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Abstract: The Blumenthal–Getoor (BG) index characterizes the jump
measure of an infinitely active Lévy process. It determines sample path
properties and affects the behavior of various econometric procedures. If
the process contains a diffusion term, existing estimators of the BG index
based on high-frequency observations achieve rates of convergence which are
suboptimal by a polynomial factor. In this paper, a novel estimator for the
BG index and the successive BG indices is presented, attaining the optimal
rate of convergence. If an additional proportionality factor needs to be
inferred, the proposed estimator is rate-optimal up to logarithmic factors.
Furthermore, our method yields a new efficient volatility estimator which
accounts for jumps of infinite variation. All parameters are estimated jointly
by the generalized method of moments. A simulation study compares the
finite sample behavior of the proposed estimators with competing methods
from the financial econometrics literature.
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1. Introduction

Models for continuous time stochastic processes with jumps have gained in-
creased interest in the statistical literature, most prominently in financial econo-
metrics where they are used as a model for asset prices (Andersen, Benzoni and
Lund, 2002; Christensen, Oomen and Podolskij, 2014). The jump behavior of
these processes Xt can be broadly characterized in terms of the jump activity
index, given by

α = inf

⎧⎨⎩p :
∑
s≤T

|ΔXs|p < ∞

⎫⎬⎭ . (1.1)

Here, ΔXs = Xs−Xs− denotes the size of a jump at time s. If Xt is a Lévy pro-
cess, α is also known as the Blumenthal-Getoor index (Blumenthal and Getoor,
1961). The index α depends on the small jumps only, and for semimartingales,
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its range is α ∈ [0, 2]. Various qualitative properties of the process Xt can be
expressed in terms of the jump activity index. If the process has only finitely
many jumps in total, then α = 0, and if the jumps are of finite variation, we
have α ≤ 1. Conversely, α < 1 implies jumps of finite variation. Furthermore,
the value of α has implications for various econometric procedures. For exam-
ple, if the jumps are treated as a nuisance, jump-robust estimation of integrated
volatility requires α < 1 (Jacod and Reiss, 2014), as well as an efficient drift
estimator due to Gloter, Loukianova and Mai (2018). In these applications, a
higher jump activity typically induces a non-negligible bias which can not be
easily corrected if the jumps are considered as a nuisance. Hence, highly ac-
tive jumps need to be modeled more explicitly, as done by Amorino and Gloter
(2020a) for drift estimation, and by Jacod and Todorov (2014, 2016) for volatil-
ity estimation.

As the jump activity index is a central property of infinite activity jump
models, it is natural to consider statistical estimation of its precise value. Re-
cent interest in this topic has been initiated by Aı̈t-Sahalia and Jacod (2009),
who study the estimation of α based on discrete high-frequency observations
Xi/n, i = 1, . . . , n, where X is an Itô semimartingale with a non-vanishing diffu-
sion component. They specify (1.1) more precisely by defining α in terms of the
spot jump compensator νt, assuming that νt ((−x, x)c) = rt|x|−α+O(|x|δ−α) as
|x| → 0 for a predictable process rt, and some δ > 0. The statistical challenge is
that, based on discrete observations at a given frequency, the small jumps can
hardly be distinguished from the continuous diffusion movement. One solution,
originally proposed by Mancini (2006, 2009) for the estimation of volatility, is
to introduce a threshold sequence τn ∝ hω

n → 0, and consider any increment
Xi/n −X(i−1)/n > τn to be due to a jump in the interval ((i − 1)/n, i/n]. For
the estimation of the jump activity index α, Aı̈t-Sahalia and Jacod (2009) use
this approach and consider

U(τn) =
n∑

i=1

1

(∣∣∣∣X i
n
−Xt i−1

n

∣∣∣∣ > τn

)
. (1.2)

If ω < 1/2, the contribution of the diffusion towards the statistic U(τn) will
be negligible. The jump activity can be identified via the approximate scaling
relation U(τn) ∝ τ−α

n , and Aı̈t-Sahalia and Jacod (2009) show that this approach
lends itself to derive an estimator of α with rate of convergence nα/10. Replacing
the indicator in (1.2) by a suitable smooth function, Jing et al. (2012) improve
this rate to nα/8. The method of Jing et al. (2012) may also be extended to a
Markovian setting with state-dependent jump activity (Mies, 2021). So far, the
best rates for estimating α have been achieved by the estimators of Reiß (2013)
for the case thatXt is a Lévy process, and by Bull (2016) for Itô semimartingales.
Both authors construct estimators which converge at rate nα/4−ε for arbitrary
ε > 0. In both cases, the precise form of the estimator depends on the desired
rate defect ε > 0.

In the considered high-frequency setting, the optimal rate of convergence for
estimating α is conjectured to be nα/4, up to logarithmic factors. This lower
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bound is justified by the results of Aı̈t-Sahalia and Jacod (2012), who study the
diagonal entries of the Fisher matrix of a fully parametric submodel consist-
ing of the sum of a Brownian motion and a symmetric α-stable Lévy motion.
A matching LAN result is not available since the off-diagonal entries have not
been studied. This lower bound is discussed in Section 3. It should be high-
lighted that the achievable rate of convergence for estimating α depends on
whether the process contains a non-vanishing diffusion component. If we con-
sider a pure-jump Itô semimartingale, the jump activity index can be estimated
at rate

√
n based on high-frequency observations (Todorov, 2015).

Although the estimators of Reiß (2013) and Bull (2016) almost achieve the
optimal rate of convergence, there is so far no procedure which attains the nα/4

lower bound, even in the case whereXt is a Lévy process. This issue has also been
formulated as an open problem by Reiß (2013). In this paper, we propose a new
estimator of α for the Lévy case. If only α is unknown, the estimator achieves
the optimal rate of convergence, matching the lower bound of Aı̈t-Sahalia and
Jacod (2012). If an additional proportionality factor r needs to be estimated, our
estimator is rate-optimal up to a factor of logn for both r and α. Furthermore,
we show that the diagonally rescaled Fisher matrix in the submodel considered
by Aı̈t-Sahalia and Jacod (2012) is asymptotically singular for the combined
parameter (α, r), and hence we conjecture that our rate of convergence is in
fact optimal. Our procedure also yields an efficient estimator of the volatility σ2

of the diffusion component of Xt in the presence of jumps of infinite variation.
Under analogous conditions on the jump behavior, Jacod and Todorov (2014,
2016) have derived a different efficient estimator of volatility which is robust to
highly active jumps. Hence, our estimator is an alternative to the method of Ja-
cod and Todorov (2014), although the latter is valid for Itô semimartingales and
we restrict our attention to Lévy processes. The proposed estimator is based on
the generalized method of moments, and we estimate the jump and the diffusion
parameters jointly in a single step as the solution of a system of estimating equa-
tions. In the literature, the method of moments has been successfully applied to
study various types of stochastic processes, e.g. nonlinear jump-diffusion pro-
cesses (Jakobsen and Sørensen, 2019), or stochastic differential equations driven
by fractional Brownian motion (Barboza and Viens, 2017).

Our model allows for an asymmetric behavior of the small jumps. In particu-
lar, for a Lévy process Xt with characteristic triplet (μ, σ2, ν), we suppose that
the Lévy measure ν is locally stable in the sense that, for z close to 0,

ν(dz) ≈ ν̃(dz) =

M∑
m=1

αm

|z|1+αm

(
r+m1z>0 + r−m1z<0

)
dz. (1.3)

Here, M is a natural number, r±m ≥ 0, m = 1, . . . ,M , and the 0 < αM <
. . . < α1 < 2 are the successive Blumenthal-Getoor indices, as introduced by
Aı̈t-Sahalia and Jacod (2012). The approximation in (1.3) will be made precise
in the sequel. In particular, the BG index of Xt will be α = α1. We construct
an estimator for the parameter vector θ ∈ R

3M+1 consisting of the volatility σ2,
the indices αm, and the proportionality factors r±m.
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The remainder of this paper is structured as follows. In Section 2, we present
our model and the proposed estimator. A central limit theorem is given, es-
tablishing the rate nα/4. The rate of convergence and related lower bounds are
discussed in Section 3. By means of a simulation study (Section 4), we compare
the finite sample properties of our method with the jump activity estimators
of Bull (2016); Reiß (2013) and the volatility estimator of Jacod and Todorov
(2014). Section 5 contains some concluding remarks. All technical results, which
might be of independent interest, are outlined in Section 6.1, and the detailed
proofs are gathered in Section 6.2.

1.1. Notation

For two real numbers a, b, we denote a ∧ b = min(a, b), a ∨ b = max(a, b). The
indicator function of a set A is denoted as 1A. For a function f = f(a, b, . . .),
∂af denotes the partial derivative w.r.t. a, and for a function f(θ) ∈ R

m with
θ ∈ R

k, the gradient matrix is denoted by (Dθf)j,l = ∂θlfj . For δ > 0, Bδ(0)
is the ball around 0 with radius δ in R

k, where k is evident from the context.
Id ∈ R

d×d denotes the identity matrix. The multivariate normal distribution
with covariance matrix Σ and mean 0 is denoted asN (0,Σ), and⇒ denotes weak
convergence of probability measures resp. random elements. The expectation
operator is E, and dependence upon a parameter θ is denoted as Eθ.

2. Model and estimator

Consider a univariate Lévy process Xt, X0 = 0, with characteristic triplet
(μ, σ2, ν) for a drift parameter μ ∈ R, volatility parameter σ2 > 0, and a Lévy
measure ν, i.e.

∫
(1 ∧ |z|2) ν(dz) < ∞. We choose an odd truncation function ξ

such that |ξ| ≤ 2 and ξ(z) = z for z ∈ (−1, 1). Then Xt admits the Lévy-Itô
decomposition

Xt = μt+ σBt +

∫ t

0

∫
(z − ξ(z))N(dz, ds)

+

∫ t

0

∫
ξ(z) (N(dz, ds)− ν(dz)⊗ ds),

(2.1)

whereN(dz, ds) is a Poisson point process with intensity measure ν(dz)⊗ds, and
Bt is a standard Brownian motion, independent of N . The value of μ depends
on the choice of the truncation function ξ, but for our purposes, it will turn
out that μ is negligible anyways. To make the approximation (1.3) precise, we
suppose that

|ν([x,∞))− ν̃([x,∞))| ≤ L|x|−ρ, x ∈ (0, 1],

|ν(−∞, x])− ν̃(−∞, x])| ≤ L|x|−ρ, x ∈ [−1, 0),
(2.2)
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for some L > 0 and ρ > 0. The approximating measure ν̃ is given by the
Lebesgue density

ν̃(dz) =

M∑
m=1

αm

|z|1+αm

(
r+m1z>0 + r−m1z<0

)
dz, (2.3)

for some natural number M and parameters α = (α1, . . . , αM ) ∈ (0, 2)M , and
r = (r+1 , r

−
1 , . . . , r

+
M , r−M ) ∈ R

2M
≥0 . The remainder term in (2.2) is treated as

a nuisance. In particular, this remainder may still consist of infinite activity
jumps. Our main result will require ρ < αM , such that the nuisance jumps are
in a sense less active than the Lévy measure ν̃ and asymptotically negligible.
The parameters of the modeled part are summarized as

θ = (σ2, α1, r
+
1 , r

−
1 , . . . , αM , r+M , r−M ) ∈ Θ ⊂ R

3M+1. (2.4)

where Θ contains all parameter vectors θ as specified, such that additionally

α = α1 > α2 > . . . > αM >
α

2
, r+m + r−m > 0, i = 1, . . . ,M, σ2 ≥ 0.

The value α = α1 is of central importance. In particular, we need to impose the
lower bound αM > α/2 to ensure identifiability of the full parameter vector θ,
see Aı̈t-Sahalia and Jacod (2012). Note that the definition (2.3) is the same as
given by Jacod and Todorov (2016) for the symmetric case.

In the high-frequency sampling setting considered here, we are given n ob-
servations Xihn , i = 1, . . . , n with observation frequency hn → 0 such that
nhn = T is constant. Without loss of generality, let T = 1 and h = hn = 1/n.
Equivalently, we observe the n increments Δn,iX = Xihn − X(i−1)hn

∼ Xhn ,
which constitute a triangular array of random variables with iid rows. The law
of Xhn is not fully described by the parameters (σ2, r,α) due to the remainder
in (2.2). Hence, we approximate it by a fully specified Lévy process Z̃t with
characteristic triplet (0, σ, ν̃). The process Z̃t may be represented as

Z̃t = σBt +

M∑
m=1

Sm
t ,

where Bt, S
m
t , m = 1, . . . ,M , are independent Lévy processes, Bt is a standard

Brownian motion, and the Sm
t are skewed αm-stable process with Lévy measure

|z|−1−αm(r+m1z>0 + r−m1z<0).
We suggest to estimate the parameter θ via the method of moments. In

particular, we choose 3M + 1 functions fj : R → R, f = (f1, . . . , f3M+1), and a

suitable scaling factor u = un, and define θ̂ = θ̂n to be a solution of the equation

Fn(θ̂n) =

[
1

n

n∑
i=1

f(unΔn,iX)

]
− Eθ̂n

f(unZ̃hn) = 0. (2.5)

Here and in the following, Eθf(Z̃h) denotes the expectation such that Z̃h is
determined by the parameter vector θ. Since Z̃h is a fully parametric approxi-
mation of Xh, the function Fn(θ) can be computed numerically, such that θ̂n is a
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feasible estimator. To distinguish a generic parameter value from the parameters
governing Xt, we denote by θ0 the true parameter such that (2.2) holds.

