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Abstract: We consider group testing studies where a relatively inexpen-
sive but imperfect assay and a perfectly accurate but higher-priced assay are
both available. The primary goal is to accurately estimate the prevalence
of a trait of interest, with the error rates of the imperfect assay treated as
nuisance parameters. Considering the costs for performing the two assays
and enrolling subjects, we propose a Ds-optimal mixed design to provide
maximal information about the prevalence. We show that extreme values
for the cost of the perfect assay lead to designs in which only one of the
two assays is used, but otherwise the optimal designs use both assays. We
provide a guaranteed algorithm to efficiently build an optimal design on
discrete design spaces. Our computational results also show the robustness
of the proposed design.
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1. Introduction

Estimating the proportion of a population having a trait, for example, the preva-
lence of a disease, is an important objective in scientific research and is full of
history. When the disease or the trait is rare and the individual samples can be
pooled as a group sample to be tested simultaneously, group testing, also known
as pooled testing, can be applied to save cost and to improve the estimation ac-
curacy. The key assumption of conventional group testing is that the test result
from a group sample is positive if and only if at least one individual in the group
has the trait. Ever since Dorfman (1943), the group testing approach has found
numerous applications, such as human and plant disease screening and surveil-
lance (Pilcher et al., 2005; Liu et al., 2011; Saá et al., 2018), genetics studies
(Gastwirth, 2000), and drug development (Xie et al., 2001).

Most theoretical studies on group testing only consider the setting where
all tests are performed using the same assay. Some researchers make a sim-
plified assumption that the test is perfect (Hughes-Oliver and Swallow, 1994;
Hughes-Oliver and Rosenberger, 2000) or that the testing error rates are known
values (Tu et al., 1995; Liu et al., 2012), while others allow the error rates to be
estimated from the data (Huang et al., 2017, 2020).

In practice, the tests used in most group testing experiments are likely to
have imperfect performance, and the error rates for the target population are
unknown to the researchers. However, in some situations a gold standard assay,
which is perfectly accurate but may be too expensive to be adopted widely, such
as the Western-blot assay for HIV screening (Delaney et al., 2006), is available.
Zhang et al. (2014) provided an optimal validation subsample design to effi-
ciently estimate the unknown prevalence in their setting. Their main idea was
that all group samples with a common size are tested by an inexpensive assay
to provide a large amount of mixed information about the prevalence and the
testing error rates. In addition, some samples were tested a second time using
the gold standard to characterize the error rates, which improved the estimation
and identification of the prevalence.

This work motivates us to consider the design problem under a more flexible
set-up: (i) Our optimal designs are sought from among all possible designs,
without any restriction on the number of different group sizes. (ii) We consider
mixed designs based on three testing procedures: each group sample is tested
either by only one of the two assays, or by both assays. (iii) We utilize the cost
considerations as in Huang et al. (2020), that is, the relative costs for performing
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assays and for enrolling subjects, and then we fix the total budget and control
the numbers of tests and subjects through their costs. In particular, according
to (iii), when prevalence estimation is the only interest, only the gold standard
is used when its cost is sufficiently low, and only the regular assay is used when
the cost of the gold standard is sufficiently high; besides these two extreme
conditions, a mixed design of the three procedures should be adopted.

The outline of this paper is as follows. We introduce some statistical back-
ground in Section 2. In Section 3, we theoretically characterize a class of designs
containing the optimal ones, and then we provide a search algorithm to obtain
an optimal design in this class. We show some examples and discuss computa-
tion and other practical issues in Section 4. All proofs and technical details are
given in Appendix A.

2. Modeling and cost framework

We refer to the cheaper, imperfect assay as the regular assay, and the higher-
priced, perfect assay as the gold standard. The testing procedures based on only
the regular assay, only the gold standard, or both assays are denoted as proce-
dures r, g, and b respectively. Let θ = (p0, p1, p2)

�, where p0 is the prevalence,
and p1 and p2 are respectively the true positive and true negative rates of the
regular test. The parameters p1 and p2 are also known as sensitivity and speci-
ficity, respectively. We assume that p0 ∈ (0, 1), p1, p2 ∈ (0.5, 1], the two types
of testing errors of the regular test occur randomly with error rates 1− p1 and
1−p2, respectively, and there is no testing error for the gold standard. Hence, for
the procedure based on only the regular assay, the positive response probability
(either true or false positive) of a trial with group size x is

πr(x) = πr(x | θ) = p1 {1− (1− p0)
x}+ (1− p2) (1− p0)

x
.

Similarly, for the procedure based on only the gold standard, the positive re-
sponse probability of a trial with group size x is

πg(x) = πg(x | θ) = 1− (1− p0)
x.

Moreover, when both assays are applied to the same group sample, the proba-
bilities of observing that the regular assay has a true negative, a false negative,
a false positive, and a true positive are

πb(x) = πb(x | θ) = (π00
b
(x), π01

b
(x), π10

b
(x), π11

b
(x))�,

where

π00
b
(x) = p2(1− p0)

x, π01
b
(x) = (1− p1){1− (1− p0)

x},
π10
b
(x) = (1− p2)(1− p0)

x, π11
b
(x) = p1{1− (1− p0)

x}.

