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Abstract: Statistical analysis of network is an active research area and
the literature counts a lot of papers concerned with network models and
statistical analysis of networks. However, very few papers deal with missing
data in network analysis and we reckon that, in practice, networks are of-
ten observed with missing values. In this paper we focus on the Stochastic
Block Model with valued edges and consider a MCAR setting by assuming
that every dyad (pair of nodes) is sampled identically and independently
of the others with probability p > 0. We prove that maximum likelihood
estimators and its variational approximations are consistent and asymp-
totically normal in the presence of missing data as soon as the sampling
probability p satisfies p > log(n)/n.
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1. Introduction

For the last decade, statistical network analyses has been a very active research
topic and the statistical modeling of networks has found many applications in
social sciences and biology for example Aicher et al. (2014), Barbillon et al.
(2015), Mariadassou et al. (2010), Wasserman and Faust (1994) and Zachary
(1977).

Many random graphs models have been widely studied, either from a theo-
retical or an empirical point of view. The first model studied was Erd6s-Rényi
model (Erdés and Renyi, 1959) which assumes that each pair of nodes (dyad)
is connected independently to the others with the same probability. This model
assumes homogeneity of all nodes across the network. In order to alleviate this
constraint, many families of models have been introduced. Most are endowed
with a latent structure (reviewed in Matias and Robin, 2014) to capture het-
erogeneity across nodes. Among those, the Stochastic Block Model (in short
SBM, see Frank and Harary, 1982; Holland et al., 1983) is one of the oldest and
most studied as it is highly flexible and can capture a large variety of structures
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(affiliation, hub, bipartite and many other). In order to estimate this model,
Bayesian approaches were first proposed (Snijders and Nowicki, 1997; Nowicki
and Snijders, 2001) but have been superseded by variational methods (Daudin
et al., 2008; Latouche et al., 2012). The former class of approaches are exact
but lack the computational efficiency and scalability that the latter offers.

Theoretical guarantees concerning maximum likelihood estimators (in short
MLE) and variational estimators (in short VE), based on variational approx-
imations of the likelihood, for the binary SBM estimation are quite difficult
to obtain. In Celisse et al. (2012), consistency of MLE and VE is proven but
asymptotic normality requires that the estimators converges at rate at least
n~!, which is not proven in the paper, although some results were available
for some particular cases (affiliation for example). Ambroise and Matias (2012)
tackles the specific case of affiliation model with equal group proportion and
proves the consistency and asymptotic normality of parameter estimates. Bickel
et al. (2013) extends those results to arbitrary binary SBM graphs and improves
Celisse et al. (2012) by removing the condition on the convergence rate, as it
is automatically satisfied by the MLE. Following along the path of Bickel et al.
(2013), Brault et al. (2020) proved consistency and asymptotic normality of es-
timators (MLE and VE) to weighted Latent Block Models where the weights
distribution belongs to a one-dimensional exponential families. In particular,
considering unbounded edge values invalidates several parts of the proofs for
binary graphs and requires substantial adaptations and additional results, no-
tably concentration inequalities for sums of unbounded, non-gaussian random
variables.

Some results are also available for the related semi-parametric problem of
assignment reconstruction. Mariadassou and Matias (2015) show that the con-
ditional distribution of the (latent) assignments converge to a degenerate distri-
bution and Rohe et al. (2010) prove that, when the data are generated according
to a SBM model, spectral methods are consistent. Choi et al. (2012) extend those
results to settings where the density of the graph goes to 0 as Q(log®(n)/n) (for
a large enough) and/or the number of groups goes to +oco as y/n. Chatterjee
(2015) proves also strong results for reconstruction of large matrices with noisy
entries estimation and partial observation of the dyads, by means of a universal
singular value thresholding (USVT). In the special case of binary SBM with &
groups, he achieves a reconstruction error rate of order \/k/n as soon as the
fraction of observed dyads is at least Q(log®(n)/n) for (for « large enough).
Since USVT replaces missing dyads with Os, it naturally achieves the same lim-
iting rate as the sparse setting. Finally, Wang and Bickel (2017) and Hu et al.
(2017) also show that model selection for the number k of groups is consistent
for dense gral?hs, )they suggest using a penalized likelihood criteria with penalty

E(k+1

of the form === log(n) + Anlog(k) where A is a tuning parameter.

In this paper we consider a simple setting with fixed number of groups and
fixed density but weighted edges and missing values. In most network studies,
there is a strong asymmetry between the presence of an edge and its absence:
the lack of proof that an edge exists is taken as proof that the edge does not exist
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and edges with uncertain status are considered as non existent in the graph. This
is the strategy adopted in most sparse asymptotic settings where the density of
edges goes to 0 asymptotically (Bickel et al., 2013). We adopt a different point
of view where edges with uncertain status are considered as missing, rather than
absent and explicitly accounted for their missing nature. We use the framework
of Rubin (1976) and its application to network data, see Kolaczyk (2009) and
Handcock and Gile (2010), for parameter inference in presence of missing values
and more specifically its applications to SBM (Tabouy et al., 2019). We prove
that, in the MCAR setting where each dyad is missing independently and with
the same probability, the MLE and variational estimates are still consistent and
asymptotically normal.

The article is organized as follows. We first present the model and missing
data theory applied to our context with some examples of sampling designs. We
then posit some definitions and discuss the assumptions required for our results
in Section 2. In Section 3 we establish asymptotic normality for the complete-
observed model (7.e. observed SBM where latent variables are known). Section 4
is the main result of this paper and states that the observed-likelihood behaves
like the complete-observed likelihood (7.e. joint likelihood of the observed data
and latent variables) close to its maximum. Consequences for the MLE and
variational estimator are in discussed in Section 5. The proof is sketched in
Section 6. Comparison to existing results are made and discussed in Section 7.
Technical lemmas and details of the proofs are available in the appendices.

2. Statistical framework

Notation Definition
N={1,...,n} Node set

i, ] Node index
0={1,...,Q} Block set

q,1 Block index
D=NxN Dyad set

Yi; and 7y Dyad value and observation status
z; and 2F Test and true block membership
a and a* Test and true block proportions
7 and 7 Test and true parameters of dyad value distribution
® Parameter space

2.1. Stochastic Block Model

In SBM, nodes from a set N' = {1,...,n} are distributed among a set Q =
{1,...,Q} of hidden blocks that model the latent structure of the graph. The
block-memberships are encoded by (z;,4 € N') where the z; are independant
random variables with prior probabilities @ = (a1, ..., aq), such that P(z; =
q) = ay, for all ¢ € Q. The value y;; of any dyad (4,5) in D = N x N, with
i # j, only depends on the blocks ¢ and j belong to. The variables (y;;)s are
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thus independent conditionally on the (z;)s:
yij ‘ ziZQ7Zj :gNind (p('777q€)> V(Z7J) €D7 Z#Ja V(q,g) € QX Q

In the following, y = (yi;)i jep is the n x n adjacency matrix of the random
graph, z = (z1,..., z,) the n-vector of the latent blocks. With a slight abuse of
notation, we associate to z; a binary vector (z;1,...,2ig) such that z; = ¢ &
zig = 1,25 = 0, for all £ # q. In this case z is a n x ) matrix.

We note the complete parameter set as @ = (a,w) € © where © stands
for the parameter space. When performing inference from data, we note 8* =
(a*, ) the true parameter set, i.e. the parameter values used to generate the
data, and z* the true (and usually unobserved) memberships of nodes. For any
z, we also note:

® 2., =),z the size of the ¢'" community (or block) for membership z
e 27, its counterpart for z*.

2.2. Missing data for SBM

Regarding SBM inference, a missing value corresponds to a missing entry in the
adjacency matrix y, typically denoted by NA’s. We rely on the n x n sampling
matrix r to record the missing state of each entry:

. (2.1)
0 otherwise.

(riy) = {1 if y;; is observed,
As a shortcut, we use y° = {y;; : 755 = 1} and y™ = {y;; : ri; = 0} to re-
spectively denote the observed and missing dyads. The sampling design is the
description of the stochastic process that generates r. It is assumed that the
network exists before the sampling design acts upon it, which is fully character-
ized by the conditional distribution py(r|y), the parameters of which are such
that ¢ and @ live in a product space © x . In this paper we are going to focus
on a specific type of missingness, called missing completely at random (MCAR)
for which py(r|y) = py(r) and leave aside more complex forms of dependencies
such as Missing at random (MAR) and Not missing at random (NMAR).
We then follow the framework of Rubin (1976) and Tabouy et al. (2019) for
missing data and define the joint probability density function as

Po.y(¥°,2,1) = /pa(yclym,Z)pw(rly°7ym7Z)dym~ (2.2)

Property 2.1. According to Equation (2.2), if the sampling design is MCAR,
then mazimising pe,(y°,2,1) or pe,(y°,r) in 0 is equivalent to mazimising
po(y°) in 0, this corresponds to the ignorability notion defined in Rubin (1976).
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2.3. Sampling design examples

We present here some examples of sampling designs to illustrate differences
between notions of MCAR, MAR and NMAR.

