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Abstract: Missing responses is a common type of data where the inter-
ested outcomes are not always observed. In this paper, we develop two new
kernel machines to handle such a case, which can be used for both regression
and classification. The first proposed kernel machine uses only the complete
cases where both response and covariates are observed. It is, however, sub-
ject to some assumption limitations. Our second proposed doubly-robust
kernel machine overcomes such limitations regardless of the misspecifica-
tion of either the missing mechanism or the conditional distribution of
the response. Theoretical properties, including the oracle inequalities for
the excess risk, universal consistency, and learning rates are established.
We demonstrate the superiority of the proposed methods to some existing
methods by simulation and illustrate their application to a real data set
concerning a survey about homeless people.
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1. Introduction

We consider the problem of statistical learning in the presence of missing re-
sponses. Missing response is a type of data in which the response variable cannot
always be observed. Missing responses are common in market surveys, medical
research, and opinion polls. Our first motivating example is from the Los An-
geles County homeless survey directed by the Los Angeles Homeless Services
Authority (LAHSA) (Kriegler and Berk, 2010). The LAHSA was interested in
the number of homeless counts in the different survey tracts, among a total of
2,054. For each tract, information about the median household income, the per-
centage of unoccupied housing units, etc., were collected as covariates. It was
known that there were 244 tracts having a large homeless population. All of
these tracts, called “hot tracts”, were included in the survey. Out of the remain-
ing 1,810 tracts, 265 were randomly sampled. The sampling probability of such
a tract depends on the Service Provision Areas (SPAs). Different areas have a
different probability of being visited. Consequently, missing responses (number
of homeless count) occurred in those tracts (not included in the survey) while
having their covariates still available. (More details can be found in Kriegler and
Berk (2010).) Another example incurring missing responses concerns a biomed-
ical study where genetic information (treated as covariates) is collected on all
participants, but the level of a biomarker is collected only on a subset of them
based on the corresponding genetic information.
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The missing mechanism involved in these two examples can be cataloged as
missing at random (MAR), where the missingness depends only on the compo-
nents that are observed, but not on the components that are missing (Little and
Rubin, 2002, Chapter 1). In particular, in the first example, the sampled tracts
depend on the areas but are independent of the actual counts in these tracts.
In the second example, the observation of the responses of the biomarker levels
depends on the genetic profile but not on their actual values.

For the general missing data problem, there are four common approaches.
The first approach uses only the observations without any missing data, which
are referred to as complete cases. This approach is simple but subject to obvious
information loss and severe estimation bias. The second approach first imputes
the missing data and then conducts an analysis based on the imputed data
(Rubin, 2004). The imputation methods are typically more efficient. However,
they can involve extrapolation, which is difficult to diagnose and can lead to
bias. The third approach first imposes some distributional assumptions for both
response variable and covariates; then makes inferences using the likelihood
principle. In that case the distributional assumptions need to be justified in
practice. Finally, the inverse probability weighting (IPW) approach constructs
estimators by weighting complete cases (Horvitz and Thompson, 1952). We refer
to Pelckmans et al. (2005) and Tsiatis (2006, Chapter 6) for excellent summaries
of these approaches.

For the missing responses problem, various methods have been developed,
including the augmented inverse probability weighting (AIPW) methods, semi-
parametric methods, and kernel machine methods, among others.

The AIPW method was first introduced by Robins et al. (1994) to estimate
regression coefficients. Rotnitzky et al. (1998) proposed a semiparametic estima-
tor for repeated outcomes with nonignorable response. Scharfstein et al. (1999)
noted the double robustness of the AIPW estimator, which later attracted devel-
opment of many new estimation methods. Wang and Rao (2002) first imputed
the missing response values under the MAR assumption by kernel regression
imputation and then constructed a complete data empirical likelihood. Wang
et al. (2004) extended a semiparametric regression analysis method to include
missing responses and built a doubly-robust estimator for the population mean.
Tan (2010) built on a nonparametric likelihood approach and proposed a doubly-
robust estimator which is locally and intrinsically efficient and sample-bounded.
Vermeulen and Vansteelandt (2015) proposed an approach that locally mini-
mized the squared first-order asymptotic bias of the doubly-robust estimator
against the misspecification of both working models. Seaman and Vansteelandt
(2018) proposed to use an estimation equation with inverse probability weight-
ing and imputation to obtain a doubly-robust estimator. Wang et al. (2010)
proposed a class of augmented inverse probability weighted kernel estimating
equations for the nonparametric regression where the weights in the estimating
equations contain kernel functions. The aim of aforementioned methods, except
Wang et al. (2010), was to estimate the population mean but not to predict the
response.
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It is worthwhile to mention the difference between the doubly-robust kernel
machines and the AIPW method. In statistical analysis, under certain condi-
tions, one can construct different AIPW estimators of the population mean
(Scharfstein et al., 1999; Tsiatis, 2006, Chapter 6.5) and different estimating
equations (Wang et al., 2010; Seaman and Vansteelandt, 2018). The AIPW
estimators can possess the doubly-robust property. While for the kernel ma-
chines approach, the augmented inverse probability weighted loss should not
only ensure the doubly-robust property but also guarantee the convexity of the
augmented loss function. The convexity is essential to warrant the theoretical
properties of the kernel machine method. Under certain conditions, our proposed
augmented loss function fulfills this requirement.

For the semiparametric methods, Liang et al. (2007) proposed a partially
linear model for missing responses with measurement errors on the covariates.
Azriel et al. (2016) studied a regression problem with missing responses. They
showed that when the conditional expectation of the response is not linear in the
predictors, additional observations can provide more information. In their work,
they constructed the best linear predictor which depends also on the incomplete
data.

The kernel machines, which include support vector machines (SVM) as a
special case, are known for the advantages of easy computation and weak as-
sumption about the distributions (Steinwart and Christmann, 2008; Hofmann
et al., 2008; James et al., 2013, Chapter 9). In recent years, kernel methods
have been developed for many types of data including some missing data set-
tings (Goldberg and Kosorok, 2017; Stewart et al., 2018). For the kernel machine
methods, Smola et al. (2005) developed a framework where the kernel methods
are treated as an estimation problem in an exponential family, which can handle
missing responses as well as missing covariates. They extended the concave con-
vex procedure of Yuille and Rangarajan (2003) to find a local optimum of the
estimator. However, the convergence of the estimator is not clear, the computa-
tion can be demanding, and the exponential family condition is hardly satisfied
in real situations.

In this paper, we develop kernel machines with missing responses. We first
propose a family of kernel machines that use the estimated inverse probabilities
of the observed cases to weight the loss function of the complete cases. We call
it ‘inverse-weighted-probability complete-case estimator’ (Tsiatis, 2006). More
specifically, we first estimate the missing mechanism by a model and then show
that if the model is correctly specified, the empirical risk is consistent.

When the model for the missing mechanism is misspecified in the aforemen-
tioned kernel machine method, the resulting estimator can be biased. There-
fore, secondly, we propose a doubly-robust kernel machine estimator to over-
come this problem. The new doubly-robust kernel machine estimator is derived
with respect to an augmented loss, which is a kind of augmented inverse-
probability-weighted-complete-case estimator, introduced by Scharfstein et al.
(1999). See also Bang and Robins (2005) and Seaman and Vansteelandt (2018)
for an overview. There are two key challenging issues that have to be dealt
with when constructing a doubly-robust kernel-machine estimator. The first is-
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sue is that the augmented loss function needs to be both doubly-robust and
convex. As pointed out earlier, the convexity is not always satisfied by the usual
AIPW method. The second issue is that the augmented estimator has to con-
verge uniformly over a set of functions that grows with the sample size. We
are not aware of any such doubly-robust estimator in the context of kernel ma-
chines.

Our construction of the proposed doubly-robust kernel machine estimator
can be summarized in the following two steps. First, we estimate the missing
mechanism and the conditional distribution of the response given the covari-
ates. The latter is used to compute the conditional risk. Second, we augment
a weighted conditional risk to the weighted loss function. We show that the
proposed empirical risk is doubly-robust consistent against misspecification of
either the missing mechanism or the conditional distributions.

The second contribution of our paper is to establish the theoretical properties
for the proposed kernel machines including the oracle inequalities, universal
consistency and learning rates. Here we emphasize that the techniques that we
use to derive these properties can be applied to obtain doubly-robustness in the
general context of minimization problems.

The rest of the paper is organized as follows. Section 2 introduces some no-
tation and assumptions. Section 3 presents the main methods of the proposed
kernel machines. Section 4 provides the theoretical results, including the oracle
inequalities, consistency, and convergence rate. Section 5 contains the simulation
study of comparison with some existing methods and demonstrates the superi-
ority of the proposed methods in terms of the empirical risk of predicting a new
response, as well as the overall expectation. Section 6 illustrates the application
of the proposed methods to the Los Angeles homeless data. Section 7 concludes
the paper with some discussion about future directions. All technical proofs are
deferred to Appendix C. An R package called KM4ICD that integrates easily to
the package mlr (Machine Learning in R) for the kernel machine estimators is
given in the Supplementary Materials.

2. Preliminaries

Let Y denote the response random variable taking values in Y ⊂ R, where Y
can be {−1, 1} for (binary) classification and a bounded compact set of R for
regression. Let R denote the missingness indicator with R = 1 if Y is observed,
called the ‘complete case’, and R = 0 otherwise, called the ‘incomplete case’.
Let X denote the associated covariates taking values in a compact set X ⊂ R

�.

We make some assumptions as in Tsiatis (2006, Chapter 6).

Assumption 2.1. The missingness indicator R and the response Y are inde-
pendent given the covariate vector X, i.e., the missing mechanism is missing at
random (MAR).
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Under Assumption 2.1, the propensity score, defined by the conditional prob-
ability of observing Y given X, is

π0(X) = P(R = 1 | X) = P(R = 1 | X,Y ).

Assumption 2.2. There exists a positive constant c < 1/2 such that
infx∈X π0(x) ≥ 2c.

Assumption 2.2 implies that a certain portion of responses is always missing.
Let P be the set of all joint distributions (R,X, Y ) for which Assumptions 2.1

and 2.2 hold. In what follows, we will focus our analysis on the probability
measures in P .

Let f : X �→ Y be a function. Let L : Y × R �→ [0,∞) be a loss function
where L(Y, f(X)) can be interpreted as the cost of predicting Y by f(X).

Assumption 2.3. Assume that L is convex and locally Lipschitz continuous.
The latter is in the sense that for all u > 0 there exists a constant CL(u) ≥ 0
such that supy∈Y |L(y, t)− L(y, t′)| ≤ CL(u)|t− t′| for t, t′ ∈ [−u, u].

Without loss of generality, assume that L(y, 0) is bounded by 1. Denote the
risk with respect to the loss function L by RL,P(f) ≡ E[L(Y, f(X))] and the
Bayes risk by R∗

L,P ≡ inff is measurable RL,P(f).
Let H be a separable reproducing kernel Hilbert space (RKHS) of a bounded

measurable kernel k : X ×X �→ R. Denote its norm by ‖ · ‖H. Assume that k is
a universal kernel which means H is dense in the space of bounded continuous
functions with respect to the supremum norm. Throughout the paper we assume
that ‖k‖∞ ≤ 1. (Steinwart and Christmann, 2008; Hofmann et al., 2008). Denote
Hn as a subspace of H that grows with the sample size n. Let λ denote a positive
tuning parameter. A kernel machine fP,λ is the minimizer of the regularized risk,

fP,λ ≡ min
f∈H

λ‖f‖2H +RL,P (f).

Given a simple random sample {(Xi, Yi) : i = 1, . . . , n} (without any miss-
ing data), denote RL,D(f) = n−1

∑n
i=1 L(Yi, f(Xi)) as the empirical risk of

RL,P (f). A kernel machine estimator of fP,λ is

fD,λ ≡ min
f∈H

λ‖f‖2H +RL,D(f), (2.1)

where λ can be obtained by cross validation in practice. We denote the associated
λ by λn for later use.

Since L is a convex loss function, the representer theorem (Steinwart and
Christmann, 2008, Theorem 5.5) implies that there is a unique solution of fD,λ

in the form of

fD,λ(x) =

n∑
i=1

αik(x,Xi), (2.2)

where α = (α1, · · · , αn)
ᵀ ∈ R

n is a vector of coefficients.
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3. Kernel machines with missing responses

In this section, we propose two types of kernel machines to estimate f with
missing responses. Suppose (R1, X1, R1Y1), . . . , (Rn, Xn, RnYn) are independent
and identically distributed samples of the triplet (R,X,RY ) where Yi is observed
only when Ri = 1.

3.1. Weighted-complete-case kernel machines

With missing responses, a naive estimator of RL,P (f) using the complete cases
is

RL,D(f) =

∑n
i=1 RiL(Yi, f(Xi))∑n

i=1 Ri
. (3.1)

When all Ri = 1, i.e., there is no missing response, it reduces to the usual empir-
ical risk. By the law of large numbers, RL,D(f) converges to E{RL(Y, f(X))}/
E(R) in probability, which equals E{L(Y, f(X))} if and only if E{RL(Y, f(X))}
= E(R)E{L(Y, f(X))}. This equation holds when R is independent of (X,Y ).
Thus, the consistency of RL,D(f) to RL,P (f) cannot be guaranteed in general.

On the other hand, observe that by Assumption 2.1,

E

{
RL(Y, f(X))

π0(X)

}
= E

[
E

{
RL(Y, f(X))

π0(X)
| X
}]

= E

[
E {L(Y, f(X)) | X}E

{
R

π0(X)
| X
}]

= E [E{L(Y, f(X)) | X}]
= E{L(Y, f(X))}. (3.2)

Therefore, an unbiased estimator of RL,P (f) can be achieved by weighting the
complete cases appropriately (Tsiatis, 2006, Chapter 6).

Let π(X) ∈ (0, 1] denote a generic conditional probability R given X. Define
the weighted loss function for the data with missing responses by

LW (π,R,X, Y, f(X)) ≡ RL(Y, f(X))

π(X)
=

{
L(Y,f(X))

π(X) R = 1,

0 R = 0,
(3.3)

where the weight function is W (X) = R/π(X). Note that for any π(X) ∈
(0, 1], LW (π,R,X, Y, f(X)) is a convex function, since L(Y, f(X)) is a convex
function.

Let 0 < π̂(X) ≤ 1 be an estimator of π0(X). Write L
Ŵ

= LW (π̂, R,X, Y,
f(X)).

RL
Ŵ

,D(f) ≡ 1

n

n∑
i=1

LW (π̂, Ri, Xi, Yi, f(Xi)) =
1

n

n∑
i=1

RiL(Yi, f(Xi))

π̂(Xi)
. (3.4)
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We now propose the weighted-complete-case kernel machine as

fŴ
D,λ ≡ argmin

f∈H
λ‖f‖2H +RL

Ŵ
,D(f), (3.5)

where the first term is the same as defined in (2.1).

Lemma 3.1. Assume that π̂(X) converges to π0(X) in probability uniformly

and that Assumption 2.1 holds. Then, for any f ∈ H, RL
Ŵ

,D(f)
P−→ RL,P(f).