In practice, there are generally limits on the group sizes; therefore, we consider
designs subject to a known group size constraint 1 ≤ xL ≤ x ≤ xU < ∞, where
the limits on the group sizes are driven by practical considerations.
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To introduce costs, we let the total budget be C, and we assume that the
costs of performing an assay and enrolling a subject are c0p and c1p, respectively,
where the testing procedure is p = r, g, or b. In practice, these costs are known,
with cir ≤ cig ≤ cib for i = 0, 1. Without loss of generality, we set the cost
for a regular individual test to satisfy the constraint c0r + c1r = 1, and the
total budget C refers to how many trials with regular individual testing can be
afforded. The cost function of a trial with group size x using procedure p = r,g,
or b is denoted as

cp(x) = c0p + c1px. (2.1)

When the gold standard is not available, the scenario with a fixed total number
of trials (Liu et al., 2012; Zhang et al., 2014; Huang et al., 2017) is equivalent to
setting c0r = 1, and the scenario with a fixed total number of subjects (Tu et al.,
1995; Liu et al., 2012; Zhang et al., 2014) is equivalent to setting c0r = 0.

When the three testing procedures are all available, a mixed design can be
utilized. Let P = {r,g,b} be the set of procedures. An experiment consists of
nip trials with group size xip, where xi1p �= xi2p if i1 �= i2, under procedure
p ∈ P for i = 1, . . . , kp. For such an experiment, we denote a mixed design ξ
with total budget C =

∑
p∈P

∑kp

i=1 nipcp(xip) as

ξ =
∑
p∈P

wpξp =
∑
p∈P

kp∑
i=1

wipA
p

xip
, (2.2)

where wip = nipcp(xip)/C is the proportion of budget expended on xip, wp =∑kp

i=1 wip is the proportion of budget expended on procedure p, Ap

x refers to

the single-point design with procedure p at size x, and ξp =
∑kp

i=1(wip/wp)A
p

xip

refers to the sub-design under procedure p.
For such an experiment, let yir ∼ binomial(nir, πr(xir)) be the number of

positive responses at xir for i = 1, . . . , kr; let yig ∼ binomial(nig, πg(xig))
be the number of positive responses at xig for i = 1, . . . , kg; and let yib =
(y00ib , y

01
ib , y

10
ib , y

11
ib )

� ∼ multinomial(nib, πb(xib)) be the number of true negative,
false negative, false positive, and true positive responses at xib. Thus, after
subtracting an unimportant additive constant, the log-likelihood function of θ
under design ξ in equation (2.2) is a linear combination of the log-likelihood
functions under the single-point designs

L(θ) = C
∑
p∈P

kp∑
i=1

wip�p(θ | xip), (2.3)

where

�p(θ | xip) =
1

cp(xip)

{
yip
nip

log(πp(xip | θ)) + (1− yip
nip

) log(1− πp(xip | θ))
}

for p = r or g, and

�b(θ | xib) =
1

cb(xib)

1∑
j,j′=0

{
yjj

′

ib

nib
log(πjj′

b
(xib | θ))

}
.
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The maximum likelihood estimate θ̂ is obtained by maximizing function (2.3),

and the covariance matrix of θ̂ is asymptotically proportional to the inverse of
the information matrix of ξ, which is a linear combination of the information
matrices of the corresponding single-point designs,

M(ξ) =
∑
p∈P

kp∑
i=1

wipM(Ap

xip
), (2.4)

where

M(Ap

x) = Mp(x) = λp(x)fp(x)fp(x)
� for p = r,g,

M(Ab

x) = Mb(x) =

2∑
j=0

λbj(x)fbj(x)fbj(x)
�,

with

λp(x) = [cp(x)πp(x){1− πp(x)}]−1
for p = r,g,

λb0(x) = [cb(x)πg(x){1− πg(x)}]−1
,

λb1(x) = πg(x) {cb(x)p1(1− p1)}−1
,

λb2(x) = {1− πg(x)} {cb(x)p2(1− p2)}−1
,

fr(x) =
(
(p1 + p2 − 1)x(1− p0)

x−1, 1− (1− p0)
x,−(1− p0)

x
)�

,

fg(x) = fb0(x) =
(
x(1− p0)

x−1, 0, 0
)�

,

fb1(x) = (0, 1, 0)
�
, and

fb2(x) = (0, 0, 1)
�
.

To precisely estimate the prevalence p0, we seek a design that minimizes the
variance of p̂0 by the choice of kp and (xip, wip) for i = 1, . . . , kp and p ∈ P
under the cost constraint C and the design space constraint [xL, xU ]. In design
theory, the design corresponds to a Ds-optimal design (Atkinson et al., 2007,
Chapter 10.3), which maximizes

Φs{M(ξ)} = − log
{
M(ξ)−

}
11

(2.5)

among all designs under which p0 is estimable, whereM− is a generalized inverse
of matrix M and M11 is its (1,1)-entry. From (2.4) and (2.5), the optimality of
a design depends on the unknown parameters θ = (p0, p1, p2)

� and on the cost
functions (2.1) as inverse weights, but is invariant to the total budget C.