To study the limit of θ̂n, we employ the standard framework for estimating
equations as reviewed by Jacod and Sørensen (2018). Under the assumptions

imposed below, we show that θ̂n − θ0 ≈ −(DθFn(θ0))
−1Fn(θ0), up to negligible

terms. In order for θ̂n to have good asymptotic properties, the choices of the
moment functions f and the scaling factor un are crucial. In particular, to
derive a central limit theorem for Fn(θ0) (see Lemma 6.4), we need to control
the sampling variance in (2.5) as well as the bias incurred by approximating Xt

by Z̃t. Furthermore, the asymptotic behavior of DθFn(θ) as n → ∞ needs to be
treated (see Lemma 6.5). To this end, the following properties turn out to be
sufficient.

Condition (F1). For j = 1, . . . , 3M + 1, the functions fj ∈ C3(R) satisfy

‖f (k)
j ‖∞ < ∞ for k = 0, 1, 2, 3, and f ′

j ∈ L1(R).

The smoothness imposed by Condition F1 is used to bound the bias incurred
by approximating Ef(uXhn) by Eθf(uZ̃hn), see Corollary 6.3 below. To con-
trol the sampling variance, we do not only require smoothness of the employed
moment functions, but they further need to be of a specific shape.

Condition (F2). The function f1 is symmetric and satisfies f1(0) = f ′
1(0) =

0 �= f ′′
1 (0). The functions fj , j = 2, . . . , 3M + 1, are identically zero on the

interval [−η, η] for some η > 0.

Additional identifiability conditions are specified in assumption I below. The
first moment function f1 is approximately quadratic near zero, and will serve
to identify the volatility σ2. The functions fj(x) are smooth thresholds, which
distinguish the diffusion from the jump component. An example of suitable
moment functions is given in section 4. To ensure that the threshold is effective,
we require that unXhn → 0 in probability, i.e. un = o(

√
n). By choosing an

appropriate scaling sequence as follows, the moments Efj(unZ̃hn), j ≥ 2, will
be dominated by the jump component.

Condition (U). un → ∞ such that un = τ
√
n√

logn
for some τ < η

σ
√
8
.

Although potentially not sharp, the upper bound on the factor τ is required
to derive our asymptotic result. For details, see the technical Lemma 6.1 below
and the subsequent discussion. When choosing un in accordance with condition
U, it suffices to use a reasonable upper bound on σ. Furthermore, the simulation
results presented in section 4 show that larger values of un also perform well in
finite samples.

Since fj vanishes on [−η, η] for j = 2, . . . , 3M +1, the respective sample mo-
ments are only driven by increments such that Δn,iX > η

un
. Hence, these sample

moments correspond to a smooth variant of the statistic (1.2) studied by Aı̈t-
Sahalia and Jacod (2009), with threshold τn ∝

√
log n/

√
n. The same threshold

level has been found to be optimal for the detection of jumps (Figueroa-López
and Nisen, 2013, Theorem 4.3) and for the estimation of integrated volatility
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(Figueroa-López and Mancini, 2019, Proposition 1). Furthermore, the function
f1 is quadratic near zero, and globally bounded. If we choose f1 to vanish on
[−1, 1]c, then the rescaled sample moment u−2

n

∑n
i=1 f1(unΔi,nX) is a smooth

variant of the truncated realized variance estimator introduced by Mancini
(2006), with threshold τn = 1/un. Besides the smooth truncation, a major

methodological novelty of our estimator θ̂n is to combine the threshold-based
estimation of jump and diffusion components into a single system of estimating
equations.

To formulate our main result on the asymptotic behavior of θ̂, we introduce
the quantities

J±
α g(x) = α

∫
g(x+ z)− g(x)− g′(x)ξ(z)

|z|1+α
1{±z>0} dz, α ∈ (0, 2),

which exist if ‖g‖∞, ‖g′′‖∞ < ∞. Furthermore, we introduce the matrices

γn,m(θ) =

⎛⎝ 1 0 0
−r+m log un 1 0
−r−m log un 0 1

⎞⎠ , m = 1, . . . ,M,

Γn(θ) = diag(I1, γn,1, . . . , γn,M ) ∈ R
(3M+1)×(3M+1),

Λ̄n(θ) =
√

hn diag(
√
hn

−1
, u

α1−α1
2

n , u
α1−α1

2
n , u

α1−α1
2

n , u
α2−α1

2
n , . . .

. . . , u
αM−1−α1

2
n , u

αM−α1
2

n , u
αM−α1

2
n , u

αM−α1
2

n ),

and the matrix A(θ) ∈ R
(3M+1)×(3M+1), given by

A(θ)1,1 = f ′′
1 (0)/2, A(θ)1,j = A(θ)j,1 = 0, j �= 1,

and for m = 1, . . . ,M , j = 2, . . . , 3M + 1,

A(θ)j,3m−1 = ∂αm(r+mJ +
αm

fj(0) + r−mJ−
αm

fj(0)),

A(θ)j,3m = J +
αm

fj(0), A(θ)j,3m+1 = J−
αm

fj(0).

These derivatives exist because ‖f‖∞, ‖f ′′‖∞ are finite. Finally, we introduce
the symmetric positive semidefinite matrix Σ(θ) given by

Σ(θ)1,1 =
σ4f ′′

1 (0)
2

2
,

Σ(θ)1,j = Σ(θ)j,1 = 0, j ≥ 2,

Σ(θ)j,k =
(
r+1 J +

α1
+ r−1 J−

α1

)
(fj · fk)(0), j, k ≥ 2.

If clear from the context, we will omit the dependence on θ. Using this notation,
we can formulate the remaining identifiability condition.

Condition (I). For the true parameter θ0, A(θ0) is regular.
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Remark 1. Analyzing the degrees of freedom of the equation |A(θ)| = 0 sug-
gests that condition I is, in fact, the generic case. To demonstrate this point, we
construct a set of moment functions satisfying the identifiability condition. Con-
sider the case M = 1 with αm = α and r±m = r±, m = 1. We can construct a set
of moment functions satisfying condition I as follows. Let f1 = f and g be sym-
metric functions satisfying conditions F1 such that f ′′

1 (0) �= 0, and g vanishes
on [−1, 1]. Furthermore, denote a = J +

α g(0) = J−
α g(0), and b = ∂αJ±

α g(0). We
set f2(x) = g(x), f3(x) = g(2x), and f4(x) = g(x)1x>0 + g(2x)1x<0. Note that
J±f3(0) = 2αJ±g(0) = 2αa, as well as J +f4(0) = a, and J−f4(0) = 2αa.
Then one can check that

A(θ0) = A(σ2, r+, r−, α)

=

⎛⎜⎜⎝
f ′′(0)/2 0 0 0

0 (r+ + r−)b a a
0 2α(r+ + r−)(b+ a log 2) 2αa 2αa
0 r+b+ r−a2α log 2 a a(1 + 2α)

⎞⎟⎟⎠ ,

with determinant det(A) = − f ′′(0)
2 (r+ + r−) a3 2α log 2. Hence, A(θ0) is regular

for (r+ + r−) > 0 and all α ∈ (0, 2) if g is chosen such that a �= 0. This is in
particular the case for the choice of the moment functions for the simulation
study in section 4.

The main result of this paper is the consistency and asymptotic normality of
θ̂n, as summarized by the following theorem.

Theorem 2.1. Let Xt be a Lévy process satisfying (2.2) with some ρ < α/2, and
parameter vector θ0 ∈ Θ. Let f satisfy assumptions F1 and F2, and be such that
A(θ0) is regular, and let un → ∞ be chosen according to U. Then there exists a

sequence of random vectors θ̂n solving (2.5) eventually, i.e. P (Fn(θ̂n) = 0) → 1.

This sequence satisfies θ̂n → θ in probability as n → ∞, and
√
nA(θ0)Λ̄nΓ

−1
n (θ0)(θ̂n − θ0) ⇒ N (0,Σ(θ0)).

The resulting rate of convergence for the BG index α = α1 is thus found to
be (n log n)

α
4 , which improves upon existing estimators and matches the lower

bound of Aı̈t-Sahalia and Jacod (2012) up to logarithmic factors. However,
the rate matrix of Theorem 2.1 is non-diagonal. The phenomenon of a non-
diagonal rate matrix has also been observed in the pure jump case, i.e. σ2 = 0,
see Brouste and Masuda (2018). Interestingly, a non-diagonal rate matrix also
occurs when estimating the Hurst parameter of a fractional Brownian motion in
the high-frequency setting, see Brouste and Fukasawa (2018). We further discuss
this aspect and the resulting marginal rates of convergence for α̂m and r̂±m in
the next section. Nevertheless, the matrices Γ−1

n , A(θ0), and Σ(θ0) are block-
diagonal, such that the volatility estimator σ̂2 is asymptotically independent of
the estimator of the jump part.

The presented central limit theorem also holds for the fully specified case
without nuisance, i.e. L = 0 in (2.2). Even in this parametric case, we find that a
simple GMM estimator based on 3M+1 fixed moment functions, corresponding
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to un = 1, will not achieve the best rate of convergence. A careful construction
of the estimating equation (2.5) is thus not only required to handle the nuisance
term, but also for the underlying parametric problem itself.

The proposed estimator for α can be contrasted with existing methods in
the literature. In an earlier study, Reiß (2013) suggests a test procedure for the
value of α based on a statistic Tm

n with tuning parameter m ∈ N. Therein, it
is established that Tm

n → Q(α) as n → ∞ at rate n
α
4 −ε(m), and ε(m) → 0

as m → ∞. By inverting the function Q, this approach yields a near-optimal
estimator for α. The statistics Tm

n are constructed based on nonlinear sample
moments as in (2.5), where the fj are linear combinations of trigonometric
functions, i.e. fj(x) =

∑
k wk,j exp(iλkx). Choosing the weights wk,j carefully

such that
∑

k wk,jλ
2p
k = 0 for p = 1, . . . ,m−1, Reiß (2013) is able to reduce the

variance of the corresponding sample moments. The arbitrarily small defect in
the rate of convergence nα/4−ε(m) derived therein is thus due to the sampling
variance. In contrast, by choosing the moment functions to vanish near zero
according to Condition F2, we obtain a smaller variance of the sample moments.

An alternative estimator achieving the rate nα/4−ε is presented by Bull
(2016), which also uses functions which vanish near zero. Therein, the value
Ef(unXhn) is approximated by a finite series expansion, and extending this
expansion reduces the rate defect ε. In contrast, we use the approximation
Ef(unXhn) ≈ Ef(unZ̃hn). Although the latter value is not available in ex-
plicit form and needs to be determined numerically, this approach allows us to
decrease the bias of the estimating equation further than by any finite series
expansion. In particular, we only incur a bias due to approximating the Lévy
measure of Xt, but not due to a discretization of the time evolution of the pro-
cess. Thus, our method effectively circumvents the variance issue of Reiß (2013)
and the bias issue of Bull (2016). This allows us to eliminate the polynomial
rate defect and achieve a faster rate of convergence.

3. Asymptotic optimality

It is natural to ask whether our proposed estimator is asymptotically optimal.
From Theorem 2.1, we find that

√
n(σ̂2

n − σ2) ⇒ N (0, 2σ4), (3.1)

which matches the optimal estimator in the situation without jumps. That is,
σ̂2
n is efficient. In general, jumps of infinite variation reduce the achievable rate

of convergence for volatility estimators (Jacod and Reiss, 2014). Here, we are
able to recover efficiency by modeling the infinite variation part of the jump
measure explicitly via (2.2). The same methodology has been applied by Jacod
and Todorov (2014, 2016) to construct an efficient estimator of σ2. Note that the
latter studies treat more general types of semimartingales, while we only derived
a result for Lévy processes. In contrast to the existing estimators, which use a
multi-step debiasing procedure, we determine σ̂2 by a single set of estimating
equations. While our approach is conceptually simple, solving the estimating
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equations (2.5) is computationally expensive. A comparison of the finite sample
performance is presented in Section 4.

As the asymptotic variance of the estimators αm and r±m depends on the
choice of f , they can not be expected to be variance efficient. Furthermore,
they are coupled via Γn and via the matrix A(θ0), which is in general dense.
Inspecting the limit in Theorem 2.1, we find that

α̂m − αm = OP

(
u

α1
2 −αm

)
= OP

(
(n log n)

α1
4 −αm

2

)
,

r̂±m − r±m = OP

(
u

α1
2 −αm log u

)
= OP

(
(n log n)

α1
4 −αm

2 log(n)
)
.

(3.2)

To assess these rates of convergence, we may compare with the lower bound of
Aı̈t-Sahalia and Jacod (2012). Therein, the authors compute the diagonal terms
of the Fisher information In

θ based on n observations of Z̃1/n for the symmetric
case r+m = r−m = rm and M = 2. Their analysis of the diagonal entries In

αm,αm

and In
rm,rm suggests that an asymptotically optimal estimator (α̂∗

m, r̂∗m) should
satisfy

α̂∗
m − αm = OP

(
(n log n)

α1
4 −αm

2 / logn
)
,

r̂∗m − rm = OP

(
(n log n)

α1
4 −αm

2

)
.

(3.3)

Notably, even for M = 1, the rates (3.3) are faster than (3.2) by a logarithmic
factor.

