
Electronic Journal of Statistics
Vol. 14 (2020) 4321–4360
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1778

Functional ARCH and GARCH models:

A Yule-Walker approach

Sebastian Kühnert
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Abstract: Conditional heteroskedastic financial time series are commonly
modelled by (G)ARCH processes. ARCH(1) and GARCH were recently es-
tablished in C[0, 1] and L2[0, 1]. This article provides sufficient conditions
for the existence of strictly stationary solutions, weak dependence and fi-
nite moments of (G)ARCH processes for any order in C[0, 1] and Lp[0, 1].
It deduces explicit asymptotic upper bounds of estimation errors for the
shift term, the complete (G)ARCH operators and the projections of ARCH
operators on finite-dimensional subspaces. The operator estimaton is based
on Yule-Walker equations, and estimating the GARCH operators also in-
volves a result estimating operators in invertible linear processes being valid
beyond the scope of (G)ARCH. Moreover, our results regarding (G)ARCH
can be transferred to functional AR(MA).
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1. Introduction

Volatility, usually measured by the variance, is one of the essential objects of
study of financial time series which are often strictly stationary and conditional
heteroskedastic. Latter means that the variances at any time conditioned on the
past are non-constant and randomly changing. A popular model exhibiting this
phenomenon for a real-valued process (Xk)k∈Z was established by Engle [9] in
1982, namely the autoregressive conditional heteroskedasticity (ARCH ) model

Xk = εkσk, σ2
k = δ +

p∑
i=1

αiX
2
k−i (1.1)

for which he was awarded the noble prize in economics in 2003. This model was
extended by Bollerslev [4] in 1986 to the generalized ARCH (GARCH ) model

Xk = εkσk, σ2
k = δ +

p∑
i=1

αiX
2
k−i +

q∑
j=1

βjσ
2
k−j . (1.2)

Various authors established modifications of uni- and multivariate (G)ARCH
models, studied their probabilistic properties and estimated the parameters, see
[1], [11], [12]. Along with a progress in processing techniques and since high-

4321

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/20-EJS1778
mailto:s.kuehnert_math@gmx.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


4322 S. Kühnert

resolution tick data are accessible and can be described as functions, it seems
reasonable to extend these models on infinite-dimensional spaces, which is un-
problematic from a mathematical point of view for complete, separable metric
spaces, see [24]. Such an extension enables the analysis to be more accurate. It
also allows applying our recurrence equations on continuous processes by de-
composing these in a natural way, see Figure 1, and to model random events
in time for which modelling by real-valued multivariate processes with discrete
time failed due to missing data where one is incapable of assigning a constant
vector length throughout time. For a detailed introduction in Functional Data
Analysis (FDA) and Functional Time Series Analysis (FTSA), the areas dealing
with random variables resp. time series with values in an infinite-dimensional
space, see [5], [10], [13], [16], [27], and for a compact synopsis (in German), see
[23]. Outstanding overviews of Functional Analysis including operator theory,
on which FDA and FTSA are built, are provided in [8], and [35] (in German).

Fig 1. Fictitious processes in the period 2020-2024, e.g. measured in USD, based on the same
pseudo random numbers. Processes of daily measurements with following errors: AR(1) with
parameter a1 = 0.6 (blue), which have constant variances conditioned on the past; ARCH(1)
where δ = 0.2, α1 = 0.6 (black); GARCH(1, 1) where δ = 0.2, α1 = 0.6, β1 = 0.3 (red).
Further, a continuous stochastic process (green) which also can be interpreted as a functional
time series consisting of four consecutive random functions, with step width 1/1000.

In 2013, Hörmann et al. [14] introduced ARCH(1) processes with values in
C[0, 1] and L2[0, 1], the spaces of continuous resp. measurable, square-Lebesgue
integrable real valued functions with domain [0, 1]. GARCH(1, 1) was carried out
on C[0, 1] and L2[0, 1] by Aue et al. [2] afterwards, and GARCH for any order
on L2[0, 1] by Cerovecki et al. [6] recently. All authors discussed the existence
of strictly stationary solutions and probabilistic features, consistently estimated
the parameters in L2[0, 1] and outlined applications. [14] estimated the shift
term and the ARCH(1) operator projected on a finite-dimensional subspace by
estimating its integral kernel. [2] used a least squares estimator for the projec-
tions of the GARCH(1, 1) parameters on a finite-dimensional subspace, and [6]
a quasi-maximum likelihood approach for the projections of the GARCH(p, q)
parameters on a finite-dimensional subspace for all orders p, q ∈ N and for the
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complete parameters for p = q = 1. For further work regarding functional time
series under conditional heteroskedasticity, we refer to [22] and [29].

This article develops ARCH and GARCH processes for any orders with values
in the function spaces Lp[0, 1] with p ∈ [1,∞) and C[0, 1] in particular. It pro-
vides sufficient conditions for the existence of strictly stationary solutions, weak
dependence and moments of these processes under mild conditions, and also dis-
cusses parameter estimation. The focus of the article is on deducing estimators
and explicit asymptotic upper bounds of the estimation errors for the shift term
and the complete operators of L2[0, 1]-valued ARCH and GARCH processes for
any order. Explicit asymptotic upper bounds of the estimation errors are also
derived for ARCH operators projected on finite-dimensional subspaces for any
order. The operator estimation is based on Yule-Walker equations and utilizes
upper bounds of eigenvalues and eigenfunctions, and the upper bounds of the
estimation errors for our GARCH operators depend on upper bounds of estima-
tion errors for operators in invertible linear processes. We also simulate possible
realizations of our processes and some of our estimators.

In this paper, we use following notation. a ∧ b := min(a, b) and a ∨ b :=
max(a, b) for a, b ∈ R. �·� denotes the floor function, sgn(·) the sign function,
δij the Kronecker delta with i, j ∈ Z, and 1A(·) the indicator function of a
set A. For functions f, g : D ⊆ R → R, we write f ∝ g resp. f � g if there
is a c ∈ R with f(x) = cg(x) resp. f(x) ≤ cg(x) for all x ∈ D. For sequences
(an)n∈N, (bn)n∈N ⊆ (0,∞), we write an ∼ bn if an

bn
→ 1, an 
 bn if an ∼ cbn

for some c �= 0, an = ω(bn) if bn = o(an) (for n → ∞) and an = Ω(bn) if
bn = O(an) (for n → ∞). Further, Ξ(an, bn) := ω(an) ∩ o(bn),Ξ[an, bn) :=
Ω(an) ∩ o(bn) and Ξ[an, bn] := Ω(an) ∩ O(bn). Let V be a vector space. Then,
V n := {(v1, ..., vn)T |v1, ..., vn ∈ V }, with n ∈ N, becomes a vector space by our
componentwise definition of scalar multiplication and vector addition. Further,
0V stands for the identity element of addition, and IV for the identity operator
from V to V , where operator always means linear mapping. For a space F
of functions f : [0, 1] → R, F>0 and F≥0 denote the sets of functions f ∈ F
with f(t) > 0 resp. f(t) ≥ 0 for λ-a.e. t ∈ [0, 1], where λ is the Lebesgue-
Borel measure on [0, 1]. f � g denotes the pointwise product of f, g ∈ F , with
f2 := f � f , if it is well-defined. Essential spaces F of functions f : [0, 1] → R

in this work are the space of continuous functions C[0, 1] endowed with the
supremum norm ||f ||∞ := supt∈[0,1] |f(t)| for f ∈ C[0, 1], the space of bounded
functions 	∞[0, 1] endowed with ||·||∞, and the spaces of (classes of) measurable
functions with absolutely Lebesgue integrable p-th power Lp[0, 1] for p ∈ [1,∞)

endowed with the norm ||f ||Lp[0,1] := (
∫ 1

0
|f(t)|p dt)1/p for f ∈ Lp[0, 1], with

integration w.r.t. λ. These are separable Banach spaces w.r.t. their norms, and

H := L2[0, 1] endowed with the inner product 〈f, g〉H :=
∫ 1

0
f(t)g(t) dt for

f, g ∈ H , with integration w.r.t. λ, is a separable Hilbert space. Hereafter, let
(B, || · ||B), (B′, || · ||B′) be Banach and (H, 〈·, ·〉H), (H′, 〈·, ·〉H′) be Hilbert spaces.
On Hilbert spaces we always use norms induced by their inner product, and
abbreviate ‘complete orthonormal system’ by CONS. We endow Banach spaces
(Bn, || · ||Bn) with the norm ||b||2Bn :=

∑n
i=1 ||bi||2B for b := (b1, ..., bn)

T ∈ Bn and
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Hilbert spaces (Hn, 〈·, ·〉Hn) with the inner product 〈h, h̃〉Hn :=
∑n

i=1〈hi, h̃i〉H
for h := (h1, ..., hn)

T, h̃ := (h̃1, ..., h̃n)
T ∈ Hn. Also, we define the following

spaces of operators. LB,B′ is the space of bounded operators from B to B′, with
LB = LB,B. Thereby, A

∗ denotes the adjoint of A ∈ LB,B′ . Further, SH,H′ and
NH,H′ are the spaces of Hilbert-Schmidt and nuclear operators from H to H′,
respectively, with SH = SH,H and NH = NH,H. The meaning of A being an
Hilbert-Schmidt and nuclear operator is that its singular values are square and
absolutely summable, respectively. Moreover, for the norms of the mentioned
spaces holds || · ||LH,H′ ≤ || · ||SH,H′ ≤ || · ||NH,H′ . Also, we define the operator
h ⊗ h′ := 〈h, ·〉Hh′ for h ∈ H, h′ ∈ H′. In all respects, we assume our random
elements to be defined on some common probability space (Ω,A,P). For B-
valued processes (Xk)k∈Z and (Yk)k∈Z, Xn = OP(Yn) (for n → ∞) denotes
that (Xk/Yk)k is asymptotically P-stochastic bounded. For p ∈ [1,∞), Lp

B =
Lp
B(Ω,A,P) denotes the space of (classes of) B-valued random variables X with

νp,B(X) := (E||X||pB)1/p < ∞, we call a process (Xk)k∈Z of B-valued random
variables Lp

B-process if Xk ∈ Lp
B for all k, and centered if E(Xk) = 0B for all k

with expectation in Bochner-integral sense, see [16], p.40–45.
This article is organized as follows. Section 2 studies probabilistic features of

our (G)ARCH processes. Section 3 introduces parameter estimators and derives
upper bounds. Section 4 conducts a simulation study. Section 5 summarizes the
main results and gives an outline for future research. Section 6 contains proofs.

2. Functional ARCH and GARCH models

Here, probabilistic features of F -valued ARCH and GARCH processes for any
order are derived. F stands either for Lp[0, 1] with p ∈ [1,∞), or for a separable
Banach space of functions f : [0, 1] → R endowed with the supremum norm ||·||∞
and being closed w.r.t. the pointwise product �. Latter is especially satisfied
for C[0, 1], but not for L∞[0, 1] which is closed w.r.t. � but inseparable. We de-
duce sufficient conditions for the existence of strictly stationary solutions, finite
moments and weak dependence. But firstly, we formally define our processes.

Definition 2.1. Let p ∈ N, q ∈ N0. Further, let (εk)k∈Z be an i.i.d. F -valued
process, δ ∈ F> 0 and αi, βj ∈ LF with αi, βj : F≥ 0 → F≥ 0 for all i, j. Then, if

Xk = εk � σk, σ2
k = δ +

p∑
i=1

αi(X
2
k−i) +

q∑
j=1

βj(σ
2
k−j) (2.1)

holds a.s. for all k, the F -valued process (Xk)k is an ARCH(p) process if q = 0
and αp �= 0LH , and a GARCH(p, q) process if q ∈ N and αp �= 0LH , βq �= 0LH .

Throughout, αi, βj , δ, εk, p, q, σk,Xk are the variables in the equations (2.1),
with αi = βj = 0LH for i > p, j > q, and we write r := p∨ q, s := p+ q. Defining
our ARCH model through (2.1) with q = 0 allows us to derive assertions for our
ARCH and GARCH processes simultaneously. (2.1) differs to (1.1) and (1.2)
for real-valued ARCH and GARCH, respectively, as follows. First, εk and σk in
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the left equation in (2.1) are assembled not through a common but a pointwise
product, being well-defined for our spaces F endowed with the norm || · ||∞,
and for Lp[0, 1] spaces additional assumptions are needed. Second, δ is a vector
and αi, βj are operators, instead of being scalars in the real-valued case. For the
operators when mapping from Lp[0, 1], further conditions are needed to ensure
well-definedness. Third, the conditional variance σ2

k of Xk given the past has to
be interpreted as a function rather than a non-negative number as usual.

2.1. Strictly stationary solutions

The identity (2.1) implies the state-space form

ς
(p,q)
k = δ

(p,q)
k + Ψ

(p,q)
k (ς

(p,q)
k−1 ) :⇐⇒ (2.2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 2
k

X 2
k−1
...

X 2
k−p+2

X 2
k−p+1

σ2
k

σ2
k−1
...

σ2
k−q+2

σ2
k−q+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ� ε2k
0F
...
0F
0F
δ
0F
...
0F
0F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�kα1 · · · · · · · · · �kαp �kβ1 · · · · · · · · · �kβq

IF 0LF
· · · · · · 0LF

0LF
0LF

· · · · · · 0LF

0LF
IF 0LF

· · · 0LF
0LF

. . .
. . . · · · 0LF

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0LF
· · · 0LF

IF 0LF
0LF

· · · 0LF
0LF

0LF

α1 · · · · · · · · · αp β1 · · · · · · · · · βq

0LF
0LF

· · · · · · 0LF
IF 0LF

· · · · · · 0LF

0LF

. . .
. . . · · · 0LF

0LF
IF 0LF

· · · 0LF

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0LF
· · · 0LF

0LF
0LF

0LF
· · · 0LF

IF 0LF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 2
k−1

X 2
k−2
...

X 2
k−p+1

X 2
k−p

σ2
k−1

σ2
k−2
...

σ2
k−q+1

σ2
k−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thereby, �k in the matrix above are operators mapping from Ḟ to F , with

�k(f) := f � ε2k , f ∈ Ḟ ,

where Ḟ denotes a function space defined by

Ḟ :=

{
L2p, if F = Lp,

F, if F is a Banach space w.r.t. || · ||∞.
(2.3)

Using the modification Ḟ of the initial space F in the definition of �k ensures
well-definedness, at least if ε2k ∈ Ḟ a.s. holds. If the i.i.d. errors εk satisfy

E ln(1 ∨ ||ε20 ||Ḟ ) < ∞, (2.4)

then in particular ||ε20 ||Ḟ < ∞ a.s. Thus indeed ε2k ∈ Ḟ a.s. for all k which implies
that �k is a well-defined operator a.s., and also bounded with

||�k ||LḞ,F
≤ ||ε2k ||Ḟ a.s. (2.5)

Hence, ς
(p,q)
k , δ

(p,q)
k ∈ F s a.s., and Ψ

(p,q)
k ∈ LF s a.s. if δ, ε2k, σ

2
k−q, ..., σ

2
k ∈ Ḟ a.s.