3. Ds-optimal budget-constrained designs

In this section we theoretically characterize Ds-optimal budget-constrained de-
signs via the approximate design framework proposed by Kiefer (1974). We first
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consider the design space as the interval [xL, xU ] to obtain an overview of the
behavior of these designs. Then we use these results to provide a guaranteed
algorithm to obtain optimal designs supported on integers within [xL, xU ] for
practical use.

Intuitively, when cg(x) is close to cr(x), one may prefer only to have gold
standard tests, which means kb = kr = 0. In contrast, when cg(x) is much higher
than cr(x), one may prefer only to have regular tests, and thus kb = kg = 0.
Before addressing the relationship between cost functions and the best choice
of {kr, kg, kb}, we first define a valid design to be one where p0 is estimable. We
then provide a class Ξ of designs in which there exists a Ds-optimal design, with
sharp upper bounds for the numbers of group sizes under the three procedures,
where

Ξ = {ξ : ξ is valid,max(kr − 2, kg, kb) = 1}.

The following proposition characterizes all valid designs and establishes that Ξ
contains aDs-optimal design. Its proof and other theoretical results are provided
in Appendix A.

Proposition 3.1.

(i) A design ξ is valid if and only if max(kr − 2, kg, kb) ≥ 1.
(ii) There exists a Ds-optimal design within Ξ.

Note that kr ≥ 3 or kb ≥ 1 yields a nonsingular information matrix. Now
we partition Ξ into subclasses. For a nonempty subset of procedures Q ⊆ P ,
we state a design ξ ∈ Ξ is a Q-design if kp > 0 for p ∈ Q and kp′ = 0 for
p
′ /∈ Q. We denote that ΞQ is the collection of all Q-designs. Therefore, Ξ

is partitioned as {Ξr,Ξg,Ξb,Ξrg,Ξrb,Ξgb,Ξrgb}. We further state that a Q-
design ξQ is DQ

s -optimal if it is Ds-optimal among all Q-designs. Since Ds-
optimality is equivalent to c-optimality with c = (1, 0, 0)� (Atkinson et al., 2007,

Chapter 17.5), which minimizes the asymptotic variance of c�θ̂, a Ds-optimal
design must satisfy the generalized Elfving’s theorem (Dette and Holland-Letz,
2009). In the next theorem we show that we only need to search for aDs-optimal
design in Ξr, Ξg, Ξb, and Ξrb.

Theorem 3.1. There exists a Ds-optimal design with either kg = 0 or kr+kb =
0.

Theorem 3.1 greatly simplifies the problem by eliminating the need to con-
sider three of the most difficult subclasses, namely Ξrg,Ξgb, and Ξrgb, among the
seven. For the remaining four subclasses, we provide the corresponding optimal
designs in three of them below, leaving only one subclass for further considera-
tion. Now we characterizeDr

s -,D
g

s -, andDb

s -optimal designs, respectively. Theo-
rem 2 in Huang et al. (2020) provides the Dr

s -optimal design ξ∗
r
which is a three-

point design involving the smallest allowable group size xL. Here we provide D
g

s -
and Db

s -optimal designs using the complete class approach (Yang and Stufken,
2012). Let ξ∗

p
= Ap

x∗
p

be the single-point design at x∗
p
with procedure p = g or
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b, where

x∗
p
= arg max

x∈[xL,xU ]

x2(1− p0)
x

(1− (1− p0)x)cp(x)
. (3.1)

We have the following proposition.

Proposition 3.2.

(i) The design ξ∗
p
is Dp

s-optimal for p = g or b.
(ii) The design ξ∗

g
is at least as efficient as ξ∗

b
in terms of the Ds-criterion

(2.5).

Through Theorem 3.1, one of the three designs, ξ∗
r
, ξ∗

g
, and ξ∗

b
, may be Ds-

optimal among all valid designs. However, if none of them is, then there must
exist an rb-design that is Ds-optimal. More explicitly, Theorem 3.1 and Propo-
sition 3.2 show that either ξ∗

g
or an optimal design in Ξr⊕b ≡ Ξr ∪ Ξb ∪ Ξrb

is Ds-optimal among all valid designs, where the latter may be ξ∗
r
, ξ∗

b
, or an

rb-design. Moreover, if ξ∗
b
is optimal within Ξr⊕b, then ξ∗

g
must outperform all

designs in Ξr⊕b. Otherwise, we need to check whether ξ∗
g
or an optimal design

in Ξr⊕b performs better.
Furthermore, we state that a design ξ ∈ Ξr⊕b is Dr⊕b

s -optimal if it is Ds-
optimal within Ξr⊕b. Now we consider Dr⊕b

s -optimal designs. Proposition 3.1
implies that valid designs in Ξr⊕b have nonsingular information matrices. There-
fore, it is convenient to utilize the general equivalence theorem (Kiefer, 1974)
to check whether ξ∗

r
, ξ∗

b
, or an r⊕b-design is Dr⊕b

s -optimal. We first state some
notations. For a design ξ ∈ Ξr⊕b and a single-point design Ap

x with procedure
p = r or b, we define the directional derivative of Φs at M(ξ) in the direction
M(Ap

x) as

φp(x, ξ) = lim
δ→0+

1

δ
[Φs{M(ξ)} − Φs{M((1− δ)ξ + δAp

x)}]