Proof. Since π̂(X) is consistent,

RL
Ŵ

,D(f) =
1

n

n∑
i=1

{
RiL(Yi, f(Xi))

π̂(Xi)

}
=

1

n

n∑
i=1

{
RiL(Yi, f(Xi))

π0(X)

}
+ op(1)

P−→ E

{
RL(Y, f(X))

π0(X)

}
= RL,P(f).

The consistency assumption of π̂(X) in Lemma 3.1 may not be easy to verify
in practice. We next propose a family of doubly-robust kernel machines with
this assumption relaxed.

3.2. Doubly-robust kernel machines

Denote the conditional distribution of Y given X by FY |X(y | x, β0), where
β0 ∈ B is an unknown parameter vector and B is the parameter space of finite
dimension. For any β ∈ B, define

H(x, β, f(x)) =

∫
y∈Y

L(y, f(x))dFY |X (y | x, β) .

Then, the conditional expectation of the loss function L(Y, f(X)) given X, or
the conditional risk, is expressed as

H(x, β0, f(x)) =

∫
y∈Y

L(y, f(x))dFY |X
(
y | x, β0

)
= E {L(Y, f(X)) | X = x} .

(3.6)
By the law of total expectation, E

{
H(X,β0, f(X))

}
= E {L(Y, f(X))} =

RL,P(f).

Assumption 3.1. For any β ∈ B, assume that FY |X(y | x, β) is continuously
differentiable with respect to β for x ∈ X , y ∈ Y, and that H(x, β, f(x)) is a
continuous function of β for x ∈ X .

Let β̂ ∈ B be some estimator of β0. We make the following assumption about
β̂ and π̂(X).

Assumption 3.2. Assume that π̂(x)
P−→ π∗(x) uniformly for x ∈ X , where

π∗(x) does not necessarily have to be π0(x); and that β̂
P−→ β∗ ∈ B, where β∗

does not necessarily equal β0.
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Define the augmented loss function by

LW,H (π,H,R,X, Y, f(X)) ≡ RL(Y, f(X))

π(X)
− R− π(X)

π(X)
H(X,β, f(X)). (3.7)

The corresponding empirical risk is

RL
Ŵ ,Ĥ

,D(f) ≡ 1

n

n∑
i=1

LW,H

(
π̂, Ĥ, Ri, Xi, Yi, f(Xi)

)
=

1

n

n∑
i=1

{
RiL(Yi, f(Xi))

π̂(Xi)
− Ri − π̂(Xi)

π̂(Xi)
H
(
Xi, β̂, f(Xi)

)}
.

Denote H0 = H(x, β0, f(x)), Ĥ = H
(
x, β̂, f(x)

)
, LW 0,H0 = LW,H(π0, H0,

R,X, Y, f(X)) and L
Ŵ ,Ĥ

= LW,H

(
π̂, Ĥ, R,X, Y, f(X)

)
.

Unlike L(Y, f(X)) and LW (π,R,X, Y, f(X)), LW,H (π,H,R,X, Y, f(X)) is
not necessarily convex by the construction. In order to obtain the doubly-robust
kernel machine, we need both LW 0,H0 and L

Ŵ ,Ĥ
to be convex functions. The

following lemma gives a sufficient condition.

Lemma 3.2. Suppose that L(Y, f(X)) is the quadratic loss, i.e., L(Y, f(X)) =
{Y − f(X)}2. Then, LW 0,H0 and L

Ŵ ,Ĥ
are both convex functions.

We propose the doubly-robust kernel machine to be

fŴ ,Ĥ
D,λ ≡ argmin

f∈H
λ‖f‖2H +RL

Ŵ ,Ĥ
,D(f). (3.8)

Remark 3.1. (i) The kernel machine fD,λ in (2.1) is the decision function with
respect to the loss function L(Y, f(X)) when the data are fully observed. (ii) The

weighted-complete-case kernel machine fŴ
D,λ in (3.5) is the decision function

with respect to the weighted loss function L
Ŵ

when some responses are missing.

(iii) The doubly-robust kernel machine fŴ ,Ĥ
D,λ in (3.8) is the decision function

with respect to the augmented loss function L
Ŵ ,Ĥ

when some responses are

missing. Additionally, we choose L(Y, f(X)) to be the quadratic loss to warrant
the convexity of L

Ŵ ,Ĥ
.

At last, we claim the consistency of the proposed doubly-robust kernel ma-
chine.

Lemma 3.3. Under Assumptions 2.1, 3.1, and 3.2, for any f ∈ H, if either

π∗(X) = π0(X) or β∗ = β0, then RL
Ŵ ,Ĥ

,D(f)
P−→ RL,P(f).

3.3. Estimation of the augmentation term

We present two explicit examples for estimating the augmentation term of (3.7).
We limit the loss function to the quadratic loss.
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3.3.1. Regression

Consider the following location-shift regression model (Tsiatis, 2006, Chapter 5)

Y = μ(X,β0) + ε,

where ε is the random error with mean zero and variance σ2
ε . Assume that ε is

independent with X. The form of μ(X,β0) can be arbitrary, for example, linear
μ(X,β0), or log-linear, log(Xᵀβ0). By the assumptions of L and ε,

H(X,β0, f(X)) = E
[{

μ(X,β0) + ε− f(X)
}2 | X

]
=
{
μ(X,β0)− f(X)

}2
+ σ2

ε . (3.9)

We next estimate β0 and σ2
ε by maximizing the likelihood. Let FR,X(r, x) and

F (r, x, y, β0) denote the joint distributions of (R,X) and (R,X, Y ) respectively.
By Assumption 2.1,

F (r, x, y, β0) = FY |R,X(y | r, x, β0)FR,X(r, x) = FY |X(y | r, β0)FR,X(r, x).

Without loss of generality, suppose that the first n1 triples of (Ri, Xi, Yi) are
the complete cases (with Ri = 1), and that the last n− n1 triples have missing
responses (with Ri = 0). The likelihood of β0 is

n1∏
i=1

F (ri, xi, yi, β
0)

n∏
i=n1+1

FR,X(ri, xi)

=

n1∏
i=1

FY |X(yi | xi, β
0)FR,X(ri, xi)

n∏
i=n1+1

FR,X(ri, xi)

=

n1∏
i=1

FY |X(yi | xi, β
0)

n∏
i=1

FR,X(ri, xi). (3.10)

It suffices to maximize the first factor of (3.10) involving β0 (without knowing
the joint distributions). Denote the resulting maximum likelihood estimator

(MLE) of β0 by β̂. Then, we estimate σ2
ε by

σ̂2
ε =

∑n1

i=1 Ri

{
Yi − μ(Xi, β̂)

}2

n1
,

which is a consistent estimator whenever μ(X, β̂) is a consistent estimator of
μ(X,β0) since X is independent of ε.

Replacing β0 and σ2
ε by β̂ and σ̂2

ε respectively in (3.9), we obtain the estimate

of the augmented term H(X, β̂, f(X)) and consequently RL
Ŵ ,Ĥ

,D(f).
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3.3.2. Classification

Consider Y ∈ {−1, 1} in a classification problem. Suppose we use the logistic
model for the conditional probability of Y given X through

P
(
Y = 1 | X,β0

)
=

exp
(
Xᵀβ0

)
1 + exp (Xᵀβ0)

≡ logit
(
Xᵀβ0

)
.

In this case, we have

H
(
X,β0, f(X)

)
= E

[
{Y − f(X)}2 | X

]
= 1 + f(X)2 − 2f(X)E (Y | X)

= 1 + f(X)2 − 2f(X)
{
2P
(
Y = 1 | X,β0

)
− 1
}
. (3.11)

Under the same assumption of the data as in Section 3.3.1, we obtain the
MLE of β0, β̂, by maximizing

n1∏
i=1

FY |X
(
yi | xi, β

0
)
=

n1∏
i=1

P
(
Y = 1 | xi, β

0
) yi+1

2
{
1− P(Y = 1 | xi, β

0)
} 1−yi

2 .

Substituting H(X, β̂, f(X)) in RL
Ŵ ,Ĥ

,D(f) and minimizing (3.8) lead to the

doubly-robust kernel machine for classification.

3.4. Least-squares kernel machines with missing responses

In fact, under the quadratic loss function, the proposed kernel machines can be
obtained explicitly.

Let α = (α1, · · · , αn)
ᵀ, Y = (Y1, · · · , Yn)

ᵀ, W = diag(R1/π̂(X1), · · · ,
Rn/π̂(Xn)), and A = W 1/2. Denote the kernel matrix K = (Kij)n×n with

Kij = k(Xi, Xj). Denote μ(X, β̂) = (μ(X1, β̂), . . . , μ(Xn, β̂))
ᵀ. For example, in

the considered classification problem, μ(X, β̂) = 2logit(Xᵀβ̂)− 1. Let I denote
the n× n identity matrix.

For the weighted-complete-case kernel machine, we have

αŴ = (nλI +WK)−1WY. (3.12)

For the doubly-robust kernel machine, we have

αŴ ,Ĥ = (nλI +K)−1
{
WY + (I −W )μ

(
X, β̂

)}
. (3.13)

The details are given in Appendix A.
In the end, the proposed kernel machine estimators with respect to the

weighted loss in (3.3) and the augmented loss in (3.7) are respectively

fŴ
D,λ(x) =

n∑
i=1

αŴ
i k(x,Xi) and fŴ ,Ĥ

D,λ (x) =

n∑
i=1

αŴ ,Ĥ
i k(x,Xi).
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4. Theoretical results

4.1. Assumptions and conditions

In Section 3, we have shown that for any given f ∈ H the empirical risk based on
the two proposed kernel machines are consistent estimators of the risk function
RL,P(f). In this section, we prove the universal consistency and derive the
learning rates of the proposed kernel machines. Here, the universal consistency
means when the training set is sufficiently large, the learning methods produce
nearly optimal decision functions with large probability for all P ∈ P . The
learning rates provide a framework that is more closely related to the practical
needs. It answers the question of how fast RL,P(fD,λ) converges to the Bayes
risk R∗

L,P. The learning rate of the learning method is defined in Steinwart and
Christmann (2008, Lemma 6.5). For universal consistency, we shall prove the
oracle inequalities which bound the finite-sample distance between the empirical
risk and the true risk of the omniscient oracle.

First, we make one additional assumption about the estimator π̂(X).

Assumption 4.1. Assume that π̂(X) satisfies

0 < cn,L ≤ π̂(x) ≤ cn,U < 1, for all x ∈ X

where 1/cn,L and 1/(1− cn,U) are O(nd), for some 0 ≤ d < 1/2.

The assumption is satisfied when π̂(X) ≡ min {max (cn,L, π̃(X)) , cn,U},
where π̃(X) is some estimator. Moreover, if a lower bound of the constant c
in Assumption 2.2 is known, then we can choose d = 0.

Second, we introduce two conditions about the kernel space and the loss
function, which we need in order to show the universal consistency of the two
proposed kernel machines. Let BH ≡ {f ∈ H : ‖f‖H ≤ 1} denote the unit ball
in the RKHS H. Define N (BH, ‖ · ‖∞, ε) as the ε-covering number of BH with
respect to the supremum norm ‖·‖∞, defined by ‖f‖∞ = ess sup{|f(x)| , x ∈ X}.
Condition 4.1. There exist constants a > 1 and p > 0 such that for every
ε > 0, the entropy of BH is bounded by logN (BH, ‖ · ‖∞, ε) ≤ aε−2p.

Condition 4.2. There exist constants q > 0 and m ≥ 1 such that the locally
Lipschitz constant CL(u) defined in Assumption 2.3 is bounded by muq.

Remark 4.1. (i) Condition 4.1 is used to bound the entropy of the function
space H. The linear, Taylor, and Gaussian radial basis function (RBF) kernels
satisfy Condition 4.1 for all p > 0 (Steinwart and Christmann, 2008, Section
6.4). (ii) For the hinge loss, Condition 4.2 holds with q = 0. For the quadratic
loss, Condition 4.2 holds with q = 1 (Steinwart and Christmann, 2008, Sec-
tion 2.2). (iii) Both conditions can be verified.

Define

Err1,n = sup
x∈X

∣∣π̂(x)− π0(x)
∣∣ ,



3778 T. Liu and Y. Goldberg

Err2,n = sup
f∈Hn

sup
x∈X

|H(x, β̂, f(x))−H(x, β0, f(x))|, (4.1)

as the estimation errors regarding the missing mechanism and the estimation
error regarding the conditional risk, respectively. Err1,n is used later in Ap-
pendix C to derive the oracle inequalities. Denote the approximation error func-
tion of fP,λ with respect to the Bayes risk by

A2(λ) ≡ λ‖fP,λ‖2H +RL,P(fP,λ)−R∗
L,P.

Assumption 4.2. There exist constants b > 0 and γ ∈ (0, 1] such that A2(λ) ≤
bλγ for all λ ≥ 0.

4.2. Theoretical results of the weighted-complete-case kernel
machines

Recall that P is the set of all probability distributions for which Assumptions 2.1
and 2.2 hold.

Theorem 4.1. Let Assumptions 2.1, 2.2, and 4.1 hold. Suppose the universal
kernel k and the loss function L satisfy Conditions 4.1 and 4.2 respectively.
Assume that

∣∣π̂(X)− π0(X)
∣∣ = Op(n

−1/2). Suppose λn is a sequence in (0, 1)
satisfying λn → 0 and

λ
q+1
2

n nmin( 1
2p+2 ,

1
2−d)− (q+1)d

2 −→ ∞, (4.2)

where d, p, and q are defined in Assumption 2.2, Conditions 4.1, and 4.2 re-

spectively. Then, the weighted-complete-case kernel machine fŴ
D,λ in (3.5) is

P-universally consistent, i.e., RL,P

(
fŴ
D,λ

)
P−→ R∗

L,P for all P ∈ P.

The proof of Theorem 4.1 is based on the oracle inequality derived for the
weighted-complete-case kernel machines in Theorem C.1 of Appendix C. When
L is the quadratic loss with q = 1, the kernel k is Gaussian, and d = 0; (4.2)

reduces to λnn
1

2(p+1) which by (i) of Remark 4.1 holds for all p > 0 and therefore

is equivalent to λnn
1
2−ε → ∞ for arbitrarily small ε > 0.

Corollary 4.1. Let Assumptions 2.1, 2.2, 4.1, and 4.2 hold. Suppose the uni-
versal kernel k and the loss function L satisfy Conditions 4.1 and 4.2 respec-
tively. Assume that

∣∣π̂(X)− π0(X)
∣∣ = Op(n

−1/2). Then, the learning rate of

the weighted-complete-case kernel machine fŴ
D,λ in (3.5) is

n{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1 ,

where d and γ are defined in Assumptions 2.2 and 4.2, p and q are defined in
Conditions 4.1, and 4.2, respectively.