This difference could potentially be explained by the neglected off-diagonal
terms of Iθ. A similar phenomenon occurs in the pure jump case σ2 = 0, M = 1,
where for any sequence of diagonal matrices Dn, the limit of DnIn

(α,r)Dn is

singular, see (Masuda, 2015, Thm. 3.4) and (Aı̈t-Sahalia and Jacod, 2008, Thm.
2). Recently, Brouste and Masuda (2018) studied this case, and established the
LAN property with a non-diagonal rescaling matrix Dn. They find that the
optimal rate of convergence is slower than suggested by the diagonal entries
of the Fisher matrix, by a factor of log n. A similar phenomenon is observed
when estimating the Hurst parameter of a fractional Brownian motion based on
high-frequency observations (Brouste and Fukasawa, 2018). There is no LAN
result available for estimation of the BG index in the case σ2 > 0, and a full
investigation of the LAN property in the present case is out of scope of this
paper. Nevertheless, we can adapt the proof of Aı̈t-Sahalia and Jacod (2012) to
unveil the off-diagonal entries In

α1,r1 . It turns out that the diagonally rescaled
Fisher matrix is asymptotically singular, just as in the pure-jump case.

Proposition 3.1. Let Ih denote the Fisher information matrix of Z̃h with
M = 1 and α1 = α, r+1 = r−1 = r. Then, as h → 0,

(h log(1/h))
α
2

h

(
1 0
0 1

log(1/h)

)(
Ir,r
h Ir,α

h

Ir,α
h Iα,α

h

)(
1 0
0 1

log(1/h)

)
−→ 2r

σα(2− α)
α
2

(
1
r2

1
2r

1
2r

1
4

)
.
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In particular, the limiting matrix is singular.

The diagonal entries of the Fisher information matrix should match the opti-
mal rates of convergence in the case where only a single parameter is unknown,
e.g. if (σ2, r+1 , r

−
1 ) are known and α1 should be estimated. In this situation, a

natural version of our estimator is to consider only a single moment function
f . Analogous to (2.5), for any m ∈ {1, . . . ,M}, we may estimate αm as the
solution of

F̃n(αm) =
1

n

n∑
i=1

f(unΔn,iX)− Eθf(unZ̃h)
!
= 0. (3.4)

With a slight abuse of notation, we may also estimate r±m by the equation
F̃n(r

±
m) = 0. To distinguish jumps and diffusion, we suppose f satisfies the

same conditions as f2, . . . , f3M+1, i.e. it should vanish around zero.

Proposition 3.2. Let Xt be a Lévy process satisfying (2.2) with some ρ < α1/2,
and parameter vector θ0 ∈ Θ. Let f be a non-negative function satisfying F1,
and f(x) = 0 for x ∈ [−η, η], and choose un → ∞ such that U holds. Fix some
m ∈ {1, . . . ,M}, and suppose that J±

αm
f(0) > 0. Then there exists a consistent

sequence of estimators α̂m satisfying P (F̃n(α̂m) = 0) → 1, such that α̂m → αm

in probability as n → ∞, and

u
αm−α1

2
n log(un) (α̂m − αm) ⇒ N

(
0,

(r+1 Jα1 + r−1 Jα1)f
2(0)

(r+mJ +
αm + r−mJ−

αm)f(0)

)
.

Under the same conditions, and if all parameters except for r+m resp. r−m are
known, there exists a consistent sequence of estimators r̂±m solving the estimating
equation eventually, i.e. P (F̃n(r̂

±
m) = 0) → 1, such that, as n → ∞,

u
αm−α1

2
n

(
r̂±m − r±m

)
⇒ N

(
0,

(r+1 Jα1 + r−mJα1)f
2(0)

J±
αmf(0)

)
.

Since un is of order
√
n/ log n, Proposition 3.2 establishes precisely the rates

(3.3). In the setting of Aı̈t-Sahalia and Jacod (2012), in particular M = 2, this
shows that α̂m resp. r̂±m are rate efficient if the remaining parameters θ are

known. In contrast, if all parameters θ are unknown, θ̂ achieves the optimal rate
of convergence, up to a logarithmic factor. Due to the singularity of the Fisher
matrix, we conjecture that the achieved rates (3.2) are in fact optimal.

4. Simulation study

By means of a Monte Carlo study, we compare the finite sample performance
of our estimator with the estimators of Reiß (2013) and Bull (2016) for the
Blumenthal-Getoor index α, and with the volatility estimator of Jacod and
Todorov (2014). The code is available as supplemental material (Mies, 2020).
For our simulations, we sample paths of a Lévy process Xt given by

Xt = Bt + Sα,β
t + 0.1S0.5,0

t . (4.1)
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We denote by Sα,β
t the α-stable Lévy motion with skewness parameter β ∈

(−1, 1). That is, the characteristic function of Sα,β
t is given by (see e.g. Zolotarev

(1986))

logE exp(iλSα,β
t ) = −t|λ|α

[
1− i tan

(πα
2

)
βsign(λ)

]
.

The Lévy measure corresponding to this standardization can be expressed in the

form (2.3) with M = 1, r+−r−

r++r− = β, and (r+ + r−) = 1
Γ(1−α) cos(πα/2) if α �= 1.

For α = 1, the characteristic function may be found as continuous extension.
Here, we will set β = −1/3 and study the cases α = 1, α = 1.3 and α = 1.7.
Then (2.2) is satisfied with ρ = 0.5, such that S0.5,0

t is a nuisance term, and

Z̃t = Bt+Sα,β
t . Note that we have ρ < α

2 in the cases α = 1.3 and α = 1.7, such
that the nuisance is asymptotically negligible, while we have ρ = α

2 for α = 1.
In view of applications in financial econometrics, we consider the time horizon
T = 1, and sampling frequencies h between h = 0.2/23400 and h = 60/23400,
corresponding to 0.2 resp. 60 seconds per quote on a trading day of 6.5 hours.

We consider the estimating equation (2.5) forM = 1, i.e. θ = (σ2, α, r+, r−) ∈
Θ. To treat the equation numerically, we compute the moments and its gradi-
ents by the Fourier transform Ef(uZ̃h) =

1
2π

∫∞
−∞ f̂(λ)E exp(iλuZ̃h) dλ, where

f̂(λ) =
∫∞
−∞ f(x) exp(−iλx) dx is the continuous Fourier transform of a function

f . Note that E exp(iλZ̃h) is available in closed form, see e.g. Zolotarev (1986).
Using the representation (2.1), we have

logE exp(iλZ̃h)

= −hλ2σ
2

2
− hiλ

r+ − r−
1− α

− h|λ|αΓ(1− α)(r+ + r−) cos
(πα

2

)[
1− i tan

(πα
2

) r+ − r−
r+ + r−

sign(λ)

]
.

The drift term in the characteristic exponent depends on the choice of the trun-
cation function ξ(z) which is employed in definition (2.1). This representation
of the characteristic exponent is valid for ξ(z) = z1|z|≤1. Although there is
no canonical specification of the drift of a general Lévy process, this does not
impede our estimation procedure since we consider the drift as a nuisance pa-
rameter. The employed moment functions f1, . . . , f4 are handcrafted to satisfy
F1 and F2. In our simulations, we use

f1(x) = 1− exp

(
−x2

2

)
,

f2(x) = exp

(
− 300

(|x| − 1) ∨ 0
· exp

(
− 10

(8− |x|) ∨ 0

))
,

f3(x) = exp

(
− 300

(|2x| − 1) ∨ 0
· exp

(
− 10

(8− |2x|) ∨ 0

))
,

f4(x) =

⎧⎨⎩exp
(
− 300

(|2x|−1)∨0 · exp
(
− 10

(8−|2x|)∨0

))
, x ≥ 0,

exp
(
− 300

(|x|−1)∨0 · exp
(
− 10

(8−|x|)∨0

))
, x < 0.

(4.2)
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Note that f2, f3, f4 vanish on [−1/2, 1/2]. We use the rescaling factors u =
1/
√
h| log h| and u = 2/

√
h| log h|. Although this choice of u is too large to

comply with assumption U, we found it to perform better than smaller values
for the given sampling scenario.

Theorem 2.1 guarantees that the estimating equation (2.5) is feasible even-
tually, as n → ∞. However, depending on the realization of Xt, it might oc-
cur for fixed n that there is no parameter value θ ∈ Θ such that Fn(θ) = 0.
In order to obtain an estimator in the latter situation, we replace the esti-
mating equation by the equivalent least-squares minimization problem θ̂ =
argminθ∈Θ ‖W−1

n Fn(θ)‖2, with diagonal weight matrix Wn given by Wn =
diag( 1n

∑n
i=1 f(unΔi,nX)). The minimizer is determined numerically, using the

methods LBFGS and MMA of the NLopt library (Johnson, 2020), accessed via
its R interface. These procedures allow for box constraints on the parameter θ,
and we ensure that α ∈ (0, 2). As an initial value, we choose 0.5 · θ0, which is
intentionally distinct from the unknown true parameter value.

The estimators α̂Reiß of Reiß (2013) and α̂Bull of Bull (2016) each have a
tuning parameter m ∈ N, and larger values of m increase the rate of conver-
gence. However, smaller values of m can be superior in finite samples. In our
simulations, we found that the estimator of Bull performed best when setting
m = 2 across all simulated frequencies. For the estimator of Reiß, setting m = 2
gave the best results for almost all frequencies. The procedure of Bull requires
a scaling parameter τn = Cn

m
2(m+1) . We found the choice C = 0.5 to yield good

results. Furthermore, the method of Reiß involves a rescaling parameter Un and
two weighting measures w1, w2. We choose the weighting measure w1 to be
supported on the set {1/m, 2/m, . . . , 1}, and w2 to be supported on the set
{2/m, 4/m, . . . , 2}. The truncation parameter is set to U = h−(1−2m)/(4m−1),
as suggested by equation (3.8) in the original article (Reiß, 2013). Finally, the
estimator σ̂2

JT of Jacod and Todorov (2014) is implemented as in equation (5.3)

therein, with ζ = 1.5 and u = | log h| 1
30 .

In Table 1, we compare the simulated performance of our moment estimator
for α and σ2 with the estimators of Jacod and Todorov (2014), Reiß (2013),
and Bull (2016). It is found that upon choosing u = 2/

√
h| log h|, the new es-

timators perform best in the considered setting. However, it should be noted
that all benchmarked methods require various tuning parameters. Most no-
tably, all methods require some scaling factors. Furthermore, our new estima-
tor depends on the employed moment functions fj . It is thus possible that a
very careful choice of these parameters might affect the ranking implied by
Table 1.

Table 1 also presents the fraction of simulations for which the estimating
equations are numerically infeasible, i.e. for which the numerically obtained
least-squares minimizer θ̂ satisfies ‖W−1

n Fn(θ̂)‖ > 10−3. As h decreases, we
observe that the fraction of feasible equations increases, which is in line with
our theoretical results. Moreover, the probability of the estimating equation
being feasible is mostly higher for the smaller value of u, even though the larger
u leads to a better performance of the estimator θ̂.
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Table 1

Median absolute errors for the estimation of α and σ2 in model (4.1), for different
estimators, and the proportion of infeasible systems of estimating equations. All values are

based on 5000 simulations.

GMM, u = 1√
h| log h|

GMM, u = 2√
h| log h|

α h α̂ σ̂2 infeas. α̂ σ̂2 infeas. σ̂2
JT α̂Reiß α̂Bull

1.0 60/23400 0.50 0.24 0.33 0.34 0.10 0.95 0.13 0.65 0.71
1.0 15/23400 0.39 0.10 0.18 0.26 0.05 0.65 0.06 0.45 0.41
1.0 5/23400 0.31 0.05 0.10 0.19 0.02 0.24 0.03 0.33 0.29
1.0 1/23400 0.21 0.02 0.02 0.15 0.01 0.01 0.01 0.22 0.21
1.0 0.2/23400 0.15 0.01 0.00 0.10 0.00 0.00 0.01 0.16 0.16

1.3 60/23400 0.49 0.38 0.43 0.29 0.13 0.99 0.22 0.65 0.79
1.3 15/23400 0.43 0.19 0.30 0.24 0.08 0.90 0.12 0.40 0.54
1.3 5/23400 0.37 0.11 0.21 0.20 0.05 0.57 0.07 0.28 0.36
1.3 1/23400 0.24 0.05 0.08 0.14 0.02 0.05 0.03 0.17 0.24
1.3 0.2/23400 0.14 0.02 0.01 0.09 0.01 0.00 0.01 0.10 0.16

1.7 60/23400 0.27 0.91 0.54 0.09 0.19 1.00 0.75 0.30 1.59
1.7 15/23400 0.22 0.70 0.41 0.05 0.14 1.00 0.59 0.30 0.96
1.7 5/23400 0.18 0.56 0.38 0.04 0.11 0.99 0.43 0.22 0.33
1.7 1/23400 0.16 0.35 0.31 0.06 0.10 0.96 0.22 0.11 0.23
1.7 0.2/23400 0.12 0.19 0.21 0.03 0.05 0.82 0.10 0.06 0.14

The relevance of the scaling factor u may also demonstrated by comparing
the simulated distribution of α̂ to the asymptotic normal distribution according
to Theorem 2.1. For the smaller value u = 1/

√
h| log h| (Figure 1), we find that

the asymptotic distribution is a good approximation in the cases α = 1.3 and
α = 1.7. Note that the prominent mode near 2 for the case α = 1.7 is due to
the fact the we restrict the nonlinear minimization to the interval (0, 2). In the
case α = 1, we find that the simulated distribution of α̂ is close to Gaussian,
but the convergence of the variance is rather slow. For the larger scaling factor
u = 2/

√
h| log h| (Figure 2), the asymptotic distribution does not accurately

describe the behavior of α̂ for α = 1.7, as the estimator α̂ admits a higher
concentration around the true value than suggested by the limit distribution.
This observation can be traced back to the nonlinearity of the estimating equa-
tion. In particular, based on the estimator θ̂ obtained as a numerical solution
of the least-squares problem minθ ‖W−1

n Fn(θ)‖2, we may perform a single New-

ton iteration to obtain the estimator θ̂∗ = −(DFn(θ̂))
−1Fn(θ̂). The empirical

distribution of the corresponding estimator α̂∗ is represented by the dashed line
in Figure 1 and 2. Especially in the case α = 1.7, we observe that the behavior
of α̂∗ is well-represented by the asymptotic normal distribution, although the
estimation error of α̂∗ is larger than that of α̂.