Moreover, (2.4) and || · ||LF
≤ || · ||LF,Ḟ

imply (see [23], p.28)

E ln(1 ∨ ||Ψ(p,q)
0 ||LFs) < ∞. (2.6)
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Since (Ψ
(p,q
k )k is i.i.d. and || · ||LFs is sub-multiplicative, [18], Theorem 6 yields

γ(p,q) := lim
k→∞

1

k
E ln

∣∣∣∣Ψ(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

1

∣∣∣∣
LFs

= lim
k→∞

1

k
ln
∣∣∣∣Ψ(p,q)

k Ψ
(p,q)
k−1 · · ·Ψ(p,q)

1

∣∣∣∣
LFs

a.s., (2.7)

where γ(p,q) is the top Lyapunov exponent of (Ψ
(p,q
k )k, with γ(p,q) ∈ [−∞,∞).

Remark 2.1. (a) The state-space form (2.2) rests upon the version in [11] used
for real-valued GARCH(p, q) (and ARCH(p)) processes.

(b) Aside from the fact that the condition (2.4) is applicable for a large number
of spaces, it is due to || · ||Ḟ ≤ || · ||∞ for any Ḟ in (2.3) also milder than the
condition E ln(1 ∨ ||ε20 ||∞) < ∞ in [6] where assertions for L2[0, 1]-valued
GARCH(p, q) processes were derived.

We are now in the position to state sufficient conditions for the existence of
non-anticipative, strictly stationary solutions of our ARCH(p) and GARCH(p, q)
processes. Thereby, a process (Yk)k∈Z is non-anticipative w.r.t. some F -valued
process (εk)k∈Z if there exists a measurable function f : F∞ → F so that

Yk = f(εk, εk−1, ...) (2.8)

holds a.s. for all k. If (εk)k∈Z is strictly stationary and ergodic, which is especially
the case if (εk)k is i.i.d., (2.8) implies that (Yk)k is also strictly stationary and
ergodic, see [32], Theorem 3.5.8.

Theorem 2.1. Let the requirements in Definition 2.1 hold, and also (2.4),
δ ∈ Ḟ>0 and αi, βj ∈ LF,Ḟ for all i, j.

(a) If

γ(p,q) < 0, (2.9)

the equations in (2.1) have an almost surely unique, strictly stationary,
non-anticipative w.r.t. (εk)k and ergodic solution where σ2

k = f(εk−1,
εk−2, ...) a.s. holds for all k for some measurable function f : F∞→ F .

(b) The equation (2.9) is satisfied if for some n ∈ N and ν > 0 holds

ψ(p,q)
n,ν := E

∣∣∣∣Ψ(p,q)
n Ψ

(p,q)
n−1 · · ·Ψ(p,q)

1

∣∣∣∣ν
LFs

< 1. (2.10)

Remark 2.2. (a) Theorem 2.1 generalizes Theorems 2.1, 2.3 in [14], 2.1-2.2
in [2] and 1 in [6]. That is because it provides sufficient conditions for
strictly stationary solutions ARCH and GARCH processes for any order
with values in F = Lp[0, 1] with p ∈ [1,∞) and in our Banach spaces F
endowed with || · ||∞, closed w.r.t. � (this includes C[0, 1]), whereas [2],
[14] discussed ARCH(1) resp. GARCH(1, 1) in C[0, 1] and L2[0, 1], and [6]
discussed GARCH for any order in L2[0, 1]. Further, we imposed bounded
instead of integral operators which is more restricting, and the condition
(2.4), on which the definition of γp,q is built, is milder than that of [6], see
Remark 2.1 (b), thus (2.9) is more general.
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(b) The condition (2.10), which is new for p ∨ q > 1 as far as we know, is
stricter but easier to validate than (2.9), see Section 4.

(c) In the scalar case, a condition as (2.9) is also necessary for the existence of
strictly stationary solutions, see [11]. However, [6], Remark 1, which also
applies here, notes that proving (2.9) to be a necessary condition is diffi-
cult, since norms in infinite-dimensional Banach spaces are not equivalent.

(d) [6], Proposition 1 also applies here. Thus, under (2.4) and (2.9), a sufficient
condition for the existence of a pointwise second-order stationary solution

of (2.1) is, that the spectral radius satisfies ρ(E(Ψ
(p,q)
0 )) < 1, with random

matrix Ψ
(p,q)
0 in (2.2) and expectation in Bochner-integral sense.

(e) For detailed examples of parameters and innovations for which both the
initial requirements of Theorem 2.1 and (2.10) hold, see Section 4.

2.2. Finite moments and weak dependence

Based on ideas in [2], [14], and with (2.10), we now deduce sufficient con-
ditions for the existence of finite moments and weak dependence in sense of
Lp-m-approximibility for our F -valued ARCH(p) and GARCH(p, q) processes.
Thereby, a process (Yk)k∈Z is Lp

F -m-approximable for p ≥ 1 if Yk = f(εk, εk−1, ...)
a.s. for all k for some i.i.d. F -valued process (εk)k∈Z and a measurable function
f : F∞ → F , and if

∞∑
m=1

νp,F (Ym− Y (m)
m ) < ∞, (2.11)

with Y
(m)
k := f(εk, εk−1, ..., εk−m+1, ε

(k)
k−m, ε

(k)
k−m−1, ...) and νp,F (·) = (E|| · ||pF )1/p,

where (ε
(n)
k )k∈Z are independent copies of (εk)k∈Z for all n. Further, we call

(Yk)k∈Z geometrically Lp
F -m-approximable if (Yk)k is Lp

F -m-approximable with

νp,F (Ym−Y
(m)
m ) = O(ρm) for some ρ ∈ (0, 1). For each m, (Y

(m)
k )k∈Z are strictly

stationary, m-dependent processes, and Y
(m)
k equals Yk in distribution. Lp

F -m-
approximibility of a process thus means that it is non-anticipative w.r.t. another
process and can be approximated by some m-dependent process so that the
approximation errors measured by the Lp

F -norm νp,F (·) are summable. For a
detailed introduction to Lp-m-approximibility, see [15].

Lemma 2.1. For some n ∈ N, ν > 0, let E||ε20 ||νḞ < ∞ and (2.10) hold. Then,

(a) E||X 2
0 ||νF < ∞ and E||σ2

0 ||νḞ < ∞;

(b) (X 2
k )k is geom. Lν

F -m- and (σ2
k )k is geom. Lν

Ḟ
-m-approximable.

Remark 2.3. (a) As far as we are aware, both parts of Lemma 2.1 are new for
functional ARCH(p) with p > 1 and part (b) for functional GARCH(p, q)
processes with p ∨ q > 1. Lemma 2.1 also extends the theories regarding
finite ν-th moments with ν > 0 and weak dependence in [14] and [2] where
only C[0, 1]- and H -valued ARCH(1) resp. GARCH(1, 1) processes with
H = L2[0, 1] were discussed, and it extends [6], Proposition 2.
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(b) [6], Proposition 2 gives a statement for finite moments without using a
moment condition as (2.10) for H -valued GARCH processes for any order.
They concluded that E||ε20 ||τ∞ < ∞ for some τ ∈ (0, 1), (2.9) and (Xk)k
being a strictly stationary solution of (2.1) implies that there exists s ∈
(0, τ) such that E||X 2

0 ||sH < ∞ and E||σ2
0 ||sH < ∞. By following the lines

of their proof, it becomes clear that this proposition also applies to any of
our F -valued (G)ARCH processes.

(c) The proofs of Theorem 2.1 and Lemma 2.1 neither rely on the fact that our
spaces consist of real-valued functions with domain [0, 1] nor on specific
features of their norms. Hence, these results are likely to be carried out
on further separable Banach and Hilbert spaces, provided the (G)ARCH
equations (2.1) are well-defined and prerequisites hold. It might be useful
to extend our processes, where n ∈ N, on separable Banach spaces Cn(D)
of functions on a compact domain D for which the n-th derivative is
continuous, L2[0, 1]n, separable Sobolev spaces (see [8]), Bn,Hn,LB and
SH where B and H denote separable Banach resp. Hilbert spaces, etc.

3. Estimation procedure and asymptotics

In this section, estimators for the parameters δ and αi, βj of H -valued ARCH(p)
and GARCH(p, q) processes with known orders p, q ∈ N with H = L2[0, 1] are
established and asymptotic upper bounds of the estimation errors are deduced.
The reason for restricting the estimation on L2[0, 1], the only separable Hilbert
space for which our (G)ARCH processes are defined, is that then an inner prod-
uct is at hand. The notion of an adjoint and of specific operators, e.g. covariance
operators, then becomes easier to grasp and verifying required auxiliary results
less cumbersome. Nevertheless, conducting our estimation procedure on separa-
ble Banach spaces is conceivable, since on these spaces covariance operators etc.
can be defined (see [5]) and operator estimation was already executed (see e.g.
[30]). Hereinafter, we put ˙H := L4[0, 1], and for assertions regarding (G)ARCH
we throughout impose the following.

Assumption 3.1. δ ∈ ˙H>0, αi, βj ∈ SH ∩ LH,Ḣ for all i and j,E||ε20 ||4Ḣ < ∞,

E(ε20(t)) = 1 (3.1)

for λ-a.e. t ∈ [0, 1], and there are n ∈ N and ν = 4 with (2.10).

(3.1) implies E(X 2
k (t)) = E(σ2

k (t)) for λ-a.e. t and all k. Thus, (2.1) yields

Zk = νk +

r∑
i=1

(αi + βi)(Zk−i) +

q∑
j=1

(−βj)(νk−j) (3.2)

a.s. for all k where αi = βj = 0LH for i > p, j > q,Zk := X 2
k − m2 with

m2 := E(X 2
1 ) and νk−j := X 2

k−j − σ2
k−j . Hence, ZZZ = (Zk)k is an H -valued

AR(p) resp. ARMA(r, q) process if q = 0 resp. q ∈ N, with stationary but
not i.i.d. innovation process ννν := (νk)k. Both ZZZ and ννν are centered, stationary,
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non-anticipative w.r.t. (εk)k and geometrically L4
H -m-approximable. For general

functional AR(MA) processes and their applications, we refer to [5], [19], [31].
When estimating the operators in our ARCH(p) and GARCH(p, q) model, we

use the related AR(p) resp. ARMA(r, q) equation (3.2), their associated Yule-
Walker equation which we establish later, and also impose the following.

Assumption 3.2. δ ∈ 	∞[0, 1], αi, βj ∈ LH, �∞[0,1] for all i, j, ||Γp,q||LH < 1 where

Γp,q :=
∑p

i=1 αi +
∑q

j=1 βj , and there is no closed, affine subspace U � H such

that P(ε20 ∈ U) = 1.

Lemma 3.1. Let Assumptions 3.1-3.2 hold. Then, there is no closed subspace
V � H such that P(X 2

0 ∈ V ) = 1,P(ν0 ∈ V ) = 1,P(Z0 ∈ V ) = 1, and the co-
variance operators C0;εεε2 ,C0;XXX 2 ,C0;ννν and C0;ZZZ , see Definition 3.1, are injective.

For our estimation procedure of the (G)ARCH parameters in (2.1), we need
further assumptions and asymptotic upper bounds of estimation errors for spe-
cific moments, operators, eigenvalues and eigenfunctions, all related to processes
with values in separable Hilbert spaces. These are stated for general, separable
Hilbert spaces, hereafter denoted by (H, 〈·, ·〉H), (H′, 〈·, ·〉H′) and (H′′, 〈·, ·〉H′′).
Also, we discuss estimating operators within a composition of operators in a
general manner which can be applied to our Yule-Walker equations from which
estimators for the ARCH and GARCH operators are derived.

We start with estimating moments.

Lemma 3.2. Let X = (Xk)k∈Z be an L4
H-m-approximable process. Then

m̂l = m̂l(X) := N−1
N∑
i=1

X l
i (3.3)

is an unbiased esimator for ml = ml(X) := E(X l
1) for l = 1, 2 and N ∈ N with

E||m̂l −ml||2H = O(N−1). (3.4)

The Yule-Walker equations for the estimation procedure of our (G)ARCH op-
erators contain lag-h-covariance operators of processes and some modifications,
known as lag-h-cross-covariance operators of two processes.

Definition 3.1. Let X = (Xk)k∈Z be a stationary L2
H-valued process and let

h ∈ Z. Then, the lag-h-covariance operator of X is defined by

Ch = Ch;X := E[(X0 −m1)⊗ (Xh −m1)], (3.5)

with m1 = m1(X) := E(X1), and its empirical version by

Ĉh = Ĉh;X :=

{
1

Nh−1

∑N
k=|h|+1(Xk − m̂1)⊗ (Xk+h − m̂1), 1−N < h < 0,

1
Nh−1

∑Nh

k=1(Xk − m̂1)⊗ (Xk+h − m̂1), 0 ≤ h < N − 1

(3.6)

where m̂1 = m̂1(X) := N−1
h

∑Nh

i=1 Xi, Nh := N − |h| and N ∈ N, |h| < N − 1.
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Lag-h-covariance operators Ch : H → H and its empirical versions Ĉh : H →
H are nuclear resp. bounded operators with finite-dimensional image, short Ch ∈
NH and Ĉh ∈ FH, with C ∗

h = C−h and Ĉ ∗
h = Ĉ−h for all h. C0, briefly called

covariance operator, and its empirical version Ĉ0 is also selfadjoint and positive
semi-definite. Our lag-h-covariance operators can be approximated for fixed h
and the absolute value of h tending to infinity not too fast, as follows.

Lemma 3.3. Let X = (Xk)k∈Z be an L4
H-m-approximable process. Then

||Ĉh −Ch||2SH =

{
OP(N

−1), if h ∈ Z is fixed,

OP(hN
−1), if h= hN = Ξ(1, N).