When L is the quadratic loss with q = 1, the kernel k is Gaussian, and d = 0;

the learning rate reduces to n− γ
2(γ+1)(p+1) , which by (i) of Remark 4.1 holds for

all p > 0 and therefore is equivalent to n− γ
2(γ+1)

+ε for arbitrarily small ε > 0.
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4.3. Theoretical results of the doubly-robust kernel machines

First, we present some convergence orders related to this learning method.
Let Png = 1

n

∑n
i=1 g(Xi) denote an operator taking the sample mean of g(X)

over X1, . . . , Xn. Denote

an ≡ Pn

[
R− π0(X)

π0(X)

]
,

hn ≡ sup
f∈Hn

∣∣Pn

{
L(Y, f(X))−H(X,β0, f(X))

}∣∣ .
By the central limit theorem, an = Op(n

−1/2). The term hn is a supremum of
a random process over Hn. The following lemma gives the order of hn.

Lemma 4.1. Let Assumption 4.1 hold. Suppose the loss function L satisfies
Condition 4.2. Then,

hn = Op

(
n−{ 1

2−
qd
2 }λ− q

2

)
.

We will discuss more about the functional spaceHn in the proof of Lemma 4.1.

Lemma 4.2. Let Assumptions 3.1 and 4.1 hold. Suppose the loss function L
satisfies Condition 4.2. Assume |β̂ − β0| = Op(n

−1/2). Then, the estimation

error Err2,n defined in (4.1) is of Op(n
− 1

2+qdλ−q).

Under the quadratic loss with q = 1, Lemmas 4.1 and 4.2 imply that

hn = Op

(
n− 1

2+
d
2 λ− 1

2

)
and Err2,n = Op

(
n− 1

2+dλ−1
)
.

With the convergence orders of an, hn, and Err2,n in position, we are ready to
show the universal consistency and derive the learning rate of the doubly-robust

kernel machine fŴ ,Ĥ
D,λ .

Theorem 4.2. Let Assumptions 2.1, 2.2, 3.1, 3.2, and 4.1 hold. Suppose that
the universal kernel k satisfies Condition 4.1 and the loss function L is the
quadratic loss. Assume that either |π̂(X) − π0(X)| = Op(n

−1/2) or |β̂ − β0| =
Op(n

−1/2). Suppose λn is a sequence in (0, 1) satisfying λn → 0 and

λnn
min( 1

2p+2 ,
1
2−d)−d −→ ∞.

Then, the doubly-robust kernel machine fŴ ,Ĥ
D,λ in (3.8) is P-universally consis-

tent, i.e., RL,P(f
Ŵ ,Ĥ
D,λ )

P−→ R∗
L,P for all P ∈ P.

The proof of Theorem 4.2 is based on the oracle inequality derived for the
doubly-robust kernel machines in Theorem C.2 of Appendix C.

Corollary 4.2. Let Assumptions 2.1, 2.2, 3.1, 3.2, 4.1, and 4.2 hold. Suppose
that the universal kernel k satisfies Condition 4.1 and the loss function L is the
quadratic loss. Assume that either |π̂(X) − π0(X)| = Op(n

−1/2) or |β̂ − β0| =
Op(n

−1/2). Then, the learning rate of the doubly-robust kernel machine fŴ ,Ĥ
D,λ

in (3.8) is n{−min( 1
2p+2 ,

1
2−d)+d} γ

γ+1 .
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When the kernel k is Gaussian and d = 0, the learning rate is n− γ
2(γ+1)(p+1) ,

which by (i) of Remark 4.1 holds for all p > 0 and therefore is equivalent to

n− γ
2γ+2+ε for arbitrarily small ε > 0.

Remark 4.2. When L is the quadratic loss, for the doubly-robust kernel ma-
chine estimator, using the similar argument as in Appendix A.2, we can show
that one can estimate E{L(Y, f(X)) | X = x} by estimating E(Y | X) ≡ μ0(X)
directly.

Let μ̂(X) be the estimator of μ0(X). In this case, the requirement β̂
P−→ β∗ in

Assumption 3.2 can be replaced with μ̂(X)
P−→ μ∗(X) where μ∗(X) does not nec-

essarily equal μ0(X). The requirement |β̂−β0| = Op(n
−1/2) that in Lemma 4.2,

Theorem 4.2, and Corollary 4.2 can be replaced with
∣∣μ̂(X)− μ0(X)

∣∣ =

Op(n
−1/2). We have the following theoretical results for the doubly-robust kernel

machines.

1. The estimation error of the conditional risk Err2,n in Lemma 4.2 is of

Op(n
− 1

2+
d
2 λ− 1

2 ). (The proof is given in Remark C.1 of Appendix C.8.)
2. When |π̂(X)−π0(X)| = Op(n

−1/2), the P-universally consistency in The-
orem 4.2 and the learning rate in Corollary 4.2 remain to hold.

3. When
∣∣μ̂(X)− μ0(X)

∣∣ = Op(n
−1/2), the P-universally consistency in The-

orem 4.2 holds if

λnn
min( 1

2p+2 ,
1
2− d

2 )−d −→ ∞.

The learning rate in Corollary 4.2 is n{−min( 1
2p+2 ,

1
2− d

2 )+d} γ
γ+1 . The

proofs are given in Remark C.2 of Appendix C.9 and Remark C.3 of Ap-
pendix C.10.

Remark 4.3. Let L be the quadratic loss and μ̂(X) be the estimator of μ0(X).
Assume that the conditions in Theorem 4.1 hold for the weighted-complete-case
kernel machine and the conditions in Theorem 4.2 hold for the doubly-robust
kernel machine.

(i) First, when λn satisfies

λnn
min( 1

2p+2 ,
1
2−d)−d −→ ∞,

the weighted-complete-case kernel machine is P-universally consistent. When
|π̂(X)− π0(X)| = Op(n

−1/2) and λn satisfies

λnn
min( 1

2p+2 ,
1
2−d)−d −→ ∞,

or
∣∣μ̂(X)− μ0(X)

∣∣ = Op(n
−1/2) and λn satisfies

λnn
min( 1

2p+2 ,
1
2− d

2 )−d −→ ∞

the doubly-robust kernel machine is P-universally consistent. This shows that the
doubly-robust kernel machine requires no stronger condition than the weighted-
complete-case kernel machine to warrant P-universally consistency.
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(ii) Second, when Assumption 4.2 holds, the learning rate of the weighted-
complete-case kernel machine is

n{−min( 1
2p+2 ,

1
2−d)+d} γ

γ+1 .

When |π̂(X)−π0(X)| = Op(n
−1/2), the learning rate of the doubly-robust kernel

machine is
n{−min( 1

2p+2 ,
1
2−d)+d} γ

γ+1 .

When
∣∣μ̂(X)− μ0(X)

∣∣ = Op(n
−1/2) the learning rate of the doubly-robust kernel

machine is
n{−min( 1

2p+2 ,
1
2− d

2 )+d} γ
γ+1 .

This indicates that the doubly-robust kernel machine has equal or faster learning
rate than the weighted-complete-case kernel machine.

5. Simulation

We conduct simulation studies to compare the finite-sample performance of the
proposed kernel methods with some existing methods in terms of predicting a
new response of either a regression or classification model and estimating the
mean of a regression model.

We denote the competing methods as follows.

Reg: the linear regression method which uses only complete cases.
SSLR: the semi-supervised linear regression method by Azriel et al. (2016)

which takes into account the missing responses.
BEDR: the bounded, efficient and doubly-robust estimation by Tan (2010).
BRDR: the bias-reduced doubly-robust estimation by Vermeulen and Vanstee-

landt (2015).
CC: the naive kernel machines which use only the complete observations.
WCC: the proposed weighted-complete-case kernel machines.
DR: the proposed doubly-robust kernel machines.

Note that the BEDR and BRDR are only used to compare the population
mean estimation since they are not designed for predicting new responses. For
all kernel machine methods, we use Gaussian RBF kernel function, where the
kernel width parameter and the tuning parameter λ are chosen by (five-fold)
cross validation.

For the WCC, the missing mechanism needs to be estimated. For the BEDR,
BRDR, both the missing mechanism and the condition mean E(Y | X) need to
be estimated. For the DR, both the missing mechanism and the conditional dis-
tribution FY |X

(
y | X,β0

)
need to be estimated. Here, we consider the following

four scenarios regarding misspecification.

S-1 Both the missing mechanism and the conditional distribution working
model are correctly specified.

S-2 The missing mechanism is misspecified while the conditional distribution
working model is correctly specified.
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Fig 1. Plot of Setting 1 with sample size 1000: The blue triangle points are observed responses
and the red circle points are missing responses. Observations with X on [0,2] have lower
probability to be generated than X on (2,4] and is more easily observed.

S-3 The conditional distribution working model is misspecified while the miss-
ing mechanism is correctly specified.

S-4 Both the missing mechanism and the conditional distribution working
model are misspecified.

5.1. Setup

We consider the four settings to generate data with missing responses.

In the first setting, the response is generated by

Y = exp(X) + U2 + U3 + U4 + U5 + ε,

where X ∼ 4×Beta(5, 3), U2, . . . U5 ∼ Unif(0, 4), ε ∼ N(0, 1), and X, U2 . . . U5,
and ε are mutually independent. The missing mechanism is given by

P (R = 1 | X) =

{[
1 + exp

{
9
2 (X − 2)

}]−1
X ∈ (0, 2],

[1 + exp {−(X − 4)}]−1
X ∈ (2, 4).

The missing rates for X in (0, 2] and (2, 4) are about 22% and 77%, respectively.
The overall missing rate is about 64%. In this example, both the probability of
the appearance of the large value of Y and the missing rate increase in X. That
means larger responses are more likely to be missed, as illustrated in Figure 1.
Thus, ignoring the missingness will yield a biased estimator of the nonlinear
predictor of Y , as the estimation is based on the smaller values of X.
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Setting 2 is an example of the classification used by Laber and Murphy (2011).
The response is generated as

Y = sign
(
X2 − 0.16X2

1 − 1 + ε
)
,

where X1, X2 ∼ Unif(0, 5), ε ∼ N(0, 0.25). The missing mechanism is

P (R = 1 | X) = logit{1.5(X2 −X1)}.

The missing rate when Y = 1 and −1 are about 20% and 84%, respectively.
This implies that the positive labels of Y are more easily observed. The overall
missing rate is about 50%.

Settings 3 and 4 are taken from Liu et al. (2007), where they studied the
generic pathway effect of the prostate-specific antigen (PSA), a biomarker for
prostate cancer screening. Consider generating the response by a generic regres-
sion model through

Y = 3 cos(X1) + 2U + h(X1, . . . , Xp) + ε,

where U,X1, . . . Xp ∼ Unif(0, 1), ε ∼ N(0, 1), which are mutually independent,
and h(·) is a centered smooth function. In Setting 3, p = 5 and

h(X1, . . . , X5) = 10 cos(X1)− 15X2
2 + 10 exp(−X3)X4 − 8 sin(X5) cos(X3)

+ 20X1X5.

The missing mechanism is given by

P (R = 1 | X) = logit

(
−4 log 3

3
+

2 log 3

3

5∑
i=1

Xi

5

)
.

In Setting 4, p = 10 and

h (X1, . . . , X10)

=10 cos(X1)− 15X2
2 + 10 exp(−X3)X4 − 8 sin(X5) cos(X3)

+ 20X1X5 + 9X6 sin(X7)− 8 cos(X6)X7 + 20X8 sin(X9) sin(X10)

− 15X3
8 − 10X8X9 − exp(X10) cos(X10).

The missing mechanism is given by

P (R = 1 | X) = logit

(
−4 log 3

3
+

2 log 3

3

10∑
i=1

Xi

10

)
.

In these two settings, the missing rates are both about 75%.
For the misspecification of the missing mechanism, we use the generalized

linear model with the probit link to estimate the missing mechanism. For the
misspecification of the conditional distribution working model, we used the sim-
ple linear model.
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Throughout, we set the (training) sample size n to be 100, 200, 400, and 800,
respectively, for each data set.

We examine the performance of the competing estimation methods by the
following two quantities. The first quantity is the empirical risk of predicting a
new response, given by

Q1 =
1

N

N∑
i=1

{Yi − f̂(Xi)}2,

where f̂ denotes a generic estimator of the decision function obtained by various
methods, {(Xi, Yi) : i = 1, . . . , N} is the testing sample of size N = 100,000.
The second quantity is the absolute bias of estimating the overall expectation
of the response, given by

Q2 = |Ê(Y )− E(Y )|,

where Ê(Y ) = N−1
∑N

i=1 f̂(Xi) and E(Y ) is approximated by N−1
∑N

i=1 Yi,
{(Xi, Yi) : i = 1, . . . , N} and N are as defined for Q1. Throughout, we set the
number of replications (simulation size) to be 100.

5.2. Results

Table 2 presents the sample mean, median, and standard deviation of Q1 (over
100 replications) obtained by the five competing methods (Reg, SSL, CC, WCC,
DR) under four settings, four different sample sizes, and four different scenarios
of misspecification. The corresponding distributions of Q1 are displayed by the
boxplots in Figures 2 to 5.

It is seen that (i) when little information about the conditional distribution
or regression model is given, e.g., there is no information about the correct
covariates, the proposed weighted-complete-case kernel machine performs better
than Reg, SSL, and CC, especially for large sample-size datasets; (ii) when
either the conditional distribution model or the missing mechanism is correctly
specified, the proposed doubly-robust kernel machine performs the best; (iii)
for Settings 2 and 3, even if both the missing mechanism and the condition
distribution model are misspecified, the proposed doubly-robust kernel machine
performs the best.

Table 3 presents the sample mean, median, and standard deviation ofQ2 (over
100 replications) obtained by the seven competing methods (Reg, SSL, BEDR,
BRDR, CC, WCC, DR) under Settings 1, 3, and 4, four different sample sizes,
and four different scenarios of misspecification. The corresponding distributions
of Ê(Y ) are displayed by the boxplots in Figures 6 to 8.

