed mere integrability is not ennough, cf. Morvai andWeiss [70]. For

results on 1
t

∑t
i=1

∣∣∣R̂i − E(Xi|Xi−1
0 )

∣∣∣p and 1
t

∑t
i=1

∣∣∣R̂i −Xi

∣∣∣p under the condi-

tion of finite p-th moment of X0, where 1 < p < ∞, see Morvai and Weiss [70].
For further reading see Scarpellini [97, 98, 99], Morvai and Weiss [77], Merhav
and Feder [50], Jones, Kohler and Walk [35], Felber, Jones, Kohler and Walk
[18], Györfi and Lugosi [25], Györfi and Ottucsák [28], Nobel [80] Morvai and
Weiss [70], Algoet [1, 2, 3] and Györfi, Ottucsák and Walk [29].

3.2. Pointwise consistent intermittent estimation schemes

Consider the forward estimation problem for countable alphabet first order
Markov chains. Ryabko [89] showed that that problem can not be solved.

Theorem 3.6. (Ryabko [89]) For any estimator {Ên(X
n−1
0 )} there is a sta-

tionary ergodic process {Xi} with values from a countable subset of a bounded
interval of real numbers such that {Xi} is a first order Markov chain and

lim sup
n→∞

|Ên(X
n−1
0 )− E(Xn|Xn−1)| > 0

with positive probability.

(Cf. Györfi, Morvai, and Yakowitz [27] also.)
If one insists on the error criteria then the two ways of getting around the

negative results for forward estimation are intermittent schemes – where the
estimates are given only at carefully chosen stopping times and restricting to
processes with special properties. In this section first we will review results like
this for the class of processes where the conditional distribution as a function
of the past is continuous on a set of full measure. This class is more general
than the processes with continuous conditional probabilities, as we shall see in
an example which follows the definition.

Put R∗− the set of all one-sided sequences of real numbers, that is,

R∗− = {(. . . , x−1, x0) : xi is real for all −∞ < i ≤ 0}.

Define a metric on sequences (. . . , x−1, x0, ) and (. . . , y−1, y0) as follows. Let

d∗((. . . , x−1, x0), (. . . , y−1, y0)) =

∞∑
i=0

2−i−1 |x−i − y−i|
1 + |x−i − y−i|

. (3.1)

We will consider two-sided stationary real-valued processes {Xn}∞n=−∞. Note
that a one-sided stationary time series {Xn}∞n=0 can be extended to be a two-
sided stationary time series {Xn}∞n=−∞.

Definition 3.1. The conditional expectation E(X1|X0
−∞) is almost surely con-

tinuous if for some set C ⊆ R∗− which has probability one the conditional
expectation E(X1|X0

−∞) restricted to this set C is continuous with respect to
the metric d∗(·, ·) in (3.1).
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Consider any stationary and ergodic finitarily Markovian process {Xn} such
that the distribution of X0 concentrates on {0, 1, 2, . . . } and E|X0| < ∞. Then
obviously E(X1|X0

−∞) is almost surely continuous.

Example 3.7. Consider the Markov chain {Mn} with state space S = {0, 1, 2}
and transition probabilities

P (M2 = 1|M1 = 0) = P (M2 = 2|M1 = 1) = 1,

P (M2 = 0|M1 = 2) =
9

10
,

P (M2 = 1|M1 = 2) =
1

10
.

This yields a stationary and ergodic process {Mn}. Let

Xn = I{Mn=0}.

The resulting time series {Xn} will not be Markov of any order but it will be
finitarily Markovian. The conditional expectation

E(X1|X0
−∞) = P (X1 = 1|X0

−∞)

takes values from the set {0, 9
10}. If X0 = 1 then it is zero. Otherwise its value

depends solely on whether until the first (going backwards) occurrence of one you
see an even or odd number of zeros. The conditional expectation E(X1|X0

−∞)
is almost surely continuous, but it is not continuous on the whole space since it
can not be made continuous at X0

−∞ = (. . . , 0, 0, 0).

In the previous example X0 was a binary random variable. In the next ex-
ample X0 will be uniformly distributed on the unit interval.

Example 3.8. A transformation S will be defined on the unit interval. Consider
the binary expansion r∞1 of each real-number r ∈ [0, 1), that is, r =

∑∞
i=1 ri2

−i.
When there are two expansions, use the representation which contains finitely
many 1′s. Now let

τ(r) = min{i > 0 : ri = 1}.
Notice that, aside from the exceptional set {0}, which has Lebesgue measure zero
τ is finite and well-defined on the closed unit interval. The transformation is
defined by

Sr =

{
r − 2−τ(r) if τ(r) = 1

r − 2−τ(r) +
∑τ(r)−1

l=1 2−l if τ(r) > 1.