(3.7)

This result enables deriving upper bounds for further operators which we use
in our estimation procedure. Amongst others, for the operators

Sd,m := CXd(d),Xd+m
= E[Xd(d)⊗Xd+m] and Sd := C0;X(d)= E[Xd(d)⊗Xd(d)],

where X(d) := (Xk(d))k∈Z with d ∈ N stands for an Hd-valued processes with

Xk(d) := (Xk, Xk−1..., Xk−d+1)
T, k ∈ Z,

with entries of a centered process X = (Xk)k∈Z. The idea to use such operators
is based on [3]. Thereby, Sd,m∈ NHd,H and Sd∈ NHd with (see [23], p.56)

||Sd,m||NHd,H
≤

√
dE||X0||2H and ||Sd||NHd

= dE||X0||2H . (3.8)

Given a sample X1, ..., XN of X with N > d, for the operators

Ŝd,1 :=
1

Nd − 1

Nd∑
k=1

(
X2

k+d−1(d)− m̂1(XXX
2(d))

)
⊗
(
X2

k+d − m̂1(XXX
2)
)
, (3.9)

withNd :=N−d, m̂1(XXX
2(d)) :=N−1

d

∑Nd

i=1 X
2
d+i−1(d), m̂1(XXX

2) :=N−1
d

∑Nd

j=1 X
2
d+j ,

holds due to (3.7) (see [23], Definition and properties 4.36):

||Ŝd,1 −Sd,1||2SHd,H
=

{
OP(N

−1), if d ∈ N is fixed,

OP(d
2N−1), if d= dN = Ξ(1, N).

(3.10)

Further, using the empirical version of the covariance operator Sd defined by

Ŝd :=
1

Nd − 1

Nd∑
k=1

(
X2

k+d−1(d)− m̂1(XXX
2(d))

)
⊗
(
X2

k+d−1(d)− m̂1(XXX
2(d))

)
,

(3.11)

leads to

||Ŝd −Sd||2SHd
=

{
OP(N

−1), if d ∈ N is fixed,

OP(d
3N−1), if d= dN = Ξ(1, N).

(3.12)
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More probabilistic features and asymptotics of (lag-h-)covariance and cross-
covariance operators can be found in [5] and [16], and [28] thoroughly studied
the asymptotics of lag-h-cross-covariance operators.

Now, we derive asymptotic upper bounds of the estimation errors for the
eigenvalues and eigenfunctions of a compact, self-adjoint, positive semi-definite
operator K ∈ LH. We impose this operator to be estimated by a sequence
(K̂N )N∈N ⊆ LH of compact, self-adjoint, positive semi-definite operators, where

each K̂N depends on N observations of a stationary process X = (Xk)k∈Z.

Thereby, (kj)j∈N resp. (k̂j)j∈N represent the eigenfunction and (kj)j∈N resp.

(k̂j)j∈N the associated w.l.o.g. monotonically decreasing eigenvalue sequences

of K resp. K̂N . For this purpose, we need

|aj− bj | ≤ ||A−B||LH , j ∈ N. (3.13)

This is true according to [5], Lemma 4.2 where A,B ∈ KH have the singular
value decompositions A =

∑∞
j=1 aj(aj⊗ a′j) resp. B =

∑∞
j=1 bj(bj⊗ b′j).

Corollary 3.1. Let ||K̂N −K ||2LH
= OP(aN ) hold where aN = Ξ[N−1, 1). Then

sup
j∈N

(k̂j − kj)
2=OP(aN ). (3.14)

Moreover, if kbN = Ξ[
√
aN , 1] holds where bN = Ω(1), then

k̂bN = OP(kbN ) and kbN = OP(k̂bN ). (3.15)

(3.15) is used in various conversions in proofs, and means the eigenvalues in-
dexed by a constant or a sufficiently slowly decaying sequence are asymptotically
equal to their empirical versions up to a multiplicative constant in some sense.

Eigenfunctions are unambiguously determined except for their sign. Hence,
we estimate the eigenfunctions kj of KN if k̂j �⊥ kj a.s. by

k̂′j := sgn(〈k̂j , kj〉H)k̂j (3.16)

where sgn is the signum function. According to [5], Lemma 4.3, which can be
generalized to any compact, self-adjoint, positive semi-definite operator,

||k̂′j− kj ||H ≤ γ̃j ||K̂N − K ||LH , j ∈ N (3.17)

holds if the eigenspace of kj is one-dimensional. Thereby, γ̃1 := 2
√
2γ1 and

γ̃j := 2
√
2(γj−1∨ γj) for j > 1, where

γj := (kj − kj+1)
−1, j ∈ N (3.18)

are the reciprocal spectral gaps. The problem in using k̂′j to estimate kj is, that

k̂j �⊥ kj a.s. and thus sgn(〈k̂j , kj〉H) �= 0 a.s. is not guaranteed for all j,N , but
needed to obtain our upper bounds of the estimation errors for the operators in
the H -valued (G)ARCH model. Therefore, we modify k̂j in the following way.
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Let (hj)j∈N be a CONS of H and let (ζj)j∈N be a sequence of i.i.d., N(0, 1)-
distributed random variables, independent of the observations of X. Then

k̂′′j := k̂j +

∞∑
i=1

ζihi
i2N

(3.19)

is well-defined for all j,N with k̂′′j �⊥ kj a.s., hence sgn(〈k̂′′j , kj〉H′) �= 0 a.s. Thus
we estimate kj with

k̂′′′j := sgn(〈k̂′′j , kj〉H′) k̂j . (3.20)

Thereby, (k̂′′′j )j is a CONS of H a.s. according to the spectral theorem.

Assumption 3.3. For all j, kj �= kj+1 and κ(j) = kj holds where κ : R → R is a
convex function.

If K is injective and if the eigenvalues of K satisfy Assumption 3.3, then

k1 > k2 > · · · > 0, (3.21)

and for any sequence m=mN =Ω(1), due to convexity of κ, holds

sup
j≤m

γ̃j = γm = Ω(k−1
m ). (3.22)

Thereby, whether the sequence γm is asymptotically equal to or increases faster
than k−1

m depends on the precise decay rate of the eigenvalues km. E.g. km 
 e−m

implies γm 
 em 
 k−1
m , and km 
 m−2 yields γm 
 m3 but k−1

m 
 m2.

Lemma 3.4. Let K be injective, let Assumption 3.3 and ||K̂N −K ||2LH
=

OP(aN ) with aN =Ξ[N−1, 1) hold. Then,

||k̂′′′j − kj ||2H= OP(aN ), j ∈ N. (3.23)

Furthermore, for sequences m=mN =Ω(1) with γ2
maN = o(1) holds

sup
j≤m

||k̂′′′j − kj ||2H = OP(γ
2
maN ). (3.24)

The last preparatory step concerns estimating operators within a composition
of operators, to be precise, of bounded operators B ∈ LH′,H′′ in equations as

A = BC (3.25)

with A ∈ LH,H′′ , C ∈ LH,H′ . Identifiability of B in (3.25), meaning BC = B̃C

implies B = B̃, is only guaranteed if B has dense image. C is not necessarily
invertible, and if it is invertible and compact, it has no bounded inverse which
would be desirable for further conversions. However, a generalized inverse

C† := C∗(CC∗+ bnIH)−1 (3.26)

of C, where (bn)n∈N ⊂ (0,∞) is a null sequence, is invertible and bounded,
and C‡ := CC† is in a sense close to IH′ . When estimating operators without
projecting them on a finite-dimensional subspace, we also impose the following.
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Assumption 3.4. Let S ∈ SH,H′ and let (φij)i,j∈N be a CONS of SH,H′ . Then,
we say that (S, (φij)i,j) satisfies the Sobolev condition for β > 0 if

∞∑
i,j=1

〈S, φij〉2SH,H′(1 + i2β+ j2β) < ∞. (3.27)

WithJ c
m :={φij |i, j ∈ N, i ∨ j > m} and m=mN → ∞, (3.27) yields

∣∣∣∣∐
J c

m

S
∣∣∣∣2
SH,H′

=
∑

i∨j>m

〈S, φij〉2SH,H′ ≤ (1 +m2β)−1
∞∑

i,j=1

〈S, φij〉2SH,H′(1 + i2β+ j2β)

= O(m−2β). (3.28)

This identity is very benefical when estimating the completely observed opera-
tor, as can be seen in proofs of various subsequent assertions.

Remark 3.1. (a) Generalized inverses are commonly used for estimating op-
erators in FDA and FTSA. For instance, [26] utilized a generalized inverse
as (3.26) for estimating parameters relating to their continuous random
surfaces, and [25] regularized their covariance operator by finitely truncat-
ing the spectral decomposition of its inverse. For a comprehensive analysis
regarding generalized inverses, see Tikhonov and Arsenin [33].

(b) As far as we are aware, a Sobolov condition as (3.27) is new when esti-
mating (G)ARCH operators, see [2], [6], [13].

3.1. Estimation of δ in functional ARCH and GARCH

We derive an estimator for δ of H -valued ARCH and GARCH processes for
any order from ideas in [14] for estimating δ in ARCH(1). Taking the expected
value on both sides of the right equation in (2.1) leads under Assumption 3.1 to

δ = m2 −
r∑

i=1

(αi + βi)(m2), (3.29)

with r = p ∨ q and αi = βj = 0LH for i > p, j > q. As an estimator for δ, with

estimators α̂i, β̂j for αi, βj and m̂2 := N−1
∑N

i=1 X 2
i , we thus propose

δ̂ := m̂2 −
r∑

i=1

(α̂i + β̂i)(m̂2). (3.30)

Theorem 3.1. Let Assumption 3.1 hold. Then,

||δ̂ − δ||H = OP(N
−1/2) +

r∑
i=1

OP||α̂i − αi||LH +OP||β̂i − βi||LH . (3.31)
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In Sections 3.2-3.3 emerges that the estimation errors for any operator decay
at most as fast as N−1/2. Hence, due to Theorem 3.1 and since r = p ∨ q is
finite,

||δ̂ − δ||H = OP||α̂k − αk||LH resp. ||δ̂ − δ||H = OP||β̂l − βl||LH

if for all i, j holds ||α̂k − αk||LH = OP||α̂i − αi||LH as well as ||α̂k − αk||LH =

OP||β̂j−βj ||LH for some k, resp. ||β̂l−βl||LH = OP||α̂i−αi||LH and ||β̂l−βl||LH =

OP||β̂j − βj ||LH for some l.

3.2. Operator estimation in functional ARCH

In the following, XXX := (Xk)k∈Z is an H -valued ARCH(p) process with p ∈ N.
Under Assumption 3.1, ZZZ :=(Zk)k∈Z = (X 2

k −m2)k∈Z with m2 :=E(X 2
1 ) is an

H -valued AR(p) process with innovation process ννν :=(νk)k∈Z=(X 2
k − σ2

k )k∈Z,
see p.4328. Furthermore, ZZZ (p) := (Zk(p))k∈Z satisfies

Zk(p) = ν̃k(p) +A1(Zk−1(p)) :⇐⇒⎡
⎢⎢⎢⎢⎢⎣

Zk

Zk−1

...
Zk−p+2

Zk−p+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

νk
0H
...
0H
0H

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

α1 · · · · · · · · · αp

IH 0LH · · · · · · 0LH

0LH IH 0LH · · · 0LH

...
. . .

. . .
. . .

...
0LH · · · 0LH IH 0LH

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Zk−1

Zk−2

...
Zk−p+1

Zk−p

⎤
⎥⎥⎥⎥⎥⎦

a.s. for all k. The operator

α[p] :=[α1 · · · αp]

is an element of SH p,H and satisfies the Yule-Walker equation

Sp,1=α[p]Sp, (3.32)

with Sp,1 =CZp(p),Zp+1
,Sp =C0;ZZZ(p). Since Sp is injective as a consequence of

Lemma 3.1 (see [23], Lemma 4.35), α[p] can be identified from (3.32). As an
estimator we thus impose

α̂[p] := Ŝp,1Ŝ
†
p

ĉp,K∐
ĉp,1

= Ŝp,1Ŝp(Ŝ
2
p +ϑN IH p)−1

ĉp,K∐
ĉp,1

. (3.33)

Thereby, K ∈ N, (ϑN )N∈N ⊆ N with ϑN → 0, ĉp,1, ..., ĉp,K are the eigenfunctions

of Ŝp associated to the first biggest eigenvalues ĉp,1 ≥ · · · ≥ ĉp,K and
∐ĉp,K

ĉp,1
is

the operator projecting on lin{ĉp,1, ..., ĉp,K} ⊆ H p.

Theorem 3.2. Let Assumptions 3.1-3.2 hold, and also Assumption 3.3 for
the eigenvalue sequence (cp,i)i∈N of Sp. Let (Φp,ij)i,j∈N be the CONS of SH p,H

defined by Φp,ij :=cp,i⊗cj for all i, j where (cj)j∈N ⊆ H denotes the eigenfunction
sequences of the covariance operator C0;ZZZ . Moreover, the sequence (ϑN )N in
(3.33) satisfies ϑN =O(N−1/2).
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(a) LetJp,K := {Φp,ij |1 ≤ i, j ≤ K} with K ∈ N. If 〈α[p](cp,l), cj〉H = 0 holds
for all j, l ∈ N with l ≤ K < j, then∣∣∣∣α̂[p] −

∐
Jp,K

α[p]

∣∣∣∣2
SHp,H

= OP(N
−1). (3.34)

(b) Let (α[p], (Φp,ij)i,j) satisfy Assumption 3.4 for some β > 0, and let K =

KN =Ξ(1, N) be a sequence with c−2
p,Kγ2

p,KK2β+1 =O(N), where γp,K :=

(cp,K − cp,K+1)
−1, and

∑K
l=1(

c2p,l
c2
p,l+ϑN

)2
∑

j>K〈α[p](cp,l), cj〉2H = O(K−2β).

Then,

||α̂[p] −α[p]||2SHp,H
= OP(K

−2β). (3.35)

Remark 3.2. (a) As far as we know, estimating ARCH operators by a Yule-
Walker approach is new, as is the estimation of complete ARCH operators
and of ARCH(p) operators projected on a finite-dimensional subspace for
p > 1 as in Theorem 3.2 (a). For p = 1, however, a similar version of
Theorem 3.2 (a) was already stated in [14] where the ARCH(1) operator
was imposed to be an integral operator and the finite expansion of its
kernel was estimated with the same convergence rate.

(b) The assumption 〈α[p](cp,l), cj〉H = 0 for all j, l with l ≤ K < j in Theorem
3.2 (a), being milder than imposing α[p] and Sp commute and similar to
the condition in [34] for estimating their MA(1) operator, and the weaker
version in (b) is necessary for technical conversions in the proof.