Turning to the estimation of volatility, we have demonstrated that the esti-
mator σ̂2 is efficient, and its asymptotic variance depends neither on u nor on
α ∈ (0, 2). However, Table 1 reveals a dependence on both quantities in the sim-
ulated finite samples, such that the asymptotic distribution can not be expected
to yield a satisfactory approximations in this regime. This defect holds for our
proposed estimator as well as for the benchmark method of Jacod and Todorov



Rate-optimal estimation of the BG index 4179

Fig 1. Simulated distributions of the proposed estimator α̂ (histogram) and of the linearized

estimator α̂∗ (dashed) for u = 1/
√

h log |h|, based on 5000 simulations, and the asymptotic
Gaussian distribution as suggested by Theorem 2.1 (solid).

(2014), and it is bigger for large values of α.
The increments of the process (4.1) have infinite variance, which might not

be realistic for applications in financial econometrics. Moreover, the jump com-
ponent is rather large in comparison to the Brownian motion. Therefore, we
repeat our analysis for the process

Yt = 0.05
√

2
3Bt + 0.05

√
1
3Jt, (4.3)

where Jt is a normal inverse Gaussian Lévy process. The Lévy process Jt has
Blumenthal–Getoor index α = 1 with proportionality factors r+ = r− = 1

π ,
and its Lévy measure has exponentially decaying tails, see (Cont and Tankov,
2004, Sec. 4.4). Moreover, Jt is standardized such that Var(J1) = 1. The normal
inverse Gaussian process has previously been applied for financial modeling, e.g.
by Rydberg (1997) and Barndorff-Nielsen (1997).

With the same tuning parameters as specified above, the estimators α̂Reiß and
α̂Bull do not yield satisfactory results for the process Yt, and we choose not to
perform an exhaustive search for optimal tuning parameters. Hence, in Table 2,
we only report the performance of the remaining estimators. For the estimating
equations, we choose u = 30/

√
h| log(h)|. The proposed estimator α̂ is found
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Fig 2. Simulated distributions of the proposed estimator α̂ (histogram) and of the linearized

estimator α̂∗ (dashed) for u = 2/
√

h log |h|, based on 5000 simulations, and the asymptotic
Gaussian distribution as suggested by Theorem 2.1 (solid).

Table 2

Median absolute errors for the estimation of α and σ2 in model (4.3), for different
estimators. Errors for σ̂2 and σ̂2

JT are scaled by 1/σ2. All values are based on 5000
simulations.

h α̂ σ̂2

σ2 infeasible
σ̂2
JT
σ2

60/23400 0.89 0.95 0.99 0.26
15/23400 0.86 0.14 0.88 0.24
5/23400 0.56 0.05 0.67 0.24
1/23400 0.33 0.01 0.27 0.17

0.2/23400 0.21 .005 0.05 0.09

to be consistent, and the probability of the estimating equations being feasible
increases as the h tends to zero. Furthermore, the new volatility estimator σ̂2 is
found to yield smaller errors than the benchmark σ̂2

JT in this situation.

5. Conclusion

The method of moments is a standard technique for estimation in parametric
models. The results of this paper show that the theory of estimating equations
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is also applicable in the non-standard setting of high-frequency observations of
a Lévy process, even if the jump measure is specified semi-parametrically. Upon
careful choice of the nonlinear moment functions, the resulting estimator for the
Blumenthal-Getoor index is shown to be rate-optimal up to logarithmic factors,
and is conjectured to be in fact rate-optimal. The corresponding volatility esti-
mator is efficient, even in the presence of jumps of infinite variation, and may
serve as an alternative to existing efficient estimators. An appealing feature of
our approach is that the jumps and the diffusion component of the process are
considered jointly by a single set of estimating equations.

While our theoretical results allow for a broad range of possible nonlinearities
f and scaling factors u, choosing a specific estimator may be difficult in prac-
tice. Our numerical results indicate that the scaling factor u has a non-trivial
influence on the error of estimation as well as the accuracy of distributional ap-
proximations. Hence, future work might investigate the optimal choice of these
tuning parameters. A natural solution would be to replace the moment equa-
tions by maximum likelihood estimation. However, a major obstacle is the fact
that no closed expression for the likelihood function of the process is available.
This aspect also impedes the derivation of an exact statistical lower bound via
the theory of local asymptotic normality.

As Lévy processes may be regarded as prototypical semimartingales, we ex-
pect that our methodology could be extended to more complex, non-stationary
models which are common in financial mathematics. For example, the proposed
estimators could be applied locally to obtain an estimator of the corresponding
spot characteristics of the process. Making this intuition mathematically precise
requires further analysis.

Financial time-series of asset prices at high frequencies are often influenced
by so-called market microstructure, which is often modeled as measurement
error. Unreported simulations show that our estimators are not robust against
microstructure noise. In practice, the statistical effect of market microstructure
may be reduced by considering lower frequencies, e.g. 1 minute or more per
price. However, the simulation results of Section 4 show that the estimation of
the BG index α incurs large errors in this regime, which is due to the rather slow
rate of convergence intrinsic to the problem of estimating the BG index in the
presence of a diffusion term. This highlights the need for an explicit handling of
observational noise, as studied by Jing, Kong and Liu (2011). To the best of our
knowledge, statistical lower bounds for the estimation of the BG index under
noisy observations are not known.

6. Technical tools

In this section, we present the proofs of Theorem 2.1 and Propositions 3.1 and
3.2. Preliminary technical results are presented in Subsection 6.1, as they might
be of independent interest, in particular Lemma 6.1 and Corollary 6.3. The
detailed proofs are presented in Subsection 6.2.
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6.1. Preliminary results

To study the asymptotic behavior of the estimating equation (2.5) by standard
techniques (see e.g. Jacod and Sørensen (2018)), we need

• a central limit theorem for the term 1
n

∑n
i=1 f(unΔn,iX) − Eθf(unZ̃h),

and
• properties of the derivatives DθEθf(unZ̃h).

To determine asymptotic variances, as well as for some technical steps of the
following proofs, it is useful to derive some explicit approximations of Ef(unZ̃h).

Lemma 6.1. Let f ∈ C2 be such that f, f ′ and f ′′ are bounded and f(0) = 0,
and let X̃t be a Lévy process with characteristic triplet (μ, σ2, ν̃). Let u = ut be
a sequence of real numbers such that ut → ∞ as t → 0.

(i) If f(x) = 0 for |x| ≤ η, then for any λ ∈ (0, 1) such that u ≤ (1−λ)η

σ
√

8t| log t|
,

as t → 0,

Ef(uX̃t) = o(tuα) + tuα
[
r+1 J̃ +

α f(0) + r−1 J̃−
α f(0)

]
,

where

J̃±
α f(x) =

∫
α1±z>0

[
f(x+ z)− f(x)− f ′(x)1|z|≤1

]
|z|1+α

ν̃(dz).

(ii) If, alternatively, f(0) = 0 but f ′′(0) �= 0, then for any u = o(1/
√
t)

Ef(uX̃t) = tu2σ
2

2
f ′′(0) + o(tu2).

(iii) If f(0) = 0, f ′′(0) = 0 but f (4) �= 0, and f (3), f (4) are bounded, then for
any u = o(1/

√
t)

Ef(uX̃t) = t2u4σ
4

8
f (4)(0) + o(t2u4) +O(tuα).

(iv) If f(0) = 0 and μ = 0, σ2 = 0, then there exists a constant C̃ bounded
uniformly on compacts, such that for all f and all u > 1, t ≥ 0,

Ef(uX̃t) ≤ tuα∨1(1 + log(u)) (‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞) C̃.

All O(·) and o(·) terms are bounded resp. vanishing uniformly on compacts in
Θ.

The case (i), which is exploited in the proofs several times, imposes a subtle
upper bound on u. Although this bound need not be sharp, the Lemma will not
hold for u = τ/

√
t| log t| if τ is too large. To make this plausible, note that for

an α-stable process Sα
t , the probability P (|Sα

t | ≥ η
√
t| log t|/τ) tends to zero as

t → 0, roughly polynomially in t. On the other hand, for the Brownian motion,
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P (|Bt| > η
√
t| log t|/τ) = P (|B1| > η

√
| log t|/τ) → 0 polynomially as well, but

the polynomial order of this decay will depend on the specific value of τ . For
the jump term to dominate, as in case (i) of Lemma 6.1, τ must be small. The
uniformity w.r.t. θ of the previous results will be used later on to derive the
consistency of the estimator.

Another ingredient to obtain a central limit theorem is a bias bound, i.e.
a bound on the error of approximating Ef(unΔn,iX) by Eθf(unZ̃h). For two
random variables X and Y , recall the definition of the 1-Wasserstein metric dW
and the total variation distance dTV given by

dTV (X,Y ) = sup
g:‖g‖∞≤1

|Eg(X)− Eg(Y )| ,

dW (X,Y ) = sup
g:‖g′‖∞≤1

|Eg(X)− Eg(Y )| ,

where the supremum is taken over all bounded resp. Lipschitz continuous, mea-
surable functions g : R → R. These distances are used in the proof of the
following Lemma, which quantifies the error of approximation implied by the
local stability assumption (2.2).

Lemma 6.2. Let Xt, X̃t be two Lévy processes with characteristic triplets given
by (μ, σ2, ν) and (μ, σ2, ν̃), respectively. Suppose furthermore that for some ρ ∈
(0, 1 ∧ α),

|ν((z,∞))− ν̃((z,∞))| ≤ L|z|−ρ, z ∈ (0, 1),

|ν((−∞, z))− ν̃((−∞, z))| ≤ L|z|−ρ, z ∈ (−1, 0).

There exists a constant C̃ depending on L, ρ, and θ, such that for any differen-
tiable function f : R → R, and all u ≥ 1,∣∣∣Ef(uXt)− Ef(uX̃t − utζ̄)

∣∣∣ ≤ C̃(‖f‖∞ + ‖f ′‖∞ + ‖f ′‖L1)(tu
ρ + t2uα+1),

(6.1)

where ζ̄ =
∫
ξ(z)(ν − ν̃)(dz) ∈ R. The constant C̃ is bounded on compacts in

θ ∈ Θ, ρ ∈ (0, 1 ∧ α), and L ≥ 0.

Corollary 6.3. Let f ∈ C3 such that f, f ′, f ′′, f ′′′ are bounded and f ′ ∈ L1,
and suppose that there exists η > 0 such that f(x) = f(−x) for |x| ≤ η. Let
Xt, X̃t be two Lévy processes with characteristic triplets (μ, σ2, ν) and (0, σ2, ν̃),
respectively. Suppose that ν, ν̃ satisfy the conditions of Lemma 6.2. Then, for
any λ ∈ (0, 1), and for any sequence u = ut → ∞ as t → 0, such that u ≤

(1−λ)η

σ
√

8t| log t|
,

|Ef(uXt)− Ef(uX̃t)| ≤ C̃
(
tuρ + t2u2∨(α+1)

)
(1 + log(u))). (6.2)

The constant C̃ is bounded on compacts in μ ∈ R, θ ∈ Θ, ρ ∈ (0, 1 ∧ α), and
L ≥ 0.
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Note that the presented result of 6.3 can not be directly formulated in terms
of dTV or dW , distinguishing it from the results of Mariucci and Reiß (2018).
An alternative bound on the total variation distance between Xt and Z̃t is
presented by (Clément and Gloter, 2019, Proposition 4) and (Amorino and

Gloter, 2020b, Proposition 2), stating that dTV (Xt, Z̃t) ≤ Ct1∧
1
α log(t) as t → 0.

Their assumptions on the Lévy measure ν(dz) imply that our condition (2.2)
holds, with ρ ≤ (α − 1) ∨ 0. Thus, if α > 1 and u � t−1/2, our bound (6.2)

is sharper since tuα−1 � t
3
2−α

2 � t
1
α . In the case α ≤ 1, our bound is of the

same order of magnitude as the one presented by Clément and Gloter (2019)
and Amorino and Gloter (2020b). Furthermore, our result may also be applied
in the case ρ > α− 1. However, we impose additional smoothness assumptions
upon the considered function f , which is suitable for our statistical purposes
because the moment functions are chosen by the statistician.

To state the remaining technical results, introduce the notation

Λn(θ) = diag(hu2, huα1 , huα1 , huα1 , . . .

. . . , huαM , huαM , huαM ) ∈ R
(3M+1)×(3M+1),

Λ̃n(θ) = diag(hu2,
√
huα1 , . . . ,

√
huα1) ∈ R

(3M+1)×(3M+1),

such that

Λ̄n(θ) = Λ̃−1
n (θ)Λn(θ)

=
√
h diag(

√
h
−1

, uα1−α1
2 , uα1−α1

2 , uα1−α1
2 , . . .