Definition 2.2 (Random dyad sampling). Fach dyad (i,j) € D has the same
probability P(r;; = 1) = p of being observed, independently of the others. This
design is MCAR.

Definition 2.3 (Random node sampling). The random node sampling consists
in selecting independently with probability p a set of nodes and then observing
the corresponding rows and columns of matrizy.

The major point in both examples is that the probability (p in random dyad
sampling and 1 — (1 — p)? in the random node sampling) of observing a dyad
does not depend on its value.

In contrast, the following dyad-centered sampling design adapted to binary
networks is NMAR since the probability to observe a dyad depends on its value:

Definition 2.4 (Double standard sampling). Fach dyad (i,j) € D is observed,
independently of other dyads, with a probability depending on its value: P(r;; =

For non-binary networks, specifying the sampling design is more involved
and requires defining the sampling density for every possible value of y;;, e.g.
(P(ri; = 1|yi; = k))ren for Poisson-valued edges.

Remark 2.5. In this paper, we focused on data sampled according to random
dyad sampling, which is the simplest case but already yields valuable insights
into the differences between the partially and fully sampled settings.

As observed above, there are however many other ways to sample a network.
In the case of node-centered sampling design, like random node sampling, the
main difficulty to prove consistency and asymptotic normality is the dependency
between the r;; variables. Indeed, in random node sampling, the variable r;,
depends on all r;;, and 7;,; (for all 4,5 € N'). As a consequence, a different
inference strategy is required and many results proved in this paper are not
valid under random node sampling. NMAR sampling designs raises problem of
their own: each design requires its own estimation procedure (Tabouy et al.,
2019) and therefore its own analysis. For example, parameter estimation under
the seemingly simple double standard sampling for binary networks is still an
open problem: numerical experiments suggest that 8 = («, ) and ¥ = (po, p1)
are jointly identifiable but there is no formal proof.

2.4. Observed-likelihoods
When the labels are known, the complete-observed log-likelihood is given by:

Leo(2;0) = logp(y°,z;0) = Zziq log ovg + Z Zigzjerij log o(Yij; mee) (2.3)

4,9 1,3,q,¢
i#]
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But the labels are usually unobserved, and the observed log-likelihood is obtained
by integration over all memberships:

L,(0) =logp(y®;0) = log (Z p(yo,Z;9)> - (2.4)

zEZ

2.5. Models and assumptions

We focus here on parametric models where ¢ belongs to a regular one-dimension
exponential family in canonical form:

oy, m) = bly) exp(my — (7)), (2.5)

where 7 belongs to the space A, so that (-, 7) is well defined for all 7 € A.
Classical properties of exponential families ensure that v is convex, infinitely
differentiable on A, that ()~! is well defined on 1(A). Furthemore, when
Y ~ (), Elyr] = ¢'(7) and Vy] = ¢"(m).

In the following, we recall assuming that missing data are produced according
to a random dyad sampling with parameter p > 0.

Moreover, we make the following assumptions on the parameter space (and
the asymptotics of p):

Ap: p goes to 0 but satisfies p > log(n)/n
Aq: There exists a positive constant ¢ and a compact interval C, such that

©Cle,1—d2xC2%? with C, C A.

Ay: The true parameter 8% = (a*,7*) lies in the interior of ©.

As: The map 7 +— ¢(-, ) is injective.

Ay: The coordinates of m*’(a*), where ¢’ is applied component-wise, are
pairwise distinct.

The previous assumptions are standard. Assumption Ay ensures that the
fraction of observed dyad is not too small. Assumption A; ensures that the group
proportions are bounded away from 0 and 1 so that no group disappears when
n goes to infinity. It also ensures that 7 is bounded away from the boundaries
of the A. This is essential for the subexponential properties of Propositions 2.9
and 2.10. A, is in line with standard assumptions in parametric statistics. Ag is
necessary for identifiability purposes: the model is trivially not identifiable if the
map 7 — ¢(.,7) is not injective. A4 ensures identifiability of SBM parameters
under random dyad sampling. Note that, combined with As, it implies that all
columns and all rows of a* are distincts and therefore that no two groups have
the connectivity profile. In the following, we consider the number of blocks @)
to be known.
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2.6. Identifiability

Since r is independant on y, the identifiability of SBM with emission law in the
one-dimension exponential family under random dyad sampling can be stated
in two steps. First the sampling parameter p and secondly the SBM parameters
0" = (a*, 7*) given p.

Proposition 2.6. The sampling parameter p > 0 of random dyad sampling is
identifiable w.r.t. the sampling distribution.

Proof. See Tabouy et al. (2019). The proof does not depend on y being binary
but also holds for y distributed as in Eq. (2.5). O

Proposition 2.7. Letn > 2Q and assume that for any 1 <q<Q, p >0, 7 >
0 and that the coordinates of a*y)'(w*), where v’ is applied component-wise,
are patrwise distinct. Then, under random dyad sampling, SBM parameters are
identifiable w.r.t. the distribution of the observed part of the SBM up to label
switching.

Proof. The proof is nearly identical to the one written in Tabouy et al. (2019)
and inspired by Celisse et al. (2012) for the binary SBM under random dyad
sampling. However, substituting E[y;;|z; = ¢] to s, in the proof ensures that a*
is identifiable. Finally, the fact that (1)')~! is a one-to-one map ensures that 7*
is identifiable. O

Note that asymptotically, the assumption n > 2Q) is always satisfied since @
is fixed and n grows to infinity.

2.7. Subexponential variables

Remark 2.8. Since we restricted m in a bounded subset of /i, the variance of y,
is bounded away from 0 and 4+oc0. We note

0% = sup V(y) < +oo and o= inf V(y;) > 0. (2.6)

T€Cr weChr

Similarly, since 7 belongs to a bounded subset of a open interval, there exists a
constant x > 0, such that [1 — k, 7 + k] C A uniformly over all 7 € Cy

Proposition 2.9. With the previous notations, if 1 € Cr and y. ~ ¢(.,m),
then y, is subezponential with parameters (o2, k7 1).

Proposition 2.10. Considering x = y.7i; + AM(1 — ri;) (we recall that rij ~
B(p)), with r;; independant of yr and X € R bounded. There are non-negative
numbers v and b such that x is subezponential with parameters (v?,b71).

Proof. These results derive directly from theorem C.1 (statement 2.). O
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2.8. Symmetry

We now introduce the concepts of assignments and parameter symmetries, that
must be accounted for when studying the asymptotic properties of the MLE.
Complications stemming from symmetries are related to but no equivalent to
the problem of label-switching in mixture models.

Definition 2.11 (Permutation). Let s be a permutation on {1,...,Q}. If A is
a matriz with Q columns and n rows, we define A° as the matriz obtained by
permuting the columns of A according to s, i.e. for any row i and column q of
A, A5 = Aiyq)- If C is a matriz with Q rows and Q columns, C° is defined
stmilarly:

A" = (Ais),, C" = (Cotsv) 4

Definition 2.12 (Equivalence). We define the following equivalence relation-
ships:

e Two assignments z and z' are equivalent, noted ~, if they are equal up to
label permutation, i.e. there exists a permutation s such that z' = z°.

e Two parameters 0 and 8’ are equivalent, noted ~, if they are equal up to
label permutation, i.e. there exists a permutation s such that (a®,7%) =
(o, 7).

e (0,2) and (0',2') are equivalent, noted ~, if they are equal up to la-
bel permutation on ™ and z, i.e. there exists a permutation s such that
(m%,2°) = (w',2'). This is label-switching.

Definition 2.13 (Symmetry). We say that the parameter 0 exhibits symmetry
for the permutation s if

(o, 7°) = (a, 7).

0 exhibits symmetry if it exhibits symmetry for any non trivial permutations s.
Finally the set of permutations for which 6 exhibits symmetry is noted Sym(8).

Remark 2.14. The set of parameters that exhibit symmetry is a manifold of
null Lebesgue measure in ®. The notion of symmetry allows us to deal with a
notion of non-identifiability of the class labels that is subtler than and different
from label switching. More precisely

Label switching is when : p(y°,z,0) = p(y°,z°,0%), 0 #6° Vs
Symmetry is when : p(y°,z,0) = p(y°,z°,0), Vs € Sym(6)

In particular, in label-switching, z and z® have the same likelihood but under
equivalent yet different parameters 0s. In contrast, in the presence of symmetry,
z and z* have exactly the same likelihood under 6. This implies in particular
that the posterior p(z|y°,0) can not concentrate on a single assignment. This
is instrumental for Proposition 6.11.
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Remark 2.15. In this example we illustrate what Sym(6) and its cardinal can
be in a simple case. Consider a network with n nodes,

0 07 02
a=(1/6,1/6,2/3), and 7= | 0.7 0 0.2
02 02 0.2

As a consequences the two following assignments

21 - (17"'71727"'72737"'73)
——— —— ——

ny no ns
22 = (27"'72717"'7173a'“73)
——— ——— ———

no ni ns

belong to Sym(0) = {Id,[1,2]}. Indeed they are the only assignments belongings
to Sym(#), so, in this particular case #Sym(6) = 2.