All iterations Sk of S for −∞ < k < ∞ are well defined and invertible with the
exception of the set of dyadic rationals which has Lebesgue measure zero. Now
choose r uniformly on the unit interval. Set X0(r) = r and put Xn(r) = Snr.
The process {Xn} is a stationary and ergodic first order Markov chain with
conditional expectation E(X1|X0 = x) = Sx, (one observation determines the
whole orbit of the process) cf. [27]. Since S is a continuous mapping disregarding
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the set of dyadic rationals, the resulting conditional expectation is almost surely
continuous. However, the conditional expectation is not continuous on the whole
unit interval, since it can not be made continuous at e.g. 0.5.

Example 3.9. Consider the binary periodic Markov chain {Mn} which alter-
nates between the states, that is, let

P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 1) = 1.

This yields a stationary and ergodic process with marginal probabilities

P (M0 = 1) = P (M0 = 0) =
1

2
.

Let Zn be independent identically distributed with uniform distribution on (0, 1).
We assume that the {Zn} process is independent from the {Mn} process. Now
let

Xn = Mn + Zn.

Clearly, the {Xn} process is also stationary and ergodic. The conditional expec-
tation

E(X1|X0
−∞) =

{
3
2 if X0 < 1
1
2˙ if X0 > 1.

is almost surely continuous with respect to the metric d∗(·, ·) in (3.1) even though

lim
r→1−

E (X1|X0 = r) =
3

2
�= 1

2
= lim

r→1+
E (X1|X0 = r) .

(The event {X0 = 1} occurs with probability zero and this event can be excluded.)

The conditional expectation in the next example is not almost surely contin-
uous with respect to the metric d∗(·, ·) in (3.1).

Example 3.10. Consider the binary aperiodic Markov chain {Mn} whith tran-
sition probabilities

P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 1) =
1

10

and

P (M1 = 0|M0 = 0) = P (M1 = 1|M0 = 1) =
9

10
.

This yields a stationary and ergodic process with marginal probabilities

P (M0 = 1) = P (M0 = 0) =
1

2
.

Let {Zn} be independent and identically distributed with

P (Zn = 2−k) = 2−k
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for k = 1, 2, . . . . Let

m = E(Z1).

We assume that the {Zn} process is independent from the {Mn} process. Now
let

Xn = Mn · Zn.

Obviously, the {Xn} process is also stationary and ergodic. The conditional ex-
pectation is

E(X1|X0
−∞) =

{
m
10 if X0 = 0
9m
10 ˙ if X0 = 2−k for some k = 1, 2, . . . .

Now we argue by contradiction. Assume there exists

C ⊆ {(. . . , x−1, x0) : xi ∈ {0, 2−1, 2−2, . . . } for all −∞ < i ≤ 0}.

such that P (X0
−∞ ∈ C) = 1 and on C the conditional expectation E(X1|X0

−∞)
is given as above and the conditional expectation E(X1|X0

−∞) is continuous on
C with respect to the metric d∗(·, ·) in (3.1). Since P (X0 = 0) > 0 there must
be a sequence

(. . . , x−2, x−1, 0)

in C. Since for any k = 1, 2, . . . , P (X0 = 2−k) > 0 and since any word formed
by the letters {0, 2−1, 2−2, . . . } has positive probability, there is a sequence

(. . . , y
(k)
−k−2, y

(k)
−k−1, x−k, . . . , x−2, x−1, 2

−k)

in C. (The y’s depend on k.) Obviously,

d∗((. . . , x−2, x−1, 0), (. . . , y
(k)
−k−2, y

(k)
−k−1, x−k, . . . , x−2, x−1, 2

−k)) → 0.

But

lim
k→∞

E
(
X1|X0 = 2−k

)
=

9m

10
�= m

10
= E (X1|X0 = 0) .

This is a contradiction. Thus the conditional expectation E(X1|X0
−∞) is not

almost surely continuous with respect to the metric d∗(·, ·) in (3.1).

The conditional expectation in the next example will not be almost surely
continuous with respect to the metric d∗(·, ·) in (3.1).

Example 3.11. Consider the binary aperiodic Markov chain {Mn} whith tran-
sition probabilities

P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 1) =
2

10

and

P (M1 = 0|M0 = 0) = P (M1 = 1|M0 = 1) =
8

10
.
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This yields a stationary and ergodic process with marginal probabilities

P (M0 = 1) = P (M0 = 0) =
1

2
.

Let {Zn} be independent and identically distributed with uniform distribution
on the interval (1, 2). We assume that the {Zn} process is independent from the
{Mn} process. Now let

Xn = (Zn)
Mn .

Obviously, the {Xn} process is also stationary and ergodic. The conditional ex-
pectation is

E(X1|X0
−∞) =

{
22
20 if X0 = 1
28
20˙ if 1 < X0 < 2.