(c) Regarding the choice of K in Theorem 3.2 (a), [14] outlined that empirical
results in [7] showed that K = 2, 3, 4 provide best results due to a bias
variance trade-off, that it is practical to choose K as the largest integer so
that for the empirical eigenvalues holds ĉK/ĉ1 ≥ C for some threshold C,
and that [36] proposed cross-validation to chose K. Since the threshold C
is difficult to interpret, we propose to choose K as the first integer so that
for some w ∈ (0, 1) holds

∑K
i=1 ĉi/

∑N
i=1 ĉi ≥ (1 − w), provided a sample

with sample size N is given. Then, w is interpretable as a maximal weight
describing a relative proportion of information one allows to neglect.

(d) In Theorem 3.2 (b), due to (3.35), K = KN should be chosen so that it
increases as fast as possible, provided all requirements are met, and the
greater the variable β in the Sobolev condition, which describes the level
of approximibility of an operator by a given CONS, the better.

(e) Since we avoided imposing a specific representation of the given ARCH op-
erators, e.g. an integral operator representation, the assertion of Theorem
3.2 is independent of the particular structure of the given Hilbert space
H = L2[0, 1]. Thus, Theorem 3.2 can be extended to further separable
Hilbert spaces, provided the ARCH processes are well-defined.

(f) Theorem 3.2 rests on the Yule-Walker equation (3.32) containing the op-
erators Sp,1 and Sp being based on an AR derived from an ARCH process
which is more restrictive than assuming an arbitrary AR process. Hence,
Theorem 3.2 also holds for the operators of H -valued AR processes.
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The subsequent example illustrates explicit asymptotic upper bounds (3.35)
of the estimation errors for the complete ARCH operators and how to choose
K = KN , given the asymptotic behaviour of the eigenvalue sequence (cp,j)j of
the covariance operator Sp in the Yule-Walker equation (3.32) is known.

Example 3.1. Let the assumptions of Theorem 3.2 hold.

(a) Assume cp,N 
 e−N, and let KN := 1 + � ln(N)
4+b � for all N ∈ N for some

b > 0. Then, K =KN = Ξ(1, N), γp,K 
 (e−K − e−(K+1))−1 ∝ eK , and

c−2
p,Kγ2

p,KK2β+1 
 N
4

4+b ln2β+1(N) = O(N). Thus, Theorem 3.2 yields

||α̂[p] −α[p]||2SHp,H
= OP(ln

−2β(N)).

(b) Impose cp,N 
 N−a for some a > 1. Further, KN := �N 1
3+4a+2β � for all

N ∈ N. Then, K=KN =Ξ(1, N), γp,K 
 (K−a − (K + 1)−a)−1 
 Ka+1,
thus c−2

p,Kγ2
p,KK2β+1
 K3+4a+2β
 N . Hence, after Theorem 3.2:

||α̂[p] −α[p]||2SHp,H
= OP

(
N− 2β

3+4a+2β
)
.

3.3. Operator estimation in functional GARCH

Hereinafter, XXX := (Xk)k∈Z is an H -valued GARCH(p, q) with p, q ∈ N, and
ZZZ := (Zk)k∈Z = (X 2

k − m2)k∈Z the corresponding ARMA(r, q) process, where
r = p ∨ q, with innovation process ννν :=(νk)k∈Z = (X 2

k − σ2
k)k∈Z, see p.4328. We

derive estimators for the operators in GARCH processes from those for operators
of ZZZ represented as an inverted process. The operators of both processes, as
in the estimation procedure for the complete ARCH operators, are estimated
by generalized inverses based on certain Yule-Walker equations, provided that
specific Sobolev conditions are satisfied. To this end, we impose the following.

Assumption 3.5. ZZZ is an invertible linear process w.r.t. ννν and satisfies

Zk= νk +

∞∑
i=1

πi(Zk−i) (3.36)

a.s. for all k, with (πi)i∈N ⊆ SH and
∑∞

i=1 ||πi||SH <∞.

With αi = βj = 0LH for i > p, j > q, the representations (3.2), (3.36) yield

Zk = νk +

∞∑
i=1

(
αi +

(i−1)∧q∑
j=1

βjπi−j

)
(Zk−i)

a.s. for all k. If Assumptions 3.1-3.2 hold, there is no closed subspace V � H
with P(Z0 ∈ V ) = 1, which implies (see e.g. [23], Lemma 4.48 and Remark 4.49)

πi = αi +

(i−1)∧q∑
j=1

βjπi−j , i ∈ N. (3.37)
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This identity, since αi =0LH for i > p, implies

πs=

q∑
j=1

βjπs−j =
[
β1 β2 · · · βq

][
πs−1 πs−2 · · · πp

]T
=: β[q]π

T
[p,q]

where s = p + q. The solution β[q] is unique iff the image of πT
[p,q] ∈ SH,H q lies

dense which is impossible due to H � H q. Therefore, we establish estimators
for β1, ..., βq based on the equation

π[s,q] = β[q]

∏
[s,q]

:⇐⇒

⎡
⎢⎢⎢⎣
πs+q−1

πs+q−2

...
πs

⎤
⎥⎥⎥⎦=

[
β1 β2 · · · βq

]
⎡
⎢⎢⎢⎣
πs+q−2 πs+q−3 · · · πs−1

πs+q−3 πs+q−4 · · · πs−2

...
... · · ·

...
πs−1 πs−2 · · · πp

⎤
⎥⎥⎥⎦

(3.38)

However, before we establish an estimator for β[q] and thus for the operators
β1, ..., βq, we clarify that the image of

∏
[s,q] ∈SH q can lie dense.

Example 3.2. Let αi= βj = 0LH hold for i �= p, j �= q, and let γ := αp=βq ∈ SH

be an injective, self-adjoint operator with γ �= 0LH and ||γ||SH < 1. Then, since
(3.37) yields πm = γk for all m = p + (k−1)q for some k ∈ N and πm = 0LH

otherwise, and since operator-valued matrices A = (aij)i,j satisfy A∗ = (a∗ji)i,j ,

∏∗

[s,q]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0LH · · · 0LH γ2 0LH

...
...

...
...

...

0LH

...
...

...
...

γ2 ...
...

... 0LH

0LH · · · · · · 0LH γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∗

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0LH · · · 0LH γ2 0LH

...
...

...
...

...

0LH

...
...

...
...

γ2 ...
...

... 0LH

0LH · · · · · · 0LH γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
∏

[s,q]
.

Hence, since γ and thus γ2 are injective and selfadjoint,
∏

[s,q] has dense image.

Due to (3.38), analogously to (3.33), we use

β̂[q] := π̂[s,q]

∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

= π̂[s,q]

∏̂∗

[s,q]

(∏̂
[s,q]

∏̂∗

[s,q]
+ θN IH q

)−1
ĝs,q;M∐
ĝs,q;1

(3.39)

to estimate β[q]. Thereby,

π̂[s,q] :=
[
π̂s+q−1 π̂s+q−2 · · · π̂s

]
(3.40)

is an element of SH q,H , and the operator valued matrix

∏̂
[s,q]

:=

⎡
⎢⎢⎢⎣
π̂s+q−2 π̂s+q−3 · · · π̂s−1

π̂s+q−3 π̂s+q−4 · · · π̂s−2

...
...

. . .
...

π̂s−1 π̂s−2 · · · π̂p

⎤
⎥⎥⎥⎦ (3.41)
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is an element of SH q . For any k, π̂k stands for the estimator of πk, which we
obtain by choosing the k-th component of

π̂L,K := ŜL,KŜ
†
L

ĉL,K∐
ĉL,1

= ŜL,1ŜL(Ŝ
2
L +ϑN IHL)−1

ĉL,K∐
ĉL,1

(3.42)

where (KN )N∈N ⊆ N, (LN )N∈N ⊆ N and (ϑN )N∈N ⊆ (0,∞) are sequences with
K = KN → ∞, L = LN → ∞ resp. ϑN → 0 and where ĉL,1, ..., ĉL,K are the

eigenfunctions of ŜL associated to the first biggest eigenvalues ĉL,1 ≥ · · · ≥ ĉL,K .
In (3.39), (MN )N∈N ⊆N and (θN )N∈N ⊆ (0,∞) are sequences with M =MN →∞
resp. θN → 0, and (ĝs,q;j)j∈N is the eigenfunction sequence of

∏̂
[s,q]

∏̂∗
[s,q] ∈ SH q

with associated w.l.o.g. monotonically decreasing eigenvalue sequence (ĝs,q;j)j∈N.
Because of (3.37), it is thus plausible to estimate αi for i=1, ..., p with

α̂i := π̂i −
(i−1)∧q∑

j=1

β̂j π̂i−j (3.43)

where β̂j is the j-th component of β̂[q], with α̂1 := π̂1.

In order to establish upper bounds of the estimation errors for the GARCH
operators, we firstly derive those of the estimation errors for the operators πi.

Lemma 3.5. Let Assumptions 3.1-3.2, 3.5 hold. Let also β > 0, L = LN =
Ξ(1, N), K=KN =Ξ(1,

3
√
L−1N) and ϑN = O(c2L,KK−β) hold. Thereby, (cL,j)j

is the eigenvalue sequence of SL for which holds Assumption 3.3 for all L,

cL,K = Ω(
√
L3N−1),

∑K
l=1(

c2L,l

c2L,l+ϑN
)2
∑

j>K 〈πL(cL,l), cj〉2H = O(K−2β) where

πL := [π1 · · ·πL], and c−2
L,KL(γ2

L,KKL3N−1+(
∑

l>L||πl||LH )2) = O(K−2β) where

γL,K := (cL,K − cL,K+1)
−1. At last, we also impose that (πL, (ΦL,ij)i,j), with

ΦL,ij :=cL,i ⊗ cj as in Theorem 3.2, satisfies Assumption 3.4 for all L for some
β > 0 being independent of L. Then, for all i ∈ N holds

||π̂i−πi||2SH
= OP(K

−2β). (3.44)

The conditions L=LN =Ξ(1, N),K=KN =Ξ(1,
3
√
L−1N), ϑN = O(c−2

L,KK−β)
hold if (KN )N , (LN )N , (ϑN )N are chosen appropriately. The following example
outlines that there are sequences of operators (πi)i being absolutely summable
w.r.t. || · ||SH , and that other more complex conditions in Lemma 3.5 are also
satisfiable, at least if some information about the eigenvalue sequences is given.

Example 3.3. As in Example 3.2, we impose αi= βj = 0LH for i �= p, j �= q, and
γ := αp = βq ∈ SH . Additionally, γ =

∑∞
j=1 ξ

j(cj ⊗ cj) for some ξ ∈ (0, 1√
2
),

which implies γ �=0LH and ||γ||2SH
=
∑∞

j=1 ξ
2j= ξ2

1−ξ2 < 1. Also, for some a > 1
2 ,

we assume the mild condition 〈c(n)L,i , cj〉H = O(i−a) for i → ∞ for any j, L, n.

Due to (3.37) and our assumptions, πm= γkm form=p+(km−1)q with km ∈ N
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and πm= 0LH otherwise. This implies with ||γ||SH < 1 and sub-multiplicativity:

∞∑
m=1

||πm||SH ≤
∞∑
k=1

||γ||kSH
< ∞. (3.45)

Now, we illustrate that (πL, (ΦL,ij)i,j) can satisfy Assumption 3.4 for all L
for some β > 0 being independent of L. For L < p, this assumption is satisfied
here for any β, since then πL = [π1 · · ·πL] = [ 0LH · · · 0LH ]. For L ≥ p, we choose
kL ∈ N such that p+ (kL − 1)q ≤ L < p+ kLq. Then, the relationship between
πm and γ for all m, the features of γ, and ΦL,ij(cL,l)=δilcj for any l imply

〈πL,ΦL,ij〉2SHL,H
=

∞∑
l=1

〈
πL(cL,l),ΦL,ij(cL,l)

〉2
H

=
〈 L∑
m=1

πm(c
(m)
L,i ), cj

〉2
H

=
〈 kL∑
m=1

γm(c
(p+(m−1)q)
L,i ), cj

〉2
H

≤ kL

kL∑
m=1

ξ2jm
〈
c
(p+(m−1)q)
L,i , cj

〉2
H

.

Thus, since |ξ| < 1 and 〈c(n)L,i , cj〉2H = O(i−2a) for i → ∞ and any j, L, n with

a > 1/2, we obtain for any β ∈ (0, a− 1
2 ):

∞∑
i,j=1

〈πL,ΦL,ij〉2SHL,H

(
1 + i2β+ j2β

)

≤ kL

kL∑
m=1

∞∑
j=1

(1 + j2β) ξ2jm
∞∑
i=1

(1 + i2β)
〈
c
(p+(m−1)q)
L,i , cj

〉2
H

< ∞.

Hence, (πL, (ΦL,ij)i,j) indeed can satisfy Assumption 3.4 for all L for some β > 0
independent of L.

At last, we validate some assumptions in Lemma 3.5 for the eigenvalues
which is generally difficult because their specific features are mostly unknown.
However, since SL is nuclear, due to cL,K ≤ ||SL||NHL

and (3.8), we know cL,K =

O(L) for L → ∞ for fixed K and cL,K = o(K−1) for K → ∞ for fixed L.

Both features are satisfied if, for instance, for K = KN := 1 + �K̃ ln(N)� and

L = LN := �N L̃� for all N ∈ N with b, K̃, L̃ ∈ (0, 1) holds

cL,K 
 e−KLb 
 N bL̃−K̃ =⇒ γL,K = (cL,K − cL,K+1)
−1 
 c

−1
L,K . (3.46)

Justifying such an asymptotic behaviour is difficult, but a priori not ruled out.
(3.46) implies L=Ξ(1, N),K =Ξ(1,

3
√
L−1N), and ϑN = O(c2L,KK−β) for any

β > 0 if e.g. ϑN := N2(bL̃−K̃)−c for all N for some c > 0, and also cL,K =

Ω(
√
L3N−1) if (3− 2b)L̃+ 2K̃ ≤ 1 which is true e.g. for K̃ = L̃ = 1

6 and b = 3
4 .

Moreover, our assumptions, 〈πL(cL,l), cj〉2H = 〈πL,ΦL,lj〉2SHL,H
for any j, l, L (see

above), ξ2jm ≤ ξj+m for any j,m ∈ N, and the fact that (cL,l)l and (cj)j are
CONS of HL and H , respectively, yield for any β > 0:

K∑
l=1

( c2L,l
c2L,l + ϑN

)2∑
j>K

〈πL(cL,l), cj〉2H ≤ kL
∑
j>K

∞∑
m=0

ξj+m
∞∑
l=1

〈
c
(p+(m−1)q)
L,i , cj

〉2
H
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≤ kLξ
K+1

(1− ξ)2

 LξK = O(K−2β).