The issue of symmetry forces us to use a notion of distance between assign-
ment that is invariant to label permutation.

Definition 2.16 (Distance). We define the following distance, up to equiva-
lence, between configurations z and z*:

2= 2o = inf 12’ — 2o
z/ ~z
where, for all matriz z, we use the Hamming norm ||-||, defined by
1
lzllo = 5 > 1{ziq # 0}
i,q
Definition 2.17 (Set of local assignments). We note S(z*,1) the set of config-

urations that have a representative (for ~) within relative radius r of z*:

S(z*,r)={z: ||z — z"]o,~ < rn}

2.9. Other definitions

We finally introduce a few useful notions that will be instrumental in the proofs.
The first is “regular” assignments, for which each group has “enough” nodes:

Definition 2.18 (c-regular assignments). Let z € Z. For any ¢ > 0, we say
that z is c-regular if
min z;, > cn. (2.7)
q

Class distinctness §(7r) captures the differences between groups: lower values
of 0(7r) means that at least two classes hare very similar connectivity profiles.
0(7r) is intrisically linked to the convergence rate of several estimates.
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Definition 2.19 (Class distinctness). For 8 = (a, ) € ©. We define:

5(71-) = min m?X KL(?Tqéa 7Tq’€>
q,9’

with KL(m,7') = Ex[log(p(Y,7)/@(Y,7")] = ' (m)(m — 7') + (n") — () the
Kullback divergence between o(.,7) and ¢(.,7’), when ¢ comes from an expo-
nential family.

Remark 2.20. Since all 7 have distinct rows and columns, §(m) > 0.

Finally, the confusion matrix allows to compare groups between assignments:

Definition 2.21 (Confusion matrix). For given assignments z and z*, we define
the confusion matrix between z and z*, noted IR(z), as follows:

1 *
R(2)qq = n Z ZiqZiq’ (2.8)

Definition 2.22. For more conciseness, we define

S* = (Sq)ae = (V'(750)) (2.9)

3. Complete-observed model

Hereafter and in the rest of the text, we use the term ”complete” to say that
true assignments z* are known, and ”observed” to say that only some dyads are
observed.

Proposition 3.1. Under random dyad sampling, defining N; = Y .ri; and
Qo =N7_o{N; > 1} the set of nodes with at least one dyad observed. Then

n—-+oo

Proof. This proposition is a direct consequence of Borel-Cantelli’s theorem. De-
tails are available in appendix A. O

Remark 3.2. This result shows that, with high probability, the network has no
unobserved node. In the remainder, we work conditionnally on € ,,.

Let 6, = (&, @) be the MLE of 6 in the complete-observed data model.
Simple manipulations of Equation (2.3) yield:

A ~ Z+q
Qg = Qgl\Z) = —
¢ = 0q(2) = — -
Doigg YiiTij%ia%ie N 3.1
i; P—— Tae = Tqe(2) = (V)" (Ue(2))
LE= B Rak T hadV )

Yge(z) =
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Proposition 3.3. Let ¥+ = Diag(a*) —a* (a*)T. Then Xq- is semi-definite
positive, of rank Q — 1, and & is asymptotically normal:

V(& (z*) — o) ;9;» N(0,Zq-) (3.2)

Similarly, let V(m*) be the matriz defined by [V (7*)]ge = 1/9" (7},) and Xp- =
p~! Diag™!(a*)V(7*) Diag ™' (a*). Then the estimates #,(2z*) are independent
and asymptotically Gaussian with limit distribution:

n(n — 1) (Rge (2%) — ) f;? N(0,Sps g0) forallg,t  (3.3)

Proof. The proof is postponed to appendix A. The first part is a direct applica-
tion of central limit theorem for i.i.d. variables and the second part relies on a
variant of the central limit theorem for random sums of random variables. [

Remark 3.4. The main differences with Bickel et al. (2013) are (i) the scaling
of Yo+ as p~! and (ii) the need for a central limit theorem for random sums of
random variables, as the sums involved in (3.1) are over a random number of
terms.

Proposition 3.5 (Local asymptotic normality). Let L%, be the complete likeli-
hood function defined on © by LY, (a, ) =logp (y°,z*;0). For any s and u in
a compact set, we have:

S u
Lola+ —= 7"+ ——e x| = L£5,(0)+5 Yo + Tr{u" Yy
< vn n(n — 1)) (6% ( )

1 1
A
+ Op(l)

where ® denote the Hadamard product of two matrices (element-wise product)
and Yo+ and g+ are defined in Proposition 3.3. Y o« is asymptotically Gaus-
stan with zero mean and variance matric Yo+. Y o+ 1S a random matriz with in-
dependent entries that are asymptotically gaussian zero mean and variance Y« .

Proof. This result is based on a Taylor expansion of £}, in a neighborhood of
(a*,7*). Details are available in appendix A. O

4. Main result

Our main result compares the observed likelihood ratio p(y©°; 0)/p(y°; 0) with
the complete likelihood p(y°,z*;@")/p(y°,z*;0*) to show that they have the
same argmax. To ease the comparison, we work only on the high probablity
set 1 of ¢/2-regular configurations, 7.e. that have (n) nodes in each group as
defined in Section 2,
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Proposition 4.1. Define Z; as the subset of Z made of ¢/2-reqular assign-
ments, with ¢ defined in assumption Hy. Note Qq the event {z* € Z1}, then:

B 2
Py~ (Ql) < Qexp (—%) .

Proof. This proposition is a consequence of Hoeffding’s inequality. See appen-
dix A for more details. O

We can now state our main result:

Theorem 4.2 (Complete-observed). Assume that Ay to Ay with random-dyad
sampling hold for the Stochastic Block Model of known order with n X n obser-
vations coming from an univariate exponential family and define # Sym(0) as
the set of permutation s for which @ = (a, ) exhibits symmetry. Then, for n
tending to infinity and p > log(n)/n, the observed likelihood ratio behaves like
the complete likelihood ratio, up to a bounded multiplicative factor:

p(y*0) _ #Sym(®)  p(y°z0)
p(y°;0%)  #Sym(0”) o'~6 p(y°,z*;0")

(I+o0p(1))+o0p(1)

where the op is uniform over all 6 € ©.

The maximum over all 8’ that are equivalent to @ stems from the fact that
because of label-switching, 6 is only identifiable up to its ~-equivalence class
from the observed likelihood, whereas it is completely identifiable from the com-
plete likelihood. The multiplicative factor arises from the fact that equivalent
assignments have exactly the same complete likelihood and contribute equally
to the observed likelihood.

Remark 4.3. This result is very similar to the one of Brault et al. (2020) and
corrects an error in the main result of Bickel et al. (2013): the missing terms

# Sym(0) and # Sym(0).
Corollary 4.4. If © contains only parameters with no symmetry:
p(y°; 0) p(y°,z*;6)

~ =max ———— = (1 +op(1)) +op(1
p(y°;07) 9'~0p(y°,Z*;0)( p(1) +op(l)

where the op is uniform over all ©.

5. Variational and Maximum Likelihood Estimates

This section is devoted to the asymptotic of the MLE and the VE in the incom-
plete data model as a consequence of the main result 4.2. Note that, with high
probability, both estimators have no symmetry since the set {0 : # Sym(0) > 1}
is a manifold of null Lebesque’s measure in @ and thus pg- (# Sym(8) > 1) — 0.
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5.1. ML estimator

The asymptotic behavior of the maximum likelihood estimator in the incomplete
data model is a direct consequence of Theorem 4.2 and Proposition 3.5.

Corollary 5.1 (Asymptotic behavior of Oy1,g). Denote Oy g the mazimum
likelihood estimator and use the notations of Proposition 3.3. There exist per-
mutations s of {1,...,Q} such that

&(z") —ajp = op (”71/2) 5
7 (2") —wye = op(n7').
Hence, the maximum likelihood estimator for the SBM under random-dyad
sampling condition is consistent and asymptotically normal, with the same be-

havior as the maximum likelihood estimator in the complete data model. The
proof is postponed to appendix B.10.

5.2. Variational estimator

Due to the complex dependency structure of the observations, the maximum
likelihood estimator of the SBM is not numerically tractable, even with the
FEzxpectation Maximisation algorithm. In practice, a variational approximation
is often used (see Daudin et al., 2008): for any joint distribution Q € Q on Z a
lower bound of £(8) is given by

J(Q70> = E(G) _KL(Q7p(';07yO)>
= Eq[Leo (20)] +H(Q).
where H (Q) = —Eg[log(Q)]. Choosing Q to be the set of product distributions,

such that for all z
Q(z) = [[Q(zig = 1)
i,q

allows us to obtain tractable expressions of J (Q, ). The variational estimate
0,4 of 0 is defined as

§W € argmax max J (Q, 9) .
egee QeQ @9)

The following corollary states that b\mr has the same asymptotic properties
as @y p and 0 ),¢, in particular is consistent and asymptotically normal.