. . . , uαM−α1
2 , uαM−α1

2 , uαM−α1
2 ).

Corollary 6.3 and Lemma 6.1 allow us to derive the following central limit
theorem for the estimated moments. In particular, we use Lemma 6.1 to control
the sampling variance, and Corollary 6.3 to control the bias.

Lemma 6.4. Let nhn = T = 1 constant, i.e. hn = 1/n, and choose un → ∞
according to U. Let f satisfy F1 and F2, and suppose that the Lévy process Xt

satisfies (2.2) with some ρ < α/2. Then, as n → ∞,

Λ̃−1
n (θ)

1√
n

n∑
i=1

[
f(unΔn,iX)− Eθf(unZ̃h)

]
⇒ N (0,Σ(θ)) .

Note that the rate of convergence for the first moment f1 is slower than
for fj , j ≥ 2. This is due to our special choice of fj , j ≥ 2, which vanish near
zero. Hence, these moments are primarily driven by the jump component, which
is of a smaller order than the diffusion term. On the other hand, the jump
parameters αm, r±m are harder to identify, i.e. ∂αmEθf(uZ̃h) � ∂σ2Eθf(uZ̃h).
This is established in the following Lemma.

Lemma 6.5. Let f ∈ C3(R) be such that f, f ′, f ′′, f ′′′ are bounded. Let X̃t be a
Lévy process with characteristic triplet (0, σ2, ν̃), parameterized by θ as in (2.4).
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Then, as h → 0, u → ∞, such that hu2 → 0,

∂σ2Eθf(uX̃h) = h
u2

2
f ′′(0) + o(hu2),

∂r±mEθf(uX̃h) = huαmJ±
αm

f(0) + o(huαm) +O
(
huαm∨1 log u

)
Eθf

′(uX̃h),

∂αmEθf(uX̃h) = huαm(log u)
[
r+mJ +

αm
f(0) + r−mJ−

αm
f(0)
]

+ o(huαm log u) +O
(
huαm∨1(log u)2

)
Eθf

′(uX̃h),

(6.3)

and, (
∂αm − log(u)

(
r+m∂r+m + r−m∂r−m

))
Eθf(uX̃h)

= huαm∂αm

[
r+mJ +

αm
f(0) + r−mJ−

αm
f(0)
]
+ o(huαm)

+O
(
huαm∨1(log u)2

)
Eθf

′(uX̃h).
(6.4)

Moreover, if f vanishes on [−η, η] and u satisfies Condition U,

∂σ2Eθf(uX̃h) = o(huα). (6.5)

All terms of the form O(·) and o(·) are bounded resp. vanishing uniformly on
compacts in Θ.

Corollary 6.6. Let f satisfy F1 and F2, and let X̃t be a Lévy process with
characteristic triplet (0, σ, ν̃), parameterized by θ as in (2.4). Then, as h = 1

n →
0, un → ∞, such that un = o(

√
h),

Λ̃−1
n (θ)

[
DθEθf(unX̃h)

]
Γn(θ)Λ̄

−1
n (θ) → A(θ). (6.6)

This convergence holds uniformly on compacts in θ ∈ Θ.

These results allow us to establish the consistency of θ̂n. We do not consider
global uniqueness of the solution of the estimating equation (2.5). Hence, we only
obtain the existence of a consistent sequences of random variables satisfying the
equation.

Lemma 6.7 (Consistency). Let Xt be a Lévy process satisfying (2.2) with some
ρ < α/2, and parameter vector θ0. Let f satisfy assumptions F1, F2, and I,
and let un → ∞ be chosen according to U. There exists a sequence of random
vectors θ̂n solving (2.5) eventually, i.e. P (Fn(θ̂n) = 0) → 1, such that θ̂n → θ
in probability as n → ∞. This sequence is eventually unique in the sense that,
i.e. for any other sequence θ̂∗n solving the estimating equation, and which satisfy

‖θ̂∗n − θ0‖ = OP (1/| log un|2), it holds P (θ̂n �= θ̂∗n) → 0.

To obtain a central limit theorem for θ̂n, we may apply a Taylor expansion
to obtain the representation

θ̂n − θ0 ≈ −
[
D̃θf
]−1 1

n

[
n∑

i=1

f(unΔn,iX)− Eθ0f(unZ̃h)

]
,
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where D̃f j,k = ∂θkEθ̃jfj(unZ̃h) for some θ̃j on the line segment between θ0 and

θ̂n, for j = 1, . . . , 3M + 1. This standard approach allows to establish Theorem
2.1, as detailed in Subsection 6.2.

6.2. Proofs

Proof of Lemma 6.1. At the price of changing the term μ, we may assume
w.l.o.g. that ξ(z) = z1|z|≤1. In view of the Lévy-Itô decomposition (2.1), we
write

uX̃t = uμt+ uσBt +

∫
uz
(
N(dz, ds)− 1|z|≤ 1

u
ν̃(dz)⊗ ds

)
+ t

∫
uz(1|z|≤ 1

u
− 1|z|≤1)ν̃(dz)

= uμt+ uσBt + Ju
t + utμu

where N is a Poisson counting measure with intensity ν̃(dz)⊗ds, and Ju
t denotes

the corresponding integral term. The explicit form of ν̃ allows for computation
of μu, as

|μu| ≤
∫ 1

1
u

M∑
m=1

αm(r+m + r−m)|z|−αm dz

≤ 2

M∑
m=1

(r+m + r−m)

∫ 1

1
u

|z|−α1 dz

= 2

M∑
m=1

(r+m + r−m)
uα1−1 − 1

1− α1
≤ 2

M∑
m=1

(r+m + r−m)u(α1−1)∨0 log(u).

In the last inequality, we used the mean value theorem for the function a �→ ua.
Note that the bounds holds for α1 �= 1 directly, and for α1 = 1 by continuity.
This bound on μu will be used in the sequel.

To derive the claims of the Lemma, we start with a rough bound for the
probability

P (|uX̃t| > η) ≤ P

(
|ut(μ+ μu)| >

1− λ

2
η

)
+ P

(
|σuBt| >

1− λ

2
η

)
+ P (|Ju

t | > λη) , λ ∈ (0, 1).

(6.7)

The first term tends to zero identically as t → 0, because |utμu| = O(uα1∨1t) →
0. To study the jump term, choose a bounded, smooth function g(x) ≥ 1|x|≥λη

such that g(0) = g′(0) = 0. Then by Itô’s formula, and a substitution in the
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integral, we obtain

P (|Ju
t | > λη)

≤ Eg(Ju
t )

=

∫ t

0

∫
E

[
g(Ju

s + uz)− g(Ju
s )− g′(Ju

s )uz1|z|≤ 1
u

]
ν̃(dz) ds

≤
M∑

m=1

(r+m + r−m)αmuαm

∫ t

0

∫
E
∣∣g(Ju

s + z)− g(Ju
s )− g′(Ju

s )z1|z|≤1

∣∣
|z|1+αm

dz ds

≤ C̃tuα(‖g‖∞ + ‖g′′‖∞),

for a constant C̃ depending on α, r and is bounded on compacts in these pa-
rameters. The function g can be chosen such that the latter term is finite. Thus,
P (|Ju

t | > λη) = O(uαt), uniformly on compacts in α, r.
For the Gaussian term in (6.7), we employ the tail bound P (|X| > x) ≤
1

x
√
2π

exp(−x2/2), for X ∼ N (0, 1). In our situation, we obtain

P

(
|B1| >

(1− λ)η

2σu
√
t

)
≤ 2σu

√
t

(1− λ)η
√
2π

exp

(
−η2(1− λ)2

8σ2u2t

)
.

Now let a = at > 0 be such that u = (1−λ)η
√
aσ
√

8t| log t|
. Then

P

(
|B1| >

(1− λ)η

2σu
√
t

)
≤ exp(a log t)

2
√
aπ| log t|

=
ta

2
√

aπ| log t|
.

If a = at ≥ a for some constant a > 1, i.e. u ≤ (1−λ)η

aσ
√

8t| log t|
, the latter bound is

of order less than O(uαt), uniformly on compacts. Since we prove claim (i) for
all λ ∈ (0, 1), requiring a = at ≥ a is not a restriction. In particular,

P (|uX̃t| > η) ≤ C̃tuα. (6.8)

Note that the latter inequality does not hold if u = τ/
√
−t log t for a propor-

tionality factor τ which is too large.
If u = ut is larger than (1−λ)/(σ

√
8t| log t|), but u = o(1/

√
t), the bound on

P (|Ju
t | > λη) remains unchanged, while we still obtain P (|uσBt| > η) → 0 uni-

formly on compacts. Thus, if we only suppose u = o(1/
√
t), we have P (|uX̃t| >

η̃) → 0 uniformly on compacts, for any η̃ > 0, but with a slower rate.
To obtain an asymptotically exact value, we plug the former rough bound

(6.8) into Itô’s formula. In case (i), we have

Ef(uX̃t) = E

∫ t

0

[u2σ2

2
f ′′(uX̃s) + (μ+ μu)uf

′(uX̃s)

+

∫
(f(uX̃s + uz)− f(uX̃s)− uz1|uz|≤1f

′(uX̃s)) ν̃(dz)
]
ds
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=

∫ t

0

u2σ2

2
Ef ′′(uX̃s) + (μ+ μu)uEf

′(uX̃s) ds

+

M∑
m=1

uαm

∫ t

0

[
r+mEJ +

αm
f(uX̃s) + r−mEJ−

αm
f(uX̃s)

]
ds

(6.9)

= u2tO(uαt) +

M∑
m=1

uαm

∫ t

0

[
r+mEJ +

αm
f(uX̃s) + r−mEJ−

αm
f(uX̃s)

]
ds.

Here, we used Ef ′′(uX̃s) ≤ ‖f ′′‖∞P (|uX̃s| > η) = O(uαt) as f vanishes on
[−η, η]. We moreover used that Ef ′(uX̃s) = O(uαt), and μuu = O(u2) as es-
tablished previously. These upper bounds hold uniformly on compacts in Θ. To
proceed, note that J±

α f is a bounded continuous function, since

|J±
α f(x)| ≤ 2‖f‖∞

∫
|z|≥1

α

|z|1+α
dz + ‖f ′′‖∞

∫
|z|≤2

α|z|2
|z|1+α

dz,

which is furthermore bounded uniformly on compacts in α. By virtue of this

boundedness, uX̃s
P−→ 0 implies EJ±

αm
f(uX̃s) = J±

αm
f(0) + o(1). To ensure

that this last approximation holds uniformly on compacts in Θ, note that
‖(J±

αm
f)′‖∞ = ‖J±

αm
f ′‖∞ is also bounded, such that it suffices to control

E(|uX̃s| ∧ 1) uniformly. But we already established that for any η, P (|uX̃s| >
η) → 0 uniformly on compacts in Θ. Hence,

Ef(uX̃t) = u2tO(uαt) +

M∑
m=1

uαm

∫ t

0

[
r+mEJ +

αm
f(uX̃s) + r−mEJ−

αm
f(uX̃s)

]
ds

= o(uαt) +

M∑
m=1

uαm(r+mJ +
αm

f(0) + r−mJ−
αm

f(0))

= o(uαt) + uαt
[
r+1 J +

α f(0) + r−1 J−
α f(0)

]
,

uniformly on compacts in σ2,α, r. This proves the first claim.
In case (ii), i.e. f(0) = 0, f ′′(0) �= 0, a different term dominates in (6.9). We

obtain

Ef(uX̃t) =

∫ t

0

u2σ2

2
Ef ′′(uX̃s) ds+O(uαt)

= O(tuα) +
u2t

2
(f ′′(0) + o(1)) ,

uniformly on compacts in Θ.
For case (iii), i.e. f ′′(0) = 0, f (4)(0) �= 0, we may apply the result of case (ii)

to obtain Ef ′′(uX̃t) =
u2tσ2

2 f (4)(0) + o(u2t), and hence

Ef(uX̃t) =

∫ t

0

u2σ2

2
Ef ′′(uX̃s)ds+O(uαt)
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=

∫ t

0

u4σ4

4
sf (4)(0)ds+O(uαt) + o(u4t2)

=
u4t2σ4

8
f (4)(0)ds+O(uαt) + o(u4t2).

For the last claim, we use Itô’s formula again. Recall that the truncation
function satisfies ξ(z) = z for |z| ≤ 1, and |ξ(z)| ≤ 2. Then

Ef(uX̃t)

= E

∫ t

0

∫ [
f(u(X̃s + z))− f(uX̃s)− uf ′(uX̃s)ξ(z)

]
ν̃(dz)

≤ 2 t‖f‖∞ν̃

((
− 1

u
,
1

u

)c)
+ 2 tu‖f ′‖∞ν̃((−1, 1)c)

+ tu‖f ′‖∞
∫
(−1,1)\(− 1

u , 1u )

|z| ν̃(dz) + tu2‖f ′′‖∞
∫ 1

u

− 1
u

z2 ν̃(dz)

≤ tC̃
(
‖f‖∞uα + u‖f ′‖∞ + u‖f ′‖∞(uα−1 + 1) + u2‖f ′′‖∞uα−2

)
(1 + log(u))

≤ tC̃uα∨1(1 + log(u)) (‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞)

The additional factor log(u) is introduced to cover the special case α = 1 when

computing the integral
∫ 1
1/u

|z|−αdz.