Further, (3.45), || · ||LH ≤ || · ||SH , L∗ := �L−p

q
� and ||γ||SH < 1 leads to∑

l>L||πl||LH ≤
∑

k>L∗+1||γ||kSH
∝ ||γ||L∗

SH

 ||γ||LSH

. Therefore, with (3.46),

K = KN ∼ K̃ ln(N) and L = LN ∼ N L̃ for K̃, L̃ ∈ (0, 1), we get for any β > 0,

c−2
L,KL

(
γ2
L,KKL3N−1 +

(∑
l>L

||πl||LH

)2)


 c−4
L,KKL4N−1
 ln(N)N4(K̃+(1−b)L̃)−1 = O(K−2β)

if K̃ + (1− b)L̃ < 1
4 , which e.g. holds for K̃ = L̃ = 1

6 and b = 3
4 as above.

Before we turn to the estimation errors for the GARCH operators, we would
like to mention that Lemma 3.5 leads to upper bounds of the estimation errors
for the operators of linear processes which is, though not needed in this work,
interesting beyond (G)ARCH. Due to Assumption 3.5 where we imposed the
process ZZZ = (Zk)k to be both linear, that is Zk = νk +

∑∞
i=1 ψi(νk−i) a.s. for

all k for some sequence of bounded operators (ψi)i∈N ⊂ LH , and invertible with
the representation Zk= νk +

∑∞
i=1 πi(Zk−i) a.s. for all k, we have

Zk = νk +

∞∑
i=1

[ i∑
j=1

πiψi−j

]
(νk−i) (3.47)

a.s. for all k. From this and the linear representation follows

ψi =

i∑
j=1

πiψi−j , i ∈ N, (3.48)

where ψ0 := IH , and thus ψi ∈ SH for all i. Conversely, the linear representation
and (3.48) imply (3.47) due to Lemma 3.1.

Proposition 3.1. Let the assumptions of Lemma 3.5 hold. Then,

ψ̂i :=

i∑
j=1

π̂iψ̂i−j , i ∈ N, (3.49)

where ψ̂0 := IH , is a consistent estimator for ψi with

||ψ̂i −ψi||2SH
= OP(K

−2β). (3.50)

Remark 3.3. Lemma 3.5 and Proposition 3.1 are transferable to further sep-
arable Hilbert spaces (see Remark 3.2), and are valid without the context of
(G)ARCH. Both results are possibly applicable on theories developed in [3]
and [20], and can be seen as advances of the Theorems 3.2-3.3 in [3] where
the operators in the linear process and the inverted representation were, based
on assertions regarding spectral density operators, consistently estimated but
without deriving an explicit rate.
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For the sake of infering upper bounds for the GARCH operators, we need
that for the operators π[s,q] and

∏
[s,q] in (3.38) holds, due to (3.44),

||π̂[s,q] − π[s,q]||2SHp,H
=

q−1∑
i=0

||π̂s+i− πs+i||2SH
= OP(K

−2β) (3.51)

and also∣∣∣∣∣∣∏̂
[s,q]

∏̂∗

[s,q]
−
∏

[s,q]

∏∗

[s,q]

∣∣∣∣∣∣2
SHq

=

q−1∑
i,j=0

∣∣∣∣∣∣ s−1∑
k=p

π̂k+iπ̂
∗
k+j− πk+iπ

∗
k+j

∣∣∣∣∣∣2
SH

�
q−1∑
i,j=0

s−1∑
k=p

(
||π̂k+i||2SH

||π̂∗
k+j− π∗

k+j ||2SH

+ ||π̂k+i− πk+i||2SH
||π∗

k+j ||2SH

)
= OP(K

−2β). (3.52)

Furthermore, the identities (3.13), (3.52) and Corollary 3.1 yield

sup
j∈N

(ĝs,q;j − gs,q;j)
2 = O(K−2β) (3.53)

where (gs,q;j)j∈N stands for the w.l.o.g. monotonically decreasing eigenvalue se-
quence associated to the eigenfunction sequence (gs,q;j)j∈N of

∏
[s,q]

∏∗
[s,q] ∈ SH q .

Moreover, if gs,q;M =Ξ(K−β, 1) with M= MN = Ξ(1, N), Corollary 3.1 implies

ĝs,q;M = OP(gs,q;M ) and gs,q;M = OP(ĝs,q;M ). (3.54)

If also
∏

[s,q]

∏∗
[s,q] is injective and satisfies Assumption 3.3, Lemma 3.4 yields

sup
j≤M

||ĝ′′′s,q;j− gs,q;j ||2H q= OP(γ
2
s,q;MK−2β), (3.55)

where γs,q;M := (gs,q;M − gs,q;M+1)
−1 are the reciprocal spectral gaps.

By using these upper bounds, we are now able to state an asymptotic upper
bound of the estimation errors for the complete GARCH operators.

Theorem 3.3. Let the assumptions of Lemma 3.5 hold. Let
∏

[s,q]

∏∗
[s,q] be in-

jective and let its eigenvalue sequence (gs,q;j)j satisfy Assumption 3.3. Also, let
M = MN = Ξ(1, N), θN = O(K−β/2), γs,q;MK−β = o(1), g−2

s,q;MK−β = O(M−2β)

as well as
∑M

l=1(
g2
s,q;l

g2
s,q;l+θN

)2
∑

j>M 〈β[q](gs,q;l), cj〉2H = O(M−2β) hold, and let

(β[q], (Υs,q;ij)i,j) where Υs,q;ij := gs,q;i ⊗ cj satisfy Assumption 3.4 for the same
β > 0 as in Lemma 3.5. Then,

||α̂i−αi||2SH
=

{
OP(K

−2β), i = 1,

OP(M
−2β), i = 2, ..., p,

(3.56)

and for j = 1, ..., q holds

||β̂j− βj||2SH
= OP(M

−2β). (3.57)
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Remark 3.4. (a) To the best of our knowledge, estimating GARCH operators
by a Yule-Walker approach and explicit asymptotic upper bounds of their
estimation errors as deduced in Theorem 3.3 are new, as is estimating
GARCH(p, q) operators for p∨q > 1. Theorem 3.3 extends theories devel-
oped both in Aue et al. [2] and Cerovecki et al. [6] where the parameters
of GARCH(1, 1) and GARCH(p, q) processes for arbitrary orders p, q ∈ N,
respectively, were strongly consistently estimated, though without stating
explicit upper bounds for the estimation errors. [2] imposed both opera-
tors to be integral operators, their integral kernels and the shift term δ
to be expressed by a finite linear combination, and estimated the coeffi-
cients in these finite expansions by a least squares estimator. [6] estimated
their parameters, inspired by the standard GARCH model, by a quasi-
maximum likelihood approach where the operators were also imposed to
be integral operators. For any order p, q, they assumed the parameters to
have a representation as a finite linear combination of which they esti-
mated their coefficients, and for p = q = 1 even the complete operators
were estimated. Moreover, both [2] and [6] deduced asymptotic normality
of the estimation errors in the finite-dimensional setup.

(b) In Theorem 3.3, as when estimating the complete operators of our ARCH
and invertible process, it is preferable that β is as large and that the
sequences K = KN and M = MN increase as fast as possible. Using
M = MN , declaring the dimension of the subspace on what we project
when estimating β1, ..., βq by means of β̂[q] in (3.39), instead of K = KN ,
provides an additional regulation parameter and thus more combinations
so that all requirements in Theorem 3.3 are met.

(c) Theorem 3.3 can be generalized to further separable Hilbert spaces and
also holds for operators of H -valued ARMA processes, since the estima-
tors for the GARCH operators were derived from operators associated to
ARMA, see also the arguments in Remark 3.2 (e)-(f).

We close this section by validating the assumptions in the Theorem for the
GARCH operators above and give examples of attainable upper bounds.

Example 3.4. Let all assumptions in Examples 3.2-3.3 hold. So, K = KN ∼
K̃ ln(N), L = LN ∼ N L̃, cL,K 
 γ−1

L,K 
 N bL̃−K̃ and ϑN 
 N2(bL̃−K̃)−c where

b, K̃, L̃ ∈ (0, 1) and c > 0, and from the representation of
∏

[s,q] follows

∏2

[s,q]
=

⎡
⎢⎢⎢⎢⎣

γ4 0LH · · · 0LH

0LH

. . .
. . .

...
...

. . . γ4 0LH

0LH · · · 0LH γ2

⎤
⎥⎥⎥⎥⎦

Thus, due to γ(cj) = ξjcj for any j with ξ ∈ (0, 1), the eigenvalues of
∏2

[s,q] are

gs,q;1 = ξ2, gs,q;2 = · · · = gs,q;q+1 = ξ4, gs,q;q+2 = ξ6, gs,q;q+3 = · · · = gs,q;2q+2 =
ξ8, gs,q;2q+3 = ξ10, ..., with associated eigenfunctions gs,q;l = (0H , ..., 0H , cj)

T ∈
H q for l = 1+(j−1)(q+1) and gs,q;l = (0H , ..., 0H , cj , 0H , ..., 0H )T ∈ H q with
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cj positioned at k-th component with k = 1, ..., q−1 for l = 1+k+(j−1)(q+1).

Further,
∏2

[s,q] is injective. Moreover, κ(j) = gs,q;j for all j for some convex

function κ : R → R, but (gs,q;j)j does not fulfil the complete Assumption 3.3,
because gs,q;j = gs,q;j+1 for some j. This, however, is not a real problem, since
assertions when imposing one-dimensional generally can be extended on multi-
dimensional eigenspaces by modifying the reciprocal spectral gaps, see [5]. For
such a modification, also denoted by γs,q;j , holds due to gs,q;n = ξ2f(n) for some
function f : N → N with f(n) ≤ n for all n, γs,q;j = (ξ2f(j) − ξ2(f(j)+1))−1 ∝
ξ−2f(j) = g−1

s,q;j ≤ ξ−2j . Then, with M = MN := 1 + �β
3 logξ−2(K)� holds

M = Ξ(1, N), γs,q;MK−β ∝ g−1
s,q;MK−β ≤ ξ−2MK−β 
 K− 2β

3 = o(1) and

g−2
s,q;MK−β ≤ ξ−4MK−β 
 K− β

3 = O(M−2β), and θN := ln−β(N + 1) for all

N fulfils θN = O(K−2β). Further, from β[q] = [0LH , ..., 0LH , γ]T, the representa-
tions of the eigenfunctions gs,q;l for any l and θN ≥ 0 for all N follows

M∑
l=1

( g2s,q;l
g2
s,q;l + θN

)2 ∑
j>M

〈β[q](gs,q;l), cj〉2H ≤
∑
j>M

∞∑
l=1

ξ2lδlj ∝ ξ2M = O(M−2β)

for any β > 0. Moreover, from the definition of β[q], γ, gs,q;l for all l, Υs,q;ij for

all i, j, and 〈·, ·〉SHq,H
follows 〈β[q],Υs,q;ij〉2SHq,H

= ξ2i〈g(q)
s,q;l, cj〉2H = 1Aq

(i)δkijξ
2i

for some ki ∈ N with ki ≤ i where Aq := {k | ∃ l = lk with g
(q)
s,q;k= cl}. Then,

∞∑
i,j=1

〈β[q],Υs,q;ij〉2SHq,H

(
1 + i2β+ j2β

)

=
∞∑
i=1

1Aq
(i)ξ2i(1 + i2β)(1 + k2βi ) ≤

∞∑
i=1

ξ2i(1 + i2β)2 < ∞

for all β > 0, in other words (β[q], (Υs,q;ij)i,j) fulfils Assumption 3.4 for all β > 0.
Provided that having multi-dimensional eigenspaces in our setup does not

cause a problem, all requirements of Theorem 3.3 are validated. Due to the
asymptotic behaviour of our sequences, Theorem 3.3 then yields

||α̂i−αi||2SH
=

{
OP(ln

−2β(N)), i = 1,

OP(ln
−2β(ln(N))), i = 2, ..., p,

and for j = 1, ..., q holds due to M = MN 
 ln(K) and K = KN 
 ln(N),

||β̂j− βj||2SH
= OP(ln

−2β(ln(N))).

Remark 3.5. Having just logarithmic decay rates in Example 3.4, is because we
exemplarily imposed a geometric decay of given eigenvalues. This made con-
versions less cumbersome since the reciprocal eigenvalues then are asympoti-
cally equal to the reciprocal spectral gaps up to a multiplicative constant. By
assuming a slower decay, but no too slow since our eigenvalues are absolutely-
summable, the proof of the requirements in Theorem 3.3 is possibly more diffi-
cult, though the convergence rates for the operators are better.
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4. Simulation

Herein, we illustrate some ARCH and GARCH processes in F = H = L2[0, 1]
and estimation errors for their parameters. Before we do this, δ and operators
satisfying the requirements in Theorem 2.1 will be defined, and it will be shown
that under certain errors εk holds (2.10) which guarantees the existence of a
strictly stationary solution. Since verifying (2.10) is cumbersome for big s = p+q

(even for s = 3, see [23], p.92), we focus on ARCH(1) and GARCH(1, 1).
At first, we put

δ(t) := 0.01, t ∈ [0, 1]. (4.1)

Thereby, δ ∈ ˙H>0 with Ḟ = ˙H := L4[0, 1]. Our two operators α1, β1 : H → H
are imposed to be integral operators since these easily can be illustrated. An

integral operator A : H → H is defined by (A(x)(t)) :=
∫ 1

0
a(s, t)x(s) ds for

x ∈ H , t ∈ [0, 1] if the integral meant w.r.t. λ exists, where a : [0, 1]2 → R is a
measurable function, the integral kernel of A. We define the integral kernels a1
of α1 and b1 of β1 for any s, t ∈ [0, 1] by

a1(s, t) :=
1

8

[(
s− 1

2

)2
+
(
t− 1

2

)2 ]
, b1(s, t) :=

1

8
(1− s)2t2. (4.2)

Since a1, b1 are non-negative, α1, β1 : H≥0 → H≥0, and α1, β1 ∈ LH,Ḣ because
Cauchy-Schwarz and Jensen’s inequality lead to finite norms, to be precise,

||α1||4LH,Ḣ
= sup

||h||H ≤1

∫ 1

0

( ∫ 1

0

a1(s, t)h(s) ds
)4
dt

≤
∫ 1

0

∫ 1

0

a41(s, t) dsdt ≈ 8.041 · 10−7 =: α̃4
1, (4.3)

||β1||4LH,Ḣ
≤
∫ 1

0

∫ 1

0

b41(s, t) dsdt ≈ 3.014 · 10−6 =: β̃4
1 . (4.4)

Moreover, for any k ∈ Z, we put

εk(t) :=
Zk +Bk(t)√

1 + t
a.s., t ∈ [0, 1], (4.5)

where Zk ∼ N (0, 1), Bk = (Bk(t))t∈[0,1] is a Wiener process, and the random
variables . . . , Z−1, B−1, Z0, B0, Z1, B1, . . . are independent. Then, (εk)k∈Z is an
i.i.d., centered process with ε0(t) ∼ N (0, 1) for all t, and thus E(ε20(t)) = 1 and
E(ε80(t)) = 105 for all t. Moreover, Fubini’s theorem yields

E||ε20||4Ḣ =

∫ 1

0

E(ε80(t)) dt = 105, (4.6)

which implies (2.4). Hence, all initial assumptions in Theorem 2.1 are satisfied.
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Fig 2. Three realizations of ε1 (left), ε2 (middle), ε3 (right) in (4.5), with step width 1/1000.