It is seen that (i) the proposed weighted-completed-case kernel machine out-
performs the considered five existing methods; (ii) the proposed doubly-robust
kernel machine yields the most precise estimation in terms of absolute bias, even
when the missing mechanism and the conditional distribution working model
are both misspecified.
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Fig 2. Boxplots of the empirical risk over 100 replications obtained by the five competing
methods under various sample size of n in Setting 1. Rows A-D present the results under
misspecification scenarios S-1 to S-4, respectively. The results of Reg, SSLR, and CC are the
same across all four scenarios/rows.
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Fig 3. Boxplots of the empirical risk over 100 replications obtained by the five competing
methods under various sample size of n in Setting 2. Rows A-D present the results under
misspecification scenarios S-1 to S-4, respectively. The results of Reg, SSLR, and CC are the
same across all four scenarios/rows.
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Fig 4. Boxplots of the empirical risk over 100 replications obtained by the five competing
methods under various sample size of n in Setting 3. Rows A-D present the results under
misspecification scenarios S-1 to S-4, respectively. The results of Reg, SSLR, and CC are the
same across all four scenarios/rows.
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Fig 5. Boxplots of the empirical risk over 100 replications obtained by the five competing
methods under sample size of n in Setting 4. Rows A-D present the results under misspeci-
fication scenarios S-1 to S-4, respectively. The results of Reg, SSLR, and CC are the same
across all four scenarios/rows.
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Fig 6. Boxplots of the estimated population mean over 100 replications obtained by the seven
competing methods under various sample size of n in Setting 1. Rows A-D present the results
under misspecification scenarios S-1 to S-4, respectively. The dashed line is the approximated
mean. The results of Reg, SSLR, and CC are the same across all four scenarios/rows.
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Fig 7. Boxplots of the estimated population mean over 100 replications obtained by the seven
competing methods under various sample size of n in Setting 3. Rows A-D present the results
under misspecification scenarios S-1 to S-4, respectively. The dashed line is the approximated
mean. The results of Reg, SSLR, and CC methods are the same across all four scenarios/rows.
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Fig 8. Boxplots of the estimated population mean over 100 replications obtained by the seven
competing methods under various sample size of n in Setting 4. Rows A-D present the results
under misspecification scenarios S-1 to S-4, respectively. The dashed line is the approximated
mean. The results of Reg, SSLR, and CC methods are the same across all four scenarios/rows.
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6. Application to Los Angeles homeless population data

We applied the proposed kernel machine methods to the Los Angeles home-
less data, where the goal is to estimate the number of homeless in each tract
(Kriegler and Berk, 2010; Azriel et al., 2016). The data set contains information
about 2,054 census tracts in the Los Angeles county. Due to the budget limita-
tion, some tracts were not visited, and consequently, the numbers of homeless
in these tracts are missing. The missing mechanism depends on the service pro-
vision areas (SPA) to which the tract belongs. We used the same covariates
of “Industrial” (percentage of land for industrial purposes), “PctVacant” (per-
centage of unoccupied housing units), “Commercial” (percentage of land used
for commercial purposes), “MedianHouseIncome”, “Residential” (percentage of
land used for residential purposes) and “PctMinority” (percentage population
that is non-Caucasian) as in Azriel et al. (2016).

We pre-process the data in the following three steps. First, similar to Azriel
et al. (2016), we delete all tracts with zero median household income and the
244 highly-populated “hot tracts”, which results in 1,797 tracts for subsequent
analysis. The missing rate in this data set is about 85%. Second, to correct the
skewness of variables (as a common preprocess for the SVM), we applied log
transformation to the response variable of the number of homeless, the covariates
“Industrial”, “PctVacant”, “Commercial”, and “MedianHouseIncome”. Third,
all variables are standardized to have zero mean and unit standard deviation.

The boxplots of the data after transformation and normalization are shown
in Figure 9.

We applied the same five competing methods (Reg, SSLR, CC, WCC, and
DR) as in Table 2 to the dataset. We used the semi-supervised linear regression

method to estimate the conditional expectation μ(X, β̂) in the doubly-robust
kernel machine. In this data, the missing mechanism is known; the weights
are the inverse probability of the number of tracts assigned to each SPA. To
evaluate the performance of these methods, we randomly sample 1,597 tracts as
the training set and use the remaining 200 tracts as the testing set. Since some
of the responses (of the number of homeless) of these 200 tracts are missing,
we consider the empirical risks with respect to two different loss functions. The
first loss function is the complete-case quadratic loss in (3.1). The second loss
function is the weighted complete-case quadratic loss in (3.4), where the weights
are the inverse probability that tract would have been included in the survey.
Tracts for which the responses are observed are used to compute the empirical
risk.

Table 1 shows the sample mean, median, and standard deviation of the empir-
ical risk over 100 replications obtained by the five competing methods. It is seen
that overall these five methods produce similar results. The proposed weighted-
complete-case kernel machines performed the best with the minimum mean of
empirical risk together with the smallest variation in terms of the standard devi-
ation. The proposed doubly-robust kernel machine did not show its superiority
as in the simulation studies. It is possibly due to the inferior performance of the
semi-supervised linear regression used for the augmentation term.



Kernel machines with missing responses 3793

Fig 9. From left to right, boxplots of the observed number of homeless, and the covariates
Industrial, PctVacant, Commercial, and Median house income, after log transformation and
normalization. The last two boxplots are of the covariates Residential and PctMinority after
normalization.

7. Conclusion and discussion

We proposed two kernel machines with missing responses. In particular, the
proposed inverse-probability complete-case estimator can be applied under any
convex loss function. The proposed doubly-robust estimator has the feature of
being doubly-robust against misspecification of either the missing mechanism
or the conditional distribution working model. The empirical risks of these new
data-dependent loss functions are shown to be consistent under mild conditions.
We also establish the universal consistency via the oracle inequalities for both
kernel machines.

In the present work, we posited two parametric models for estimating the
missing mechanism and the conditional distribution of Y given the covatiates
X. These two working models can be replaced by either semi-parametric mod-
els or nonparametric models such as smoothing kernel estimators and kernel
machine estimators. The theoretical results can be adapted depending on the
convergence rates of these working models. As recommended by Chernozhukov
et al. (2018), one can split the dataset into two subsets and use the first one
to estimate the two working models and the second one to obtain the kernel
machine decision function. This strategy is worth a new investigation for our
method. Other possible directions are some generalizations and extensions, for
example, the extension of the doubly-robust estimator to include other convex
loss functions. and the generalization of the data-dependent loss function to
handle the situation of missing covariates. We shall report these investigations
in separate works.
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Table 1

Sample median, mean, and standard deviation of the empirical risk under two loss functions
over 100 replications obtained by the five competing methods.

Reg SSLR CC WCC DR

mean weighted quadratic loss 9488 9735 9488 9100 9585
quadratic loss 1097 1116 1096 1054 1093

median weighted 9399 9868 8441 8293 9320
not weighted 943 1007 973 902 952

std weighted 6811 6691 7173 6825 7141
not weighted 872 842 921 884 914

Appendix A: Computation details in Subsection 3.4

A.1. Weighted-complete-case kernel machines

On replacing f(x) by (2.2), the regularized empirical risk in (3.5) is expressed
as

g(α) =
1

n

n∑
i=1

n∑
j=1

Ri

{
Yi −

∑n
j=1 αjk(Xi, Xj)

}2

π̂(Xi)
+ λ

n∑
i=1

n∑
j=1

αiαjk(Xi, Xj)

=(AY −AKα)ᵀ(AY −AKα)/n+ λαᵀKα

=(Y ᵀWY − 2αᵀKᵀWY +αᵀKᵀWKα)/n+ λαᵀKα,

where α, A and W are defined as in Section 3.4.

Setting ∂g(α)/∂α = 0 leads to (3.12).

A.2. Doubly-robust kernel machines

(i) For regression, by (2.2) and (3.9),

H(Xi, β̂, f(Xi)) =

⎧⎨⎩μ(Xi, β̂)−
n∑

j=1

αjk(Xi, Xj)

⎫⎬⎭
2

+

∑n
j=1 Rj

{
Yj − μ(Xj , β̂)

}2

∑n
j=1 Rj

,

where the second term is free of α. Denote the first term by H1(Xi, β̂, f(Xi)).
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The regularized empirical risk in (3.8) with H(Xi, β̂, f(Xi)) replaced by

H1(Xi, β̂, f(Xi)) is expressed as

g1(α) =
1

n

n∑
i=1

⎡⎢⎣Ri

{
Yi −

∑n
j=1 αjk(Xi, Xj)

}2

π̂(Xi)
− Ri − π̂(Xi)

π̂(Xi)
H1

(
Xi, β̂, f(Xi)

)⎤⎥⎦
+ λ

n∑
i=1

n∑
j=1

αiαjk(Xi, Xj)

=
1

n
{YᵀWY − 2αᵀKᵀWY +αᵀKᵀWKα+ μ(X, β̂)ᵀ(I −W )μ(X, β̂)

− 2αᵀKᵀ(I −W )μ(X, β̂) +αᵀKᵀ(I −W )Kα}+ λαᵀKᵀα,

where μ(X, β̂) and W are defined as in Subsection 3.4,

Setting ∂g1(α)/∂α = 0 solves (3.13).

(ii) For classification, by (3.11),

H(Xi, β̂, f(Xi)) = 1 + f(Xi)
2 + 2f(Xi)− 4f(Xi)logit(X

ᵀ
i β̂)

=
[
f(Xi)−

{
2logit(Xᵀ

i β̂)− 1
}]2

+ 1−
{
2logit(Xᵀ

i β̂)− 1
}2

,

where the second term is free of α. Denote the first term by H2(Xi, β̂, f(Xi)).

The regularized empirical risk in (3.8) with H(Xi, β̂, f(Xi)) replaced by

H2(Xi, β̂, f(Xi)) is expressed as

g2(α) =
1

n

n∑
i=1

⎡⎢⎣Ri

{
Yi −

∑n
j=1 αjk(Xi, Xj)

}2

π̂(Xi)
− Ri − π̂(Xi)

π̂(Xi)
H2(Xi, β̂, f(Xi))

⎤⎥⎦
+ λ

n∑
i=1

n∑
j=1

αiαjk(Xi, Xj)

=
1

n
[YᵀWY − 2αᵀKᵀWY +αᵀKᵀWKα

+
{
2logit(Xᵀβ̂)− 1

}ᵀ
(I −W )

{
2logit(Xᵀβ̂)− 1

}
− 2αᵀKᵀ(I −W )

{
2logit(Xᵀβ̂)− 1

}
+αᵀKᵀ(I −W )Kα]

+ λαᵀKᵀα.

Setting ∂g2(α)/∂α = 0 solves (3.13).
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Appendix B: Tables of simulations

Table 2

The median, mean, and standard deviation of the empirical risk for Settings 1-4. A
superscript j means that the method was evaluated with respect to scenario S-j. For

example, WCC1 means the WCC method with correctly specified the missing mechanism;
DR1 means the DR method with correctly specified both the missing mechanism and the

conditional distribution model.

Setting n Reg SSL CC WCC1 WCC2 DR1 DR2 DR3 DR4

1 median 25.06 15.87 19.80 16.34 16.24 12.37 12.36 18.80 19.15
100 mean 25.84 16.92 21.43 22.54 17.22 14.30 12.30 26.88 22.34

std 2.64 4.49 5.98 51.82 4.12 19.90 1.55 58.32 13.97

median 24.01 15.09 15.19 11.83 11.80 6.63 6.67 13.59 13.65
200 mean 24.27 15.23 15.57 11.94 11.86 6.81 6.85 14.59 15.12

std 1.72 2.47 2.06 1.85 1.91 0.97 1.07 3.98 6.19

median 23.21 14.65 8.61 5.56 5.60 4.09 4.09 9.92 9.89
400 mean 23.35 14.86 8.99 5.77 5.83 4.10 4.11 10.11 10.08

std 1.06 1.92 1.54 1.04 1.11 0.42 0.42 1.60 1.56

median 22.64 14.34 5.10 3.39 3.40 2.85 2.85 6.68 6.69
800 mean 22.79 14.55 5.14 3.46 3.47 2.86 2.86 6.66 6.65

std 0.61 1.26 0.48 0.31 0.31 0.18 0.18 0.84 0.85

2 median 0.64 0.51 0.57 0.54 0.51 0.39 0.40 0.43 0.43
100 mean 0.73 0.63 0.67 0.65 0.63 0.41 0.41 0.45 0.45

std 0.33 0.32 0.32 0.32 0.31 0.07 0.07 0.11 0.11

median 0.60 0.46 0.40 0.38 0.37 0.36 0.36 0.37 0.37
200 mean 0.67 0.53 0.46 0.43 0.41 0.37 0.38 0.39 0.38

std 0.23 0.21 0.17 0.15 0.12 0.05 0.05 0.05 0.05

median 0.63 0.45 0.36 0.35 0.35 0.34 0.34 0.35 0.35
400 mean 0.67 0.48 0.39 0.39 0.39 0.36 0.35 0.37 0.36

std 0.19 0.11 0.09 0.12 0.12 0.04 0.04 0.05 0.05

median 0.61 0.43 0.34 0.33 0.33 0.33 0.32 0.33 0.33
800 mean 0.63 0.45 0.35 0.35 0.35 0.33 0.33 0.33 0.33

std 0.11 0.07 0.04 0.07 0.07 0.01 0.01 0.02 0.01

3 median 12.16 8.23 15.48 11.24 11.33 7.41 7.43 8.20 8.16
100 mean 12.69 8.75 16.65 14.08 13.34 7.64 7.70 9.05 9.02

std 2.31 2.63 5.75 10.24 5.41 1.32 1.59 2.75 2.88

median 10.58 6.51 9.35 8.01 8.02 4.88 4.71 5.93 5.93
200 mean 10.77 6.56 9.85 8.32 8.22 4.99 4.93 6.10 6.13

std 0.75 0.62 1.64 1.66 1.31 0.75 0.72 1.13 1.14

median 10.09 5.95 6.65 5.34 5.42 2.97 2.97 3.65 3.68
400 mean 10.18 5.99 6.91 5.47 5.51 3.02 3.02 3.69 3.72

std 0.37 0.29 0.98 0.85 0.85 0.27 0.27 0.45 0.45

median 22.64 14.34 5.10 3.39 3.40 2.85 2.85 6.68 6.69
800 mean 22.79 14.55 5.14 3.46 3.47 2.86 2.86 6.66 6.65

std 0.61 1.26 0.48 0.31 0.31 0.18 0.18 0.84 0.85

4 median 19.83 24.40 33.46 25.91 25.59 16.24 16.36 21.22 23.12
100 mean 21.55 26.36 35.15 29.47 30.77 19.97 23.26 26.70 31.65

std 5.67 10.22 9.68 12.23 14.92 13.35 17.42 14.90 19.74

median 14.76 14.27 21.88 17.54 17.17 11.18 11.18 14.83 14.90
200 mean 15.59 15.17 22.61 18.39 18.71 11.30 11.37 15.68 15.90

std 3.01 3.26 4.30 3.93 6.58 1.06 1.32 3.40 4.31

median 12.97 11.99 14.89 12.94 12.99 7.45 7.45 11.12 11.17
400 mean 13.15 12.07 15.15 13.14 13.17 7.45 7.45 11.13 11.12

std 0.84 0.86 1.62 1.30 1.29 0.42 0.42 1.28 1.42

median 22.64 14.34 5.10 3.39 3.40 2.85 2.85 6.68 6.69
800 mean 22.79 14.55 5.14 3.46 3.47 2.86 2.86 6.66 6.65

std 0.61 1.26 0.48 0.31 0.31 0.18 0.18 0.84 0.85
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Table 3. The median, mean, and standard deviation of the estimated population mean absolute bias for Settings 1, 3, and 4. A superscript j means

that the method was evaluated with respect to scenario S-j. For example, BEDR1 means the BEDR method with correctly specified both the missing
mechanism and the conditional distribution model; WCC1 means the WCC method with correctly specified missing mechanism.