Proof of Lemma 6.2. Choose some 0 < ε < 1
u . The process Xt may be decom-

posed by virtue of the Lévy-Itô decomposition as

Xt = μt+ σBt +

∫ t

0

∫
(z − ξ(z))N(dz, ds) +

∫ t

0

∫
ξ(z) (N − ν)(dz, ds)

= μt+ σBt + J1
t + J2

t + J3
t − tζε,

J1
t =

∫ t

0

∫
[−ε,ε]

ξ(z)(N − ν)(dz, dt),

J2
t =
∑
s≤t

ΔXs1ε<|ΔXs|≤ 1
u
,

J3
t =
∑
s≤t

ΔXs1 1
u<|ΔXs|,

ζε =

∫
|z|>ε

ξ(z) ν(dz),

where (N −ν) is a compensated homogeneous Poisson point process with inten-
sity measure ν(dz), such that J1

t is a martingale. For X̃t, we have the analogous
decomposition X̃t = μt+σB̃t + J̃1

t + J̃2
t + J̃3

t + tζ̃ε. Since we are only interested
in expected values, we may assume without loss of generality that Xt and X̃t
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are defined on the same probability space, and that B̃t = Bt. Moreover,

ζε − ζ̃ε =

∫
|z|>ε

ξ(z) (ν − ν̃)(dz)

=

∫
ε<|z|<1

z (ν − ν̃)(dz) +

∫
|z|>1

ξ(z) (ν − ν̃)(dz).

The second integral is finite. Furthermore, integrating by parts,∫ 1

ε

z(ν − ν̃)(dz) =

∫ 1

ε

[ν((z, 1])− ν̃((z, 1])] dz + ε [ν((ε, 1])− ν̃((ε, 1])] ,

which has a limit as ε → 0 if ρ < 1. Thus, there exists a real number ζ̄ such
that ζε − ζ̃ε → ζ̄ as ε → 0.

By subadditivity of the total variation distance and the Wasserstein distance,∣∣∣Ef(uXt)− Ef(uX̃t − utζ̄)
∣∣∣

≤
∣∣∣Ef (uXt)− Ef

(
u((μ− ζ̃ε − ζ̄)t+ σBt + J̃1

t + J̃2
t + J3

t )
)∣∣∣

+
∣∣∣Ef (u((μ− ζ̃ε − ζ̄)t+ σBt + J̃1

t + J̃2
t + J3

t )
)
− Ef

(
u(X̃t − tζ̄)

)∣∣∣
≤ u‖f ′‖∞

(
t|ζ̄ − (ζε − ζ̃ε)|+ dW (J1

t , J̃
1
t ) + dW (J2

t , J̃
2
t )
)

+
∣∣∣Ef (u((μ− ζ̃ε − ζ̄)t+ σBt + J̃1

t + J̃2
t + J3

t )
)
− Ef

(
u(X̃t − tζ̄)

)∣∣∣ .
(6.10)

We treat all terms in (6.10) individually.
Part (i) The small jumps can be handled by noting

dW (J1
t , J̃

1
t ) ≤ E|J1

t |+ E|J̃1
t | ≤

√
E|J1

t |2 +
√

E|J̃1
t |2. (6.11)

Since J1
t and J̃1

t have bounded jumps, we have E|J1
t |2,E|J̃1

t |2 → 0 as ε → 0.
Furthermore, |ζ̄ − (ζε − ζ̃ε)| → 0 as ε → 0.

Part (ii) As a next step, we study the medium sized jumps J2
t . Consider the

slightly more general process

J
(a,b]
t =

∑
s≤t

ΔXs1a<|ΔXs|≤b,

for 0 < a < b < 1. Let J̃
(a,b]
t be defined analogously based on X̃t. These are

compound Poisson processes, which can be written as

J
(a,b]
t =

Nt∑
i=1

Ui, J̃
(a,b]
t =

Ñt∑
i=1

Ũi,
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where Nt is a Poisson counting process with intensity η((a, b]) = ν([−b,−a) ∪
(a, b]), and the Ui are iid random variables with distribution ν(dz)1(a<|z|≤b)

η((a,b]) . Vice

versa, the same holds for Ñt and Ũi with η̃((a, b]) = ν̃([−b,−a) ∪ (a, b]). Then
Theorem 10 and Proposition 3 of Mariucci and Reiß (2018) for p = 1, yield

dW (J
(a,b]
t , J̃

(a,b]
t ) = dW

⎛⎝ Nt∑
i=1

Ui,

Ñt∑
i=1

Ũi

⎞⎠
≤ tη((a, b])dW (U1, Ũ1) + t |η((a, b])− η̃((a, b])|E|Ũ1|. (6.12)

We compute

E|Ũ1|

=
1

η̃((a, b])

∫
|z|∈(a,b]

z ν̃(dz) (6.13)

=
1

η̃((a, b])

[
aν̃((a, b]) +

∫ b

a

ν̃((z, b])dz + aν̃([−b,−a)) +

∫ b

a

ν̃([−b,−z))dz

]

= a+

∫ b

a

η̃((z, b])

η̃((a, b])
dz.

Recall that η̃((z, b]) =
∑M

m=1(r
+
m + r−m)(|z|−αm − b−αm). Then there exists a

constant C̃ which is bounded on compacts in Θ and L, such that for z < b/2,
and α = α1,

1

C̃
|z|−α ≤ η̃((z, b]) ≤ C̃|z|−α. (6.14)

In particular, for a potentially different constant C̃, and some α̃ between α and
1,

E|Ũ1| ≤ a+ C̃aα
∫ b

a

|z|−α dz

= a+ C̃aαb1−α (
a
b )

0 − (ab )
1−α

1− α

= a+ C̃aαb1−α
(a
b

)1−α̃

| log(a/b)|

≤ a+ C̃| log a| a
(a
b

)α−α̃

≤ a+ C̃| log a| a
(a
b

)(α−1)∧0

≤ C̃| log a| a1∧α.

For α = 1, this bound holds by continuity. Here and in the following, the con-
stant C̃ may vary from line to line, and is bounded on compacts in θ, L, and
ρ.
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Furthermore, since ν and ν̃ are sufficiently similar,

η((a, b]) = ν((a,∞)) + ν((−∞,−a))− ν([−b, b]c)

= η̃((a, b]) + ξ,

for |ξ| ≤ 2L(a−ρ + b−ρ) ≤ 4La−ρ. Thus, the second term in (6.12) is of order
O(ta(1∧α)−ρ). Moreover, |η((a, b])| ≤ C̃(a−α + a−ρ) = O(a−α) for small a, since
ρ < α.

We now consider the distance dW (U1, Ũ1) occurring in (6.12), which can be
expressed in terms of their cumulative distribution functions as

dW (U1, Ũ1)

=

∫ b

−b

∣∣∣P (U1 ≤ v)− P (Ũ1 ≤ v)
∣∣∣ dv

=

∫ −a

−b

∣∣∣P (U1 ≤ v)− P (Ũ1 ≤ v)
∣∣∣ du+

∫ b

a

∣∣∣P (U1 > v)− P (Ũ1 > v)
∣∣∣ dv

+ 2a
∣∣∣P (U1 ≤ −a)− P (Ũ1 ≤ −a)

∣∣∣ . (6.15)

In the second step, we use that U1 is supported on [−b,−a) ∪ (a, b]. For −b ≤
v ≤ −a, and b ≤ 1, it holds∣∣∣P (U1 ≤ v)− P (Ũ1 ≤ v)

∣∣∣
=

∣∣∣∣ν([−b, v])

η((a, b])
− ν̃([−b, v])

η̃((a, b])

∣∣∣∣
≤
∣∣∣∣ 1

η((a, b])
− 1

η̃((a, b])

∣∣∣∣ ν̃([−b, v])

+
1

η((a, b])
|ν([−b, v])− ν̃([−b, v])|

≤ C̃|v|−α |η((a, b])− η̃((a, b])|
[η((a, b]) ∧ η̃((a, b])]

2 +
|ν([−b, v])− ν̃([−b, v])|

η((a, b]) ∧ η̃((a, b])
. (6.16)

Recall that |η((a, b])− η̃((a, b])| = O(a−ρ). Furthermore, the assumed similarity
of ν and ν̃ implies that |ν([−b, v])− ν̃([−b, v])| ≤ L(|v|−ρ + b−ρ) ≤ 2L|v|−ρ, and

η((a, b]) ∧ η̃((a, b]) ≥ η̃((a, b])− 2La−ρ ≥ a−α

C̃
(6.17)

as a → 0, whenever b ≥ 2a. In this case, for −b ≤ v ≤ −a,∣∣∣P (U1 ≤ v)− P (Ũ1 ≤ v)
∣∣∣ ≤ C̃|v|−αa2α−ρ + C̃|v|−ρaα ≤ C̃|v|−ρaα. (6.18)

The analogous bound holds for |P (U1 > v) − P (Ũ1 > v)|, when a ≤ v ≤ b.
Now plug (6.18) into expression (6.15) for the Wasserstein distance, to obtain
for a → 0 and a ≤ b

2 ,

dW (U1, Ũ1) ≤ C̃
(
aαb1−ρ + aα+1−ρ

)
,



Rate-optimal estimation of the BG index 4193

where we used ρ < 1. Using (6.12) and |η((a, b]) − η̃((a, b])| ≤ C̃a−ρ, we may
hence bound,

dW (J
(a,b]
t , J̃

(a,b]
t ) ≤ C̃t

(
a−α(aαb1−ρ + aα+1−ρ) + a(1∧α)−ρ

)
≤ C̃t

(
b1−ρ + a(1∧α)−ρ| log a|

)
,

(6.19)

This upper bound will be exploited in the rest of the proof. In particular, for

J2
t = J

(ε,1/u]
t and ε small enough,

dW (J2
t , J̃

2
t ) ≤ C̃t(uρ−1 + ε(1∧α)−ρ)

≤ 2C̃tuρ−1, (6.20)

since (1∧α)−ρ > 0 and u ≥ 1. Note that, here, the suitable choice of ε depends
on u, but we will let ε → 0 for any u in step (v) below.

Part (iii) It remains to study the term in (6.10) due to the large jumps. Here,
our approach is slightly different as we will not (only) bound a metric distance
between J3

t and J̃3
t . Define

fu,t(x) = Ef(u(x+ t(μ− ζ̃ε − ζ̄) + σBt + J̃1
t + J̃2

t )),

and we consider
∣∣∣Efu,t(J3

t )− Efu,t(J̃
3
t )
∣∣∣, as suggested by (6.10). Since J3

t is a

Lévy process, Itô’s formula yields

Efu,t(J
3
t ) = fu,t(0) +

∫ t

0

EJ 3fu,t(J
3
s )ds, (6.21)

J 3g(x) =

∫
[− 1

u , 1u ]c
[g(x+ z)− g(x)] ν(dz),

i.e., J 3 is the infinitesimal generator of J3
t . Analogously, we denote by J̃ 3 the

generator of J̃3
t . Then integration by parts yields, for any x ∈ R,∣∣∣∣∣

∫
(1/u,∞)

[fu,t(x+ z)− fu,t(x)] (ν − ν̃)(dz)

∣∣∣∣∣
=

∣∣∣∣∣
[
fu,t

(
x+

1

u

)
− fu,t(x)

]
[ν((1/u,∞))− ν̃((1/u,∞))]

+

∫ ∞

1
u

[ν((z,∞))− ν̃((z,∞))] f ′
u,t(x+ z) dz

∣∣∣∣∣
≤ 2‖f‖∞Luρ +

∫ 1

1
u

Lz−ρ|f ′
u,t(x+ z)| dz

+ [ν((1,∞)) + ν̃((1,∞))]

∫ ∞

1

|f ′
u,t(x+ z)| dz
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≤ C̃‖f‖∞uα−δ + C̃uρ

∫ 1

1
u

|f ′
u,t(x+ z)| dz + C̃

∫ ∞

1

|f ′
u,t(x+ z)| dz.

The same bound holds for the range of integration z ∈ (−∞,−1/u), such that∣∣∣J 3fu,t(x)− J̃ 3fu,t(x)
∣∣∣ ≤ C̃uρ

(
‖f‖∞ +

∫ ∞

−∞
|f ′

u,t(z)| dz
)
.

Now note that,

f ′
u,t(x) = uEf ′

(
u(x+ t(μ+ ζ0) + σBt + J̃1

t + J̃2
t )
)
,

such that by Fubini’s theorem,∫ ∞

−∞
|f ′

u,t(z)| dz ≤ E

∫ ∞

−∞
u
∣∣∣f ′
(
u(z + t(μ+ ζ0) + σBt + J̃1

t + J̃2
t )
)∣∣∣ dz

= E

∫ ∞

−∞
|f ′(v)|dv = ‖f ′‖L1(R),

where we performed a linear substitution in the second step. Hence,∣∣∣J 3fu,t(x)− J̃ 3fu,t(x)
∣∣∣ ≤ C̃uρ(‖f‖∞ + ‖f ′‖L1). (6.22)

Using this in (6.21),

Efu,t(J
3
t ) = fu,t(0) +

∫ t

0

EJ̃ 3fu,t(J
3
s ) ds+O(uρt(‖f‖∞ + ‖f ′‖L1))

= fu,t(0) +

∫ t

0

EJ̃ 3fu,t(J̃
3
s ) +O

(
|EJ̃ 3fu,t(J

3
s )− EJ̃ 3fu,t(J̃

3
s )|
)
ds

+O(uρt(‖f‖∞ + ‖f ′‖L1))

= Efu,t(J̃
3
t ) +O (uρt(‖f‖∞ + ‖f ′‖L1))

+O
(
‖J̃ 3fu,t‖∞

∫ t

0

dTV

(
J (1,∞)
s , J̃ (1,∞)

s

)
ds

)
+O
(
‖(J̃ 3fu,t)

′‖∞
∫ t

0

dW

(
J
( 1
u ,1]

s , J̃
( 1
u ,1]

s

)
ds

)
.