Corollary 5.2 (Variational estimate). Under the assumptions of Theorem 4.2,
there exist permutations s of {1,...,Q} such that

a(@)—al, = op(n'?),
#(2) ~ R = op(n)

The proof is very similar to the proof of Corollary 5.1 and postponed to
appendix B.10.
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6. Proof sketch

The proof of the theorem relies on controlling deviations of the log-likelihood
ratios from their expectations. We first define those quantities.

6.1. Log-likelihood ratios

Definition 6.1. We define the conditional log-likelihood ratio LR and its ex-
pectation ELR as:

p(y°|z; )

LR(0,z) =lo -
(6.2) =log  ola %)

and FELR(0,z) =Eg« [LR(0,z)|2z*] (6.1)

We also define the profile ratio A and its counterpart A as:

A(z) = max LR(0,z) and A(z) = max ELR(0,z). (6.2)
The following decomposition of p(y°; 8) highlights the importance of LR(8, z):

p(y°:0) = p(y°,20) = p(y°|z;0") > p(2;0) exp(LR(0,2)).
(z) ()

Since LR(0,z) < A(z), the profile ratio is useful to remove the dependency on
6 and reduce the study to a series of problems depending only on z. The following
propositions shows that those quantities are constrats which are maximum (in
expectation) at the true parameter value (up to group relabeling) and have
negative curvature at those points. This allows us to prove that, asymptotically,
only one (or a few) z contribute to the above sum.

Proposition 6.2. Conditionally on z*, we have
[R(z)" S*R(z)]

ql
NP (63)

Yat(2) := Bo-[§q(2)|2"] =
with Yqe(z) = 0 for z such that @4(z) =0 or ay(z) = 0, i.e. no dyad observed in
class (g,1).

Remark 6.3. Note the absence of the random variable r in yg(z), which is
integrated out in the expectation Eg+

Proposition 6.4 (Maximum of ELR and A in 0). The functions LR(8,z) and
ELR(0,z) are maximum respectively in 7 for 7w(z) and 7(z) defined by:

T(2)ge = (V)7 (ge(2)) and 7(2)qe = (V') (Jqe(2))

so that .
A(z) = LR(7(z),z) and A(z) = ELR(7(z),2).
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Proposition 6.5 (Local upperbound for A) Conditionally upon Q1, there ex-
ists a positive constant C such that for all z € S(z*,C):

38(m*)
4

Az) <~z — 2o - (6.4)

Proposition 6.6 (Maximum of ELR and A in (0,2)). ELR can be written:

ELR(0,2) = —pn® Y Y R(2)g,¢R(2) 0.0 KL(m}y, mgrrr) < 0. (6.5)

a,q" £t
Conditionally on the set Q1 of reqular assignments and for n > 2/c,

(i) ELR is mazimized at (7*,2*) and its equivalence class and ELR(w*,z*)
=0.
(i) A is mazimized at z* and its equivalence class and [\(z*) =0.
(i) The mazimum of A (and hence the mazimum of ELR) is well separated.

Proofs of Propositions 6.2, 6.4, 6.5 and 6.6 are postponed to Appendix B.

6.2. High level view of the proof

The proof proceeds by splitting p(y°; @) as a sum over three types of configura-
tions that partition Z and studying the asymptotic behavior of LR and on each

type:

1. global control: for z such that A(z) = Q(—n?2), Proposition 6.7 proves a
large deviation behavior and shows that LR = —Qp(n?). In turn, those
assignments contribute a op of p(y®,z*; 0)) to the sum (Proposition 6.8).

2. local control: a small deviation result (Proposition 6.9) is needed to show
that the combined contribution of assignments close to but not equivalent
to z* is also a op of p(y°,z*;0*) (Proposition 6.10).

3. equivalent assignments: Proposition 6.11 examines which of the remaining
assignments, all equivalent to z*, contribute to the sum.

These results are presented in next section 6.3 and their proofs postponed to
appendix B. They are then put together in section 6.4 to prove our main result.
The remainder of the section is devoted to the asymptotics of the ML and
variational estimators as a consequence of the main result.

6.3. Different asymptotic behaviors
6.3.1. Global control

Proposition 6.7 (Large deviations of LR). Let Diam(®) = supg g/ |0 — 6’|/
For all e, < vb and n large enough that 2v/2n2e, > Q>

S;E) {LR(0,z) — A(z)} = 0p(n’e,) (6.6)
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Proposition 6.8 (Contribution of global assignments). Choose t, decreasing
to 0 slowly enough that -2 — +o00. Then conditionally on Q1 and for n

/log(n)
large enough that 2v/2n2e, > Q%, we have:

sup > p(z,y%0) = op(p(z*,y°; 6"))
0€® L o5(zr 1)

6.3.2. Local control

Proposition 6.9 (Small deviations LR). Conditionally on €,

p @) — Az)

e}z — 2 o

=op(1) (6.7)

The next proposition uses Propositions 6.9 and 6.6 to show that the combined
contribution to the observed likelihood of assignments close to z* is also a op
of p(z*,y%; 6”):

Proposition 6.10 (Contribution of local assignments). With the previous no-

tations and C' the positive constant defined in Proposition 6.5:

sup > p(z,y%0) = op(p(z*,y; 6"))
e e)
zz*

6.3.3. Equivalent assignments

It remains to study the contribution of equivalent assignments.

Proposition 6.11 (Contribution of equivalent assignments). For all 8 € O,
we have

o . o ,x.0
p(y 7Z70) :#Sym(o)max p(y 7Z ’0)

T T ~(1+o0p(1
p(y°,z*;0") 0'~6 p(y°,z*; 6 )( P(1)

zZ~zZ*
where the op is uniform in 6.
6.4. Proof of the main result

Proof. We work conditionally on ;. Choose z* € Z; and a sequence t,, decreas-
ing to 0 but satisfying pnt, /1/log(n) — +oo. According to Proposition 6.8,

sup > p(z,y%60) = op(p(z*,y% 6"))
GEQZQS(Z*,ISH)
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Since t,, decreases to 0, it gets smaller than C' (used in Proposition 6.10) for n
large enough. As this point, Proposition 6.10 ensures that:

sup > p(z,y%60) = op(p(z*,y% 0"))
GGGZGS(Z*,tn)
zz*

And therefore the observed likelihood ratio reduces as:

> p(y*,70)+ > p(y°.z0)

p(yo; 0) _ Z~Z* ZZ*

p(y; 0%) Z p(y°,z;0") + Z p(y°,z;0%)
Z~Z* ZZ*
> p(y°,2:0) +p(y*;z",0")op(1)
3 p(y®.2:0%) + ply®z*.0%)op (1)

And Proposition 6.11 allows us to conclude

p(y%0) _ #Sym(0) - p(y’,2";6')
p(y2;0%)  #Sym(0”) o'~6 p(y°,z*;6")

(I4+o0p(1)) +op(1). d

7. Discussion

Close examination of the different proofs, especially of Prop. 6.10, reveals that
the quantities driving convergence of the estimates are pnd(w*), which must
go to +o0o with n to ensure validity of Prop. 6.8, and pnt,d(w*), which must
be larger than 4/log(n) while ¢, — 0, to ensure validity of Prop. 6.10. Both
conditions are met as soon as p > log(n)/n, allowing for a large fraction of
missing edges. Note that this limiting rate for missingness is the same as the
one found for graph density in sparse settings to achieve consistency and local
asymptotic normality of @ (Bickel et al., 2013). It’s also the same as the one
found by Chatterjee (2015) for the structured matrix reconstruction problem.
Note also that in the fixed p setting, both MLE and VE are consistent and
asymptotically normal but the cost of missingness is an expected blow up of the
asymptotic variance matrix by a factor of p=!.

The proof follows along the line of Bickel et al. (2013) but differs in some sig-
nificant ways. First, since the number of observed dyads is random, we must rely
on variants of the central limit theorem that hold for random sums of random
variables. Second, the move from the binary to unbounded dyads invalidates a
counting argument used in Bickel et al. (2013) and requires different concentra-
tion inequalities. We leverage the facts that random variables with distribution
in natural exponential families are subexponential and that the subexponential
property is preserved by summation and multiplication to derive Bernstein-type
inequality. Finally, we add the missing terms # Sym(0) which have little impact
for the corollaries but are required for the rigorous statement of the main result.
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Appendix A: Technical results
A.1. Proof of Proposition 3.1

Proof. Noticing that N; ~ Bin(n — 1,p), then P(N; > 1) = 1 — (1 — p)» L.
As a consequence P(,) < Y ,P(N; = 0) = n(1l — p)»~! e 0, and

n—+

P(Q,,) e 1. Then P(lim sup(£2o,,,)) = 0 by Borel-Cantelli theorem (becaube

> P(Q0,n) converge), and as limsup Qo = (1,50 Uy n Q0,0 =U,z0 Nysn Qo
= liminf € ,,, the result follow. O

A.2. Technical Lemma A.1

Lemma A.1.