Now we argue by contradiction. Assume there exists

C ⊆ {(. . . , x−1, x0) : 1 ≤ xi < 2 for all −∞ < i ≤ 0}

such that P (X0
−∞ ∈ C) = 1 and on C the conditional expectation E(X1|X0

−∞)
is given as above and the conditional expectation E(X1|X0

−∞) is continuous on
C with respect to the metric d∗(·, ·) in (3.1). Since P (X0 = 1) > 0 there must
be a sequence

(. . . , x−2, x−1, 1)

in C. Since for any 0 < εk → 0,

P (1 < X0 < 1 + εk, |X−i − x−i| < εk for all 1 ≤ i ≤ k) > 0,

for each k there exists a sequence

(. . . , y
(k)
−2 , y

(k)
−1 , y

(k)
0 )

in C such that 1 < y
(k)
0 < 1 + εk and for all 1 ≤ i ≤ k, |y(k)−i − x−i| < εk.

Obviously,

d∗((. . . , x−2, x−1, 1), (. . . , y
(k)
−2 , y

(k)
−1 , y

(k)
0 )) → 0.

But

E (X1|X0 = 1) =
22

20
�= 28

20
= lim

k→∞
E
(
X1|X0 = y

(k)
0

)
.

This is a contradiction. Thus the conditional expectation E(X1|X0
−∞) is not

almost surely continuous with respect to the metric d∗(·, ·) in (3.1).

The conditional expectation in the next example is not almost surely contin-
uous with respect to the metric d∗(·, ·) in (3.1). This is not immediately evident
but a detailed proof can be found in our paper [62].

Example 3.12. Define a Markov chain {Mn} on the nonnegative integers. Let
the transition probabilities be as follows.

P (M1 = 0|M0 = 0) = P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 1) = 2−1
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and for i = 2, 3, . . . , let

P (M1 = i|M0 = 1) = 2−i and P (M1 = 0|M0 = i) = 1.

All other transitions happen with probability zero. This Markov chain yields a
stationary and ergodic time series. Define the function h as

h(0) = 0,

h(1) = 1

and for i ≥ 2 put

h(i) =
2−2i

2
.

Let Xn = h(Mn). Since h(·) is one to one, {Xn} is also a stationary and
ergodic Markov chain. The conditional expectation E(X1|X0

−∞) is not almost
surely continuous with respect to the metric d∗(·, ·) in (3.1).)

However the conditional expectation in the next example is almost surely
continuous with respect to the metric d∗(·, ·) in (3.1).

Example 3.13. Consider the Markov chain {Mn} with countably infinite state
space S = {0, 1, 1

2 ,
1
3 , . . . } and transition probabilities

P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 0) =

(
1

2

)

and for n ∈ {1, 2, 3, . . . }

P

(
M1 =

1

n+ 1
|M0 =

1

n

)
=

(
1

2

)n+1

,

P

(
M1 = 0|M0 =

1

n

)
= 1−

(
1

2

)n+1

.

This yields a stationary and ergodic real-vaued process {Mn} (the distribution of
which concentrates on S and it is a first order Markov chain). The conditional
expectation

E(M1|M0
−∞) =

{
1
2 if M0 = 0(
1
2

)̇n+1 1
(n+1) if M0 = 1

n for n = 1, 2, 3, . . . .

is almost surely continuous with respect to the metric d∗(·, ·) in (3.1) even though

lim
k→∞

E

(
M1|M0 =

1

k

)
= 0 �= 1

2
= E(M1|M0 = 0).

To see that the conditional expectation E(M1|M0
−∞) is almost surely continuous

observe that any fixed element of the past m0
−∞ which does not consist of all
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zeros must contain some value of n for which m−n �= 0. (The all zero case can be
excluded since it has probability zero.) Let n0 be the least n for which m−n �= 0.
Say that m−n0 = 1/k. If n0 = 0 we are ready since 1/k can be approximated
only by 1/k. If n0 > 0 this implies that m0 = 0. Since all points of the state
space different from zero are discrete this means that any sequence of points
s0−∞ which are sufficiently close to m0

−∞ must also satisfy s−n0 = 1/k. But if
for a sequence s0−∞, s−n0 = 1/k then s0 is either 0 or s0 ≥ 1

k+n0
> 0. In the

first case the conditional expectations agree, in the second case s0−∞ can not be
chosen to be arbitrarily close to m0

−∞. In this case the conditional expectations
are not required to be close together.

Observe that both stationary and ergodic processes, {Xn} in Example 3.12
and {Mn} in Example 3.13, take values from a countable subset of the unit
interval. Both of them are first order Markov chains. However the conditional
expectation E(M1|M0

−∞) in Example 3.13 is almost surely continuous whereas
E(X1|X0

−∞) in Example 3.12 is not (with respect to the metric d∗(·, ·) in (3.1)).
Now we will review an algorithm which will successfully estimate the condi-

tional expectation of the next output (at time n+ 1) given the observations up
to time n at carefully selected time instances n in case the process has almost
surely continuous conditional expectations.