(6.23)

We now study the latter two terms.

Part (iv) The total variation distance can be bounded by noting that J
(1,∞)
t

and J̃
(1,∞)
t admit only finitely many jumps. The number of their jumps is Pois-

son distributed, such that

dTV (J
(1,∞)
t , 0) = 1− P (J

(1,∞)
t = 0) = 1− exp [−tν((−1, 1)c)]

≤ t ν((−1, 1)c).
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In particular,

dTV (J
(1,∞)
t , J̃

(1,∞)
t ) ≤ t [ν((−1, 1)c) + ν̃((−1, 1)c)] ≤ tC̃. (6.24)

Moreover, ∣∣∣J̃ 3fu,t(x)
∣∣∣ ≤ ∫

[− 1
u , 1u ]c

|fu,t(x+ z)− fu,t(x)|ν̃(dz)

≤ ‖fu,t‖∞ν̃([−1/u, 1/u]c)

≤ C̃uα‖f‖∞. (6.25)

Via the same argument, we also obtain∣∣∣∣ ddx J̃ 3fu,t(x)

∣∣∣∣ =
∣∣∣∣∣
∫
[− 1

u , 1u ]c
(f ′

u,t(x+ z)− f ′
u,t(x))ν̃(dz)

∣∣∣∣∣ ≤ C̃uα+1‖f ′‖∞.

(6.26)

From (6.19), we know that∫ t

0

dW

(
J
( 1
u ,1]

s , J̃
( 1
u ,1]

s

)
ds ≤ C̃

∫ t

0

s ds ≤ C̃t2.

In combination with (6.23), we thus obtain∣∣∣Efu,t(J3
t )− Efu,t(J̃

3
t )
∣∣∣ ≤ tuρC̃(‖f‖∞ + ‖f ′‖∞ + ‖f ′‖L1)

+ C̃t2uα‖f‖∞ + C̃t2uα+1‖f ′‖∞
≤ C̃(‖f‖∞ + ‖f ′‖L1)(tu

ρ + t2uα+1). (6.27)

Part (v) Now putting (6.11), (6.20), and (6.27) into (6.10), and letting ε → 0,∣∣∣Ef(uXt)− Ef(uX̃t − utζ̄)
∣∣∣ ≤ C̃(‖f‖∞ + ‖f ′‖∞ + ‖f ′‖L1)(tu

ρ + t2uα+1).

(6.28)

It can be checked that the upper bounds which are summarized in the constant
C̃ all satisfy the desired uniformity on compacts in α, r, L, and ρ−α < 0. This
concerns the lines (6.14), (6.16), (6.17), (6.22), (6.24), (6.25), (6.26).

Proof of Corollary 6.3. A Taylor expansion yields, for any a ∈ R,

|Ef(u(X̃t + ta))− Ef(uX̃t)| ≤ |utaEf ′(uX̃t)|+ ‖f ′′‖∞t2u2a2.

We denote X̃t = σBt + J̃t, where J̃t is the purely discontinuous component of
X̃. Introduce for any function g the notation g[u](x) = Eg(uσBt + x). Then for
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any k-th derivative, ‖g(k)[u] ‖∞ ≤ ‖g(k)‖∞. In particular, by Lemma 6.1 (iv),

|Ef ′(uX̃t)− Ef ′(uσBt)| = |Ef ′
[u](uJ̃t)− f ′

[u](0)|
≤ tuα(1 + log(u)) (‖f ′‖∞ + ‖f ′′‖∞ + ‖f ′′′‖∞) C̃.

Since f is symmetric on [−η, η], the derivative f ′ is odd on [−η, η]. We may
write f ′(x) = f ′(x)1|x|≤η + f ′(x)1|x|>η = f̄1(x) + f̄2(x). Then f̄1 is odd, such
that Ef̄1(uσBt) = 0. Hence,

|f ′
[u](0)| = |Ef ′(uσBt)| =

∣∣Ef ′(uσBt)1|uσBt|>η

∣∣ ≤ ‖f ′‖∞P (|uσBt| > η).

If u is chosen as specified, the latter term is of order tuα, see Lemma 6.1 (i). We
have thus shown that |Ef ′(uX̃t)| = O(tuα log u). This yields

|Ef(u(X̃t + ta))− Ef(uX̃t)|
≤ t2u2∨(α+1)(1 + log(u)) (‖f ′‖∞ + ‖f ′′‖∞ + ‖f ′′′‖∞) (|a|+ |a|2)C̃.

(6.29)

Moreover, |Ef(uXt)− Ef(u(X̃t + tμ− tζ̄))| ≤ C̃(tuρ + t2uα+1) from Lemma
6.2. Applying (6.29) for the drift a = μ− ζ̄, this yields (6.2).

Proof of Lemma 6.4. All summands f(unΔn,iX) are iid and bounded. Further-

more, Λ̃−1
n /

√
n → 0, such that the Lindeberg-Feller condition for triangular

arrays of independent r.v.s is satisfied (Durrett, 2005, Thm. 2.4.5). Moreover,
the bias is of order |Ef(unΔXti) − Ef(unZ̃h)| = O(hnu

ρ
n) by Corollary 6.3. If

ρ < α/2, this is small enough to ensure Λ̃−1
n

√
n[Ef(Δn,iX)−Eθf(unZ̃h)] = o(1).

Hence, the bias is asymptotically negligible.
It thus suffices to check the asymptotic covariance structure. Denote fj,k(x) =

fj(x)fk(x). Then fj,k is smooth and vanishes on [−η, η] unless j = 1 = k.

Moreover, f1,1(0) = f ′
1,1(0) = f ′′

1,1(0) = 0 and f
(4)
1,1 (0) = 6f ′′

1 (0)
2. Corollary 6.3

and Lemma 6.1 yield

Efj,k(unΔn,iX) = Eθfj,k(unZ̃h) +O(hnu
ρ
n)

= uα
nh
(
r+1 J +

α fj,k(0) + r−1 J−
α fj,k(0)

)
+ o(uα

nh), (j, k) �= (1, 1),

Ef1,1(unΔn,iX) =
3

4
u4
nh

2σ4f ′′
1 (0)

2 + o(u4
nh

2) +O(uα
nh) +O(uρ

nh)

=
3

4
σ4u4

nh
2f ′′

1 (0)
2 + o(u4

nh
2).

To compute the asymptotic covariance, we further determine

(Ef1(unΔn,iX))
2
=

(
hu2σ

2

2
f ′′
1 (0) + o(hu2) +O(huρ)

)2

=
h2u4σ4

4
f ′′
1 (0)

2 + o(h2u4),

and for j ≥ 2, k ≥ 1,

Efj(unΔn,iX)Efk(unΔn,iX) = O(uα
nh) · O(u2

nh) = o(uα
nh).
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These approximations can be summarized as

Cov(f(unΔn,iX))j,k

=

{
σ4

2 u4
nh

2f ′′(0)2 + o(u4
nh

2), j = k = 1

uα
nh
(
r+1 J +

α fj,k(0) + r−1 J−
α fj,k(0)

)
+ o(uα

nh), otherwise,

This scaling behavior yields Covθ(Λ̃
−1
n (θ)f(unΔn,iX)) → Σ(θ) as n → 0, and

thus the desired central limit theorem.

Proof of Lemma 6.5. First, assume f to be a Schwartz function with Fourier
transform f̂(λ) = 1

2π

∫
f(x)eiλx dx. Then

Ef(uX̃h) =

∫
f̂(λ/u)e−hψθ(λ) dλ,

where ψθ is the Lévy symbol of X̃h, i.e. Eθ exp(iλX̃h) = exp(−hψθ(λ)). In
particular, for any entry θj of the parameter vector θ,

∂θjEθf(uX̃h) = −h

∫
f̂(λ)

(
∂θjψθ(uλ)

)
e−hψθ(uλ) dλ.

Integration and differentiation may be exchanged because f is a Schwartz func-
tion and ψ has polynomial growth. In particular, via the Lévy-Khintchine for-
mula, the Lévy symbol may be determined as

ψθ(uλ) =
u2σ2λ2

2
+

∫ [
eiuλz − 1− iuλξ(z)

]
ν̃(dz)

=
u2σ2λ2

2
− iλ

∫
|z|≥ 1

u

[uξ(z)− ξ(uz)] ν̃(dz)

+
M∑

m=1

αmuαmλαm

∫
eiz − 1− iξ(z)

|z|1+αm

(
r+m1z>0 + r−m1z<0

)
dz.

The second term appears because the Lévy measure ν̃ is allowed to be asym-
metric. In its expression, we used that ξ(z) = z for z ∈ (−1, 1), and denote

ξu =

∫
|z|≥ 1

u

[uξ(z)− ξ(uz)] ν̃(dz)

= u

∫
|z|≥1

ξ(z) ν̃(dz) + u

∫
1
u≤|z|<1

z ν̃(dz)−
∫
|z|≥ 1

u

ξ(uz) ν̃(dz). (6.30)

Hence, by inverting the Fourier transform,

∂θjEθf(uX̃h)

= hEθ

[
∂θj

(
σ2u2

2
f ′′ +

M∑
m=1

uαm(r+mJ +
αm

f + r−mJ−
αm

)− ξuf
′

)
(uX̃h)

]
.

(6.31)
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So far, we assumed f to be a Schwartz function, but the right hand side of
(6.31) makes sense whenever f ∈ C2. We can extend the whole equation (6.31)
to this case by approximating f suitably with a sequence of Schwartz functions

fn, such that sup|x|≤K |f (k)
n (x) − f (k)(x)| → 0 as n → ∞ for each K > 0, and

k = 0, 1, 2, and supn ‖f
(k)
n ‖∞ < ∞. Hence, standard arguments allow us to pass

to the limit on both sides of the equation (6.31)

To handle the asymmetry term ξ̄u, we exploit (6.30) to derive

∣∣∣∂r±m ξ̄u

∣∣∣ ≤ u‖ξ‖∞
∫ ∞

1

αm|z|−1−αmdz + u

∫ 1

1
u

αm|z|−αm dz

+ ‖ξ‖∞
∫ ∞

1
u

αm|z|−1−αmdz

≤ u‖ξ‖∞ + u

∣∣∣∣∣
∫ 1

1
u

αm|z|−αm dz

∣∣∣∣∣+ ‖ξ‖∞uαm .

The second integral can be bounded as follows. For any ε ∈ (0, 1) and any p �= 1,
there is a p̃ between p and 1 such that

∣∣∣∣∫ 1

ε

|z|−p dz

∣∣∣∣ = 1

|1− p| |ε
1−p − ε0|

=
|1− p|
|1− p| |ε

1−p̃ log(ε)| ≤ | log ε|ε(1−p)∧0.

By continuity, the same bound holds for p = 1. Thus, we obtain∣∣∣∂r±m ξ̄u

∣∣∣ ≤ u‖ξ‖∞ + αm| log u|uαm∨1 + ‖ξ‖∞uαm

≤ C̃uαm∨1(1 + | log u|).

Similarly,

∣∣∂αm ξ̄u
∣∣ ≤ u‖ξ‖∞(r+m + r−m)

∫ ∞

1

αm| log z|+ 1

|z|1+αm
dz

+ u(r+m + r−m)

∫ 1

1
u

αm| log z|+ 1

|z|αm
dz

+ ‖ξ‖∞(r+m + r−m)

∫ ∞

1
u

αm| log z|+ 1

|z|1+αm
dz

≤ C̃(1 + | log u|)2uαm∨1.

Note also that ∂σ2ξu = 0.
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For specific partial derivatives, we thus have shown that

∂σ2Eθf(uX̃h) = h
u2

2
Eθf

′′(uX̃h),

∂r±mEθf(uX̃h) = huαmEθJ±
αm

f(uX̃h) +O
(
huαm∨1 log u

)
Eθf

′(uX̃h),

∂αmEθf(uX̃h) = huαmEθ

(
d

dαm
(r+mJ +

αm
f + r−mJ−

αm
f)(uX̃h)

)
+ huαm log uEθ

(
(r+mJ +

αm
f + r−mJ−

αm
f)(uX̃h)

)
+O
(
huαm∨1(log u)2

)
Eθf

′(uX̃h).

(6.32)

For fixed f such that ‖f (k)‖∞ < ∞, k ≤ 3, the three functions f ′′, J±
αm

f ,
and ∂αmJ±

αm
f , are bounded and Lipschitz continuous, uniformly on compacts

in θ. Moreover, Pθ(|uX̃h| > η) → 0 uniformly on compacts in Θ for any η,
as established in the proof of Lemma 6.1. Therefore, Eθf

′′(uX̃h) → f ′′(0)
uniformly on compacts as h → 0, as well as EθJ±

αm
f(uX̃h) → J±

αm
f(0) and

Eθ∂αmJ±
αm

f(uX̃h) → ∂αmJ±
αm

f(0). This completes the proof of (6.3), and (6.4)
follows analogously by applying a linear transformation to (6.32). Finally, (6.5)
is a consequence of (6.32) upon noting that Eθf

′′(uX̃h) = O(huα), see Lemma
6.1.