Setting n Reg SSLR BEDR1 BEDR2 BEDR3 BEDR4 BRDR1 BRDR2 BRDR3 BRDR4 CC WCC1 WCC2 DR1 DR2 DR3 DR4

1 median 1.08 1.58 0.73 0.74 0.78 0.77 0.73 0.73 0.75 0.75 0.53 0.36 0.36 0.37 0.33 0.46 0.50
100 mean 1.18 1.59 0.76 0.76 0.91 0.91 0.77 0.77 0.91 0.91 0.68 0.70 0.49 0.39 0.36 0.80 0.61

std 0.73 0.84 0.53 0.53 0.64 0.64 0.52 0.52 0.68 0.68 0.56 2.12 0.44 0.26 0.24 2.24 0.56

median 1.15 1.70 0.51 0.51 0.53 0.53 0.73 0.73 0.75 0.75 0.67 0.33 0.33 0.25 0.25 0.37 0.40
200 mean 1.19 1.66 0.56 0.56 0.64 0.64 0.77 0.77 0.91 0.91 0.68 0.39 0.38 0.26 0.26 0.45 0.46

std 0.66 0.59 0.37 0.37 0.46 0.46 0.52 0.52 0.68 0.68 0.40 0.31 0.30 0.18 0.18 0.39 0.39

median 1.19 1.74 0.33 0.33 0.38 0.37 0.73 0.73 0.75 0.75 0.30 0.16 0.16 0.11 0.11 0.26 0.26
400 mean 1.21 1.72 0.36 0.36 0.45 0.45 0.77 0.77 0.91 0.91 0.36 0.19 0.19 0.13 0.13 0.33 0.33

std 0.51 0.44 0.26 0.26 0.33 0.33 0.52 0.52 0.68 0.68 0.25 0.13 0.14 0.09 0.09 0.25 0.25

median 1.11 1.66 0.20 0.20 0.21 0.22 0.73 0.73 0.75 0.75 0.23 0.10 0.10 0.06 0.06 0.17 0.15
800 mean 1.16 1.71 0.25 0.25 0.28 0.28 0.77 0.77 0.91 0.91 0.25 0.11 0.11 0.07 0.08 0.20 0.21

std 0.33 0.29 0.19 0.19 0.23 0.23 0.52 0.52 0.68 0.68 0.14 0.08 0.07 0.06 0.06 0.16 0.16

3 median 0.63 0.40 0.37 0.37 0.41 0.40 0.40 0.40 0.36 0.36 0.54 0.46 0.44 0.22 0.23 0.34 0.31
100 mean 0.69 0.48 0.49 0.49 0.52 0.52 0.49 0.49 0.51 0.51 0.69 0.62 0.55 0.29 0.29 0.35 0.36

std 0.44 0.37 0.39 0.39 0.43 0.43 0.38 0.38 0.43 0.43 0.56 0.88 0.52 0.25 0.27 0.28 0.30

median 0.52 0.28 0.32 0.32 0.33 0.33 0.40 0.40 0.36 0.36 0.33 0.29 0.28 0.15 0.15 0.21 0.21
200 mean 0.56 0.33 0.36 0.36 0.39 0.39 0.49 0.49 0.51 0.51 0.37 0.34 0.34 0.18 0.18 0.23 0.22

std 0.30 0.24 0.28 0.28 0.29 0.29 0.38 0.38 0.43 0.43 0.28 0.28 0.27 0.14 0.14 0.16 0.16

median 0.58 0.18 0.20 0.20 0.24 0.24 0.40 0.40 0.36 0.36 0.20 0.16 0.17 0.08 0.08 0.11 0.11
400 mean 0.58 0.20 0.24 0.24 0.25 0.25 0.49 0.49 0.51 0.51 0.24 0.19 0.19 0.10 0.10 0.13 0.13

std 0.26 0.14 0.17 0.17 0.17 0.17 0.38 0.38 0.43 0.43 0.17 0.13 0.13 0.08 0.08 0.10 0.10

median 0.56 0.13 0.13 0.13 0.14 0.14 0.40 0.40 0.36 0.36 0.11 0.09 0.09 0.05 0.05 0.07 0.07
800 mean 0.57 0.14 0.16 0.16 0.17 0.17 0.49 0.49 0.51 0.51 0.13 0.11 0.11 0.06 0.06 0.08 0.08

std 0.19 0.11 0.11 0.11 0.13 0.13 0.38 0.38 0.43 0.43 0.10 0.08 0.08 0.05 0.05 0.06 0.06

4 median 0.61 0.72 0.57 0.57 0.69 0.71 0.68 0.68 0.69 0.69 0.74 0.68 0.73 0.42 0.45 0.51 0.61
100 mean 0.79 0.92 0.69 0.69 0.78 0.79 0.75 0.75 0.95 0.92 0.96 0.95 1.02 0.59 0.71 0.74 0.99

std 0.64 0.79 0.54 0.54 0.56 0.56 0.57 0.57 0.77 0.67 0.82 0.80 0.96 0.81 0.95 0.90 1.21

median 0.45 0.41 0.36 0.36 0.45 0.46 0.68 0.68 0.69 0.69 0.48 0.48 0.49 0.21 0.21 0.31 0.32
200 mean 0.51 0.48 0.46 0.46 0.54 0.54 0.75 0.75 0.95 0.92 0.59 0.54 0.57 0.25 0.25 0.38 0.40

std 0.42 0.46 0.35 0.35 0.40 0.40 0.57 0.57 0.77 0.67 0.46 0.44 0.53 0.19 0.18 0.30 0.35

median 0.32 0.23 0.24 0.24 0.26 0.26 0.68 0.68 0.69 0.69 0.31 0.30 0.30 0.11 0.11 0.19 0.21
400 mean 0.37 0.28 0.28 0.28 0.30 0.30 0.75 0.75 0.95 0.92 0.32 0.31 0.31 0.14 0.14 0.22 0.22

std 0.25 0.22 0.23 0.23 0.24 0.24 0.57 0.57 0.77 0.67 0.23 0.21 0.21 0.11 0.11 0.14 0.15

median 0.19 0.16 0.19 0.19 0.21 0.21 0.68 0.68 0.69 0.69 0.17 0.17 0.17 0.09 0.09 0.10 0.10
800 mean 0.24 0.19 0.22 0.22 0.24 0.23 0.75 0.75 0.95 0.92 0.20 0.19 0.19 0.10 0.10 0.12 0.12

std 0.17 0.15 0.16 0.16 0.17 0.17 0.57 0.57 0.77 0.67 0.14 0.12 0.12 0.07 0.07 0.10 0.10
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Appendix C: Proofs

C.1. Proof of Lemma 3.2

Proof. Let L(y, t) = (y − t)2. We now prove that L
Ŵ ,Ĥ

is convex. The same
argument can be used for LW 0,H0 .

Recall that

H
(
X, β̂, t

)
=

∫
y∈Y

L(y, t)dFY |X

(
y | X, β̂

)
.

We first show that for every convex loss L, H
(
X, β̂, t

)
is convex. For any α ∈

(0, 1), by the convexity of L(y, t) with respect to t,

H
(
X, β̂, αt+ (1− α)t′

)
=

∫
y∈Y

L{y, αt+ (1− α)t′}dFY |X

(
y | X, β̂

)
≤
∫
y∈Y

{αL(y, t) + (1− α)L(y, t′)} dFY |X

(
y | X, β̂

)
=α

∫
y∈Y

L(y, t)dFY |X

(
y | X, β̂

)
+ (1− α)

∫
y∈Y

L(y, t′)dFY |X

(
y | X, β̂

)
=αH

(
X, β̂, t

)
+ (1− α)H

(
X, β̂, t′

)
,

which indicates that H
(
X, β̂, t

)
is a convex function with respect to t.

Recall that

L
Ŵ ,Ĥ

= LW,H

(
π̂, Ĥ, R,X, Y, f(X)

)
=

RL(Y, f(X))

π̂(X)
− R− π̂(X)

π̂(X)
H
(
X, β̂, f(X)

)
.

Therefore, when R = 0, LW,H

(
π̂, Ĥ, 0, X, Y, t

)
= H

(
X, β̂, t

)
which is a convex

function for any loss L. When R = 1 and L is the quadratic loss,

H
(
X, β̂, t

)
=

∫
y∈Y

(y − t)
2
dFY |X

(
y | X, β̂

)
= t2 − 2tU

(
X, β̂

)
+ V

(
X, β̂

)
,

where U(X, β̂) =
∫
y∈Y ydFY |X(y|X, β̂) and V (X, β̂) =

∫
y∈Y y2dFY |X(y|X, β̂).

Note that U and V are not functions of t. Hence, for R = 1,

LW,H

(
π̂, Ĥ, R,X, Y, t

)
=t2 − 2t

{
Y

π̂(X)
− 1− π̂(X)

π̂(X)
U
(
X, β̂

)}
+

Y 2 − {1− π̂(X)}V
(
X, β̂

)
π̂(X)

.
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Since the second derivative with respect to t is positive, LW,H

(
π̂, Ĥ, R,X, Y, t

)
is convex with respect to t.

C.2. Proof of Lemma 3.3

Proof. Case 1: The missing mechanism is correctly specified, that is π̂(X)
P−→

π∗(X) = π0(X), but β̂
P−→ β∗, where β∗ does not necessarily equal β0.

LW,H

(
π̂, Ĥ, R,X, Y, f(X)

)
=
RL(Y, f(X))

π0(X)
− R− π0(X)

π0(X)
H(X,β∗, f(X)) + op(1)

=L(Y, f(X)) +
R− π0(X)

π0(X)
{L(Y, f(X))−H(X,β∗, f(X))}+ op(1).

By the Law of Large Numbers (LLN), we have

RL
Ŵ ,Ĥ

,D(f)
P−→ RL,P + E

[
R− π0(X)

π0(X)
{L(Y, f(X))−H(X,β∗, f(X))}

]
.

Note that

E

[
R− π0(X)

π0(X)
{L(Y, f(X))−H(X,β∗, f(X))}

]
=E

(
E

[
R− π0(X)

π0(X)
{L(Y, f(X))−H(X,β∗, f(X))}

∣∣∣X,Y

])
=E

(
{L(Y, f(X))−H(X,β∗, f(X))}E

[
R− π0(X)

π0(X)

∣∣∣X,Y

])
=E

(
{L(Y, f(X))−H(X,β∗, f(X))}E

[
R− π0(X)

π0(X)

∣∣∣X]) = 0.

The third equality holds because by Assumption 2.1, R and Y are independent

given X. As a conclusion, we have, RL
Ŵ ,Ĥ

,D(f)
P−→ RL,P(f).

Case 2: When β̂
P−→ β∗ = β0, but π̂(X)

P−→ π∗(X) which is not necessarily
π0(X),

LW,H

(
π̂, Ĥ, R,X, Y, f(X)

)
=H

(
X,β0, f(X)

)
+

R
{
L(Y, f(X))−H

(
X,β0, f(X)

)}
π∗(X)

+ op(1).

Then

RL
Ŵ ,Ĥ

,D(f)
P−→ E{H

(
X,β0, f(X)

)
}

+ E

[
R
{
L(Y, f(X))−H

(
X,β0, f(X)

)}
π∗(X)

]
.
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The second expression can be shown equal to 0. Indeed,

E

[
R
{
L(Y, f(X))−H

(
X,β0, f(X)

)}
π∗(X)

]

=E

(
E

[
R
{
L(Y, f(X))−H

(
X,β0, f(X)

)}
π∗(X)

∣∣∣∣R,X

])

=E

(
R

π∗(X)
E
[{
L(Y, f(X))−H

(
X,β0, f(X)

)}
| X
])

=E

[
R

π∗(X)
E {L(Y, f(X)) | X} −H

(
X,β0, f(X)

)]
= 0,

where the last equation holds since by (3.6), H
(
X,β0, f(X)

)
is defined as

E {L(Y, f(X)) | X}. Note that E
{
H
(
X,β0, f(X)

)}
= RL,P(f) and the result

follows.

C.3. Oracle inequality for the weighted-complete-case kernel
machines

Theorem C.1. Let Assumptions 2.1, 2.2, and 4.1 hold. Then, for fixed λ > 0,
n ≥ 1, ε > 0, and η > 0, with probability not less than 1− e−η,

λ
∥∥∥fŴ

D,λ

∥∥∥2
H
+RL,P

(
fŴ
D,λ

)
− inf

f∈H
RL,P(f)

<A2(λ) + d2n(λ)ε

+ d3n(λ)

[√
2η + 2 log {2N (BH, ‖ · ‖∞, d1n(λ)ε)}

n
+

Err1,n
cn,L

]
,

where d1n = (cn,Lλ)
1
2 , d2n =

2CL

(
(cn,Lλ)−

1
2

)
c , d3n =

CL

(
(cn,Lλ)−

1
2

)
(cn,Lλ)−

1
2 +1

c .

Proof. Recall that LW

(
π0, R,X, Y, f(X)

)
≡ RL(Y,f(X))

π0(X) , similarly, write LW 0

for short. By the definition of fŴ
D,λ,

λ
∥∥∥fŴ

D,λ

∥∥∥2
H
+RL

Ŵ
,D

(
fŴ
D,λ

)
≤ λ ‖fP,λ‖2H +RL

Ŵ
,D (fP,λ) . (C.1)

Recall that
A2(λ) = λ‖fP,λ‖2H +RL,P(fP,λ)−R∗

L,P.

Let

AŴ (λ) = λ
∥∥∥fŴ

D,λ

∥∥∥2
H
+RL,P

(
fŴ
D,λ

)
−R∗

L,P.

Hence,

AŴ (λ)−A2(λ)

=λ
∥∥∥fŴ

D,λ

∥∥∥2
H
+RL,P

(
fŴ
D,λ

)
− λ‖fP,λ‖2H −RL,P(fP,λ)
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+RL
Ŵ

,D

(
fŴ
D,λ

)
−RL

Ŵ
,D

(
fŴ
D,λ

)
≤λ‖fP,λ‖2H +RL

Ŵ
,D(fP,λ) +RL,P

(
fŴ
D,λ

)
−RL,P(fP,λ)

−RL
Ŵ

,D

(
fŴ
D,λ

)
− λ‖fP,λ‖2H

=RL
Ŵ

,D(fP,λ)−RL,P(fP,λ) +RL,P

(
fŴ
D,λ

)
−RL

Ŵ
,D

(
fŴ
D,λ

)
≡BŴ (λ),

where the inequality follows from (C.1).

Note that by (3.2),

RL,P(f) = E {L (Y, f(X))} = E

[
E

{
RL (Y, f(X))

π0(X)

∣∣∣∣X,Y

}]
= E

{
RL (Y, f(X))

π0(X)

}
= RLW0 ,P(f),

where the second equality holds for Assumption 2.1 and the third equality holds
by conditional expectation. Hence,

BŴ (λ) = RL
Ŵ

,D(fP,λ)−RLW0 ,P(fP,λ) +RLW0 ,P

(
fŴ
D,λ

)
−RL

Ŵ
,D

(
fŴ
D,λ

)
.