Define the nested sequence of partitions {Pk}∞k=0 of the real line as follows.
Let

Pk = {[i2−k, (i+ 1)2−k) : for i = 0, 1,−1, 2,−2, . . . }.
Let x → [x]k denote the quantizer that assigns to any point x the unique interval
in Pk that contains x. Let [Xn

m]k = ([Xm]k, . . . , [Xn]
k).

We define the stopping times {λn} along which we will estimate. Set λ0 = 0.
For n = 1, 2, . . ., define λn recursively. Let

λ1 = min{t > 0 : [Xt]
1 = [X0]

1}.

Note that λ1 ≥ 1 and it is a stopping time on [X∞
0 ]1. The first estimate m1 is

defined as
m1 = X1.

Let
λ2 = λ1 +min{t > 0 : [Xλ1+t

t ]2 = [Xλ1
0 ]2}.

Note that λ2 ≥ 2 and it is a stopping time on [X∞
0 ]2. The second estimate m2

is defined as

m2 =
X1 +Xλ1+1

2
.

In general, let

λn = λn−1 +min{t > 0 : [X
λn−1+t
t ]n = [X

λn−1

0 ]n.

Note that λn ≥ n and it is a stopping time on [X∞
0 ]n. The nth estimate mn is

defined as

mn =
1

n

n−1∑
j=0

Xλj+1.
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This estimator can be viewed as a sampled version of the predictor in Morvai
et al. [56], Weiss [104], Algoet [3]. (For the discrete case cf. Morvai [54] and
Morvai and Weiss [57].)

Theorem 3.7 (Morvai and Weiss [62]). Let {Xn} be a real-valued stationary
time series with E(|X0|2) < ∞. Then

lim
n→∞

∣∣∣mn − E(Xλn+1|[Xλn
0 ]n)

∣∣∣ = 0

almost surely. If in addition the conditional expectation E(X1|X0
−∞) is almost

surely continuous then

lim
n→∞

∣∣∣mn − E(Xλn+1|Xλn
0 )

∣∣∣ = 0

almost surely.

Notice that the difference between the first and second statement in the
theorem above is the quantization in the condition part of the conditional

expectation. While the error
∣∣∣mn − E(Xλn+1|[Xλn

0 ]n)
∣∣∣ tends to zero almost

surely for all real-valued stationary time series with E(|X0|2) < ∞, the er-

ror
∣∣∣mn − E(Xλn+1|Xλn

0 )
∣∣∣ does not. E.g. for the stationary and ergodic Markov

chain {Xn} in Example 3.12 the error
∣∣∣mn − E(Xλn+1|Xλn

0 )
∣∣∣ does not tend to

zero with positive probability, cf. Morvai and Weiss [62]. (Of course, the con-
ditional expectation E(X1|X0

−∞) for this counterexample process is not almost
surely continuous with respect to the metric d∗(·, ·) in (3.1).) It turns out that
the problem is caused by the quantization. If one knows in advance that the
distribution of X0 concentrates on finite or countably infinite subset of the real
line then one may omit the partition Pk and the quantizer [·]k entirely and so
eliminate this problem. (Cf. Morvai and Weiss [62].)

Example 3.14. Let X6
0 = (X0, X1, . . . , X5, X6) = 0100101. The λ’s are:

λ0 = 0

λ1 = 2

λ2 = 5.

The Xλ+1’s are:

Xλ0+1 = X1 = 1

Xλ1+1 = X3 = 0

Xλ2+1 = X6 = 1.

The m’s are:

m1 = Xλ0+1 = X1 = 1
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m2 =
Xλ0+1 +Xλ1+1

2
=

X1 +X3

2
=

1 + 0

2
=

1

2

m3 =
Xλ0+1 +Xλ1+1 +Xλ2+1

3
=

X1 +X3 +X6

3
=

1 + 0 + 1

3
=

2

3
.

One of the drawbacks of this scheme is that the growth of the stopping times
{λk} is rather rapid.

Theorem 3.8. (Morvai [54]) Let {Xn} be a stationary and ergodic binary time
series. Suppose that H > 0 where H denotes the entropy rate associated with
the time series {Xn}. Let 0 < ε < H be arbitrary. Then for k large enough,

λk(X
∞
0 ) ≥ cc

··
c

almost surely,

where the height of the tower is k − l, l(X∞
0 ) is a finite number which depends

on X∞
0 , and c = 2H−ε.

Remark 3.1. It is an OPEN PROBLEM if there is a better sequence of stopping
times λ̂n the growth of which is less rapid with estimator ên(X0, X1, . . . , Xλ̂n

)
such that for all stationary and ergodic binary processes

lim
n→∞

∣∣∣ên − E(Xλ̂n+1|X
λ̂n
0 )

∣∣∣ = 0

almst surely.