For the state-space form Ψ
(1,0)
1 = �1α1 in (2.2), with δ, α1 and innovations

in (4.5), holds due to (2.5), (4.3), (4.6) and Jensen’s inequality:

ψ
(1,0)
1,2 := E||Ψ(1,0)

1 ||2LH
≤

√
105 α̃2

1 < 1.

Thus, (2.10) is verified, and due to Theorem 2.1, a strictly stationary H -valued
ARCH(1) process (Xk)k with the shift term δ and the operator α1 above exists.

Now, we also take β1 into our consideration. After Theorem 2.1, there also
exists a strictly stationary H -valued GARCH(1, 1) process (Xk)k with δ, α1, β1

and the innovations in (4.5), since the product of Ψ
(1,1)
2 and Ψ

(1,1)
1 in (2.2) fulfils

Ψ
(1,1)
2 Ψ

(1,1)
1 =

[
�2α1 �2β1

IH 0LH

][
�1α1 �1β1

IH 0LH

]
=

[
�2α1�1α1 + �2β1 �2α1�1β1

�1α1 �1β1

]
,

and that due to (2.5), (4.3), (4.4), (4.6), and since �1 and �2 are i.i.d., holds

ψ
(1,1)
2,2 :=E||Ψ(1,1)

2 Ψ
(1,1)
1 ||2LH 2

≤E||�2α1�1α1+�2β1||2LH
+E||�2α1�1β1||2LH

+E||�1α1||2LH
+E||�1β1||2LH

≤
√
105

(
2
[√

105α̃4
1 + β̃2

1

]
+

√
105 α̃2

1β̃
2
1 + α̃2

1+ β̃2
1

)
< 1.

4.1. Simulation of realizations

In order to simulate possible realizations of (G)ARCH processes under the setup
above, we utilize the following result, ensuring that initial values of such pro-
cesses can be approximated sufficiently well based on its recursion equations.

Corollary 4.1. Let (2.10) hold for some n ∈ N and ν > 0. Further, define

ς̃
(p,q)
k := δ

(p,q)
k +Ψ

(p,q)
k (ς̃

(p,q)
k−1 ) for k ∈ N, where ς̃

(p,q)
0 ∈ F s is some deterministic

value. Then, there is some ρ ∈ (0, 1) with

E ||ς(p,q)N − ς̃
(p,q)
N ||νFs = O(ρN ). (4.7)

This result yields for fixed N to the following initial value of our ARCH(1)
process which we utilize to obtain further values afterwards.
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Fig 3. Initial values X 2
0 (black, dotted) of an ARCH(1) process with δ in (4.1) and α1 with

kernel a1 in (4.2), and X 2
0 (bronze, dotted) and σ2

0 (bronze, solid) of an GARCH(1, 1)
process with δ in (4.1) and α1, β1 with kernels a1, b1 in (4.2), with step width 1/1000.

Fig 4. Based on ε1, ε2, ε3 in Fig. 2, from left to right: Three simulations each of X1,X2,X3

derived from X 2
0 in Fig. 3 of an ARCH(1) process (first row) with δ in (4.1) and α1 with

kernel a1 in (4.2), of X1,X2,X3 derived from X 2
0 , σ2

0 in Fig. 3 of an GARCH(1, 1) process
(second row) with δ in (4.1) and α1, β1 with kernels a1, b1 in (4.2), and of the differences of
the values in the second and the first row (in third row), with step width 1/1000.

Remark 4.1. The realizations X1,X2,X3 of our ARCH(1) process in the first
row in Fig. 4 have nearly the same structure as ε1, ε2, ε3 in Fig. 2 on which they
are based on, since δ is constant and α1 has little impact. X 2

0 in Fig. 3 and
X1,X2,X3 of the ARCH(1) and GARCH(1, 1) process in the first and second
row in Fig. 4 are almost identical, because α1 coincides and β1 has very slim
influence, see third row. In each plot of this row, the amplitudes increase w.r.t.
t because t �→ b1(s, t) is non-negative and monotonically increasing for any s.
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4.2. Simulation of estimators

For the sake of clarity, we illustrate an estimator for the shift term δ in (4.1)
and the operator α1 with integral kernel a1 in (4.2) in ARCH(1) for the sample
sizes N = 75, 200. Hereto, we generate a sample X1, ...,XN by simulating both
an initial value X 2

0 of our ARCH(1) process as in Section 4.1 and innovations
ε1, ..., εN in (4.5), and apply the recurrence equation (2.1). In our calculations,
any x ∈ H = L2[0, 1] is evaluated at t = 0, 1

250 , ...,
249
250 , and 〈x, y〉H with

x, y ∈ H is approximated by the Riemann sum 1
250

∑250
t=1 x(

t−1
250 )y(

t−1
250 ).

With p = 1 and ϑN := N−1/2 for any N , the estimator α̂[1] = α̂1 for α1 is

α̂1 =
√
N Ĉ1Ĉ0

(√
N Ĉ 2

0 + IH
)−1

ĉK∐
ĉ1

, (4.8)

where Ĉ0 and Ĉ1 are the empirical covariance and lag-1-covariance operators
in (3.6) based on the sample X1, ...,XN , and ĉ1, ĉ2, · · · , ĉK are the eigenfunc-

tions associated to the eigenvalues ĉ1 ≥ ĉ2 ≥ · · · ≥ ĉK ≥ 0 of Ĉ0. As sug-
gested in Remark 3.2 (c), we choose K = KN as the first integer so that∑K

i=1 ĉi/
∑N

i=1 ĉi ≥ (1 − w), where we put w = 0.001. Moreover, the estimator

for δ with α̂1 in (4.8) and m̂2 = N−1
∑N

i=1 X 2
i has the representation

δ̂ = (IH − α̂1)(m̂2). (4.9)

Fig 5. The integral kernel a1 in (4.2) of α1 and the integral kernels â derived from the
estimator α̂1 in (4.8) with N = 75 and N = 200, where the step width is 1/250.

Fig 6. δ (black) in (4.1) and δ̂ in (4.9) for N = 75 (light green) and N = 200 (green) with
step width 1/250.
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5. Conclusions

This article studies ARCH and GARCH processes in established and not yet
considered function spaces, and provides explicit asymptotic upper bounds of
the estimation errors for all parameters. By a Yule-Walker approach, ARCH
operators projected on a finite-dimensional subspace are estimated, as are com-
plete (G)ARCH operators using an additional Sobolev condition. Our theories
contribute to Hörmann et al. [14], Aue et al. [2] and Cerovecki et al. [6] who
established ARCH(1) in C[0, 1] and H = L2[0, 1], GARCH(1,1) in C[0, 1] and
H , resp. GARCH processes for any order in H .

Section 2 introduces ARCH(p) and GARCH(p, q) processes for any order
p, q ∈ N in Lp[0, 1] with p ∈ [1,∞), C[0, 1] and more abstract spaces. For these
processes, we present sufficient conditions for the existence of strictly stationary
solutions, finite moments and weak dependence. Section 3 establishes explicit
asymptotic upper bounds of the estimation errors for the shift term δ and the
operators of H -valued ARCH and GARCH processes for any order using upper
bounds of estimation errors for certain moments, (lag-h-)covariance operators,
eigenfunctions and eigenvalues which are also useful beyond (G)ARCH. Theo-
rem 3.1 deduces upper bounds for δ which is new in ARCH(p) for p > 1 and
GARCH. The main results of the article are stated in Theorems 3.2-3.3. Theo-
rem 3.2 (a) provides explicit upper bounds for the projections of the ARCH(p)
operators on a finite-dimensional subspace for any p ∈ N as in [14] for p = 1,
and part (b) and Theorem 3.3 for the complete ARCH and GARCH operators
for any order, respectively, being new as far as we are aware. The upper bounds
for GARCH operators depend on these for operators of invertible linear repre-
sented as inverted processes, see Lemma 3.5, which also hold for the operators
of associated linear processes. Both results are valid beyond (G)ARCH, extend-
ing theories in [3], [20]. All assertions regarding (G)ARCH in Section 3 can by
minor modifications be transferred to AR(MA), and Sections 2-3 possibly can
be carried out on further Banach and Hilbert spaces. Section 4 simulates some
of our processes and estimators. Section 6 contains all proofs.

We leave the investigations concerning probabilistic properties of (G)ARCH
in general separable Banach spaces behind for future research, as we do for or-
der estimation, see [21]. Concerning the parameters, unsolved problems are their
estimation in Banach spaces (see [30]), the asymptotic distribution of their esti-
mations errors (see [2], [6] for the parameters projected on a finite-dimensional
subspace), and the asymptotic lower bounds of their estimations errors.

6. Proofs

In various conversions, we utilize for any n ∈ N and a1, ..., an ≥ 0,

( n∑
k=1

ak

)ν
≤
{∑n

k=1 a
ν
k , ν ∈ (0, 1],

nν−1
∑n

k=1 a
ν
k , ν ∈ (1,∞),
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thus (
∑n

k=1 ak)
ν �

∑n
k=1 a

ν
k , and the operator valued Hölder’s inequality which

we state below. Let (H, 〈·, ·〉H), (H′, 〈·, ·〉H′) and (H′′, 〈·, ·〉H′′) be Hilbert spaces.
For p ∈ [1,∞],S p

H,H′ ⊆ LH,H′ is the p-th Schatten-class, with S 1
H,H′ = NH,H′ ,

S 2
H,H′ = SH,H′ ,S ∞

H,H′ := LH,H′ . For p ∈ [1,∞), A ∈ S p
H,H′ if

∑∞
j=1 s

p
j (A) < ∞,

where sj(A) is the j-th singular value of A ∈ LH,H′ , and S p
H,H′ is endowed with

the norm || · ||S p

H,H′
:= (

∑∞
j=1 s

p
j (·))1/p. Now, let p, q, r ∈ [1,∞] with 1

p + 1
q = 1

r

where 1
∞ := 0, A ∈ S q

H′,H′′ and B ∈ S p
H,H′ . Then, after the operator valued

Hölder’s inequality (see [17], Theorem 11.2), AB ∈ S r
H,H′′ with

||AB||S r
H,H′′ ≤ 21/r||A||S q

H′,H′′
||B||S p

H,H′
. (6.1)

Proof of Theorem 2.1. (a) The state-space form (2.2) yields

ς
(p,q)
k = δ

(p,q)
k +

∞∑
m=1

Ψ
(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

k−m+1(δ
(p,q)
k−m) (6.2)

a.s. for all k if the series converges a.s. Further, (2.7) implies

lim
m→∞

1

m
ln
∣∣∣∣Ψ(p,q)

k Ψ
(p,q)
k−1 · · ·Ψ(p,q)

k−m+1(δ
(p,q)
k−m)

∣∣∣∣
Fs ≤ γ(p,q) + lim

m→∞

1

m
ln ||δ(p,q)k−m ||Fs

where s = p+q. By definition of δ
(p,q)
k−m and because of 0 < ||δ||F ≤ ||δ||Ḟ , we have

||δ(p,q)k−m ||2Fs≤ ||δ||2
Ḟ
(1+ ||ε2k−m||2

Ḟ
), and thus, due to (2.4), E(1∨ ||δ(p,q)k−m ||Fs) < ∞.

As a consequence, since γ(p,q) < 0,

lim
m→∞

∣∣∣∣Ψ(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

k−m+1(δ
(p,q)
k−m)

∣∣∣∣1/m
Fs = eγ

(p,q)

< 1 a.s.

Thus the series in (6.2) converges a.s. by Cauchy rule. Hence, there exists a

solution (ς
(p,q)
k )k of (2.2), its (p+ 1)-th component defines a solution of (2.1) if

q ∈ N, and from its first component one can deduce a solution of (2.1) if q = 0.
For verifying that the solution is a.s. unique, we use the argumentation in

[6], p.19. We assume that (ς́
(p,q)
k )k is another solution. Then,

ς́
(p,q)
k = ς

(p,q)
k,N +Ψ

(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

k−N (ς́
(p,q)
k−N−1),

where ς
(p,q)
k,N := δ

(p,q)
k +

N∑
m=1

Ψ
(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

k−m+1(δ
(p,q)
k−m).

Since γ(p,q) < 0, both ||ς(p,q)k,N −ς
(p,q)
k ||Fs → 0 and ||Ψ(p,q)

k Ψ
(p,q)
k−1 · · ·Ψ(p,q)

k−N ||LFs → 0

a.s. for N → ∞, and the law of ||ς́ (p,q)k−N−1||Fs is independent of N . Ergo,

∣∣∣∣ς́ (p,q)k − ς
(p,q)
k

∣∣∣∣
Fs ≤

∣∣∣∣ς(p,q)k,N − ς
(p,q)
k

∣∣∣∣
Fs

+ ||Ψ(p,q)
k Ψ

(p,q)
k−1 · · ·Ψ(p,q)

k−N ||LFs

∣∣∣∣ς́ (p,q)k−N−1

∣∣∣∣
Fs

N→∞−→ 0,
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by which is shown that the solution is almost surely unique.

By definition of ς
(p,q)
k and due to (6.2), σ2

k = f(εk−1, εk−2, ...) a.s. for all k for
some measurable function f : F∞→ F , so (σ2

k )k and (Xk)k are non-anticipative
w.r.t. (εk)k and strictly stationary as well as ergodic after [32], Theorem 3.5.8.