= tr{M(ξ)−1M(Ap

x)} − tr{M̃(ξ)−1M̃(Ap

x)} − 1,

where M̃ is the 2 × 2 submatrix of M after deleting the first row and the
first column. We have the following theorem based on the proof of the general
equivalence theorem.

Theorem 3.2. A design ξ ∈ Ξr⊕b is Dr⊕b

s -optimal if and only if

max
p=r,b

max
x∈[xL,xU ]

φp(x, ξ) = 0.

Moreover, ξ∗
r
is Dr⊕b

s -optimal if and only if maxx φb(x, ξ
∗
r
) ≤ 0, and ξ∗

b
is Dr⊕b

s -
optimal if and only if maxx φr(x, ξ

∗
b
) ≤ 0.

In practice, group testing designs can only be supported on integers. Above
we provide some key properties of Ds-optimal designs supported on the interval
[xL, xU ]. Our proofs of Propositions 3.1(i) and 3.2, and of Theorems 3.1 and 3.2
still hold for the integer-valued design space Ω(i) = {xL, . . . , xU}. We state
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that the Ds(i)-optimality is the Ds-optimality among integer-supported designs,

where “(i)” stands for integers. A Dr

s(i)-optimal design, denoted as ξ
(i)

r , can be

obtained from Algorithm 1 in Huang et al. (2020). Moreover, Dg

s(i)- and Db

s(i)-

optimal designs, ξ
(i)

g and ξ
(i)

b , are respectively supported on the integers closest
to x∗

g
and x∗

b
in (3.1) for p = g or b. Therefore, using similar arguments as

above, Theorem 3.1 and Proposition 3.2 show that either ξ
(i)

g or a Dr⊕b

s(i) -optimal

design is Ds(i)-optimal among all designs supported on Ω(i).

First we can utilize Theorem 3.2 to check whether ξ
(i)

r or ξ
(i)

b is Dr⊕b

s(i) -

optimal. If none of them is, we provide a guaranteed algorithm based on The-
orem 3.2 to obtain a Dr⊕b

s(i) -optimal design. For a design ξ and a procedure p,

let φ̃p(ξ) = maxx φp(x, ξ) and let x̃p(ξ) be the corresponding maximizer. The
proposed algorithm is presented as follows.

Algorithm 3.1 Construct a Dr⊕b

s(i) -optimal design ξ
(i)

r⊕b
.

1: Obtain a Dr

s(i)
-optimal design ξ

(i)

r
. If φ̃b(ξ

(i)

r
) ≤ 0, then ξ

(i)

r⊕b
← ξ

(i)

r
and break.

2: Obtain a Db

s(i)
-optimal design ξ

(i)

b
. If φ̃r(ξ

(i)

b
) ≤ 0, then ξ

(i)

r⊕b
← ξ

(i)

b
and break.

3: Obtain an initial design ξ
(1)
rb

=
{
(X

(1)
r

, X
(1)
b

), (W
(1)
r

,W
(1)
b

)
}
:

3.1: support points X
(1)
r

=
{
x̃r(ξ

(i)

b
)
}
, and X

(1)
b

= {x(i)

b
};

3.2: weights (W
(1)
r

,W
(1)
b

) = argmaxWr,Wb
Φs

{
(X

(1)
r

, X
(1)
b

), (Wr,Wb)
}
.

4: Let i = 1. While max{φ̃r(ξ
(i)
rb

), φ̃b(ξ
(i)
rb

)} > 0, do:

4.1: If φ̃r(ξ
(i)
rb

) ≥ φ̃b(ξ
(i)
rb

), then X
(i+1)
r

← X
(i)
r

∪ {x̃r(ξ
(i)
rb

)} and X
(i+1)
b

← X
(i)
b

,

else X
(i+1)
r

← X
(i)
r

and X
(i+1)
b

← X
(i)
b

∪ {x̃b(ξ
(i)
rb

)}.

4.2: Obtain (W
(i+1)
r

,W
(i+1)
b

) = argmaxWr,Wb
Φs{(X(i+1)

r
, X

(i+1)
b

), (Wr,Wb)}; delete
those x having zero weight.

4.3: Let ξ
(i+1)
rb

= {(X(i+1)
r

, X
(i+1)
b

), (W
(i+1)
r

,W
(i+1)
b

)}; let i ← i+ 1.

5: ξ
(i)

r⊕b
← ξ

(i)
rb

. End.

Once we obtain a Dr⊕b

s(i) -optimal design through Algorithm 3.1, we can com-

pare it with ξ
(i)

g to check which one is Ds(i)-optimal, using the algorithm below.