At the end of the present section we will review an intermittent scheme where
the stopping times grow less rapidly, but that scheme is not designed to succeed
for all discrete valued processes.

From the proof of Bailey [4], Ryabko [89], Györfi, Morvai, Yakowitz [27] it
is clear that even for the class of all stationary and ergodic binary time series
with almost surely continuous conditional expectation E(X1|X0

−∞) one can not
estimate E(Xn+1|Xn

0 ) for all n in a pointwise consistent way. However, if one
considers only a very narrow class of processes then one can succeed for all time
instances.

Schäfer [100] considered stationary and ergodic Gaussian processes. He con-
structed an algorithm which can estimate the conditional expectation for every
time instance n for an extremely restricted and narrow class of Gaussian pro-
cesses. Note that if you want to estimate in time average (or Cesaro average)
the problem becames much easier, cf. Györfi and Lugosi [25], Biau et. al. [7].

We consider stationary Gaussian (not necessarily ergodic) processes and es-
timate the conditional mean along a stopping time sequence for a much wider
class of processes than in Schäfer [100].

Consider a stationary Gaussian process {Xn} with autocovariance function
γ(k) = E(Xn+kXn) and EXn = m. Define the following subclasses of stationary
Gaussian processes: In Φ1 we have Gaussian processes satisfying the condition

∞∑
j=0

|γ(j)| < ∞ (3.2)
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and are not Markovian of any order. In Φ2 we have all Gaussian processes (not
necessarily satifying (3.2)) which are Markov of some order. We are going to
deal with processes in

Φ = Φ1 ∪ Φ2.

Although estimating the conditional mean in the class Φ2 is much easier, our
algorithm will be valid universally for every process in Φ.

Example 3.15. Consider the class of Gaussian processes given by

Xn =
∞∑
j=0

ψjεn−j +m,

where ψ0 = 1,
∞∑
j=0

|ψj | < ∞ and εi-s are independent and identically distributed

Gauss innovations distributed as N(0, σ). Then condition (3.2) is satisfied and
{Xn} is a real-valued stationary and ergodic Gaussian process in Φ, see Hida
and Hitsuda [33].

Schäfer [100] investigated the restricted model class considered in the follow-
ing example.

Example 3.16. Consider the model class described in Example 3.15 with the
very strong additional condition that the Taylor coefficients of

1

ψ(z)
=

∞∑
k=0

ϕkz
k (|z| > 1)

satisfy
∞∑

k=dn+1

|ϕk|2 ≤
(

C

logn

)r

(3.3)

for sufficiently large n with some C > 0 and r > 1, where ψ(z) =
∞∑
j=0

ψjz
j is

the transfer function for |z| < 1.

Theorem 3.9. (Schäfer [100]) For any stationary Gaussian process from the
model class defined in the above example, and the estimator Ên(X

n−1
0 ) defined

in Schäfer [100]

lim
n→∞

∣∣∣Ên(X
n−1
0 )− E(Xn|Xn−1

0 )
∣∣∣ = 0

almost surely.

For general Gaussian processes it is hard to check condition (3.3). Two special
extremely narrow classes of Gaussian processes have been given in Schäfer [100]
where this condition is satisfied.

At the beginning of this section we suggested an algorithm and sequence
of stopping times along which the error tends to zero almost surely under the
condition that the conditional expectation E(X1| . . . , X−1, X0) is almost surely
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continuous. Unfortunately the conditional expectation E(X1| . . . , X−1, X0) is
not almost surely continuous in the Gaussian case in general and so this re-
sult is not applicable for Gaussian processes in general, cf. Molnár-Sáska and
Morvai [52]. We note that for Gauss-Markov processes the conditional expecta-
tion E(X1|X0

−∞) is continuous. Now we consider an extension of the algorithm
discussed in at the beginning of this section.

Now consider the special nested sequence of partitions Pk of the real line as
follows. Let

Pk = {[i2−(k+1)3 , (i+ 1)2−(k+1)3) : for i = 0, 1,−1, . . . }.

The choice of Pk in such form has technical reasons, see [52]. Consider the same
sequence of stopping times λ’s and estimators m’s using this sequence of P ’s.

Theorem 3.10. (Molnár-Sáska and Morvai [52]) For any stationary Gaussian
process from the model class Φ,

lim
n→∞

∣∣∣mn − E(Xλn+1|Xλn
0 )

∣∣∣ = 0

almost surely.

This estimator is also consistent for (not Gaussian) stationary processes with
almost surely contionuous conditional expectations. For more on estimation for
Gaussian processes see Györfi and Lugosi[25] and Biau et. al. [7]. Note that it
is still unknown if one can estimate the conditional expectation for all n for all
stationary and ergodic Gaussian processes.