Proof of Corollary 6.6. Since f ′
1 is bounded, (6.3) shows that

|∂r±mEθf1(uX̃h)| = o(hu2), |∂αmEθf1(uX̃h)| = o(hu2).

This corresponds to the entries A(θ)1,k = 0 for k ≥ 2. For j ≥ 2, we have

Eθf
′
j(uX̃h) = O(huα) by virtue of Lemma 6.1, since fj vanishes near zero.

Hence, since αm > α/2 and u ≤ O(
√
h),

O
(
huαm∨1(log u)2

)
Eθf

′
j(uX̃h) = O(h2uα+(αm∨1)(log(u)2)) ≤ o(huαm).

This corresponds to the entries A(θ)j,k = 0 for j ≥ 2, k ≥ 2. Moreover,

∂σ2Eθfj(uZ̃h) = o(huα). In combination with Lemma 6.5, this suffices to es-
tablish the convergence (6.6).

Proof of Lemma 6.7. Denote the estimating equation (2.5) as Fn(θ̂n) = 0, for

Fn(θ) =
1

n

n∑
i=1

f(unΔn,iX)− Eθ̂n
f(unZ̃hn). (6.33)

Let θ0 be the true parameters, and reparameterize θ = θ0+Γn(θ0)Λ̄
−1
n (θ0)T for

T = Λ̄n(θ0)Γ
−1
n (θ0)(θ − θ0), and let

F̄n(T ) = Λ̃−1
n (θ0)Fn

(
θ0 + Γn(θ0)Λ̄

−1
n (θ0)T

)
.

This is well defined whenever T ∈ Bdn(0), for dn = c
√
hnu

αM−α1
2

n /(log un)
3 → 0,

and c > 0 sufficiently small. In this reparameterized model, we need to show
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that there exists a sequence of random vectors T̂n ∈ Bdn such that F̄n(T̂n) = 0

for large n. This will imply that ‖θ̂n − θ0‖ ≤ C/(log un)
2 for a sufficiently large

factor C.
We know from Lemma 6.4 that

F̄n(0) = Λ̃−1
n (θ0)Fn(θ0) = OP

(
1√
n

)
= o(dn).

Furthermore,

DT F̄n(T ) =
(
∂T1 . . . ∂T3M+1

)
F̄n(T )

= Λ̃−1
n (θ0)DθFn(θ0 + ΓnΛ̄

−1
n T )Γn(θ0)Λ̄

−1
n (θ0).

By Corollary 6.6, Λ̃−1
n (θ)DθFn(θ)Γn(θ)Λ̄

−1
n (θ) → A(θ) locally uniformly, and it

can be checked that θ �→ A(θ) is continuous. Moreover, the definitions of Λ̃n, Λ̄n,
and Γn readily yield, as n → ∞,

sup
T∈Bdn (0)

‖Λ̃−1
n (θ0)Λ̃n(θ0 + Γn(θ0)Λ̄

−1
n (θ0)T )− I3M+1‖

≤ sup
‖θ−θ0‖≤ C

(log un)2

‖Λ̃−1
n (θ0)Λ̃n(θ)− I3M+1‖ → 0,

sup
T∈Bdn (0)

‖Λ̄−1
n (θ0)Λ̄n(θ0 + Γn(θ0)Λ̄

−1
n (θ0)T )− I3M+1‖ → 0,

sup
T∈Bdn (0)

‖Γ−1
n (θ0 + Γn(θ0)Λ̄

−1
n (θ0)T )Γn(θ0)− I3M+1‖ → 0.

(6.34)

Here, we denote by ‖ · ‖ the spectral norm of a matrix, i.e. ‖A‖2 is the largest
absolute eigenvalue of the symmetrized matrix ATA, and Id denotes the d × d
identity matrix. Thus,

sup
T∈Bdn (0)

‖DT F̄n(T )−A(θ0)‖ → 0.

Now we apply (Jacod and Sørensen, 2018, Lemma 6.2) to establish the
existence of a solution T̂n ∈ Bdn(0) of the equation F̄n(T̂n) = 0. Let λ =
1
2‖A(θ0)−1‖−1, and denote by Cn the event

Cn =

{
sup

T∈Bdn (0)

‖DT F̄n(T )−A(θ0)‖ ≤ λ

}
∩
{∥∥F̄n(0)

∥∥ ≤ λdn
}
.

Since the first set is deterministic, and since ‖F̄n(0)‖/dn P−→ 0, we have P (Cn) →
1. On the set Cn, it holds that 0 ∈ Bλdn(F̄n(0)). Then Lemma 6.2 of Jacod and
Sørensen (2018) with y = 0, f = F̄n and r = dn, states that there exists a unique
point T̂n ∈ Bdn(0) which solves F̄n(T̂n) = 0.

Returning to the original parametrization, we conclude there exists a ran-
dom variable θ̂n such that with probability at least P (Cn) → 1, θ̂n solves the

estimating equation and θ̂n − θ0 ∈ Γn(θ0)Λ̄
−1
n (θ0)Bdn(0), i.e.

‖θ̂n − θ0‖ = OP (1/| log un|2). (6.35)
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Now let θ̂∗n be another sequence of random variables satisfying Fn(θ̂
∗
n) = 0,

and such that ‖θ̂∗n− θ0‖ = OP (1/| log un|2). Theorem 2.1 below establishes that

this consistent sequence θ̂∗n indeed converges at a faster polynomial rate, which in

particular yields ‖θ̂∗n−θ0‖ = oP (1/| log un|2). Thus, T̂ ∗
n = Γn(θ0)

−1Λ̄−1
n (θ0)(θ̂

∗
n−

θ0) ∈ Bdn(0) eventually. Hence, the uniqueness of T̂n on Bdn(0) implies the

T̂n = T̂ ∗
n and thus the uniqueness of θ̂n, i.e. P (θ̂∗n �= θ̂n) = P (T̂ ∗

n �= T̂n) → 0.

Proof of Theorem 2.1. Denote the estimating equation as Fn(θ) = 0, for Fn(θ)
as in (6.33). The mean value theorem yields

0 = Λ̃−1
n (θ0)Fn(θ̂n) = Λ̃−1

n (θ0)Fn(θ0) +
[
Λ̃−1
n F̃nΓnΛ̄

−1
n

]
Λ̄nΓ

−1
n (θ̂n − θ0),

where (F̃n)j,k = ∂θk(Fn)j(θ̃
j) for some θ̃j on the line segment between θ0 and θ̂n.

Denote by Rn ⊂ Ω the event that An = Λ̃n(θ0)
−1F̃nΓn(θ0)Λ̄n(θ0)

−1 is regular,
and introduce furthermore the matrices

Aj
n = Λ̃(θ0)

−1DθFn(θ̃
j)Γn(θ0)Λ̄n(θ0)

−1, j = 1, . . . , 3M + 1.

That is, the j-th row of An and Aj
n coincide, (An)j,k = (Aj

n)j,k. Now note that

‖θ̃j − θ0‖ ≤ ‖θ̂n − θ0‖ = OP (1/(log un)
2), by (6.35). Moreover, for any C > 0,

as in (6.34),

sup
‖θ−θ0‖≤ C

(log un)2

‖Λ̃−1
n (θ0)Λ̃n(θ)− I3M+1‖

sup
‖θ−θ0‖≤ C

(log un)2

‖Λ̄−1
n (θ0)Λ̄n(θ)− I3M+1‖

sup
‖θ−θ0‖≤ C

(log un)2

‖Γ−1
n (θ0)Γn(θ)− I3M+1‖.

(6.36)

Together with the locally uniform convergence of Corollary 6.6, this yields Aj
n

P−→
A(θ0) for each j, and thus An

P−→ A(θ0).
In particular, P (Rn) → 1, and on the set Rn, we may rewrite

√
nΛ̄nΓ

−1
n (θ0)(θ̂n − θ0) = −

√
nA−1

n Λ̃−1
n Fn(θ0).

But
√
nΛ̃−1

n Fn(θ0) ⇒ N (0,Σ(θ0)) by Lemma 6.4, and A−1
n → A−1(θ) in prob-

ability, such that Slutsky’s lemma completes the proof.

Proof of Proposition 3.1. We show how to adjust the proof of Aı̈t-Sahalia and
Jacod (2012) to consider the off-diagonal entries. Denote by ϕα the density
of a symmetric α-stable random variable, standardized to have Lévy measure
α|x|−1−αdx. This is the same parametrization as implied by (2.3). Furthermore,
let ϕ be the density of a standard normal distribution. Then the probability
density of Z̃h is given by the convolution

ph(x) =

∫
1√
σ2h

ϕ

(
x− (rh)

1
α y√

σ2h

)
ϕα(y) dy.
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Now introduce the terms

wh = (rh)
1
α /

√
σ2h, vh =

1

α(2− α)

(
2 +

log(r/σ2)

log(1/wh)

)
,

and

Sh(x) =

∫
ϕ(x− why)ϕα(y) dy =

√
σ2h · ph(x

√
σ2h),

R0
h(x) =

1

wα
h

∫
ϕ(x− why)(ϕα(y) + y∂yϕα(y)) dy

=
−rα

√
σ2h

wα
h

d

dr
ph(x

√
σ2h),

R1
h(x) =

1

wα
h log(1/wh)

∫
ϕ(x− why)∂αϕα(y) dy,

� wα
h log(1/wh)R

1
h(x)− wα

hvh log(1/wh)R
0
h(x)

=
√
σ2h

d

dα
ph(x

√
σ2h),

J l,m
h =

∫
Rl

h(x)R
m
h (x)

Sh(x)
dx, l,m ∈ {0, 1}.

Some technical integral transformations, explained in more detail by Aı̈t-Sahalia
and Jacod (2012) (cf. (A.3) therein), establish that

Ir,r
h =

w2α
h

r2α2
J0,0
h ,

Iα,α
h =

∫
w2α

h log(1/wh)
2(R1

h(x)− vhR
0
h(x))

2

Sh(x)
dx

= w2α
h log(1/wh)

2(J1,1
h (x)− 2vhJ

1,0
h (x) + v2hJ

0,0
h (x)),

Iα,r
h =

∫
w2α

h
−R0

h(x)
rα log(1/wh)

(
R1

h(x)− vhR
0
h(x)
)

Sh(x)

=
w2α

h log(1/wh)

rα

(
vhJ

0,0
h (x)− J1,0

h (x)
)
.

The main workload of the proof given by Aı̈t-Sahalia and Jacod (2012) derives

the limiting behavior of J l,m
h as h → 0. They show that

J0,0
h /ψh → α4, J1,0

h → α3, J1,1
h → α2,

where

ψh =
2σα

rα2(2− α)
α
2

1

h1−α
2 log(1/h)

α
2
.

Using furthermore that vh → 2
α(2−α) , this yields(

rα
wα

h

√
ψh

0

0 1
wα

h log(1/wh)
√
ψh

)(
Ir,r
h Ir,α

h

Ir,α
h Iα,α

h

)( rα
wα

h

√
ψh

0

0 1
wα

h log(1/wh)
√
ψh

)
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−→
(

α4 α4

2−α
α4

2−α
α4

(2−α)2

)
.

Some straightforward manipulations show that

(h log(1/h))
α
2

h

(
1 0
0 1

log(1/h)

)(
Ir,r
h Ir,α

h

Ir,α
h Iα,α

h

)(
1 0
0 1

log(1/h)

)
−→ 2r

σαα2(2− α)
α
2

(
α2

r2
α4

2−α
1
rα

2−α
2α

sym (2−α)2

4α2
α4

(2−α)2

)

=
2r

σα(2− α)
α
2

(
1
r2

1
2r

1
2r

1
4

)
This limiting matrix is singular. The off-diagonal entry Iα,r

h has not been con-
sidered by Aı̈t-Sahalia and Jacod (2012).

Proof of Proposition 3.2. Denote the true parameter by α0,m and r±0,m, respec-
tively. By Lemma 6.5, we have as n → ∞, h = 1/n → 0,

1

huα
m log u

∂αm F̃n(αm) → r+mJ +
αm

f(0) + r−mJ−
αm

f(0),

1

huαm
∂r±m F̃n(r

±
m) → J±

αm
f(0).

This convergence holds uniformly on compacts in Θ. The limits are positive
because r+m + r−m > 0 by the definition of Θ, and J±

αm
f(0) > 0 by assumption.

Moreover, Lemma 6.4 also holds for F̃n, i.e.

nu−α1/2
n F̃n(θ0) ⇒ N

(
0, (r+1 Jα1 + r−1 Jα1)f

2(0)
)
. (6.37)

Thus, the existence of a consistent sequence of estimators follows along the same
lines as Lemma 6.7.

For the central limit theorem, we use the mean value theorem to obtain, for
a value α̃m between α0,m and α̂m,

0 = F̃n(α̂m) = F̃n(α0,m) + ∂αm F̃n(α̃m)(α̂m − α0,m).

In particular, (α̂m − α0,m) = −(∂αm F̃n(α̃m))−1F̃n(α0,m). Just as in the proof

of Theorem 2.1, we may use the convergence of ∂αm F̃n(αm) and the central
limit theorem (6.37) to derive the asymptotic distribution of α̂m by means of
Slutsky’s Lemma. Analogously for r±m.

Supplementary Material

Supplement to “Rate-optimal estimation of the Blumenthal–Getoor
index of a Lévy process”
(doi: 10.1214/20-EJS1769SUPP; .zip).
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