Algorithm 3.2 Construct a Ds-optimal design ξ(i).

1: Obtain ξ
(i)

g
and ξ

(i)

r⊕b
.

2: If ξ
(i)

r⊕b
has Xr = ∅ then ξ(i) ← ξ

(i)

g
and break.

3: If Ψs(ξ
(i)

g
) ≥ Ψs(ξ

(i)

r⊕b
) then ξ(i) ← ξ

(i)

g
else ξ(i) ← ξ

(i)

r⊕b
. End.

Theorems 3.1 and 3.2 guarantee that the design obtained by Algorithms 3.1
and 3.2 must be Ds-optimal. Algorithm 3.1 is guaranteed to terminate in a finite
number of iterations, and it usually stops within ten iterations in our experience.
The finite convergence of Algorithm 3.1 is due to its finite design space, and
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the sequence of designs is strictly monotonic with respect to the Ds-criterion.
Moreover, as a result of the convexity of the design criterion, this stepwise ascent
algorithm converges to a global optimum. Note that these two algorithms which
apply to discrete design spaces sometimes provide designs with more group sizes
than stated in Proposition 3.1(ii), which applies to continuous design spaces. For
example, in Section 4.2 we observe some optimal designs having two group sizes
under procedure b, in contrast to the setting where kb ≤ 1 in Proposition 3.1(ii).
This is because when an optimal value for the continuous design space is not an
integer, and the two integers closest to it present roughly equal performance, the
design including both integers may perform better than the designs including
either one or the other.

Remark 3.1. In some practical situations only procedures r and g are avail-
able; for example, a group sample can only be tested once by either one of the
two assays. Under this simpler setting, Theorem 3.1 indicates that a mixed de-
sign incorporating procedures r and g is not necessary. The better one between

ξ
(i)

r and ξ
(i)

g with respect to the Ds-criterion is optimal.

Remark 3.2. For an approximate mixed design ξ and a given total budget
C, the expected number of trials n0

ip = Cwip/cp(xip) with group size xip under
procedure p is not guaranteed to be an integer. For practical use, we obtain ξ
with total budget C by implementing a two-step efficient rounding procedure for
a budget-constrained design, introduced in Section 3.2 of Huang et al. (2020).
More explicitly, we first allocate the budget to have �n0

ip
 trials with group
size xip under procedure p, where �x
 is the largest integer not greater than x.
Afterward, among all possible remaining budget allocations, we choose the one
that minimizes the asymptotic variance of the prevalence estimate.

Remark 3.3. The above theoretical results rely on the assumption that each in-
dividual sample having the disease is independently Bernoulli distributed with
prevalence p0. Although in practice, the sampling scheme is usually without
replacement, the Bernoulli assumption is acceptable when the number of indi-
viduals in the study is smaller than a certain percentage of the population size,
for instance, less than 20% (Christensen and Gardner, 2000).

4. Illustrative numerical examples

In this section we provide some numerical examples to study the performance
of the Ds(i)-optimal design when the working parameters may be moderately
misspecified, and to investigate how multiple assays together with the cost set-
tings affect the optimal designs. We consider the case where the working values
of prevalence, true positive rate, and true negative rate are θ̃ = (p̃0, p̃1, p̃2)

� =
(0.06, 0.95, 0.95)�, with group sizes in [1, 50]. We focus on the natural situation
where the cost for performing both the regular and gold standard assays on a
group sample is equal to the sum of the costs for performing the two assays
separately, and where enrolling a subject for each procedure has identical costs.
In this situation we only have two independent cost parameters c0r ∈ [0, 1]
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Fig 1. aeff(ξ̃ | θ) against different θ for 1000 draws. (a) aeff against the prevalence p0;
(b) aeff against the true positive rate p1; (c) aeff against the true negative rate p2; (d)
summary of aeff for the 1000 draws.

and c0g ≥ c0r, whereas the other cost parameters are c0b = c0r + c0g and
c1r = c1g = c1b = 1− c0r.

4.1. Sensitivity analysis

Here we examine how moderately misspecified working parameters affect the
performance of the proposed Ds(i)-optimal design. We set c0r = 0.5 and c0g =

10. By Algorithm 3.2 with working parameters θ̃ = (0.06, 0.95, 0.95)�, we obtain
a Ds(i)-optimal design ξ̃ supported on group sizes 11 with procedure r and 14
with procedure b with weights 0.352 and 0.648, respectively. When the total
budget C = 8000, by Remark 3.2, we implement ξ̃ as 470 trials with size 11
under r and 296 trials with size 14 under b. The performance of ξ̃ under a true
value of θ is measured by the asymptotic efficiency

aeff(ξ̃ | θ) =
(
M(ξ∗(θ) | θ)−

)
11(

M(ξ̃ | θ)−
)
11

∈ [0, 1],

where ξ∗(θ) is a Ds(i)-optimal design under θ.
Suppose that the true value of θ comes from Θ = (0.03, 0.09)×(0.9, 1)2, which

covers θ̃. Figure 1 shows the asymptotic efficiency of ξ̃ for θ drawn randomly
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from Θ. Among the 1000 draws, the asymptotic efficiency of ξ̃ is always at least
60%, and is usually greater than 90% (860 draws), indicating that the design ξ̃
performs stably well. We also observe that the asymptotic efficiency decreases
as the true prevalence remains away from the working prevalence, and as the
true positive and true negative rates tend to one.

