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Abstract: For a regression problem with a binary label response, we ex-
amine the problem of constructing confidence intervals for the label prob-
ability conditional on the features. In a setting where we do not have any
information about the underlying distribution, we would ideally like to pro-
vide confidence intervals that are distribution-free—that is, valid with no
assumptions on the distribution of the data. Our results establish an ex-
plicit lower bound on the length of any distribution-free confidence interval,
and construct a procedure that can approximately achieve this length. In
particular, this lower bound is independent of the sample size and holds for
all distributions with no point masses, meaning that it is not possible for
any distribution-free procedure to be adaptive with respect to any type of
special structure in the distribution.
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1. Introduction

Consider a regression problem where we would like to model the relationship
between a feature vector X ∈ Rd and a response Y ∈ R, based on a sample of n

data points, (X1, Y1), . . . , (Xn, Yn)
iid∼ P . In a high-dimensional setting where d

is large, many modern methods are available to build powerful predictive models
for Y given X, but relatively little is known about their theoretical properties—
for example, if we train a neural network on the n available data points, can we
quantify its accuracy on unseen test data, without making strong assumptions
on P , the unknown distribution of the data?

If we are willing to assume that the data follows a regression model
EP [Y | X = x] = f(x) where the function f satisfies certain assumptions, then
classical statistical results assure that these questions can be answered using
more simple regression methods. For example, if f(x) lies in a parametric fam-
ily (e.g., linear regression) then we can perform inference within this parametric
model. In a more general nonparametric setting, if f(x) is assumed to satisfy
some smoothness conditions, classical nonparametric methods such as nearest
neighbors will also yield guarantees on the accuracy of our estimate of f(x).
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However, the reported results will be invalid if the assumptions (the parametric
model, or the smoothness conditions) do not hold.

To address this concern, the recent field of distribution-free prediction consid-
ers the problem of providing valid predictive inference without any assumptions
on the data distribution. The aim of distribution-free prediction is formulated
as follows: given a training data set (X1, Y1), . . . , (Xn, Yn) ∈ Rd ×R, our task is

to construct a map Ĉn, mapping a new data point x ∈ Rd to an interval or set
Ĉn(x) ⊆ R, such that

P
(Xi,Yi)

iid∼P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α for all distributions P on Rd × R.

(1)

Here the probability is taken with respect to (Xi, Yi)
iid∼ P for i = 1, . . . , n+1 (the

training and test data are drawn from the same distribution P ). The bound is
required to hold uniformly over all distributions P , without constraining to, say,
distributions that satisfy some notion of smoothness. For example, the conformal
inference methodology (Vovk et al., 2005) provides an elegant framework for
distribution-free prediction, and can adapt to the favorable properties of the
underlying distribution to achieve asymptotically optimal prediction intervals
in certain settings (see, e.g., Lei and Wasserman, 2014; Lei et al., 2018).

Distribution-free prediction has also been studied in the context of a binary
response Y ∈ {0, 1}, where the output is a set Ĉn(Xn+1) ⊆ {0, 1} (or more
generally, in a setting with a finite set of possible labels) (Vovk et al., 2005; Lei,
2014; Sadinle et al., 2019). For a binary Y , the goal is to satisfy

P
(Xi,Yi)

iid∼P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α

for all distributions P on Rd × {0, 1}. (2)

For distributions P where the conditional probability πP (X) = PP {Y = 1 | X}
is typically close to either 0 or 1, given sufficient data the resulting distribution-
free predictive set Ĉn(Xn+1) can often be a singleton set, {0} or {1}. If the
labels are inherently noisy, however—that is, if πP (X) is typically bounded
away from both 0 and 1—then {0, 1} will often be the only possible set offering
guaranteed predictive coverage, even if we were to have oracle knowledge of the
distribution P . In other words, predictive coverage (whether distribution-free or
not) is not a meaningful target for binary regression problems with noisy labels;
we would like to estimate the label probability πP (X) directly, rather than try
to predict the inherently noisy label Y .

1.1. Summary of contributions

In this work, we ask whether the distribution-free framework can be extended
beyond the prediction task, in the binary regression setting. We will aim to
provide distribution-free inference on the conditional label probability πP (X) =
PP {Y = 1 | X}. We are particularly interested in scenarios where πP (X) is
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typically not close to either 0 or 1 and so meaningful predictive inference would
not be possible even if P were known. In this type of setting, is it nonetheless
possible to provide a nontrivial confidence interval for πP (X), and to ensure a
distribution-free guarantee of coverage?

Specifically, our goal is to investigate the feasibility of constructing an algo-
rithm that satisfies the following condition:

Definition 1. An algorithm Ĉn provides a (1− α)-distribution-free confidence
interval for binary regression if it holds that

P
(Xi,Yi)

iid∼P

{
πP (Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α

for all distributions P on Rd×{0, 1}. (3)

This notion of a valid distribution-free confidence interval was previously
studied by Vovk et al. (2005, Section 5.2), under the name “weakly valid prob-
ability estimators”.