Remark 3.2. It is an OPEN PROBLEM if there is an estimator {Ên(X
n−1
0 )}

such that for all stationary and ergodic Gaussian processes

lim
n→∞

|Ên(X
n−1
0 )− E(Xn|Xn−1

0 )| = 0

almst surely.

(Cf. Györfi, Morvai, and Yakowitz [27] and Györfi and Sancetta [30].)
Now we will consider stationary real-valued (not necessarilily Gaussian) pro-

cesses {Xn}. We will review a sequence of stopping times which grows slower
than the previous ones.

Let {Pk}∞k=0 denote a nested sequence of finite or countably infinite partitions
of the real line by intervals. Let x → [x]k denote a quantizer that assigns to any
point x the unique interval in Pk that contains x. For a set C of real numbers
let diam(C) = supy,z∈C |z − y|. We assume that

lim
k→∞

diam([x]k) = 0 for all real number x.

Let [Xn
m]k = ([Xm]k, . . . , [Xn]

k). Let 1 ≤ lk ≤ k be a nondecreasing sequence of
positive integers such that limk→∞ lk = ∞.
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Define the stopping times as follows. Set ζ0 = 0. For k = 1, 2, . . ., define the
sequences ηk and ζk recursively. Each step we refine the quantization, and slowly
increase the block length of the next repetition, as follows: let

η1 = min{t > 0 : [Xt]
1 = [X0]

1}

and
ζ1 = ζ0 + η1.

One denotes the estimate of E(Xζ1+1|Xζ1
0 ) by g1, and defines it to be

g1 = X1.

Let
η2 = min{t > 0 : [Xζ1+t

ζ1−(l2−1)+t]
2 = [Xζ1

ζ1−(l2−1)]
2}

and
ζ2 = ζ1 + η2.

One denotes the estimate of E(Xζ2+1|Xζ2
0 ) by g2, and defines it to be

g2 =
X1 +Xζ1+1

2
.

In general, let

ηk = min{t > 0 : [X
ζk−1+t
ζk−1−(lk−1)+t]

k = [X
ζk−1

ζk−1−(lk−1)]
k}

and
ζk = ζk−1 + ηk.

One denotes the kth estimate of E(Xζk+1|Xζk
0 ) by gk, and defines it to be

gk =
1

k

k−1∑
j=0

Xζj+1.

Example 3.17. Let [·]k be the quantizer

[x]k =

⎧⎨
⎩

0 if −2−k < x < 2−k

−i2−k if −(i+ 1)2−k < x ≤ −i2−k for some i = 1, 2, . . .
i2−k if i2−k ≤ x < (i+ 1)2−k

and let lk = k. Let
(X0, X1, . . . , X5, X6) = 0100101.

The ζ’s and η’s are:

ζ0 = 0

η1 = 2

ζ1 = 2
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η2 = 3

ζ2 = 5.

The Xζ+1’s are:

Xζ0+1 = X1 = 1

Xζ1+1 = X3 = 0

Xζ2+1 = X6 = 1.

The g’s are:

g1 =
1

1

0∑
j=0

Xζj+1 =
1

1
= 1

g2 =
1

2

1∑
j=0

Xζj+1 =
1 + 0

2
=

1

2

g3 =
1

3

2∑
j=0

Xζj+1 =
1 + 0 + 1

3
=

2

3
.

The next theorem states the strong (pointwise) consistency of the estimator.

Theorem 3.11. (Morvai and Weiss [58]) Let {Xn} be a real-valued stationary
time series with E(|X0|2) < ∞. Then

lim
k→∞

∣∣∣gk − E(Xζk+1|Xζk
0 )

∣∣∣ = 0 almost surely

provided that the conditional expectation E(X1|X0
−∞) is almost surely continu-

ous.

The consistency holds independently of how the sequence lk and the partitions
are chosen as long as lk goes to infinity and the partitions become finer. However,
the choice of these sequences has a great influence on the growth of the stopping
times.

From the proof of [4], [89] and [27] it is clear that even for the class of all
stationary and ergodic binary time series with almost surely continuous condi-
tional expectation E(X1| . . . , X−1, X0) one can not estimate E(Xn+1|Xn

0 ) for
all n strongly (pointwise) consistently.

The stationary processes with almost surely continuous conditional expecta-
tion generalize the processes for which the conditional expectation is actually
continuous. (Cf. [36] or [40].)

If one uses finite partitions then it is possible to give an upper bound on
the growth of the stopping times {ζk}. Let Pk be a nested sequence of finite
partitions of the real line by intervals. If for some ε > 0,

∞∑
k=1

(k + 1)2−lkε < ∞
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then for the stopping time ζk

ζk < |Pk|lk2lkε

eventually almost surely, (cf. Morvai and Weiss [58], Algoet [3] and Morvai et.
al. [55]).

Example 3.18. Consider ε = 1, lk = �4 log2(k + 1)�, and |Pk| = k + 1. Then

ζk < (k + 1)
4(1+log2(k+1))

which has a little bit faster growth than polynomial.