P
D i S P
i#j

Proof. Noticing that E[r;;ziq2j¢] = pagoq and defining q” =T ZiqZje — POqQY.
By Hoeffding decomposition for U-statistics (see Hoeffdlng7 1948)

1
/ L
Un - n(n - 1) Z(szzzqzjf Paqal . Z Zq P l“l’L J) (Al)
i#j ceG, 2
[3] q.¢

where for each permutation ¢ € &, > ;25 par (12 ]) is a sum of indepen-
dant r.v. Then, for v > 0 by Jensen’s inequality and Hoeffding’s lemma about
bounded r.v.

%]

vy q,t
n' Z Eexp ? Do (i),0(i+12])
ceS, i=1

Finally, using the same proof than Hoeffding’s inequality allows us to con-
clude. 0

w3

E [exp(yU,,)]

IN

IA

A.3. Proof of Proposition 3.3

Proof. Since & (z*) = (&1 (2*), ..., a4 (2*)) is the sample mean of n i.i.d. multi-
nomial random variables with parameters 1 and a*, a simple application of the
central limit theorem (CLT) gives:

5 _Jar(l—ap) if g=¢
a*,qq = Kk Ak . !
agog, if g#gq

which proves Equation (3.2) where Yo« is semi-definite positive of rank Q — 1.
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Similarly, 1 (¢ (2*)) is the average of 3, . 127,27, i.i.d. random variables
with mean v’ (7@) and variance 1" (7@). Dintj TijZig% ;e 18 itself random but
thanks to Lemma A.1: ﬁ Zi# mjzi*qz;@ Z%;% pagag. Therefore, by Slut-
sky’s lemma and the CLT for random sums of random variables (Shanthikumar
and Sumita, 1984), we have:

n(n — Dpagay (¢ (Ree (27) — ' (m5))

T Eh 2
_ n(n_ 1),00@042( (Zz#] 15 iq” 5L _'(//(W;Z)>

ek *
Dini Tii%ig e

— 2 s V(0,4 (%))

n—-+oo

The differentiability of (1)')~! and the delta method then gives:
n(n —1) (Tge (2*) — m5y) —2 N o, 1
‘ ) pog it ()
and the independence results from the independence of g, (2*) and Ty (2*)

as soon as q # ¢’ or £ # {', as they involve different sets of i.i.d. variables. [

A.4. Proof of Proposition 3.5

Proof. By Taylor expansion,

L* a*+i TF*—I—#
“ Vvn' n(n —1)
1

1
= L0+ —=sTVLE, (0%) + ——Tr (uf'VLE, (0"
(O0) + o Vo (07) F e T (w7 V Ll (07))

+%5THQ (0")s + Tr ((u®u)"Hy (07)) + op(1)

1
n(n—1)
where VL%, (0%) and VL%, _(0”) denote the respective components of the gra-
dient of £}, evaluated at * and H, and H, denote the conditional hessian of
L}, evaluated at 8*. By inspection, Hy /n and Hy /(n(n — 1)) converge in prob-
ability to constant matrices ¥4, X, and the random vectors VL}, , (%) /y/n and

VL:,  (0%)/y/n(n —1) converge in distribution by central limit theorem. [

A.5. Proof of Proposition 4.1

Proof. In regular configurations, each group has (n) members, where u, =
Q(n) if there exists two constant a,b > 0 such that for n enough large an <
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un, < bn. ¢/2-regular assignments, with ¢ defined in Assumption H;, have high
Py~-probability in the space of all assignments, uniformly over all 8* € ©.

Each 244 is a sum of n i.i.d Bernoulli r.v. with parameter g > amin > c.
A simple Hoeffding bound shows that

2 2
Py~ (z+q < ng) < Py~ (z+q < n%) < exp (—2n (%) > < exp (—%)

taking a union bound over Q values of ¢ leads to Proposition 4.1. O

Appendix B: Main results
B.1. Proof of Proposition 6.2

Proof. First of all we will prove equation (6.3),

Jge(z) = Eg- 2y FioZ i z*
; _
| Din iaZitTij
Dizj %ia%itTijYi
= Ee* EB* i R,Z* Z*
D i ZiaZitTij

[ . . .. *
Zi;ﬁj ZigZjeTij Szizj

= Ee*
D iz ZigZjerij

z*‘| ,

where Z; = ¢ < z, = 1. Noticing that the (¢, j) for which z;42z;, = 0 does
not contributes in any of the two terms of the ratio. The calculus of this ex-
pectation is then equivalent to calculate an expectation of the general form
n iR ..
Eg+ {Zn%} (ai)ieq1,..ny € R™ and T; o B(p).
i=1""
Eg- |:Z?_1 a;T; _ Z?:l a;
= = .
> Ti | n

Proof. Define N = """ | T; and noticing that E[T;|N = k] = £. Conditionally
i i

toN>1
]
n

Now, applying Lemma B.1 with N2,(z) = Z#j Ziqzjerij leads to

s

i=1"1

N

[R(z)"S*R(2)] ,

ag(2)ap(z)

. . .o *
Zi;éj ZWZJETUSZ‘,Z;'

Eg+
Zi;ﬁj ZiqZjeTij

(2)>1-

z", ;K(Z) > 1] =

Finally, Ee« [yy(z)|z*, N,(2) = 0] can be arbitrarily defined at the same value
than Ee- [y (2)|2*, N,(2) > 1] which conclued the proof. O
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B.2. Proof of Proposition 6.4

Proof. Defining v(y, ) = ym — 1(w). For y fixed, v(y,n) is maximized at 7 =
(¢")~1(y). Manipulations yield

LR(6,z) = logp(y°;z,0) — log p(y°;z*,0")
[zzw i) 7) = 5 5N m;a]

which is maximized at 7wy = (¢') 71 (J4e(2)). Similarly with Ny(z) = Z#j ZigZjt,

ELR(6,z) = Eg+[log p(y®; z,0) — logp(y°; z*, 6)|z"]
—, [z > Nl ) - T, qa,m]
is maximized at 7y = (') " (Fqe(2)). O

B.3. Proof of Proposition 6.6 (mazimum of ELR and A)

Proof. We condition on z* and prove Equation (6.5):

ELR(6,2)

B p(y*2,.0) | .

e [log p(yo;z+,6%)|” }

= ZZZ ZEG* Yij 7Tq/£/ — 71' ) (’l/)(’]'rq/e/) — ’1/}(71‘(;5))] pz;qziq’z;zzjé’
4,9 LU

=n pZZ]R (2)ag R(2)eer [ () (e = 7ge) + (i) — (mgrer)]

q,q" €0

= —n’p Z Z R(z)g,q R (2)e,er KL(“;& Tqer)

q,q" 0,0

If z* is regular, and for n > 2/c, all the rows of IR(z) have at least one positive
element and we can apply Lemma 3.2 of Bickel et al. (2013) to characterize the
maximum for FLR.

The maximality of A(z*) results from the fact that A(z) = ELR(7(z),2)
where 7(z) is a particular value of r, A is immediately maximum at z ~ z*,
and for those, we have 7(z) ~ 7*.

The separation and local behavior of G around z* is a direct consequence of
Proposition 6.5. U

B.J4. Proof of Proposition 6.5 (local upper bound for A)

Proof. We work conditionally on z*. The principle of the proof relies on the
extension of A to a continuous subspace of Mg([0, 1]), in which the confusion
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matrix is naturally embedded. The regularity assumption allows us to work on a
subspace that is bounded away from the borders of Mg([0,1]). The proof then
proceeds by computing the gradient of A at and around its argmax and using
those gradients to control the local behavior of A around its argmax. The local
behavior allows us in turn to show that A is well-separated.

Note that A only depends on z through IR(z). We can therefore extend it to
matrix U € U, where U is the subset of matrices Mg ([0, 1]) with each row sum
higher than ¢/2.

AU) = =pn® Y Y UsgUner KL (w0, Tgrar)

q,q" 0,0
where
ot = mae0) = ) (S
gt = Tall¥/) = [UT10],

and 1 is the Q x Q matrix filled with 1. Confusion matrix IR(z) satisfy IR(z)1l =
a(z*), with T = (1,...,1)T a vector only containing 1 values, and are obviously
in U, as soon as z* is ¢/2 regular.