Therefore,

BŴ (λ) = RL
Ŵ

,D(fP,λ)−RLW0 ,D(fP,λ) +RLW0 ,D(fP,λ)−RLW0 ,P(fP,λ)

+RLW0 ,P

(
fŴ
D,λ

)
−RLW0 ,D

(
fŴ
D,λ

)
+RLW0 ,D

(
fŴ
D,λ

)
−RL

Ŵ
,D

(
fŴ
D,λ

)
≤
∣∣∣RLW0 ,P

(
fŴ
D,λ

)
−RLW0 ,D

(
fŴ
D,λ

)∣∣∣
+
∣∣RLW0 ,D(fP,λ)−RLW0 ,P(fP,λ)

∣∣
+
∣∣RL

Ŵ
,D(fP,λ)−RLW0 ,D (fP,λ)

∣∣
+
∣∣∣RLW0 ,D

(
fŴ
D,λ

)
−RL

Ŵ
,D

(
fŴ
D,λ

)∣∣∣
≡ An +Bn + Cn +Dn.

We first bound expressions An and Bn. Note that L(y, 0) ≤ 1 for all y ∈ Y .

By Assumption 4.1, LW (π̂, R,X, Y, 0) = RL(Y,0)
π̂(X) ≤ 1

cn,L
. Thus,

λ
∥∥∥fŴ

D,λ

∥∥∥2
H

≤ RL
Ŵ

,D(f0) ≤
1

cn,L
,

for f0(X) ≡ 0 for all X.
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By Assumption 2.2, for every f ∈ (cn,Lλ)
− 1

2BH, where BH is the unit ball
of H,

LW 0 = LW

(
π0, R,X, Y, f(X)

)
≤
∣∣LW

(
π0, R,X, Y, f(X)

)
− LW

(
π0, R,X, Y, 0

)∣∣+ ∣∣LW

(
π0, R,X, Y, 0

)∣∣
≤
∣∣∣∣R {L(Y, f(X))− L(Y, 0)}

π0(X)

∣∣∣∣+ 1

2c

≤
∣∣∣∣L(Y, f(X))− L(Y, 0)

π0(X)

∣∣∣∣+ 1

2c

≤ 1

2c
{L(Y, f(X))− L(Y, 0)}+ 1

2c

≤ 1

2c

{
CL

(
(cn,Lλ)

− 1
2

)
(cn,Lλ)

− 1
2 + 1

}
:≡ Qn; (C.2)

c is defined in Assumption 2.2 and CL(·) is a Lipschiz constant defined in As-
sumption 2.3.

Let Fε be an ε-net with cardinality |Fε| = N
(
(cn,Lλ)

− 1
2BH, ‖ · ‖∞, ε

)
=

N
(
BH, ‖ · ‖∞, (cn,Lλ)

1
2 ε
)
. For every function f ∈ (cn,Lλ)

− 1
2BH, there exists a

function g ∈ Fε such that ‖f − g‖∞ ≤ ε. Since,∣∣RLW0 ,P(f)−RLW0 ,P(g)
∣∣ = ∣∣∣∣E{L(Y, f(X))− L(Y, g(X))

π0(X)

}∣∣∣∣
≤ 1

2c
CL

(
(cn,Lλ)

− 1
2

)
ε.

This inequality also holds for
∣∣RLW0 ,D(f)−RLW0 ,D(g)

∣∣. Thus,∣∣RLW0 ,P(f)−RLW0 ,D(f)
∣∣

≤
∣∣RLW0 ,P(f)−RLW0 ,P(g)

∣∣+ ∣∣RLW0 ,D(f)−RLW0 ,D(g)
∣∣

+
∣∣RLW0 ,P(g)−RLW0 ,D(g)

∣∣
≤1

c
CL

(
(cn,Lλ)

− 1
2

)
ε+
∣∣RLW0 ,P(g)−RLW0 ,D(g)

∣∣ for some g ∈ Fε.

Using Hoeffding’s inequality (Steinwart and Christmann, 2008, Theorem 6.10),
and similarly to the proof of Theorem 6.25 therein, for any η > 0, we have

P

(
An +Bn ≥ Qn

√
2η

n
+

2

c
CL

(
(cn,Lλ)

− 1
2

)
ε

)

≤P

(
2 sup
g∈Fε

∣∣RLW0 ,P(g)−RLW0 ,D(g)
∣∣ ≥ Qn

√
2η

n

)

≤
∑
g∈Fε

P

(∣∣RLW0 ,P(g)−RLW0 ,D(g)
∣∣ ≥ Qn

√
η

2n

)
≤2N

(
BH, ‖ · ‖∞, (cn,Lλ)

1
2 ε
)
e−η.
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Elementary algebraic transformation shows that for fixed λ > 0, n ≥ 1, ε > 0,
and η > 0, with probability not less than 1− e−η,

An +Bn

≤
CL

(
(cn,Lλ)

− 1
2

)
(cn,Lλ)

− 1
2 + 1

2c

⎡⎢⎢⎣
√√√√2η + 2 log

{
2N
(
BH, ‖ · ‖∞, (cn,Lλ)

1
2 ε
)}

n

⎤⎥⎥⎦
+

2CL

(
(cn,Lλ)

− 1
2

)
ε

c
. (C.3)

Next, we bound Cn +Dn.∣∣RLW0 ,D(f)−RL
Ŵ

,D(f)
∣∣ = ∣∣∣∣Pn

{
RL(Y, f(X))

π0(X)
− RL(Y, f(X))

π̂(X)

}∣∣∣∣
=

∣∣∣∣Pn

[
RL(Y, f(X))

π0(X)π̂(X)

{
π̂(X)− π0(X)

}]∣∣∣∣
≤

CL

(
(cn,Lλ)

− 1
2

)
(cn,Lλ)

− 1
2 + 1

2c · cn,L
Err1,n.

Then

Cn +Dn ≤
CL

(
(cn,Lλ)

− 1
2

)
(cn,Lλ)

− 1
2 + 1

c · cn,L
Err1,n. (C.4)

By the definition of AŴ (λ) and BŴ (λ),

AŴ (λ)−A2(λ) ≤ BŴ (λ) ≤ An +Bn + Cn +Dn,

and the result thus follows from (C.3) and (C.4).

C.4. Proof of Theorem 4.1

Proof. By Condition 4.2,

CL

(
(cn,Lλ)

− 1
2

)
≤ m(cn,L)

− q
2 λ− q

2 .

Then, together with Condition 4.1, we have√√√√2 log
{
2N
(
BH, ‖ · ‖∞, (cn,Lλ)

1
2 ε
)}

n

≤

√√√√2 ln 2 + 2a
{
(cn,Lλ)

1
2 ε
}−2p

n
≤
√

2a

n

{
(cn,Lλ)

1
2 ε
}−p

.
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Therefore, combined with the oracle inequality in Theorem C.1, for fixed λ > 0,
n ≥ 1, ε > 0, and η > 0, with probability not less than 1− e−η,

AŴ (λ)−A2(λ)

≤m(cn,L)
− q

2 λ− q
2 (cn,Lλ)

− 1
2 + 1

c

×
[
2(cn,Lλ)

1
2 ε+

√
2a

n

{
(cn,Lλ)

1
2 ε
}−p

+

(
2η

n

) 1
2

+
Err1,n
cn,L

]
.

Let

ε = (cn,Lλ)
− 1

2

(p
2

) 1
p+1

(
2a

n

) 1
2p+2

.

Then using some algebra,

2(cn,Lλ)
1
2 ε+

√
2a

n

{
(cn,Lλ)

1
2 ε
}−p

= (p+1)

(
2

p

) p
p+1
(
2a

n

) 1
2p+2

≤ 3

(
2a

n

) 1
2p+2

,

where the last inequality can be verified by Steinwart and Christmann (2008,
Lemma A.1.5).

Since
∣∣π̂(X)− π0(X)

∣∣ = Op

(
n− 1

2

)
, we have Err1,n = Op

(
n− 1

2

)
, and there

exists a constant b1(η) such that for all n ≥ 1

P
(
Err1,n ≥ b1(η)n

− 1
2

)
< e−η.

For fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less than
1− 2e−η,

AŴ (λ)−A2(λ)

≤m(cn,L)
− q+1

2 λ− q+1
2 + 1

c

[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]
. (C.5)

Note that by Assumption 4.1, cn,L = O
(
n−d
)
,

m(cn,L)
− q+1

2 = O
(
n

(q+1)d
2

)
. (C.6)

Recall that

AŴ (λ) = λ
∥∥∥fŴ

D,λ

∥∥∥2
H
+RL,P

(
fŴ
D,λ

)
−R∗

L,P.

Taking λ = λn, then λn

∥∥∥fŴ
D,λ

∥∥∥2
H

−−−−→
n→∞

0, and by Steinwart and Christmann

(2008, Lemma 5.15) A2(λn) −−−−→
n→∞

0. When λ
q+1
2

n nmin( 1
2−d, 1

2p+2 )−
(q+1)d

2 −→ ∞,

the right-hand side of (C.5) converges to zero. Therefore, for all ε > 0, we have

lim
n→∞

P
(
RL,P

(
fŴ
D,λ

)
≤ R∗

L,P + ε
)
= 1.

Since it is true for all P ∈ P , the P-universal consistency holds.
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C.5. Proof of Corollary 4.1

Proof. By (C.5) and Assumption 4.2, for fixed λ > 0, n ≥ 1, ε > 0, and η > 0,
with probability not less than 1− 2e−η

AŴ (λ)

≤A2(λ)+ ≤ m(cn,L)
− q+1

2 λ− q+1
2 + 1

c

[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]

≤bλγ +

(
m(cn,L)

− q+1
2

c
λ− q+1

2 +
1

c

)[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]
.

Let

G1(λ)

=bλγ +

(
m(cn,L)

− q+1
2

c
λ− q+1

2 +
1

c

)[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]
.

Taking the derivative with respect to λ and setting it equal to 0,

bγλγ−1 =
m(cn,L)

− q+1
2

c

q + 1

2
λ− q+3

2

[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]
.

By (C.6) and Assumption 4.1

λγ+ q+1
2 ∝

(
1

n

)min( 1
2p+2 ,

1
2−d)

n
(q+1)d

2 ,

⇒ λ ∝ n{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2
2γ+q+1 .

Note that by choosing large m where m is defined in Condition 4.2,

G′′
1

(
n{−min( 1

2p+2 ,
1
2−d)+ (q+1)d

2 } 2
2γ+q+1

)
can be positive. Then, for

λn = n{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2
2γ+q+1 ,

G1(λn)

=bn{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1

+

{
m(cn,L)

− q+1
2

c
n{−min( 1

2p+2 ,
1
2−d)+ (q+1)d

2 } 2
2γ+q+1 (−

q+1
2 ) +

1

c

}

×
[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b1(η)n

− 1
2

cn,L

]
≤bn{−min( 1

2p+2 ,
1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1
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+ n{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2
2γ+q+1 (−

q+1
2 )−min( 1

2p+2 ,
1
2−d)+ (q+1)d

2

× cP (ca +
√
η + b1(η))

≤Q (
√
η + b1(η) + ca,b)n

{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1 ,

where ca is a constant related to a, ca,b is a constant related to a, b, and c, cP
and Q are constants related to P. None of them is related to η.

Consequently, for fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not
less than 1− 2e−η,

AŴ (λ) ≤ G1(λ) ≤ Q (
√
η + b1(η) + ca,b)n

{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1 .

Therefore, the learning rate is n{−min( 1
2p+2 ,

1
2−d)+ (q+1)d

2 } 2γ
2γ+q+1 .

C.6. Oracle inequality for the doubly-robust kernel machines

Theorem C.2. Let Assumptions 2.1, 2.2, and 4.1 hold. When L is the quadratic
loss, for fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less than
1− e−η

λ
∥∥∥fŴ ,Ĥ

D,λ

∥∥∥2
H
+RL,P

(
fŴ ,Ĥ
D,λ

)
− inf

f∈H
RL,P(f)

<A2(λ) + u2n(λ)ε+ 3u3n(λ)

[√
2η + 2 log {2N (BH, ‖ · ‖∞, u1n(λ)ε)}

n

]

+
2u3n(λ)

cn,L
Err1,n + 2

(
1

cn,L
+ 1

)
Err2,n,

where u1n = (c2,nλ)
1
2 , u2n =

6r(c2,nλ)
− 1

2

c , u3n =
r(c2,nλ)

−1+1
c , c2,n =

cn,L

2+cn,U
,

cn,L and cn,U are defined as in Assumption 4.1.

Proof. Let c1 = 3
2c , where c is defined as in Assumption 2.2. Since L(Y, 0) ≤ 1,

we also have H
(
X,β0, 0

)
= E {L(Y, 0) | X} ≤ 1. Recall that

LW 0,H0 = LW,H

(
π0, H0, R,X, Y, f(X)

)
≡ RL(Y, f(X))

π0(X)
− R− π0(X)

π0(X)
H
(
X,β0, 0

)
.

We have,∣∣LW,H

(
π0, H0, R,X, Y, 0

)∣∣ = ∣∣∣∣ML(Y, 0)

π0(X)
− R− π0(X)

π0(X)
H(X,β0, 0)

∣∣∣∣
≤ RL(Y, 0)

π0(X)
+

R+ π0(X)

π0(X)
H(X,β0, 0)

≤ 2R+ π0(X)

π0(X)
≤ 3

2c
≡ c1,

where the last inequality follows from Assumption 2.2.
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Since H
(
X, β̂, 0

)
=
∫
y∈Y L(y, 0)dFY |X(y | X, β̂) ≤ 1,∣∣∣LW,H

(
π̂, Ĥ, R,X, Y, 0

)∣∣∣ = ∣∣∣∣RL(Y, 0)

π̂(X)
− R− π̂(X)

π̂(X)
H
(
X, β̂, 0

)∣∣∣∣
≤ RL(Y, 0)

π̂(X)
+

R+ π̂(X)

π̂(X)
H
(
X, β̂, 0

)
≤ 2R+ π̂(X)

π̂(X)
≤ 2 + cn,U

cn,L
≡ 1

c2,n
.

Note that

λ
∥∥∥fŴ ,Ĥ

D,λ

∥∥∥2
H

≤ λ
∥∥∥fŴ ,Ĥ

D,λ

∥∥∥2
H
+RL

Ŵ ,Ĥ
,D

(
fŴ ,Ĥ
D,λ

)
≤ RL

Ŵ ,Ĥ
,D(0) ≤ 1

c2,n
. (C.7)

For every f ∈ (c2,nλ)
− 1

2BH,

|L(Y, f(X))| ≤ |L(Y, f(X))− L(Y, 0)|+ L(Y, 0)

≤ CL

(
(c2,nλ)

− 1
2

)
(c2,nλ)

− 1
2 + 1 ≤ m(c2,nλ)

−1 + 1. (C.8)

The last inequality holds since by Condition 4.2, for the quadratic loss

CL

(
(c2,nλ)

− 1
2

)
≤ m(c2,nλ)

− 1
2 .

Using the argument as in (C.2) in Theorem C.1,

LW,H

(
π0, H0, R,X, Y, f(X)

)
≤

3
{
m(c2,nλ)

−1 + 1
}

2c
≡ Tn.

Let

AŴ ,Ĥ(λ) = λ
∥∥∥fŴ ,Ĥ

D,λ

∥∥∥2
H
+RL,P

(
fŴ ,Ĥ
D,λ

)
−R∗

L,P.