4.2. The role of multiple assays with cost considerations

Here we consider how the use of two assays together with cost constraints
leads to different optimal designs than arise when either of these features is
not present. We consider three different cases, with c0r = 1, 0.5, or 0 respec-
tively, and study how the optimal designs vary with c0g. Three properties of
variations concerning group sizes xip, weights (proportions of budget) wip, and
relative numbers of trials n0

ip/N , where N =
∑

i,p n
0
ip, for the design considered

are presented in Figures 2, 3, and 4.
First, we consider the case with c0r = 1, where subjects are cost-free. The

properties of the proposed Ds(i)-optimal designs for the selected c0g are shown
in Figure 2. As expected, a g-design and an r-design are optimal when c0g is
sufficiently low and sufficiently high, respectively, and an rb-design is optimal
otherwise. When the gold standard assay is sufficiently cheap, in this example
no more than twice the cost of a regular individual test, using only the gold
standard assay is the optimal strategy, as it provides the most information
about the prevalence. In contrast, when the gold standard assay is sufficiently
expensive, at least 17 times the cost of a regular individual test in this example,

it is optimal to run ξ
(i)

r which only uses procedure r.
Besides these two extreme situations, a mixed design incorporating proce-

dures r and b is optimal. In this case, the optimal design allocates more budget
on procedure b, but more trials on procedure r. Moreover, a group size based on

procedure r is close to the intermediate group size of ξ
(i)

r which mainly provides
information about the prevalence (Huang et al., 2017). In particular, when c0g
is moderately expensive (c0g ≥ 7 here), the optimal designs include the small-
est group size xL with procedure r, which provides cheap information about
the true negative rate to identify the prevalence (Huang et al., 2020). Moreover,
under such moderate c0g the optimal group sizes for the two procedures are
usually different, and there may be multiple group sizes for one procedure. This
indicates that using a common group size for both procedures r and b may not
be optimal when distinct sizes for different procedures are allowed.

Next, we consider the cases with c0r = 0.5 or c0r = 0, whereby in the latter
case the regular assay is cost-free. The properties of the proposed Ds(i)-optimal
designs for the selected c0g in these two cases are shown in Figures 3 and 4. We
observe patterns similar to those in Figure 2, where the optimal design strategy
as c0g increases is to first use procedure g only, then use a mixed design with
procedures r and b, and finally use procedure r only. In addition, as the subject
cost, c1r = 1 − c0r, grows, the r-designs are not favored because they usually
contain tests with extremely large group sizes (Huang et al., 2020).
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Fig 2. Ds-optimal designs against c0g for c0r = 1. Symbols (◦,×, •) refer to group sizes under
procedure r, g, and b, respectively; different sizes under the same symbol indicate different
group sizes under the same procedure: (a) group sizes xip; (b) weights wip; (c) relative numbers
of trials n0

ip/N .

Through Figures 2, 3 and 4, a design based on only procedure r is optimal
only when the gold standard assay is extremely expensive, c0g ≥ 17, 180, or 320
for the three cases considered here with subject cost c1r = 0, 0.5, or 1, respec-
tively. This indicates that as the subject costs grow, which is typical in modern
studies involving human subjects, it is often worthwhile to develop a gold stan-
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Fig 3. Ds-optimal designs against c0g for c0r = 0.5. Symbols (◦,×, •) refer to group sizes
under procedure r, g, and b, respectively; different sizes under the same symbol indicate
different group sizes under the same procedure: (a) group sizes xip; (b) weights wip; (c)
relative numbers of trials n0

ip/N .

dard assay, even when the imperfect regular assay is cost-free. Our results show
that mixed designs are often optimal and may substantially outperform single
assay approaches.
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Fig 4. Ds-optimal designs against c0g for c0r = 0. Symbols (◦,×, •) refer to group sizes under
procedure r, g, and b, respectively; different sizes under the same symbol indicate different
group sizes under the same procedure: (a) group sizes xip; (b) weights wip; (c) relative numbers
of trials n0

ip/N .

Appendix A: Supporting and technical materials

Here we provide the technical details of the propositions and theorems in the
main text. In Section A.1 we present some supporting materials mainly based
on the complete class approach. In Section A.2 we provide the technical proofs
of the propositions and theorems.
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A.1. Supporting materials

Firstly we provide the complete class results for procedures g and b based
on the framework in Yang and Stufken (2012). The design ξ1 is said to be at
least as informative as ξ0 under the Löwner ordering, denoted by ξ1 ≤L ξ2, if
M(ξ2)−M(ξ1) is nonnegative definite. Moreover, we state that a class of designs
Ξb1 ⊂ Ξb0 = {ξ : kb > 0, kr = kg = 0} is a complete class under procedure b

if for an arbitrary design ξ0 ∈ Ξb0, there exists a ξ1 ∈ Ξb1 such that ξ0 ≤L ξ1.
Now we present the following results.