In case of finite alphabet processes you can achieve a slightly better upper
bound. Indeed, let H denote the entropy rate associated with the stationary and
ergodic finite alphabet time series {Xn}. Note that in this case no quantization
is needed. Then

ζk < 2lk(H+ε)

eventualy almost surely provided that (k + 1)2−lkε is summable. (Cf. [57], [85],
[55].)
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[10] Bühlmann, P. and Wyner, A.J. (1999) Variable- length Markov
chains. Annals of Statistics 27 480–513. MR1714720

[11] Bunea, F. and Nobel, A. (2008) Sequential procedures for aggregating
arbitrary estimators of a conditional mean IEEE Transactions on Infor-
mation Theory 54 1725–1735. MR2450298

[12] Cover T. (1975). Open Problems in Information Theory. 1975 IEEE-
USSR Joint Workshop on Information Theory 35–36.

[13] Csiszár, I. and Shields, P. (2000) The consistency of the BIC Markov
order estimator. Annals of Statistics. 28 1601–1619. MR1835033

[14] Csiszár, I. (2002) Large-scale typicality of Markov sample paths and
consistency of MDL order estimators. IEEE Transactions on Information
Theory 48 1616–1628. MR1909476

[15] Csiszár, I. and Talata, Zs. (2006) Context tree estimation for not nec-
essarily finite memory processes via BIC and MDL. IEEE Transactions
on Information Theory 52 1007–1016. MR2238067

[16] Cerqueti, R., Falbo, P., and Pelizzari, C. (2017) Relevant states and
memory in Markov chain bootstrapping and simulation. European Journal
of Operational Research 256 163–177. MR3543093

[17] Dembo, A. and Peres, Y. (1994) A topological criterion for hypothesis
testing. Annals of Stat. 22 106–117. MR1272078

[18] Felber, T. Jones, D., Kohler, M., and Walk, H. (2013) Weakly
universally consistent static forecasting of stationary and ergodic time
series via local averaging and least squares estimates. Journal of Statistical
Planning and Inference 143 1689–1707. MR3082227

[19] Finesso, L. (1990) Consistent Estimation of the Order for Markov and
Hidden Markov Chains PhD thesis, University of Maryland.

[20] Finesso, L. (1992) Estimation of the order of a finite Markov chain.
Recent advances in mathematical theory of systems, control, networks and
signal processing, I (Kobe, 1991), 643–645, Mita, Tokyo. MR1197985

[21] Furstenberg, H. (1960) Stationary Processes and Prediction Theory
Princeton University Press. MR0140151

[22] Gallo, S. and Leonardi F. (2015) Nonparametric statistical inference
for the context tree of a stationary ergodic process Electronic Journal of
Statistics. 9 2076–2098. MR3397402

[23] Gutman, Y. and Hochman, M. (2008) On processes which cannot
be distinguished by finite observation. Israel J. Math. 164 265–284.
MR2391149

[24] Györfi, L., Kohler, M., Krzyzak, A. and Walk, H. (2002) A Dis-
tribution Free Theory of Nonparametric Regression Springer-Verlag, New
York MR1920390

[25] Györfi, L. Lugosi, G. (2002) Strategies for sequential prediction of sta-
tionary time series. In M. Drop, P. L’Ecuyer, and F. Szidarovszky, editors,
Examination of Stochastic Theory, Methods and Applications, 225–248.
Kluwer Academic Publishers. MR1893282

[26] Györfi, L. Lugosi, G. and Morvai, G. (1999) A simple randomized
algorithm for sequential prediction of ergodic time series. IEEE Transac-

https://www.ams.org/mathscinet-getitem?mr=1714720
https://www.ams.org/mathscinet-getitem?mr=2450298
https://www.ams.org/mathscinet-getitem?mr=1835033
https://www.ams.org/mathscinet-getitem?mr=1909476
https://www.ams.org/mathscinet-getitem?mr=2238067
https://www.ams.org/mathscinet-getitem?mr=3543093
https://www.ams.org/mathscinet-getitem?mr=1272078
https://www.ams.org/mathscinet-getitem?mr=MR3082227
https://www.ams.org/mathscinet-getitem?mr=1197985
https://www.ams.org/mathscinet-getitem?mr=0140151
https://www.ams.org/mathscinet-getitem?mr=3397402
https://www.ams.org/mathscinet-getitem?mr=2391149
https://www.ams.org/mathscinet-getitem?mr=1920390
https://www.ams.org/mathscinet-getitem?mr=1893282


On universal algorithms for classifying and predicting 127

tions on Information Theory 45 2642–2650. MR1725166
[27] Györfi, L., Morvai, G. and Yakowitz, S. (1998) Limits to consistent

on-line forecasting for ergodic time series. IEEE Transactions on Infor-
mation Theory, 44 886–892. MR1607704

[28] Györfi, L. and Ottucsák, Gy. (2007) Sequential prediction of un-
bounded stationary time series. IEEE Transactions on Information The-
ory 53 1866–1872. MR2317147

[29] Györfi, L., Ottucsák, Gy. and Walk H., (2012) Machine Learning
for Financial Engineering Imperial College Press, London.