The maps fq,q ¢, : (U) = KL(7},, Tqe(U)) are twice differentiable with sec-
ond derivatives bounded over U, and therefore so isj&(U). Tedious but straight-
forward computations show that the derivative of A at D, = Diag(a(z*)) is:

—1 A

Agq (27) = 2o,
aq

(Do) =203 ap(#*) KL (w2 70)
l

A(z*) is the matrix-derivative of —A/n? at D,. Since z* is ¢/2-regular and
by definition of §(7*), A(z*)4q > cpd(m*) if ¢ # ¢’ and A(z*)4q = O for all ¢.
By boundedness of the second derivative, there exists C' > 0 such that for all
D, and all H € B(D,, (), we have:

—1 0 > pTE) g
n? OUqq <pE) ifg=¢

Choose U in U, N B(D,, C) satistying ULl = a(z*). U — D,, have nonnegative
off diagonal coefficients and negative diagonal coefficients. Furthermore, the
coefficients of U, D, sum up to 1 and Tr(D,) = 1. By Taylor expansion, there
exists H also in U, N B(D,, C) such that

AU = HA D) + T ((U - D@%%(H))
> pc(S(;r*) 7 Z(U —Do)gq — Z(U — Dy)gq
q#q’ q

- Cp35(f) (1 - Te(U))
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To conclude the proof, assume without loss of generality that z € S(z*,C)
achieves the ||.]lo,~ norm (i.e. it is the closest to z* in its representative class).
Then U = R(z) is in (U, N B(D,, C) and satisty UIl = a(z*). We just need to
note n(1 — Tr(IR(z))) = ||z — 2*||o,~ to end the proof. O

B.5. Proof of Proposition 6.7 (global convergence LR)
Proof. Conditionally upon z*,

LR(6,z) — A(z) < LR(8,z)— ELR(0,z)

- ZZ(W,@@ - :;z;.) (yij'rij - ¢/(7T:;Z;_)p>
(]
0D (W(ai,) = () (rig = p)
T
= D> (mge =) Wegree

qq’ e

Sug ) E qu/gg/qu/Zg/ = Z
TelRe™ %< qq’ o
[|IT]| oo <Diam(®)

IN

uniformly in 6, where the W40 are independent and by Taylor expansion
defined by:

Woqww = Z Z z:qz;fzi,qlzjzl (yijrij - wl(W;Z)P — (rij — P)qu’ff’) )
(]
Coqreer € Y'(O)
is the sum of n?R(z),yR(z)er sub-exponential variables with parameters
(¥2,1/b) and is therefore itself sub-exponential with parameters
(n?R(z) 4 R(2)eerv?, 1/b). According to Proposition B.3 of Brault et al. (2020),
E¢+[Z]|z*] < @Q%Diam(©)vn2v2 and Z is sub-exponential with parameters
(n? Diam(©)2(2v/2)?v2,2/2 Diam(®)/b). In particular, for all &, < vb

‘o)

QQ
< Py (Z > Eg+ [Z|2*] + v Diam(©)n?2v/2¢,,

Py~ (Z > vQ? Diam(®)n {1 +

Z*)

n2e2
< o n
exp( 2)

We can then remove the conditioning and take a union bound. O

B.6. Proof of Proposition 6.8 (contribution of far away
assignments)

Proof. Conditionally on z*, we know from Proposition 6.6 that A is maximal
in z* and its equivalence class. Choose 0 < t, decreasing to 0 but satisfying
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Tllp—t’() — +00. According to 6.6 (iii), for all z ¢ S(z*,t,)
og(n

§(m* §(m*
30(m )||z — 2o < _ep22T) g (B.1)

Az) < —
(z) < —cpn , ~< 1

since ||z — z*||o,~ > ntp.

Set g, = inf(5cp5(ﬂ'*)tn/(\/§y Diam(®)), vb) and n large enough that €, >
nQ—\/zg. By Proposition 6.7, and with our choice of &,,, with probability higher than
1- A’}l (En)v

> py°%6)

z¢S(z* ,ty)

— p(y°|z*, 0*) p(Z; G)eLR(G,z)—]\(z)—i-f\(z)
z¢S(z* t,)

< p(yo|z*, 0*) Zp(z; 0)6LR(9,Z)71~\(z)73n2t"5p5(ﬂ-*)/4

< ply°la’, 0 3 pla g)c " nerd(m /s

_p(y z" 0*) —n2tncp6(7r*)/8
p(z*;6")

< p(y°,z*;0%) exp (—thn
=p(y°,2%;6%)o(1)

where the second line comes from inequality (B.1), the third from the global
control studied in Proposition 6.7 and the definition of &,,, the fourth from the
definition of p(y®°,z*;0), the fifth from the bounds on a* and the last from
oty 400,

v/ log(n)
In addition, with our choice of t,,, we have €, > +/log(n)/n so that the series
>, Al(e,) converges and:

> p(y°,%0) = p(y%;z*,0%)op(1)
285 (z* tna) O

cpd(m”) + nlog l)
8 c

B.7. Proof of Proposition 6.9 (local convergence LR)

Proof. We work conditionally on z* € Z;. Choose ¢ < ko? small. Assignments z
at |.]jo,~-distance less than c¢/4 of z* are ¢/4-regular. According to Proposition
B.1 of Brault et al. (2020), g4¢ and g are at distance at most € with probability

n2c2e?
32(1/2+b Te)

ZZN v (§qe(2), mqt) ZZN& (@) () o),

higher than 1 — 2exp ( . Defining

>zz
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where A(Z) =E [/:\(z)\z*} Manipulation of A, A and A yield
z)— A

A2) - k) _AG)-A@) , A@ - i@
= 52 3 (043 L)~ 1 5] = N~ )
by 51030 [Nile) — Nipa®) — V@) - Ng(z")
q ~-
o S S ING ) — pNae@) () — S )

where f(z) = z(y") " (z) — o (V)N (2), Uy, = Uge(z*) and g5, = ¢ (7).

Concerning the first term The function f is twice differentiable on A with
()= ") Yz) and f"(x) = 1/9" o (¢') " (x). f' (vesp. f') are bounded over
I =4/(Cy) by C, (resp. 1/a?) so that:

F@ae) = [(Fae) = F'(Gar) Gar — Gae) + Q@ (Tt — Fae)?)

By Proposition B.1 (adapted for SBM) of Brault et al. (2020), (Jge — Uqe)® =
Op(1/n?) where the Op is uniform in z and does not depend on z*. Similarly,
f/(gqf) = f'@;z) + Q@qé - 2325) = W;E + Q(gqé - 3335)

Yqe is a convex combination of the Sy, = Y’ (71';@) therefore,

[R(z)" S*R(z)]

_ e @
e = el = ‘ Go@)ar(z)
R R0 g g
= <1 aq(z)az(z) ) (Smax Inm)
Note that:
o R(Z)quR(Z)M 2 o B ., .
%N‘ﬂ(z) <1 B W) = e+ P<1>>§D IR (2) R (2) ]

=n?p(1+o0p(1))[1 — Tr(IR(z))?]

<np(l+op(1))2||z —z"|o,~

and Yge — Yqe = op(1). Therefore

1 o P 1z — 2*[lo.~
iz X NI~ ) % G — i) = on (120
q,0

The remaining term writes
1 . _ _
n2 ZW& [Ngg(z)(ng — Yge) — N;e(Z*)@Zz - yge)]
qt

and is also op((||z — z*]|o,~./n) uniformly in z and z* € Q; by Proposition C.2.
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Concerning the second term For all ¢, ¢, defining

{ No(z.2*) =n? 32 R(2)qq (2) 3o R(2)er (2) — n?R(2)gqR(2)er
Noo(2z,2) = n? 35 R(2) g (2) 32 R(2)er (2) — n°IR(2)gqIR(2)

and noticing that N+(z z*) = #{(z J) : zig = Lzje = 1, (290, 2j0) # (z;€7z;€)}

and N, (z,z*) = #{(i,]) : = 1,25, = 1, (2qt, 2je) # (254, %5,)}. Using the
following notations

1 1
= > Ry bp=~—— Y. Ry
pq[ N?(Z7Z*) N — J pq[ N}(Z,Z*) — J
4 ('Lu])eng(Z»Z*) a (Lj)equ(z,z*)

we are able to write

A= Y. Ry-p)— Y, (Rij—p)

1<J 1<J
zig=1,2j0=1 zi*qzl,z_;l{:l

=N/, (2,2*)(pf, — p) — Noy(z,2*) (55, — p).

Where the second equality is the sum of independent random variables.

Note that:
ZN+ (z,2") = ZNﬁ
ql

=n2 Z[l — R(2z)4qR(2) ]
]

— n?[1 - Tr(R(2))’

<n2|jz —2"[lo~

also that ﬁq+e —p=op(1)and p, — p=op(1). Therefore
1 - |1z — 2o~
SO WICAYIETN ey}
q £

Concerning the third term Using arguments developed previously leads to
the same conclusion than before:

22 X SING) — N5 ~ ) = o (=00,
q 14

As a conclusion, writing

Az) —A(z) < AMz) ~A@) | Az) - A(z*))

nl|z —2z*{|o,~

ZZ*

A(z)—A(z )

and noticing that mlla—=2"Tlo.