Since RL,P(f) = RLW0,H0 ,P(f), using the same technique as in the proof of
Theorem C.1,

AŴ ,Ĥ(λ)−A2(λ)

≤
∣∣∣RLW0,H0 ,P(fP,λ)−RLW0,H0 ,D(fP,λ)

∣∣∣
+
∣∣∣RLW0,H0 ,P

(
fŴ ,Ĥ
D,λ

)
−RLW0,H0 ,D

(
fŴ ,Ĥ
D,λ

)∣∣∣
+
∣∣∣RLW0,H0 ,D(fP,λ)−RL

Ŵ ,Ĥ
,D(fP,λ)

∣∣∣
+
∣∣∣RLW0,H0 ,D

(
fŴ ,Ĥ
D,λ

)
−RL

Ŵ ,Ĥ
,D

(
fŴ ,Ĥ
D,λ

)∣∣∣
≡An +Bn + Cn +Dn. (C.9)

Let Fε be an ε-net of (c2,nλ)
− 1

2BH with cardinality |Fε| = N
(
(c2,nλ)

− 1
2BH, ‖·

‖∞, ε
)
= N

(
BH, ‖ · ‖∞, (c2,nλ)

1
2 ε
)
. For every function f ∈ (c2,nλ)

− 1
2BH, there

exists a function g ∈ Fε, such that ‖f − g‖∞ ≤ ε. Thus,

|L(Y, f(X))− L(Y, g(X))| ≤ CL

(
(c2,nλ)

− 1
2

)
‖f − g‖∞ ≤ m(c2,nλ)

− 1
2 ε,
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and ∣∣H (X,β0, f(X)
)
−H

(
X,β0, g(X)

)∣∣
=

∣∣∣∣∫
y∈Y

{L(y, f(X))− L(y, g(X))}dFY |X
(
y | X,β0

)∣∣∣∣
≤
∫
y∈Y

|L(y, f(X))− L(y, g(X))| dFY |X
(
y | X,β0

)
≤m(c2,nλ)

− 1
2 ε.

Therefore∣∣∣RLW0,H0 ,P(f)−RLW0,H0 ,P(g)
∣∣∣

=

∣∣∣∣E [R{L(Y, f(X))− L(Y, g(X))}
π0(X)

−
{R− π0(X)}{H

(
X,β0, f(X)

)
−H

(
X,β0, g(X)

)
}

π0(X)

]∣∣∣∣∣
≤E

[∣∣∣∣R{L(Y, f(X))− L(Y, g(X))}
π0(X)

−
{R− π(X)}{H

(
X,β0, f(X)

)
−H

(
X,β0, g(X)

)
}

π0(X)

∣∣∣∣∣
]

≤E

[
R |L(Y, f(X))− L(Y, g(X))|

π0(X)

+
{R+ π0(X)}

∣∣H (X,β0, f(X)
)
−H

(
X,β0, g(X)

)∣∣
π0(X)

]

≤3m(c2,nλ)
− 1

2 ε

2c
. (C.10)

Similarly, ∣∣∣RLW0,H0 ,D(f)−RLW0,H0 ,D(g)
∣∣∣ ≤ 3m(c2,nλ)

− 1
2 ε

2c
.

Using (C.10) we can bound An and Bn of (C.9)∣∣∣RLW0,H0 ,P(f)−RLW0,H0 ,D(f)
∣∣∣

≤
∣∣∣RLW0,H0 ,P(f)−RLW0,H0 ,P(g)

∣∣∣+ ∣∣∣RLW0,H0 ,D(f)−RLW0,H0 ,D(g)
∣∣∣

+
∣∣∣RLW0,H0 ,P(g)−RLW0,H0 ,D(g)

∣∣∣
≤3m(c2,nλ)

− 1
2 ε

c
+
∣∣∣RLW0,H0 ,P(g)−RLW0,H0 ,D(g)

∣∣∣ .
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Using the similar argument as Steinwart and Christmann (2008, Theorem 6.25)
for any η > 0, we have

P

(
An +Bn ≥ Tn

√
2η

n
+

6m(c2,nλ)
− 1

2 ε

c

)

≤P

(
2 sup
g∈Fε

∣∣∣RLW0,H0 ,P(g)−RLW0,H0 ,D(g)
∣∣∣ ≥ Tn

√
2η

n

)

≤
∑
g∈Fε

P

(∣∣∣RLW0,H0 ,P(g)−RLW0,H0 ,D(g)
∣∣∣ ≥ Tn

√
η

2n

)
≤2N

(
BH, ‖ · ‖∞, (c2,nλ)

1
2 ε
)
e−η,

where the last inequality is from Hoeffding’s inequality (Steinwart and Christ-
mann, 2008, Theorem 6.10).

Elementary algebraic transformation shows that for fixed λ > 0, n ≥ 1, ε > 0,
and η > 0, with probability not less than 1− e−η,

An +Bn

≤
3
{
m(c2,nλ)

−1 + 1
}

c

⎡⎢⎢⎣
√√√√2η + 2 log

{
2N
(
BH, ‖ · ‖∞, (c2,nλ)

1
2 ε
)}

n

⎤⎥⎥⎦
+

6m(c2,nλ)
− 1

2 ε

c
. (C.11)

Next bound Cn and Dn,∣∣∣RLW0,H0 ,D(f)−RL
Ŵ ,Ĥ

,D(f)
∣∣∣

=Pn

∣∣∣∣RL(Y, f(X))

π0(X)
− RL(Y, f(X))

π̂(X)
+

R− π̂(X)

π̂(X)
H
(
X, β̂, f(X)

)
− R− π0(X)

π0(X)
H
(
X,β0, f(X)

)∣∣∣∣
≤Pn

[
RL(Y, f(X))

π0(X)π̂(X)

∣∣π0(X)− π̂(X)
∣∣+ ∣∣∣H (X, β̂, f(X)

)
−H

(
X,β0, f(X)

)∣∣∣
+

∣∣∣∣∣∣
RH

(
X, β̂, f(X)

)
π̂(X)

−
RH

(
X,β0, f(X)

)
π0(X)

∣∣∣∣∣∣
⎤⎦ . (C.12)

Then, ∣∣∣∣∣∣
RH

(
X, β̂, f(X)

)
π̂(X)

−
RH

(
X,β0, f(X)

)
π0(X)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
RH

(
X, β̂, f(X)

)
π̂(X)

−
RH

(
X,β0, f(X)

)
π̂(X)

+
RH

(
X,β0, f(X)

)
π̂(X)

−
RH

(
X,β0, f(X)

)
π0(X)

∣∣∣∣∣
≤ R

π̂(X)

∣∣∣H (X, β̂, f(X)
)
−H

(
X,β0, f(X)

)∣∣∣
+

RH
(
X,β0, f(X)

)
π0(X)π̂(X)

∣∣π0(X)− π̂(X)
∣∣ . (C.13)

Hence, by inequality (C.12) and (C.13), and definition of Err1,n and Err2,n in
Subsection 4.1,∣∣∣RLW0,H0 ,D(f)−RL

Ŵ ,Ĥ
,D(f)

∣∣∣
≤L(Y, f(X))

2c · cn,L
Err1,n + Err2,n +

1

cn,L
Err2,n +

H
(
X,β0, f(X)

)
2c · cn,L

Err1,n.

Similarly to inequality (C.8),
∣∣H (X,β0, f(X)

)∣∣ ≤ m(c2,nλ)
−1 + 1. Then we

have∣∣∣RLW0,H0 ,D(f)−RL
Ŵ ,Ĥ

,D(f)
∣∣∣ ≤ m(c2,nλ)

−1 + 1

c · cn,L
Err1,n +

(
1

cn,L
+ 1

)
Err2,n.

(C.14)
By (C.11) and (C.14), and using

AŴ ,Ĥ(λ)−A2(λ) ≤ An +Bn + Cn +Dn,

the result follows.

C.7. Proof of Lemma 4.1

Proof. Define Xi(f) = L(Xi, Yi, f(Xi))−H
(
Xi, β

0, f(Xi)
)
and let

h̃n(f) =
1

n

n∑
i=1

L(Xi, Yi, f(Xi))−H
(
Xi, β

0, f(Xi)
)
=

1

n

n∑
i=1

Xi(f).

By inequality (C.7) we have ‖f‖Hn ≤ (c2,nλ)
− 1

2 , where c2,n =
cn,L

2+cn,U
. By the

Cauchy-Schwarz inequality and the reproducing property (see Steinwart and
Christmann (2008, Lemma 4.23)),

|f(x)| = 〈f, k(·, x)〉 ≤ ‖f(x)‖Hn

√
k(x, x) ≤ ‖f(x)‖Hn‖k‖∞.

Consequently, ‖f‖∞ ≤ ‖f‖Hn‖k‖∞ ≤ ‖f‖Hn , where the inequality follows since
we assume that ‖k‖∞ ≤ 1.
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Since ‖f‖∞ ≤ ‖f‖Hn , the space Hn over which the supremum hn is taken is

contained in (c2,nλ)
− q

2 BH.

By (C.8), ‖Xi(f)‖∞ ≤ 2
{
m (c2,nλ)

−q
+ 1
}
. Using the functional Hoeffding’s

inequality (Berestycki et al., 2009, Section 6.5),

P

⎡⎢⎢⎣ 1√
2
{
m (c2,nλ)

−1
+ 1
}
∥∥∥∥∥

n∑
i=1

Xi(f)

∥∥∥∥∥
∞

≥ C

⎤⎥⎥⎦ ≤ 1

Ku
exp

(
− C2

Kun

)
,

where Ku is a universal constant and C is any constant.
Let C̃ = C√

n
, so C =

√
nC̃. Then,

P

⎡⎢⎢⎣ √
n√

2
{
m (c2,nλ)

−1
+ 1
}
∥∥∥∥∥ 1n

n∑
i=1

Xi(f)

∥∥∥∥∥
∞

≥ C̃

⎤⎥⎥⎦ ≤ 1

Ku
exp
(
−const C̃2

)
.

(C.15)
Since c2,n =

cn,L

2+cn,U
for 0 < cn,U < 1, and 1

cn,L
= O

(
nd
)
, then 1

c2,n
= O

(
nd
)
.

Thus,
m (c2,nλ)

−q
= O

(
nqdλ−q

)
.

Consequently, √
n√

2
{
m (c2,nλ)

−1
+ 1
} = O

(
n

1
2−

qd
2 λ

q
2

)
. (C.16)

We have, from (C.15) that hn = Op

(
n−( 1

2−
qd
2 )λ− q

2

)
.

C.8. Proof of Lemma 4.2

Proof. Note that for every f ,

sup
x∈X

∣∣∣H (x, β̂, f(x))−H
(
x, β0, f(x)

)∣∣∣
= sup

x∈X

∣∣∣∣∫
y∈Y

L(y, f(x))dFY |X

(
y | x, β̂

)
−
∫
y∈Y

L(y, f(x))dFY |X
(
y | x, β0

)∣∣∣∣
= sup

x∈X

∣∣∣∣∫
y∈Y

L(y, f(x))d
{
FY |X

(
y | x, β̂

)
− FY |X

(
y | x, β0

)}∣∣∣∣ .
By (C.8)

|L(y, f(x))| ≤ m(c2,nλ)
−q + 1 = O

(
nqdλ−q

)
.

We have

Err2,n = sup
f∈Hn

sup
x∈X

∣∣∣H (x, β̂, f(x))−H
(
x, β0, f(x)

)∣∣∣
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≤
{
m(c2,nλ)

−q + 1
}
sup
x∈X

∣∣∣∣∫
y∈Y

d
{
FY |X

(
y | x, β̂

)
− FY |X

(
y | x, β0

)}∣∣∣∣ .
Define the function φ : B �→ L∞(X) by φ(β) =

∫
y
dFY |X (y | ·, β). Note

that φ is Hadamard differentiable as a composite of β �→ FY |X (· | ·, β) �→∫
y
dFY |X (y | ·, β). The first mapping is Hadamard differentiable by the as-

sumption of continuous differentiability with respect to β and the definition
of Hadamard differentiability (Kosorok, 2008, Section 2.2.4), and the second by
Kosorok (2008, Lemma 12.3). Thus, by the function delta method (Kosorok,
2008, Theorem 2.8),∫

y∈Y
d
{
FY |X

(
y | x, β̂

)
− FY |X

(
y | x, β0

)}
= Op

(
n− 1

2

)
. (C.17)

Consequently, by the definition of convergence in probability (Kosorok, 2008,

Section 2.2.1), we conclude that Err2,n = Op

(
n− 1

2+qdλ−q
)
.

Remark C.1. When L is the quadratic loss, as mentioned in Remark 4.2, one
can directly estimate the conditional expectation μ0(X). When

∣∣μ̂(X)− μ0(X)
∣∣ =

Op(n
−1/2),

Err2,n = sup
f∈Hn

sup
x∈X

∣∣∣H (x, β̂, f(x))−H
(
x, β0, f(x)

)∣∣∣
= sup

f∈Hn

sup
x∈X

∣∣E(Y 2 | X) + f2(X)− 2μ̂(X)f(X)

−E(Y 2 | X)− f2(X) + 2μ0(X)f(X)
∣∣ .

= sup
f∈Hn

sup
x∈X

∣∣2μ0(X)f(X)− 2μ̂(X)f(X)
∣∣

By (C.8), (Y − f(X))2 ≤ O
(
ndλ−1

)
and Y is bounded, thus,

|f(x)| ≤ O
(
n

d
2 λ− 1

2

)
.

Consequently,

Err2,n = Op

(
n− 1

2+
d
2 λ− 1

2

)
≤ Op

(
n− 1

2+dλ−1
)
.

C.9. Proof of Theorem 4.2

Proof. In the proof of Theorem C.2,

AŴ ,Ĥ(λ)−A2(λ) ≤ An +Bn + Cn +Dn,

where An, Bn, Cn, and Dn are the same as defined in (C.9). For An + Bn, we
have the same result as (C.11). Next we bound Cn and Dn in the two different
situations of (i) and (ii).
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Recall that

RLW0,H0 ,D = Pn

{
LW,H

(
π0, H0, R,X, Y, f(X)

)}
= Pn

{
RL(Y, f(X))

π0(X)
− R− π0(X)

π0(X)
H(X,β0, f(X))

}
.

By Assumption 3.2, we have π̂
P−→ π∗ and β̂

P−→ β∗.

Case 1:
∣∣π̂(X)− π0(X)

∣∣ = Op

(
n− 1

2

)
which means Err1,n = Op

(
n− 1

2

)
, and

β̂
P−→ β∗ where β∗ is not necessarily β0. Since

RL
Ŵ ,Ĥ

,D(f)

=Pn

[
RL(Y, f(X))

π̂(X)
− R− π̂(X)

π̂(X)
H
(
X, β̂, f(X)

)]
=Pn

[
RL(Y, f(X))

π0(X)
− R− π0(X)

π0(X)
H
(
X, β̂, f(X)

)
+

⎧⎨⎩RL(Y, f(X))−RH
(
X, β̂, f(X)

)
π̂(X)π0(X)

⎫⎬⎭(π0(X)− π̂(X)
)⎤⎦ .