[30] Györfi, L. and Sancetta, S. (2014) An open problem on strongly con-
sistent learning of the best prediction for Gaussian processes. In Topics in
Nonparametric Statistics 115–136. Springer, New York, NY. MR3333341

[31] Handel, R. (2011) On the minimal penalty for Markov order estimation.
Probability Theory and Related Fields 150 709–738. MR2824872

[32] Heller, A. (1965) On Stochastic Processes Derived from Markov Chains.
Annals of Math. Stat. 36 1286–1291. MR0176520

[33] Hida, T. and Hitsuda, M. (1993) Gaussian Processes. Providence,
RI:AMS Translation of Mathematical Monographs, 10 MR1216518

[34] Hoeffding, W. and Wolfowitz, J. (1958) Distinguishability of sets of
distributions. Ann. Math. Statist. 29 700–718. MR0095555

[35] Jones, D. Kohler,M. and Walk, H. (2012) Weakly Universally Con-
sistent Forecasting of Stationary and Ergodic Time Series. IEEE Trans-
actions on Information Theory 58 1191–1202. MR2918019

[36] Kalikow, S. (1990) Random Markov processes and uniform martingales.
Israel Journal of Mathematics, 71 33–54. MR1074503

[37] Kalikow, S., Katznelson, Y. and Weiss, B. (1992) Finitarily deter-
ministic generators for zero entropy systems. Israel Journal of Mathemat-
ics 79 33–45. MR1195252

[38] Kalocinski, D. and Steifer, T. (2019) An Almost Perfectly Predictable
Process with No Optimal Predictor In: 2019 IEEE International Sympo-
sium on Information Theory (ISIT) NEW YORK: IEEE, 2504–2508.

[39] Kalocinski, D. and Steifer, T. (2019) On unstable and unoptimal
prediction Mathematical Logic Quarterly 65 218–227.

[40] Keane, M. (1972) Strongly mixing g-measures. Invent. Math. 16 309–
324. MR0310193

[41] Keane, M. and Smorodinsky, M. (1979) Bernoulli schemes of the same
entropy are finitarily isomorphic. Ann. of Math. 109 397–406. MR0528969

[42] Khaleghi A., Ryabko, D., Mary, J. and Preux P. (2016) Consis-
tent Algorithms for Clustering Time Series Journal of Machine Learning
Research 3 1–32. MR3482923

[43] Khudanpur, S. and Narayan, P. (2002) Order Estimation for a Special
Class of Hidden Markov Sources and Binary Renewal Processses. IEEE
Transactions on Information Theory 48 1704–1713. MR1909484

[44] Kieffer, J. (1993) Strongly consistent code-based identification and or-
der estimation for constrained finite-state model classes. IEEE Transac-
tions on Information Theory 39 893–902. MR1237719

https://www.ams.org/mathscinet-getitem?mr=1725166
https://www.ams.org/mathscinet-getitem?mr=1607704
https://www.ams.org/mathscinet-getitem?mr=2317147
https://www.ams.org/mathscinet-getitem?mr=3333341
https://www.ams.org/mathscinet-getitem?mr=2824872
https://www.ams.org/mathscinet-getitem?mr=0176520
https://www.ams.org/mathscinet-getitem?mr=1216518
https://www.ams.org/mathscinet-getitem?mr=0095555
https://www.ams.org/mathscinet-getitem?mr=2918019
https://www.ams.org/mathscinet-getitem?mr=1074503
https://www.ams.org/mathscinet-getitem?mr=1195252
https://www.ams.org/mathscinet-getitem?mr=0310193
https://www.ams.org/mathscinet-getitem?mr=0528969
https://www.ams.org/mathscinet-getitem?mr=3482923
https://www.ams.org/mathscinet-getitem?mr=1909484
https://www.ams.org/mathscinet-getitem?mr=1237719


128 G. Morvai and B. Weiss

[45] Kolmogorov, A.N. (1959) Entropy per unit time as a metric invari-
ant of automorphisms. (Russian), Dokl. Akad. Nauk SSSR 124 754–755.
MR0103255

[46] Kontoyiannis, I., Algoet, P., Suhov, Yu. M. and Wyner, A.J.

(1998) Nonparametric entropy estimation for stationary processes and
random fields, with application to English text. IEEE Transactions on
Information Theory 44 1319–1327. MR1616653

[47] Kraft, Ch. (1955) Some conditions for consistency and uniform con-
sistency of statistical procedures. Univ. California Publ. Statist. 2, pp.
125–141. MR0073896
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