(b) The assertion follows from the fact that ψ
(p,q)
n,ν < 1, (2.10), sub-multiplica-

tivity of || · ||LFs and Jensen’s inequality imply

nν γ(p,q) ≤ lim
m→∞

ν

m
E ln

( m∏
l=1

∣∣∣∣Ψ(p,q)
ln Ψ

(p,q)
ln−1 · · ·Ψ

(p,q)
(l−1)n+1

∣∣∣∣
LFs

)
≤ ln(ψ(p,q)

n,ν ). �

Proof of Lemma 2.1. (a) For all ν > 0,

||ς(p,q)0 ||νFs � ||δ(p,q)0 ||νFs +
( ∞∑
m=1

∣∣∣∣Ψ(p,q)
0 Ψ

(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣
LFs

||δ(p,q)−m ||Fs

)ν

� ||δ(p,q)0 ||νFs +

n−1∑
m=1

||δ(p,q)−m ||νFs

m∏
l=1

||Ψ(p,q)
−m+1||νLFs

+
( ∞∑
m=n

∣∣∣∣Ψ(p,q)
0 Ψ

(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣
LFs

||δ(p,q)−m ||Fs

)ν
.

Moreover, E||ε20 ||νḞ < ∞ implies E||δ(p,q)0 ||νFs < ∞ as well as E||Ψ(p,q)
0 ||νLFs

< ∞.

From the definition of Ψ
(p,q)
k and δ

(p,q)
k , and since (εk)k is i.i.d., thus follows

E
(n−1∑
m=1

||δ(p,q)−m ||νFs

m∏
l=1

||Ψ(p,q
−m+l||νLFs

)
= E||δ(p,q)0 ||νFs

n−1∑
m=1

(
E||Ψ(p,q)

0 ||νLFs

)m
< ∞.

Furthermore, (2.10) implies for ν ∈ (0, 1] :

E
( ∞∑
m=n

∣∣∣∣Ψ(p,q)
0 Ψ

(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣
LFs

||δ(p,q)−m ||Fs

)ν

≤ E||δ(p,q)0 ||νFs

∞∑
m=n

E
∣∣∣∣Ψ(p,q)

0 Ψ
(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣ν
LFs

≤ E||δ(p,q)0 ||νFs

( n−1∑
k=0

(
E||Ψ(p,q)

0 ||νLFs

)k) ∞∑
l=1

(ψ(p,q)
n,ν )l < ∞,

and for ν > 1 with Jensen’s inequality and monotone convergence theorem:

E
( ∞∑

m=n

∣∣∣∣Ψ(p,q)
0 Ψ

(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣
LFs

||δ(p,q)−m ||Fs

)ν

≤ E||δ(p,q)0 ||νFs

( ∞∑
m=n

(
E
∣∣∣∣Ψ(p,q)

0 Ψ
(p,q)
−1 · · ·Ψ(p,q)

−m+1

∣∣∣∣ν
LFs

)1/ν)ν
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≤ E||δ(p,q)0 ||νFs

(n−1∑
k=0

(
E||Ψ(p,q)

0 ||νLFs

)k)( ∞∑
l=1

(ψ(p,q)
n,ν )l

)ν
< ∞.

Hence, E||ς(p,q)0 ||νFs < ∞. Thus E||X 2
0 ||νF < ∞,E||σ2

0 ||νF < ∞ and

E||σ2
0 ||νḞ � ||δ||ν

Ḟ
+

p∑
i=1

E||αi(X
2
i )||ν

Ḟ
+

q∑
j=1

E||βj(σ
2
j )||νḞ

≤ ||δ||ν
Ḟ
+ E||X 2

0 ||νF
p∑

i=1

||αi||νLF,Ḟ
+ E||σ2

0 ||νF
q∑

j=1

||βj ||νLF,Ḟ
< ∞.

(b) From the identity (6.2) follows

ς(p,q)m,m := δ(p,q)m +

m−1∑
l=1

Ψ(p,q)
m · · ·Ψ(p,q)

m−l+1(δ
(p,q)
m−l )

+
∞∑

l=m

Ψ(p,q)
m · · ·Ψ(p,q)

1 Ψ
(p,q,m)
0 · · ·Ψ(p,q,m)

m−l+1 (δ
(p,q,m)
m−l )

a.s. for all m ∈ N. Thereby, Ψ
(p,q,m)
k and δ

(p,q,m)
k stand for Ψ

(p,q)
k resp. δ

(p,q)
k in

(2.2) depending on ε
(m)
k . Thereby, (ε

(m)
k )k∈Z are i.i.d. processes for all m which

are independent of each other, and ε
(m)
k equals ε0 in distribution for all k,m.

Consequently, for any m,

∣∣∣∣ς(p,q)m − ς(p,q)m,m

∣∣∣∣
Fs ≤

∞∑
l=m

(∣∣∣∣Ψ(p,q)
m · · ·Ψ(p,q)

m−l+1

∣∣∣∣
LFs

||δ(p,q)m−l ||Fs

+
∣∣∣∣Ψ(p,q)

m · · ·Ψ(p,q)
1 Ψ

(p,q,m)
0 · · ·Ψ(p,q,m)

m−l+1

∣∣∣∣
LFs

||δ(p,q,m)
m−l ||Fs

)
.

From this identity, the proof of (a) and since ε
(n)
k and εl are i.i.d. for all k, l, n,

it follows in the case ν ∈ (0, 1] :

E
∣∣∣∣ς(p,q)m − ς(p,q)m,m

∣∣∣∣ν
Fs ≤ 2E||δ(p,q)0 ||νFs

∞∑
l=m

E
∣∣∣∣Ψ(p,q)

m · · ·Ψ(p,q)
m−l+1

∣∣∣∣ν
LFs

≤ 2E||δ(p,q)0 ||νFs

( n−1∑
k=0

(
E||Ψ(p,q)

0 ||νLFs

)k) ∞∑
j=m

(ψ(p,q)
n,ν )j

∝ (ψ(p,q)
n,ν )m

and in the case ν > 1, based on the argumentation in the proof of (a) for ν > 1:

E
∣∣∣∣ς(p,q)m − ς(p,q)m,m

∣∣∣∣ν
Fs ≤

( ∞∑
m=n

2
(
E
∣∣∣∣Ψ(p,q)

m · · ·Ψ(p,q)
m−l+1

∣∣∣∣ν
LFs

)1/ν)ν
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≤ 2ν E||δ(p,q)0 ||νFs

( n−1∑
k=0

(
E||Ψ(p,q)

0 ||νLFs

)k)( ∞∑
j=m

(ψ(p,q)
n,ν )j/ν

)ν
∝ (ψ(p,q)

n,ν )m/ν . �

Proof of Lemmas 3.1-3.4. The proofs of Lemmas 3.1-3.4, which are aux-
iliary results in this work, can be found in [23], Lemma 4.11, Theorem 4.2,
Theorem 4.4 and Lemma 4.21 (b), respectively. Thereby, in the proof of [23],
Lemma 4.21 (b), k−1

m has to be substituted by γm.

Proof of Corollary 3.1. (3.14) is an immediate consequence of (3.13), and
(3.15) follows from the triangle inquality, (3.13) and kbN = Ξ[

√
aN , 1].

Proof of Theorem 3.1. The assertion follows from (3.4) and

||δ̂ − δ ||H ≤ ||m̂2 −m2 ||H
(
1 +

r∑
i=1

||αi + βi ||LH

)

+ ||m̂2 ||H
( r∑

i=1

||α̂i − αi ||LH + ||β̂i − βi ||LH

)
. �

Proof of Theorem 3.2. (a) The definition of α̂[p], the inequality (6.1), S†
p :=

Sp(S
2
p + ϑN IH p)−1, the Yule-Walker equation Sp,1 = αSp,S

‡
p :=SpS

†
p, (3.10),

IH p =
∐ĉp,K

ĉp,1
+
∐ĉp,∞

ĉp,K+1
and α=

∐
Jp,K

α+
∐

Jc
p,K

α withJp,K :={Φp,ij |1 ≤ i, j ≤ K}
andJc

p,K :={Φp,ij |i, j∈N, i ∨ j>K}, yield for fixed K ∈ N :

∣∣∣∣α̂[p] −
∐

Jp,K

α[p]

∣∣∣∣2
SHp,H

�
∣∣∣∣(Ŝp,1−Sp,1)Ŝ

†
p

ĉp,K∐
ĉp,1

∣∣∣∣2
SHp,H

+
∣∣∣∣Sp,1Ŝ

†
p

cp,K∐
cp,1

−
∐

Jp,K

α[p]

∣∣∣∣2
SHp,H

� ||Ŝp,1−Sp,1||2SHp,H

∣∣∣∣Ŝ†
p

ĉp,K∐
ĉp,1

∣∣∣∣2
LHp

+ ||Sp,1||2SHp,H

∣∣∣∣Ŝ†
p

ĉp,K∐
ĉp,1

−S
†
p

cp,K∐
cp,1

∣∣∣∣2
LHp

+
∣∣∣∣α[p]S

‡
p

cp,K∐
cp,1

−
∐

Jp,K

α[p]

∣∣∣∣2
SHp,H

� OP(N
−1)

∣∣∣∣Ŝ†
p

ĉp,K∐
ĉp,1

∣∣∣∣2
LHp

+
∣∣∣∣Ŝ†

p

ĉp,K∐
ĉp,1

−S
†
p

cp,K∐
cp,1

∣∣∣∣2
LHp

+
∣∣∣∣∐

Jc
p,K

α[p]S
‡
p

cp,K∐
cp,1

∣∣∣∣2
SHp,H

+
∣∣∣∣∐

Jp,K

α[p]

[
S

‡
p

cp,K∐
cp,1

− IH p

]∣∣∣∣2
SHp,H

=: OP(N
−1) · T1 + T2 + T3 + T4. (6.3)
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Term T1 : As per definition of || · ||LH , Ŝ†
p := Ŝp(Ŝ

2
p + ϑN IH p)−1, since (ĉp,j)j is

the eigenfunction sequence of Ŝp related to the eigenvalue sequence (ĉp,j)j with

ĉp,1 ≥ · · · ≥ ĉp,K w.l.o.g., since
ĉj

(ĉj+ϑN )2 = 0 if ĉj = 0 resp.
ĉj

(ĉj+ϑN )2 ≤ ĉ−1
j if

ĉj �= 0, and because of (3.15) with KN := K for all N , we have

∣∣∣∣Ŝ†
p

ĉp,K∐
ĉp,1

∣∣∣∣2
LHp

= sup
j≤K

( ĉp,j
ĉp,j + ϑN

)2
= OP(c

−2
p,K) = OP(1). (6.4)

Term T2 : The definition of Ŝ†
p,S

†
p and || · ||LHp , since (cp,j)j is a CONS of H p

and (ĉ′′′p,j)j is a CONS of H p a.s., Corollary 3.1, (3.22) and Lemma 3.4 yield

∣∣∣∣Ŝ†
p

ĉp,K∐
ĉp,1

−S
†
p

cp,K∐
cp,1

∣∣∣∣2
LHp

= sup
||x||Hp≤1

∣∣∣∣ K∑
j=1

ĉp,j
ĉ2p,j + ϑN

〈x, ĉ′′′p,j〉H p ĉ′′′p,j −
cp,j

c2p,j + ϑN
〈x, cp,j〉H pcp,j

∣∣∣∣2
H p

� sup
j≤K

∣∣ ĉp,j
ĉ2p,j + ϑN

− cp,j
c2p,j + ϑN

∣∣2 + sup
||x||Hp≤1

K∑
j=1

∣∣ cp,j
c2p,j + ϑN

∣∣2〈x, ĉ′′′p,j− cp,j〉2H p

+ sup
||x||Hp≤1

∣∣∣∣ K∑
j=1

cp,j
c2p,j + ϑN

〈x, cp,j〉H p(ĉ′′′p,j− cp,j)
∣∣∣∣2

H p

� sup
j≤K

(ĉp,j − cp,j)
2

ϑ2
N + ĉ2p,jc

2
p,j

(ĉ2p,j + ϑN )2(c2p,j + ϑN )2
+ (K +1)c−2

p,K sup
j≤K

||̂c′′′p,j− cp,j ||2H p

= OP(c
−4
p,KN−1) + OP(c

−2
p,Kγ2

p,KKN−1) = OP(N
−1). (6.5)

Term T3 : The eigenfunction sequences (cp,j)j of Sp, (cj)j of C0;ZZZ and also the
sequence (Φp,ij)i,j with Φp,ij(cp,k)=δikcj for all i, j, k are CONS of H p,H resp.

of SH p,H . Furthermore, because of S‡
p := S2

p(S
2
p+ϑN IH p)−1,Jc

p,K :={Φp,ij |i, j∈
N, i ∨ j > K}, α[p] =

∑∞
i,j=1〈α[p],Φp,ij〉SHp,H

Φp,ij as well as 〈α[p],Φp,ij〉SHp,H
=∑∞

k=1〈α[p](cp,k),Φp,ij(cp,k)〉H =〈α[p](cp,i), cj〉H for all i, j and since we imposed
〈α[p](cp,l), cj〉H = 0 for all j, l with l ≤ K < j,

∣∣∣∣∐
Jc

p,K

α[p]S
‡
p

cp,K∐
cp,1

∣∣∣∣2
SHp,H

=

K∑
l=1

( c2p,l
c2
p,l + ϑN

)2∣∣∣∣∐
Jc

p,K

α[p](cp,l)
∣∣∣∣2

H

=
K∑
l=1

( c2p,l
c2
p,l + ϑN

)2 ∑
j>K

〈α[p](cp,l), cj〉2H = 0. (6.6)

Term T4 : From elementary transformations as used in T1-T3,
∐

Jp,K
α[p](cp,l) =
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1N≤K
(l)
∑K

j=1〈α[p](cp,l), cj〉H cj for all l,K and ϑN = O(N−1/2) follows

∣∣∣∣∐
Jp,K

α[p]

[
S

‡
p

cp,K∐
cp,1

− IH p

]∣∣∣∣2
SHp,H

=

∞∑
l=1

∣∣∣∣∐
Jp,K

α[p]

([
1N≤K

(l)
c2p,l

c2
p,l + ϑN

− 1
]
cp,l
)∣∣∣∣2

H

=

∞∑
l=1

∣∣∣∣[1N≤K
(l)

c2p,l
c2
p,l + ϑN

− 1
]
1N≤K

(l)

K∑
j=1

〈α[p](cp,l), cj〉H cj
∣∣∣∣2

H

=

K∑
j,l=1

( ϑN
c2
p,l + ϑN

)2〈α[p](cp,l), cj〉2H ≤ ϑ2
N c−4

p,K ||α[p]||2SHp,H
= O(N−1). (6.7)

Replacing T1-T4 in (6.3) by (6.4)-(6.7) indeed yields (3.34).