< 0 since A is maximized in z* (see 6.6). We have

A(z) — A(z*
sup Alz) — Az") _ op(1). O
ZZ* n”z — Z*”(),N
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B.8. Proof of Proposition 6.10 (contribution of local assignments)

Proof. By Proposition 4.1, it is enough to prove that the sum is small compared
to p(z*,y°;0%) on Q. We work conditionally on z* € Z;. Choose z in S(z*,C)
with C' defined in Proposition 6.8.

p(z,y°; 6) ) p(z;0)

log <7 =log| ——% | + LR(0,z
p(z*,y°%; 0") p(z*;6") )

For C small enough, we can assume without loss of generality that z is the

representative closest to z* and note r = ||z — z*||p. Then:

LR(8,2z) < A(z) — A(z) + A(z)
gM@_M@—wﬁ%ﬁ

30(m*)

nr

<cp

nr(l+ op(1))

where the first line comes from the definition of A, the second line from Propo-
sition 6.6 and the third from Proposition 6.9. Thanks to Proposition D.1, we

also know that: 0
log p(z; 2
p(z*;607)
There are at most (7:) Q" assignments z at distance r of z* and each of them
has at most Q9 equivalent configurations. Therefore,

> < Op(1)exp {M_yr}

> zes(z*,6) P(2,5°;0)

zz*

p(z*,y°; 0%)
<op)Y <") QO+ exp <1~Mc/4 - cp@m’(l + 0p(1))>

r
r>1

* n

< Op(1)an exp(an)

35(m*)(14+0p (1)
4

where a,, = ne(@t1)1ogQ+Mc/a—cpn =op(1). O

B.9. Proof of Proposition 6.11 (contribution of equivalent
assignments)

Proof. Choose s permutations of {1,...,Q} and assume that z = z**°. Then
p(y°,z;0) = p(y°,z**;0) = p(y°,z*;0°). If furthermore s € Sym(0), 6° = 0
and immediately p(y®,z;0) = p(y°,z*;0). We can therefore partition the sum
as

Z~Z*

> p(y°,z:0) => p(y® z"*:0)



Consistency and asymptotic normality of SBM estimators 3699

= Zp(y",Z*;BS)

Z#Sym p(y°,z*;0")
0'~6

— #Sym(6) > p(y°,2";6')

0'~0

p(y®,z*;0) unimodal in 8, with a mode in EMC. By consistency of EMC, either
p(y°,2z*;0) = op(p(y°,z*;0")) or p(y°,z*;0) = Op(p(y°,z*;0%)) and 6 — 6*.
In the latter case, any 8’ ~ @ other than 8 is bounded away from 8* and thus
p(y°,2z*;0') = op(p(y®°,z*;0%)). In summary,

Zpyza a (YOZ*Q/)

1 1 O
(320 E}N’ép(y -~ 0*)( +op(1))

B.10. Proof of Corollary 5.1: Behavior of @MLE

We may prove the corollary by contradiction. Note first that unless © is con-
strained and with high probability, @y and 0(z*) exhibit no symmetries.
Indeed, equalities like yJy¢ = Yy ,» have vanishingly small probabilities of being
simultaneously true when y;; is discrete, and even null when y;; is continuous.
Assume then ming(aly, ;g — & (2%)) # op (1/y/n) or ming(wy g — 7 (2%)) #
op (1/n) where s is a permutation of {1,...,Q}. Then, by Proposition 3.5 and
the consistency of 8 (z*)

min 5, (0.(2%)) = £2, (915 ) = e (). (B.2)
But, since 0 (z*) and 0115 maximise respectively 2 ((;' zz* g*)) nd pp((;; :*)) and

have no symmetries, it follows by Theorem 4.2 that

p (YO7Z*§ é (Z*)> p (yan*;/H\]MLE> (1)
— max =0
p(y°,z*;0%) s p(y°,z%;0%) r

which contradicts Eq (B.2) and concludes the proof.

B.11. Proof of Corollary 5.2: Behavior of J (Q,0)
Remark first that for every 6 and for every z,

P(y°,20) < exp [ (35, 0)] < max exp [J(Q,0)] < p(y*;6)
where ¢, denotes the dirac mass on z. By dividing by p (y°;0”), we obtain

p(y°,2;0) _ geo P [/(Q,0)] - p(y%0)
p(y°;0*) — p(y°;6%) ~p(y°;0)
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As this inequality is true for every couple z, we have in particular:

p(y°,2:0) p(yo.z0) _ oy o»l/(Q0)
max——/ ————— = maXx = < >
z~zt p(y2;07)  o'~o p(y°;07) p(y°;6")
Noticing that p(y°;0%) = # Sym(0")p(y°,z*;0") (1 + 0,(1)), Theorem 4.2
therefore leads to the following bounds:

o * J(Q,0
maxpi(y i ;0’) (I1+op(1) < %}Eag P (0]
o'~0p (y°,z*;0%) P =T (ye, 2 6%)

p(y°,z*;0")

< # Sym(0)max

(3o, 2 0 (I1+0p(1))+o0p(1).

Again unless © is constrained, §V Ar exhibits no symmetries with high proba-
bility and the same proof by contradiction as in appendix B.10 gives the result.

Appendix C: Sub-exponential random variables

We now prove two propositions regarding subexponential variables. Recall first
that a random variable X is sub-exponential with parameters (72, b) if for all \
such that |A| < 1/b,

2.2
E[eMXECXD] < exp <>\ T > .
- 2

In particular, all distributions coming from a natural exponential family are sub-
exponential. Sub-exponential variables satisfy a large deviation Bernstein-type
inequality:

exp (—t—2‘2> if 0<t<T™
P(X —E[X]>1) < 2 -0 (C.1)
exp (—% it t> 7%

So that

P(X —E[X] >1t) <exp <—M)

The subexponential property is preserved by summation and multiplication.
e If X is sub-exponential with parameters (72,b) and o € R, then so is aX
with parameters (o272, ab)
e If the X;, i = 1,...,n are sub-exponential with parameters (72,b;) and
independent, then so is X = X;+- - -+X,, with parameters (3, 72, max; b;)

Theorem C.1 (Equivalent characterizations of sub-exponential variables). For
a zero-mean random variable X, the following statements are equivalent:
1. There are non-negative numbers (v,b=1) such that

2.2
E[e*¥] < exp (A -

) for all |A\| <.
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2. There is a positive number co > 0 such that E[e*X] < oo for all |A| < co.
3. There are constants c1,co > 0 such that

P(|X|>1t) <cre”®" forallt> 0.

. gx*M1YE L L
4. The quantity vy := Supy > {T} is finite.
Proof. A proof of this theorem can be found in Wainwright (2015). U

Proposition C.2 (Maximum in z). Let (z be any configuration and z the ~-
equivalent configuration that achieves ||z — z*||o = ||z — 2*||o,~ let Ygo = q,e(2)
(resp. Yqu(z)) and Yy = q,0(2*) (resp. Yyp = Yqu(z*) = ¢'(7;,)) be as defined
in Equations (3.1) and (6.3). Under the assumptions of the section 2.5, for all

e < ko2,

P max max Ny (2) (g, — Yge) — Ngo(2*) (Yo — Uge) S e) = o(1)
Zzt k,l n|lz — z*||o
Proof. Note r = ||z — 2*||p. The numerator within the max in the fraction can

be expanded to
Zg(z) = Z(Ziqzjé - Zi*qz;e)(yz‘jﬂ‘j - ﬂ-:;qz;[p)
i,
and is thus a sum of at most N = nr non-null centered subexponential random

variables with parameters (a2, 1/w). It is therefore a centered subexponential
with parameters (Na?,1/w). By Bernstein inequality, for all ¢ < ka? we have

2
P(Z > enr) < exp (— 7”;7“52 ) .
a

There are at most n"Q"Q® z at |.||o ~ distance r of z*. An union bound shows
that:

P (max max ZL(Z) > €>

zezt gl nlz—z*|p ~

<Y QP(Zu() = en)

r21r=|z—2"|lo,~

< Z Q9 exp (—nre? /2a* 4 rlog(n@Q) + 21og(Q)) = o(1)

r>1

where the last equality is true as soon as ne,, > logn. O

Appendix D: Likelihood ratio of assignments

Proposition D.1. Letz* be ¢/2-reqular and z at ||.||o-distance c/4 of z*. Then,
forall@ € ©®

o p(z;0)

< _ *
gp(z*;@*) < Op(1)exp {MC/4||Z z ||0}
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Proof. Note then that:

p(z:0) _ plza) _ plzio)  p(z*6(z"))
p(z*;6") p(zt;a%)  p(zt;é

IN

. p(z*; &(z"))
€xXp {Mc/4HZ —Zz ||0} X W

< Op(1) exp {M,4]lz — 2o}

IN

where the first inequality comes from the definition of &(z) and the second from
Lemma B.6 of Brault et al. (2020) and the fact that z* and z are ¢/4-regular.
Finally, local asymptotic normality of the MLE for multinomial proportions

ensures that % = Op(1). =

Acknowledgment

The authors thank Pierre Barbillon (INRAE-MIA, AgroParisTech), Julien Chi-
quet (INRAE-MIA, AgroParisTech), Stéphane Robin (INRAE-MIA, AgroParis-
Tech) and James Ridgway (CFM) for their helpful remarks and suggestions.