Then, ∣∣∣RL
Ŵ ,Ĥ

,D(f)−RLW0,H0 ,D(f)
∣∣∣

=

∣∣∣∣∣Pn

[
R− π0(X)

π0(X)

{
H(X,β0(X), f(X))−H

(
X, β̂, f(X)

)}]

+ Pn

⎡⎣RL(Y, f(X))−RH
(
X, β̂, f(X)

)
π̂(X)π0(X)

(
π0(X)− π̂(X)

)⎤⎦ ∣∣∣∣∣
≤
∣∣∣∣Pn

[
R− π0(X)

π0(X)

]∣∣∣∣Err2,n +
m(c2,nλ)

−1 + 1

c · cn,L
Err1,n

=|an|Err2,n +
m(c2,nλ)

−1 + 1

c · cn,L
Err1,n.

Since both an and Err1,n are Op

(
n− 1

2

)
, for every given η > 0, there exists a

constant b3(η) such that for all n ≥ 1,

P
(
max{|an|,Err1,n} > b3(η)n

− 1
2

)
< e−η.

Note that

Err2,n = sup
f∈Hn

sup
x∈X

∣∣∣H (x, β̂, f(x))−H
(
x, β0, f(x)

)∣∣∣ ≤ 2
{
m(c2,nλ)

−1 + 1
}
.
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Therefore, with probability not less than 1− e−η,

Cn +Dn ≤ b3(η)n
− 1

2

[
4
{
m(c2,nλ)

−1 + 1
}
+

2
{
m(c2,nλ)

−1 + 1
}

c · cn,L

]
.

Combining this bound with (C.11), for every fixed λ > 0, n ≥ 1, ε > 0, and
η > 0, with probability not less than 1− 2e−η,

AŴ ,Ĥ(λ)

≤A2(λ) +
3
{
m(c2,nλ)

−1 + 1
}

c

[
2(c2,nλ)

1
2 ε

+

√√√√2η + 2 log
{
2N (BH, ‖ · ‖∞, (c2,nλ)

1
2 ε)
}

n
+

4cb3(η)n
− 1

2

3
+

b3(η)n
− 1

2

cn,L

]
.

Together with Condition 4.1 and letting

ε = (c2,nλ)
− 1

2

(p
2

) 1
p+1

(
2a

n

) 1
2p+2

,

with probability not less than 1− 2eη,

AŴ ,Ĥ(λ)

≤
3
{
m(c2,nλ)

−1 + 1
}

c

[
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b3(η)n

− 1
2

cn,L
+

4cb3(η)n
− 1

2

3

]
+A2(λ). (C.18)

Since 1
c2,n

= O(nd), using the similar argument as in the proof of Theorem 4.1,

when λnn
min( 1

2p+2 ,
1
2−d)−d −→ ∞, the P-universal consistency holds.

Case 2:
∣∣∣β̂ − β0

∣∣∣ = Op

(
n− 1

2

)
, whereas π̂(X)

P−→ π∗(X) which is not neces-

sarily equal to π0(X).

RL
Ŵ ,Ĥ

,D(f) = Pn

[
RL(Y, f(X))

π̂(X)
− R− π̂(X)

π̂(X)
H
(
X,β0, f(X)

)]
− Pn

[
R− π̂(X)

π̂(X)

{
H
(
X, β̂, f(X)

)
−H

(
X,β0, f(X)

)}]
Then, ∣∣∣RL

Ŵ ,Ĥ
,D(f)−RLW0,H0 ,D(f)

∣∣∣
=

∣∣∣∣∣Pn

[
RL(Y, f(X))−RH

(
X,β0, f(X)

)
π̂(X)π0(X)

{
π0(X)− π̂(X)

}]
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− Pn

[
R− π̂(X)

π̂(X)

{
H
(
X, β̂, f(X)

)
−H

(
X,β0, f(X)

)}] ∣∣∣∣∣
≤ Err1,n
2c · cn,L

∣∣Pn

{
L(Y, f(X))−H

(
X,β0, f(X)

)}∣∣+ 1 + cn,U
cn,L

Err2,n

≤hn
Err1,n
2c · cn,L

+
1 + cn,U
cn,L

Err2,n.

Note that Err1,n ≤ 2. By Lemma 4.1, hn = Op

(
n−( 1

2−d)λ− 1
2

)
, and thus there

exists a constant b4(η) such that for all n ≥ 1,

P
{
|hn| > b4(η)n

−( 1
2− d

2 )λ− 1
2

}
< e−η.

By Lemma 4.2, Err2,n = Op

(
n−( 1

2−d)λ−1
)

P
{
Err2,n ≥ b2(η)n

−( 1
2−d)λ−1

}
< e−η.

For a fixed η > 0, with probability not less than 1− 2e−η,

Cn +Dn ≤ 2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−1 +

1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ− 1
2 .

Combining this bound with (C.11), using Condition 4.1, and letting

ε = (c2,nλ)
− 1

2

(p
2

) 1
p+1

(
2a

n

) 1
2p+2

,

for every fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less than
1− 3e−η,

AŴ ,Ĥ(λ)−A2(λ)

≤
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}
+

2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−1

+
1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ− 1
2 . (C.19)

Note that
1+cn,U

cn,L
= O

(
nd
)
, and that 1 − 2d > 1

2 − d. Hence, using the similar

argument as in the proof of Theorem 4.1, when λnn
min( 1

2p+2 ,
1
2−d)−d −→ ∞, the

P-universal consistency holds.

Remark C.2. Let L be the quadratic loss. Consider estimating the conditional
expectation μ0(X). If

∣∣μ̂(X)− μ0(X)
∣∣ = Op(n

−1/2), by Remark C.1, Err2,n =

Op

(
n− 1

2+
d
2 λ− 1

2

)
. Then, the RHS of (C.19) becomes

3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}
+

2(1 + cn,U )

cn,L
b2(η)n

−( 1
2− d

2 )λ− 1
2
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+
1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ− 1
2 .

Hence, when

λnn
min( 1

2p+2 ,
1
2− d

2 )−d −→ ∞,

the doubly-robust kernel machine in (3.8) is P-universally consistent.

C.10. Proof of Corollary 4.2

Proof. Case 1:
∣∣π̂(X)− π0(X)

∣∣ = Op

(
n− 1

2

)
. By (C.18) and Assumption 4.2,

for every fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less 1−2e−η

AŴ ,Ĥ(λ)

≤
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b3(η)n

− 1
2

cn,L
+

4cb3(η)n
− 1

2

3

}
+ bλγ .

Let

G2(λ)

=
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b3(η)n

− 1
2

cn,L
+

4c

3
b3(η)n

− 1
2

}
+ bλγ .

Taking the derivative with respect to λ and setting it equal to 0,

bγλγ−1=
3m(c2,n)

−1

c
λ−2

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b3(η)n

− 1
2

cn,L
+
4c

3
b1(η)n

− 1
2

}
.

Note that 1
c2,n

= O
(
nd
)
. Thus,

λγ+1 ∝
(
1

n

)min( 1
2p+2 ,

1
2−d)−d

⇒ λ ∝ n{−min( 1
2p+2 ,

1
2−d)+d} 1

γ+1 .

Note that by choosing large m, we have G′′
2

(
n{−min( 1

2p+2 ,
1
2−d)+d} 1

γ+1

)
> 0.

Then for λn = n{−min( 1
2p+2 ,

1
2−d)+d} 1

γ+1 ,

G2(λn)

=bn{−min( 1
2p+2 ,

1
2−d)+d} γ

γ+1
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+

{
3m(c2,n)

−1

c
n{−min( 1

2p+2 ,
1
2−d)+d} −1

γ+1 +
1

c

}
×
{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

+
b3(η)n

− 1
2

cn,L
+

4c

3
b3(η)n

− 1
2

}
≤bn{−min( 1

2p+2 ,
1
2−d)+d} γ

γ+1

+ c∗P (c∗a +
√
η + 2b3(η))n

{−min( 1
2p+2 ,

1
2−d)+d} −1

γ+1−min( 1
2p+2 ,

1
2−d)+d

≤Q∗ {c∗a,b +√
η + 2b3(η)

}
n{−min( 1

2p+2 ,
1
2−d)+d} γ

γ+1 ,

where c∗a is a constant related to a, c∗a,b is a constant related to a, b, and c, c∗P
and Q∗ are constants related to P. None of them is related to η.

Therefore, for fixed λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less
than 1− 3eη,

AŴ ,Ĥ(λ) ≤ G2(λn) ≤ Q∗ {c∗a,b +√
η + b1(η) + b3(η)

}
n{−min( 1

2p+2 ,
1
2−d)+d} γ

γ+1 .

The obtained learning rate is n{−min( 1
2p+2 ,

1
2−d)+d} γ

γ+1 .

Case 2:
∣∣∣β̂ − β0

∣∣∣ = Op

(
n− 1

2

)
. By (C.19) and Assumption 4.2, for every fixed

λ > 0, n ≥ 1, ε > 0, and η > 0, with probability not less than 1− 3e−η,

AŴ ,Ĥ(λ) ≤ bλγ +
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}

+
2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−1 +

1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ− 1
2 .

Choosing 0 < λ < 1, we have

AŴ ,Ĥ(λ) ≤ bλγ +
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}

+
2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−1 +

1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ−1.

Let

G3(λ) = bλγ +
3
{
m(c2,nλ)

−1 + 1
}

c

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}

+
2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−1 +

1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ−1.

Taking the derivative with respect to λ and setting it equal to 0,

bγλγ−1 =
3m(c2,n)

−1

c
λ−2

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}



3818 T. Liu and Y. Goldberg

+
2(1 + cn,U )

cn,L
b2(η)n

−( 1
2−d)λ−2 +

1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ−2.

Then

λγ+1 ∝
(
1

n

)min( 1
2p+1 ,

1
2−d)−d

⇒ λ ∝ n{−min( 1
2p+1 ,

1
2−d)+d} 1

γ+1 .

Note that by choosing large m, we have G′′
3

(
n{−min( 1

2p+1 ,
1
2−d)+d} 1

γ+1

)
> 0.

Then for λn = n{−min( 1
2p+1 ,

1
2−d)+d} 1

γ+1 ,

G3(λn)

=bn{−min( 1
2p+1 ,

1
2−d)+d} γ

γ+1

+

{
3m(c2,n)

−1

c
n{−min( 1

2p+1 ,
1
2−d)+d} −1

γ+1 +
1

c

}{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}

+
1 + cn,U
cn,L

b2(η)n
−( 1

2−d)n{−min( 1
2p+1 ,

1
2−d)+d} −1

γ+1

+
2

c · cn,L
b4(η)n

−( 1
2− d

2 )n{−min( 1
2p+1 ,

1
2−d)+d} −1

γ+1

≤bn{−min( 1
2p+1 ,

1
2−d)+d} γ

γ+1

+ c	P (c	a +
√
η + b2(η) + b4(η))n

{−min( 1
2p+1 ,

1
2−d)+d} −1

γ+1−min( 1
2p+1 ,

1
2−d)+d

≤Q	
(
c	a,b +

√
η + b2(η) + b4(η)

)
n{−min( 1

2p+1 ,
1
2−d)+d} γ

γ+1 ,

where c	a is a constant related to a, c	a,b is a constant related to a, b, and c, c	P
and Q	 are constants related to P. None of them is related to η.

Therefore, for fixed 0 < λ < 1, n ≥ 1, ε > 0, and η > 0, with probability not
less than 1− 3eη,

AŴ ,Ĥ(λ) ≤ G3(λn) ≤ Q	
(
c	a,b +

√
η + b2(η) + b4(η)

)
n{−min( 1

2p+1 ,
1
2−d)+d} γ

γ+1 .

The obtained learning rate is n{−min( 1
2p+1 ,

1
2−d)+d} γ

γ+1 .

Remark C.3. When L is the quadratic loss and
∣∣μ̂(X)− μ0(X)

∣∣ = Op(n
−1/2).

By Remark C.2, we have

bγλγ−1 =
3m(c2,n)

−1

c
λ−2

{
3

(
2a

n

) 1
2p+2

+

(
2η

n

) 1
2

}

+
2(1 + cn,U )

cn,L
b2(η)n

−( 1
2− d

2 )λ−2 +
1

c · cn,L
b4(η)n

−( 1
2− d

2 )λ−2.

and
λ ∝ n{−min( 1

2p+1 ,
1
2− d

2 )+d} 1
γ+1 .

By the similar argument as in case 2 of the proof, the learning rate is

n{−min( 1
2p+1 ,

1
2− d

2 )+d} γ
γ+1 .
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Supplementary material

Supplement: R code
(https://tinyurl.com/KM4ICDcode). R package KM4ICD for the weighted-com-
plete-case kernel machine estimator and the doubly-robust kernel machine esti-
mator, and R code for Section 5 and Section 6.
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Q. H. Wang, O. Linton, and W. Härdle. Semiparametric regression analysis with
missing response at random. Journal of the American Statistical Association,
99:334–345, 2004. MR2062820

A. L. Yuille and A. Rangarajan. The concave convex procedure. Neural Com-
putation, 15:915–936, 2003.

http://www.ams.org/mathscinet-getitem?mr=2414585
http://www.ams.org/mathscinet-getitem?mr=1294730
http://www.ams.org/mathscinet-getitem?mr=1666631
http://www.ams.org/mathscinet-getitem?mr=2117498
http://www.ams.org/mathscinet-getitem?mr=1731478
http://www.ams.org/mathscinet-getitem?mr=3797709
http://www.ams.org/mathscinet-getitem?mr=2796580
http://www.ams.org/mathscinet-getitem?mr=3826095
http://www.ams.org/mathscinet-getitem?mr=2672490
http://www.ams.org/mathscinet-getitem?mr=2233926
http://www.ams.org/mathscinet-getitem?mr=3420681
http://www.ams.org/mathscinet-getitem?mr=2752609
http://www.ams.org/mathscinet-getitem?mr=1922545
http://www.ams.org/mathscinet-getitem?mr=2062820

	Introduction
	Preliminaries
	Kernel machines with missing responses
	Weighted-complete-case kernel machines
	Doubly-robust kernel machines
	Estimation of the augmentation term
	Regression
	Classification

	Least-squares kernel machines with missing responses

	Theoretical results
	Assumptions and conditions
	Theoretical results of the weighted-complete-case kernel machines
	Theoretical results of the doubly-robust kernel machines

	Simulation
	Setup
	Results

	Application to Los Angeles homeless population data
	Conclusion and discussion
	Computation details in Subsection 3.4
	Weighted-complete-case kernel machines
	Doubly-robust kernel machines

	Tables of simulations
	Proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Oracle inequality for the weighted-complete-case kernel machines
	Proof of Theorem 4.1
	Proof of Corollary 4.1
	Oracle inequality for the doubly-robust kernel machines
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Theorem 4.2
	Proof of Corollary 4.2

	Acknowledgements
	Supplementary material
	References