(b) stems from
∑K

l=1(
c2p,l

c2
p,l+ϑN

)2
∑

j>K〈α[p](cp,l), cj〉2H = O(K−2β) as well as

from c−2
p,Kγ2

p,KK2β+1 = O(N) for any sequences K = KN = Ξ(1, N) and ϑN =

O(N−1/2), and the fact that α[p]=
∐

Jp,K
α[p] +

∐
Jc

p,K
α[p], (3.22), part (a) and

(3.28) imply

||α̂[p] −α[p]||2SHp,H
�
∣∣∣∣α̂[p] −

∐
Jp,K

α[p]

∣∣∣∣2
SHp,H

+
∣∣∣∣∐

Jc
p,K

α[p]

∣∣∣∣2
SHp,H

� OP(c
−2
p,Kγ2

p,KKN−1) +

K∑
l=1

( c2p,l
c2
p,l + ϑN

)2 ∑
j>K

〈α[p](cp,l), cj〉2H

+O(ϑ2
N c−4

p,K) + O(K−2β). �

Proof of Lemma 3.5. The proof is based on proof ideas of Theorem 3.2 with
p replaced by an appropriate sequence L=LN →∞. From these ideas and also
(see [23], Lemma 4.45)

SL,1 = πLSL +
∑
l>L

πlSL,1−l, (6.8)

which can be identified as a Yule-Walker equation with a residual, follows

||π̂L,K − πL||2SHL,H
�
∣∣∣∣π̂L,K −

∐
JL,K

πL
∣∣∣∣2
SHL,H

+
∣∣∣∣∐

Jc
L,K

πL
∣∣∣∣2
SHL,H

� ||ŜL,1 − SL,1||2SHL,H

∣∣∣∣Ŝ†
L

ĉL,K∐
ĉL,1

∣∣∣∣2
LHL

+ ||SL,1||2SHL,H

∣∣∣∣Ŝ†
L

ĉL,K∐
ĉL,1

−S
†
L

cL,K∐
cL,1

∣∣∣∣2
LHL

+
∣∣∣∣SL,1S

†
L

cL,K∐
cL,1

−
∐

JL,K

πL
∣∣∣∣2
SHL,H

+O(K−2β)

� OP(L
2N−1)

∣∣∣∣Ŝ†
L

ĉL,K∐
ĉL,1

∣∣∣∣2
LHL

+ L ·
∣∣∣∣Ŝ†

L

ĉL,K∐
ĉL,1

− S
†
L

cL,K∐
cL,1

∣∣∣∣2
LHL
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+
∣∣∣∣[∑

l>L

πlSL,1−l

]
S

†
L

cL,K∐
cL,1

∣∣∣∣2
SHL,H

+
∣∣∣∣ ∐

Jc
L,K

πLS
‡
L

cL,K∐
cL,1

∣∣∣∣2
SHL,H

+
∣∣∣∣ ∐

JL,K

πL
[
S

‡
L

cL,K∐
cL,1

− IH L

]∣∣∣∣2
SHL,H

+O(K−2β)

=: OP(L
2N−1) · T1 + L · T2 + T3 + T4 + T5 +O(K−2β). (6.9)

Term T1 : Similar conversions as in the proof of Theorem 3.2 imply

∣∣∣∣Ŝ†
L

ĉL,K∐
ĉL,1

∣∣∣∣2
LHL

= OP(c
−2
L,K). (6.10)

Term T2 : (3.12) with L = Ξ(1, N1/3), γL,K = Ω(c−1
L,K) and the argumentation

of T2 in the proof of Theorem 3.2 yield

∣∣∣∣Ŝ†
L

ĉL,K∐
ĉL,1

−S
†
L

cL,K∐
cL,1

∣∣∣∣2
LHL

= OP(c
−4
L,KL3N−1) + OP(c

−2
L,Kγ2

L,KKL3N−1)

= OP(c
−2
L,Kγ2

L,KKL3N−1). (6.11)

Term T3 : The inequality (6.1), (6.10), the triangle inequality and (3.8) imply

∣∣∣∣[∑
l>L

πlSL,1−l

]
S

†
L

cL,K∐
cL,1

∣∣∣∣2
SHL,H

≤ c−2
L,K

∣∣∣∣∑
l>L

πlSL,1−l

∣∣∣∣2
SHL,H

= O
(
c−2
L,KL

(∑
l>L

||πl||LH

)2 )
. (6.12)

Term T4 : Almost one to one as in the proof of Theorem 3.2, we obtain

∣∣∣∣ ∐
Jc

L,K

πLS
‡
L

cL,K∐
cL,1

∣∣∣∣2
SHL,H

=

K∑
l=1

( c2L,l
c2L,l + ϑN

)2 ∑
j>K

〈πL(cL,l), cj〉2H = O(K−2β). (6.13)

Term T5 : Since ||πL||2SHL,H
=
∑L

l=1 ||πl||2SH
is finite, we have as in T4 in the proof

of Theorem 3.2:

∣∣∣∣ ∐
JL,K

πL
[
S

‡
L

cL,K∐
cL,1

− IH L

]∣∣∣∣2
SHL,H

≤ ϑ2
N c−4

L,K ||πL||2SHL,H
= O(c−4

L,Kϑ2
N ). (6.14)

Because of L = Ξ(1, N),K = Ξ(1,
3
√
L−1N), cL,K = Ω(

√
L3N−1), (3.28) and

ϑN = O(c2L,KK−β), and since the tuple (πL, (ΦL,ij)i,j) satisfies Assumption 3.4
for all L ∈ N for β > 0, plugging (6.10)-(6.14) of T1-T5 into (6.9) implies

||π̂L,K − πL ||2SHL,H
= OP(c

−2
L,Kγ2

L,KKL4N−1)
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+O
(
c−2
L,KL

(∑
l>L

||πl||LH

)2)
+O(K−2β).

Hence, since we imposed c−2
L,KL(γ2

L,KKL3N−1+ (
∑

l>L||πl||LH )2) = O(K−2β),
(3.44) is verified.

Proof of Proposition 3.1. We show the assertion by induction. π1 = ψ1, π̂1 =
ψ̂1 and Lemma 3.5 yield indeed (3.50). Assume (3.50) is true for l = 1, ..., i for
some particular i ∈ N. Then, triangle inequality and sub-multiplicativity imply

||ψ̂i+1−ψi+1||2SH
�

i+1∑
j=1

||π̂j ||2SH
||ψ̂i+1−j −ψi+1−j ||2SH

+ ||π̂j − πj ||2SH
||ψi+1−j ||2SH

=

i+1∑
j=1

OP(1)OP(K
−2β) + OP(K

−2β).

Consequently, (3.50) is verified for all i ∈ N.

Proof of Theorem 3.3. (3.51) and since (β[q], (Φp,q;ij)i,j) satisfies Assump-
tion 3.4 for β > 0, yields as in the proof of Theorem 3.2:

||β̂[q]− β[q]||2SHq,H
�
∣∣∣∣β̂[q]−

∐
Jp,q;M

β[q]

∣∣∣∣2
SHq,H

+
∣∣∣∣∐
Jc

p,q;M

β[q]

∣∣∣∣2
SHq,H

�
∣∣∣∣π̂[s,q] − π[s,q]

∣∣∣∣2
SHq,H

∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

∣∣∣∣∣∣2
LHq

+ ||π[s,q]||2SHq,H

∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

−
∏†

[s,q]

gs,q;M∐
gs,q;1

∣∣∣∣∣∣2
LHq

+
∣∣∣∣∣∣π[s,q]

∏†

[s,q]

gs,q;M∐
gs,q;1

−
∐

Jp,q;M

β[q]

∣∣∣∣∣∣2
SHq,H

+O(M−2β)

� OP(K
−2β)

∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

∣∣∣∣∣∣2
LHq

+
∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

−
∏†

[s,q]

gs,q;M∐
gs,q;1

∣∣∣∣∣∣2
LHq

+
∣∣∣∣∣∣∐
Jc

p,q;M

β[q]

∏†

[s,q]

gs,q;M∐
gs,q;1

∣∣∣∣∣∣2
SHq,H

+
∣∣∣∣∣∣ ∐
Jp,q;M

β[q]

[∏‡

[s,q]

gs,q;M∐
gs,q;1

− IH q

]∣∣∣∣∣∣2
SHq,H

+O(M−2β)

=: OP(K
−2β) · T1 + T2 + T3 + T4 +O(M−2β). (6.15)

Term T1 :
∏̂†

[s,q]=
∏̂∗

[s,q](
∏̂

[s,q]

∏̂∗
[s,q] + θN IH q)−1, and (ĝs,q;j)j is the eigenfunc-

tion sequence of
∏̂

[s,q]

∏̂∗
[s,q], thus

∏̂
[s,q]

∏̂∗
[s,q] and

∐ĝs,q;M

ĝs,q;1
commute. Hence,

similarly as in T1 of Theorem 3.2,

∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

∣∣∣∣∣∣2
LHq

=
∣∣∣∣∣∣(∏̂

[s,q]

∏̂∗

[s,q]
+ θN IH q

)−2 ∏̂
[s,q]

∏̂∗

[s,q]

ĝs,q;M∐
ĝs,q;1

∣∣∣∣∣∣
LHq
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= sup
j≤M

ĝs,q;j
(ĝs,q;j+ θN )2

= OP(g
−1
s,q;M ). (6.16)

Term T2 : Because of
∏̂†

[s,q](ĝ
′′′
s,q;j) = (ĝs,q;j+ θN )−1

∏̂∗
[s,q](ĝ

′′′
s,q;j),

∏†
[s,q](g

′′′
s,q;j) =

(gs,q;j+ θN )−1
∏∗

[s,q](ĝ
′′′
s,q;j) and conversions as in T2 in Theorem 3.2, we obtain

∣∣∣∣∣∣∏̂†

[s,q]

ĝs,q;M∐
ĝs,q;1

−
∏†

[s,q]

gs,q;M∐
gs,q;1

∣∣∣∣∣∣2
LHq

= sup
||x||Hq≤1

∣∣∣∣∣∣ M∑
j=1

〈x, ĝ′′′s,q;j〉H q

ĝs,q;j + θN

∏̂∗

[s,q]
(ĝ′′′s,q;j)−

〈x, gs,q;j〉H q

gs,q;j + θN

∏∗

[s,q]
(gs,q;j)

∣∣∣∣∣∣2
H q

� sup
||x||Hq≤1

M∑
j=1

( ∣∣∣ 〈x, ĝ′′′s,q;j〉H q

√
ĝs,q;j

ĝs,q;j + θN
−

〈x, gs,q;j〉H q

√
gs,q;j

gs,q;j + θN

∣∣∣2

+
∣∣∣ 〈x, gs,q;j〉H q

gs,q;j + θN

∣∣∣2(√ĝs,q;j−
√
gs,q;j )

2

)

+ sup
j≤M

∣∣∣ 1

gs,q;j+ θN

∣∣∣2 (∣∣∣∣∏̂∗

[s,q]

∣∣∣∣2
LHq

∣∣∣∣ĝ′′′s,q;j− gs,q;j
∣∣∣∣2

H q

+
∣∣∣∣∏̂∗

[s,q]
−
∏∗

[s,q]

∣∣∣∣2
LHq

)

� sup
j≤M

∣∣∣
√
ĝs,q;j

ĝs,q;j+ θN
−

√
gs,q;j

gs,q;j+ θN

∣∣∣2 +Mg−1
s,q;M sup

j≤M

∣∣∣∣ĝ′′′s,q;j− gs,q;j
∣∣∣∣2

H q

+ sup
j≤M

( 1

gs,q;j+ θN

)2(
(
√

ĝs,q;j−
√
gs,q;j )

2 +
∣∣∣∣∏̂∗

[s,q]

∣∣∣∣2
LHq

∣∣∣∣ĝ′′′s,q;j− gs,q;j
∣∣∣∣2

H q

+
∣∣∣∣∏̂∗

[s,q]
−
∏∗

[s,q]

∣∣∣∣2
LHq

)
= OP(g

−2
s,q;MK−β) + OP(g

−1
s,q;Mγ2

s,q;MK−2βM) + OP(g
−2
s,q;MK−β)

+ OP(g
−2
s,q;Mγ2

s,q;MK−2β) + OP(g
−2
s,q;MK−2β)

= OP(g
−2
s,q;MK−β). (6.17)

In the last step, we utilized γs,q;M = Ω(g−1
s,q;M ), the assumption γs,q;MK−β= o(1),

and also gs,q;M = o(M−1), where latter holds since the eigenvalue sequence
(gs,q;j)j is absolutely summable.

Term T3 : From our assumptions and the ideas in Theorem 3.2 follows

∣∣∣∣∣∣∐
Jc

p,q;M

β[q]

∏†

[s,q]

gs,q;M∐
gs,q;1

∣∣∣∣∣∣2
SHq,H

=

M∑
l=1

( g2s,q;l
g2
s,q;l + θN

)2∑
j>M

〈β[q](gs,q;l), cj〉2H

= O(M−2β). (6.18)
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Term T4 : Analogously as in T4 in Theorem 3.2, we obtain

∣∣∣∣∣∣ ∐
Jp,q;M

β[q]

[∏‡

[s,q]

gs,q;M∐
gp,q;1

− IH q

]∣∣∣∣∣∣2
SHq,H

= O(θ2Ng−2
s,q;M ). (6.19)

Replacing T1-T4 in (6.15) by (6.16)-(6.19), and considering θN = O(K−β/2)
and g−2

s,q;MK−β= O(M−2β), yields

||β̂[q]− β[q]||2SHq,H
= OP(M

−2β).

Hence, (3.57) is shown for all j. Further, (3.56) for i = 1, ..., p follows from (3.44)
for all i, (3.57) for all j, and

||α̂i − αi||2SH
� ||π̂i − πi||2SH

+

(i−1)∧q∑
j=1

||β̂j ||2SH
||π̂i−j− πi−j ||2SH

+ ||β̂j− βj ||2SH
||πi−j ||2SH

. �

Proof of Corollary 4.1. Assume N = mn for some m ∈ N w.l.o.g. Then,

since ψ
(p,q)
n,ν < 1 and (Ψ

(p,q)
k )k∈Z is i.i.d., the assertion follows from

E||ς(p,q)N − ς̃
(p,q)
N ||νFs = E

∣∣∣∣Ψ(p,q)
N Ψ

(p,q)
N−1 · · ·Ψ

(p,q)
1 (ς

(p,q)
0 − ς̃

(p,q)
0 )

∣∣∣∣ν
Fs

≤ (ψ(p,q)
n,ν )N/nE||ς(p,q)0 − ς̃

(p,q)
0 ||νFs . �
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