This work is supported by two public grants overseen by the French National
research Agency (ANR): first as part of the «Investissement d’Avenir» program,
through the «IDI 2017» project funded by the IDEX Paris-Saclay, ANR-11-
IDEX-0003-02, and second by the «EcoNet» project.

References

C. Aicher, A. Z. Jacobs, and A. Clauset. Learning latent block structure in
weighted networks. J. Compl. Net., 3(2):221-248, 2014. MR3365464

C. Ambroise and C. Matias. New consistent and asymptotically normal parame-
ter estimates for random-graph mixture models. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology), 74(1):3-35, 2012. MR2885838

P. Barbillon, S. Donnet, E. Lazega, and A. Bar-Hen. Stochastic block models
for multiplex networks: an application to networks of researchers. J. R. Stat.
Soc. C-Appl., 2015. MR3600512

P. Bickel, D. Choi, X. Chang, H. Zhang, et al. Asymptotic normality of maxi-
mum likelihood and its variational approximation for stochastic blockmodels.
The Annals of Statistics, 41(4):1922-1943, 2013. MR3127853

V. Brault, C. Keribin, and M. Mariadassou. Consistency and asymptotic nor-
mality of latent blocks model estimators. Electronic Journal of Statistics,
14(1):1234-1268, 2020. MR4079457

S. Chatterjee. Matrix estimation by universal singular value thresholding. The
Annals of Statistics, 43(1):177-214, 2015. MR3285604


http://www.ams.org/mathscinet-getitem?mr=3365464
http://www.ams.org/mathscinet-getitem?mr=2885838
http://www.ams.org/mathscinet-getitem?mr=3600512
http://www.ams.org/mathscinet-getitem?mr=3127853
http://www.ams.org/mathscinet-getitem?mr=4079457
http://www.ams.org/mathscinet-getitem?mr=3285604

Consistency and asymptotic normality of SBM estimators 3703

A. Celisse, J.-J. Daudin, L. Pierre, et al. Consistency of maximum-likelihood
and variational estimators in the stochastic block model. Electronic Journal
of Statistics, 6:1847-1899, 2012. MR2988467

D. S. Choi, P. J. Wolfe, and E. M. Airoldi. Stochastic blockmodels with growing
number of classes. Biometrika, 99 2:273-284, 2012. MR2931253

J.-J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs.
Stat. Comp., 18(2):173-183, 2008. MR2390817

P. Erdés and A. Renyi. On random graphs. Publicationes Mathematicae, 6:290—
297, 1959. MR0120167

O. Frank and F. Harary. Cluster inference by using transitivity indices in em-
pirical graphs. J. Am. Stat. Soc., 77(380):835-840, 1982. MR0686407

M. S. Handcock and K. J. Gile. Modeling social networks from sampled data.
The Annals of Applied Statistics, 4(1):5-25, 2010. MR2758082

W. Hoeffding. A class of statistics with asymptotically normal distribution. The
Annals of Mathematical Statistics, 19(3):293-325, 1948. MR0026294

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109-137, 1983. MR0718088

J. Hu, H. Qin, T. Yan, and Y. Zhao. On consistency of model selection for
stochastic block models. arXiv:1611.01238, 2017. MR3217945

E. D. Kolaczyk. Statistical Analysis of Network Data, Methods and Models.
Springer, 2009. MR2724362

P. Latouche, E. Birmelé, and C. Ambroise. Variational bayesian inference and
complexity control for stochastic block models. Stat. Modelling, 12(1):93-115,
2012. MR2953099

M. Mariadassou and C. Matias. Convergence of the groups posterior distri-
bution in latent or stochastic block models. Bernoulli, 21(1):537-573, 2015.
MR3322330

M. Mariadassou, S. Robin, and C. Vacher. Uncovering latent structure in val-
ued graphs: A variational approach. Ann. Appl. Stat., 4(2):715-742, 06 2010.
MR2758646

C. Matias and S. Robin. Modeling heterogeneity in random graphs through
latent space models: a selective review. ESAIM Proc. Sur., 47:55-74, 2014.
MR3419385

K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochas-
tic blockstructures. J. Am. Stat. Soc., 96(455):1077-1087, September 2001.
MR1947255

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional
stochastic block model. Ann. Stat., 2010. MR2893856

D. B. Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.
MR0455196

J. Shanthikumar and U. Sumita. A central limit theorem for random sums of
random variables. Operations Research Letters, 3(3):1563-155, 1984. https://
doi.org/10.1016/0167-6377(84)90008-7. MRO761508

T. A. Snijders and K. Nowicki. Estimation and prediction for stochastic block-
models for graphs with latent block structure. J. Class., 14(1):75-100, 1997.
MR1449742


http://www.ams.org/mathscinet-getitem?mr=2988467
http://www.ams.org/mathscinet-getitem?mr=2931253
http://www.ams.org/mathscinet-getitem?mr=2390817
http://www.ams.org/mathscinet-getitem?mr=0120167
http://www.ams.org/mathscinet-getitem?mr=0686407
http://www.ams.org/mathscinet-getitem?mr=2758082
http://www.ams.org/mathscinet-getitem?mr=0026294
http://www.ams.org/mathscinet-getitem?mr=0718088
https://arxiv.org/abs/arXiv:1611.01238
http://www.ams.org/mathscinet-getitem?mr=3217945
http://www.ams.org/mathscinet-getitem?mr=2724362
http://www.ams.org/mathscinet-getitem?mr=2953099
http://www.ams.org/mathscinet-getitem?mr=3322330
http://www.ams.org/mathscinet-getitem?mr=2758646
http://www.ams.org/mathscinet-getitem?mr=3419385
http://www.ams.org/mathscinet-getitem?mr=1947255
http://www.ams.org/mathscinet-getitem?mr=2893856
http://www.ams.org/mathscinet-getitem?mr=0455196
https://doi.org/10.1016/0167-6377(84)90008-7
https://doi.org/10.1016/0167-6377(84)90008-7
http://www.ams.org/mathscinet-getitem?mr=0761508
http://www.ams.org/mathscinet-getitem?mr=1449742

3704 M. Mariadassou et al.

T. Tabouy, P. Barbillon, and J. Chiquet. Variational inference for stochastic
block models from sampled data. Journal of the American Statistical Associ-
ation, 115(529):455-466, 2020. https://doi.org/10.1080/01621459.2018.
1562934. MR4078475

M. J. Wainwright. Basic tail and concentration bounds. https://www.stat.
berkeley.edu/~mjwain/stat210b/Chap2/, 2015.

Y. X. R. Wang and P. J. Bickel. Likelihood-based model selection for stochastic
block models. Ann. Statist., 45(2):500-528, 04 2017. https://doi.org/10.
1214/16-A0S1457. MR3650391

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
https://doi.org/10.1017/CB09780511815478.

W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452—-473, 1977. https://
doi.org/10.1086/jar.33.4.3629752.


https://doi.org/10.1080/01621459.2018.1562934
https://doi.org/10.1080/01621459.2018.1562934
http://www.ams.org/mathscinet-getitem?mr=4078475
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2/
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2/
https://doi.org/10.1214/16-AOS1457
https://doi.org/10.1214/16-AOS1457
http://www.ams.org/mathscinet-getitem?mr=3650391
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752

	Introduction
	Statistical framework
	Stochastic Block Model
	Missing data for SBM
	Sampling design examples
	Observed-likelihoods
	Models and assumptions
	Identifiability
	Subexponential variables
	Symmetry
	Other definitions

	Complete-observed model
	Main result
	Variational and Maximum Likelihood Estimates
	ML estimator
	Variational estimator

	Proof sketch
	Log-likelihood ratios
	High level view of the proof
	Different asymptotic behaviors
	Global control
	Local control
	Equivalent assignments

	Proof of the main result

	Discussion
	Technical results
	Proof of Proposition 3.1
	Technical Lemma A.1
	Proof of Proposition 3.3
	Proof of Proposition 3.5
	Proof of Proposition 4.1

	Main results
	Proof of Proposition 6.2
	Proof of Proposition 6.4
	Proof of Proposition 6.6 (maximum of ELR and )
	Proof of Proposition 6.5 (local upper bound for )
	Proof of Proposition 6.7 (global convergence LR)
	Proof of Proposition 6.8 (contribution of far away assignments)
	Proof of Proposition 6.9 (local convergence LR)
	Proof of Proposition 6.10 (contribution of local assignments)
	Proof of Proposition 6.11 (contribution of equivalent assignments)
	Proof of Corollary 5.1: Behavior of bold0mu mumu cmyk 0 0 0 0"0362bold0mu mumu cmyk 0 0 0 0MLE
	Proof of Corollary 5.2: Behavior of J(Q,bold0mu mumu cmyk 0 0 0 0)

	Sub-exponential random variables
	Likelihood ratio of assignments
	Acknowledgment
	References