Proposition A.1.

(i) For an arbitrary x ∈ [xL, xU ], A
g

x ≤L Ag

x∗
g

.
(ii) The class of designs Ξb = {ξ : kb = 1, kr = kg = 0} is complete under

procedure b.

Proof. For (i), note that the information matrix ofAg

x can be written asM(Ag

x) =
ν(x)e1e

�
1 , where e1 = (1, 0, 0)� and

ν(x) =
x2(1− p0)

x−2

(1− (1− p0)x)cg(x)
.

Therefore, by the definition of x∗
g
, we have that ∀x, Ag

x ≤L Ag

x∗
g

.
We prove (ii) using the complete class framework of Yang and Stufken (2012).

We first consider the case with c1b = 0. The information matrix of a design
ξb = {(xi, wi)}kb

i=1 ∈ Ξb0 can be written as

M(ξb) = P (θ)

(
kb∑
i=1

M1(θ; ri)

)
P (θ)�, (A.1)

where ri = (1 − p0)
xi ∈ (0, 1), P (θ) does not depend on xi, and M1(θ; r) is a

diagonal matrix with elements (b0(r), b1(x)− b2(r), b2(r)), where

b0(r) =
log(r)2r

1− r
, b1(r) = 1, and b2(r) = r.

Let h1,1(r) =
d
dr b2(r), h2,1(r) =

d
dr b0(r), and h2,2(r) =

d
dr

h2,1(r)
h1,1(r)

, then we have

that

−h1,1(r)× h2,2(r) =
−2(1− r + log(r))(1− r + r log(r))

r(1− r)3
> 0

for all r ∈ (0, 1). Therefore, by Theorem 2(d) in Yang and Stufken (2012) and
the proof thereof, for arbitrary r1 < r2 ∈ (0, 1) and w ∈ (0, 1), there exists an
r0 ∈ (r1, r2) such that

b2(r0) = wb2(r1) + (1− w)b2(r2) and b0(r0) > wb0(r1) + (1− w)b0(r2).

Therefore, Ξb is a complete class with respect to procedure b.
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Next we consider the case with c1B > 0. The information matrix of a design
ξb = {(xi, wi)}kB

i=1 can also be written as in (A.1). However, now the elements
of the core diagonal matrix M1(θ; r) are respectively

b0(r) =
log(r)2r

(c′ − log(r))(1− r)
, b1(r) =

1

c′ − log(r)
, and b2(r) =

r

c′ − log(r)
,

for c′ = c0b/c1b ≥ 0. In this case P (θ) is different from that in the c1B = 0 case,
and still does not depend on xi. Now let

h1,1(r) =
d

dr
b2(r), H2,1(r) =

d

dr

(
b1(r) 0
0 b0(r)

)
,

and H2,2(r) =
d

dr

H2,1(r)

h1,1(r)
.

Therefore, if −h1,1(r)×H2,2(r) is positive definite, we can use similar arguments
as when c1b = 0 to show that Ξb is a complete class with respect to procedure
b.

Now we prove that −h1,1(r)×H2,2(r) is positive definite. We have

−h1,1(r)×H2,2(r) =

(
h1(r) 0
0 h2(r)

)
,

where

h1(r) =
1

r2(c′ − log(r))(1 + c′ − log(r))
> 0, ∀r ∈ (0, 1),

and

h2(r) =
−2(1 + c′)(1− r + log(r))(1− r + r log(r))− (log(r))2(r − 2 + r2 − 2r log(r))

r(1− r)3(c′ − log(r))(1 + c′ − log(r))
,

where its denominator is positive, and the numerator, denoted by h3, is also
positive by the following arguments. For r ∈ (0, 1), since

∂

∂c′
h3(r) = −2(1− r + log(r))(1− r + r log(r)) > 0 and

∂

∂c′
h3(1) = 0,

we have that ∂
∂c′h3(r) > 0 for c′ ≥ 0. Hence,

h3(r) ≥ h3(r) |c′=0= h31(r) + h32(r) > 0,

where

h31(r) = −2(1− r)2 − (1 + r)(2− 2r + r log(r)) log(r) > 0,

h32(r) = 2(1− r + r log(r))(log(r))2 > 0.
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A.2. Technical proofs of the propositions and theorems

Proof of Proposition 3.1. To prove (i), let c = (1, 0, 0)�, and recall that p0 is
estimable under a design ξ if and only if c ∈ range(M(ξ)). For the necessarity,
we only need to show that the design is not valid when kr ≤ 2 and kg = kb = 0.
The proof comes form Lemma 1 of Huang et al. (2020) and is omitted.

Now we prove sufficiency. When kb ≥ 1, M(ξ) is nonsingular and therefore
c ∈ range(M(ξ)). When kg ≥ 1, the information matrix of ξ contains wgM(ξg)
which is proportional to cc�, and thus c ∈ range(M(ξ)). To prove that kr ≥ 3
implies M(ξ) is nonsingular, it is sufficient to show that for arbitrary 1 ≤ x1 <
x2 < x3, Γ = (fr(x1), fr(x2), fr(x3)) is nonsingular, where Γ = Γ0Γ1 with

Γ0 =

⎛⎝ p1+p2−1
1−p0

0 0

0 −1 1
0 −1 0

⎞⎠
and Γ1 =

⎛⎝ x1(1− p0)
x1 x2(1− p0)

x2 x3(1− p0)
x3

(1− p0)
x1 (1− p0)

x2 (1− p0)
x3

1 1 1

⎞⎠ .

Because a1 + a2(1 − p0)
x + a3x(1 − p0)

x has at most 2 real roots
(Karlin and Studden, 1966, page 10) for (a1, a2, a3) ∈ �3\(0, 0, 0), we have
that {s1, s2(1 − p0)

x, s3x(1 − p0)
x} is a Tchebyshev system for some si =

±1 (Karlin and Studden, 1966, page 22, Theorem 4.1). Therefore, |Γ1| �= 0
(Karlin and Studden, 1966, page 1, Definition 1.1), and this completes the proof.

We prove part (ii) as follows. First, use the general equivalence theorem
to show that kr of a Ds-optimal design cannot be greater than 3, which is
identical to part (i) of Theorem 2 in Huang et al. (2020) and is therefore omitted.
Moreover, Proposition A.1 implies that kg ≤ 1 and kb ≤ 1 are sufficient to ensure
the existence of a Ds-optimal design by the complete class approach under the
Löwner ordering (Yang and Stufken, 2012).

Proof of Theorem 3.1. This theorem is proved by the generalized Elfving’s theo-
rem (Dette and Holland-Letz, 2009, Theorem 3). If there is aDs-optimal design,
denoted by ξ = wrξr + wgξg + wbξb, with kr + kb ≥ 1 and kg ≥ 1, then ξg and
w′

r
ξr + w′

b
ξb are Ds-optimal, where w′

p
= wp

wr+wb

for procedures p = r or b.

Let μp(x) = λp(x)
1/2fp(x) for p = r,g,b0,b1, or b2. By Elfving’s theorem,

because ξ is also c-optimal with c = (1, 0, 0)�, there exists δip = ±1 for i =

1, . . . , kp, procedure p = r or g, and exists δibj for j = 0, 1, 2 with
∑2

j=0 δ
2
iBj = 1

for i = 1, . . . , kb, such that the Elfving’s representation of ξ,

kr∑
i=1

wirδirμr(xir) +

kg∑
i=1

wigδigμg(xig) +

kb∑
i=1

wib

2∑
j=0

δibjμbj(xib) = γc,

lies on the boundary of the generalized Elfving set E for some γ > 0.
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Because μg(x) ∝ c for all x, we have that both of the two designs ξg and
w′

r
ξr + w′

b
ξb must have their Elfving’s representations lying in the direction of

c. Therefore, it must be the case that the two representations are both equal to
γc, which means that the two designs are both Ds-optimal.

Proof of Proposition 3.2. Proposition A.1(i) directly shows that ξ∗
g

is Dg

s -
optimal. By Proposition A.1(ii), there exists a group size x such that Ab

x is
Db

s -optimal. By maximizing Φs{M(Ab

x)}, we get that x∗
b
is the optimal group

size. Finally, because

Ψs{M(Ab

x∗
b

)} ≤ Ψs{M(Ag

x∗
b

)} ≤ Ψs{M(Ag

x∗
g

)},

we have the desired result.

Proof of Theorem 3.2. Note that all designs in Ξr⊕b have a nonsingular infor-
mation matrix. If ξ1 is Dr⊕b

s -optimal, then for an arbitrary group size x and
procedure p = r or b, the directional derivative of Φs at M(ξ) in the direc-
tion M(Ap

x) must have φp(x, ξ) ≤ 0; otherwise there exists a δ0 > 0 such that
ξ2 = (1− δ0)ξ1 + δ0A

p

x ∈ Ξr⊕b and Φs{M(ξ2)} − Φs{M(ξ1)} > 0, which makes
a contradiction.

On the other hand, if ξ1 is not D
r⊕b

s -optimal, then there exists another design
ξ2 such that Φs{M(ξ2)} −Φs{M(ξ1)} > 0. Because M(ξ2) is a linear combina-
tion of the information matrices of its support points under the corresponding
procedures, we have that

0 < lim
δ→0+

1

δ
[Φs{M(ξ1)} − Φs{M(ξ2)}]

= tr{M(ξ1)
−1M(ξ2)} − tr{M̃(ξ1)

−1M̃(ξ2)} − 1

=
∑
p=r,b

kp∑
i=1

φp(x
(2)
ip , ξ1),

where x
(2)
ip s are the group sizes in ξ2. Therefore, there must exist some

φp(x
(2)
ip , ξ1) > 0.
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