Definition 1 requires a fairly weak form of coverage—we ask that cover-
age holds on average over the new feature vector Xn+1, rather than requiring

P

{
πP (x) ∈ Ĉn(x)

}
≥ 1−α to hold uniformly over all x ∈ Rd. Nonetheless, the

main results of our work establish that even this weak notion of distribution-free
coverage is fundamentally incompatible with the goal of precise inference; with
some caveats, the main message of our results is that the property (3) can only

be attained by algorithms Ĉn that return confidence intervals whose length does
not vanish with the sample size n. To make this more precise, our main results
are the following:

• Distribution-free confidence leads to distribution-free prediction.
In Theorem 1, we prove that any algorithm Ĉn satisfying (3) will inevitably
also yield a valid prediction interval for Yn+1, for any nonatomic distribu-
tion P , i.e., P has no point masses. This result is closely related to Vovk
et al. (2005, Proposition 5.1), where it is shown that Ĉn must include
the endpoints 0 and/or 1 with large probability. Intuitively, this implies
that, in a noisy setting where πP (X) is not typically close to 0 or 1, any

distribution-free confidence interval Ĉn(Xn+1) is likely to be quite wide
since it needs to reach one or both endpoints.

• A lower bound on the length of a distribution-free confidence
interval. In Theorem 2, we formalize the above intuition, establishing a
lower bound on the expected length of Ĉn(Xn+1) with an explicit function
of the distribution of πP (X) (again, for any nonatomic P ). Importantly,
this lower bound is independent of the sample size n. In other words,
for any fixed nonatomic distribution P , the length of our distribution-
free confidence intervals cannot go to zero even as n → ∞. This means
that distribution-free confidence intervals cannot be adaptive—by requir-
ing coverage to hold for all distributions P , we no longer have the pos-
sibility of providing precise confidence intervals for any distribution P ,
regardless of whether πP satisfies “nice” conditions such as smoothness.
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• A matching upper bound. In Theorem 3 we propose a concrete con-
struction for Ĉn(Xn+1) that satisfies the distribution-free coverage prop-
erty (3). In particular, Corollary 1 proves that the length of our proposed
algorithm is asymptotically equal to the lower bound established in The-
orem 2, for any distribution P where it is possible to estimate πP (X)
consistently as n → ∞.

1.1.1. Fixed vs. random intervals

In some cases, we may want to allow additional randomness in our construc-
tion (formally, we would define Ĉn as mapping a new feature vector x to a

distribution over subsets of R, and Ĉn(x) denotes a subset drawn from this dis-
tribution). In this case, the probability in statements such as (1), (2), and (3)
should be interpreted as being taken with respect to the distribution of the data

(Xi, Yi)
iid∼ P and the additional randomness in the construction of Ĉn(Xn+1).

From this point on, we will assume that probabilities and expectations are taken
on average over any randomness in the construction of the relevant prediction or
confidence interval, without further comment. In particular, all results proved
in this paper apply to both fixed and random intervals.

1.2. Related work

As mentioned above, the problem of valid distribution-free confidence intervals
was previously studied by Vovk et al. (2005, Section 5.2). In addition, this prob-
lem is closely related to two lines of work in the recent statistical literature—
nonparametric inference (specifically, confidence intervals for nonparametric re-
gression), and distribution-free prediction.

Nonparametric confidence intervals Suppose the response variable Y fol-
lows a model Y = f(X) + noise, where f(X) = E [Y | X] and where the noise
distribution is constrained (e.g., subgaussian with some bounded variance). In
this setting, we may assume that the true regression function f lies in some con-
strained class—for example, it may be constrained to be Lipschitz, or to have
a Lipschitz gradient (corresponding to a smoothness assumption with exponent
β = 1 or β = 2, respectively). There is a rich literature on the problems of es-
timating f(x), and providing inference (e.g., confidence bands) for f(x). If the
smoothness level β > 0 is known, then the problem is fairly straightforward—for
example, a k-nearest neighbors method with k ∼ n2β/(2β+d) yields the optimal
estimation error rate O(n−β/(2β+d)), ignoring log factors (and, correspondingly,
confidence intervals of this length) (Low, 1997; Györfi et al., 2006).

However, a key question of interest is that of adaptivity—if β is unknown but
is assumed to satisfy β ≥ β0 is it possible to construct confidence intervals that
are valid at smoothness level β0, but if applied to data with smoothness β > β0

would still achieve the optimal rate at that β? This question has been studied
extensively in the literature—see, e.g., Low (1997); Genovese and Wasserman



Is distribution-free inference possible for binary regression? 3491

(2008); Cai et al. (2014) and the references therein. It turns out that the question
of adaptivity is closely tied to how we choose to define coverage—if we require
coverage at a given point x0, i.e., a confidence interval for f(x0) at a fixed
x0, then adaptivity is impossible (Low, 1997), while relaxing to nearly-uniform
coverage (coverage of f(x) for “most” points x) allows for adaptivity up to
β ≤ 2β0 (Cai et al., 2014); a bootstrap based approach for nearly-uniform
coverage is studied also by Hall and Horowitz (2013). Adaptivity in the regime
β > 2β0 can be obtained by excluding certain regions of the function space—for
instance, under the assumption that the function f is either β-smooth, or is β0-
smooth and is sufficiently far from any β-smooth function, it becomes possible
to detect the correct smoothness level of f and construct the confidence band
accordingly. Results of this type are studied by Carpentier (2015); Szabó et al.
(2015); Picard and Tribouley (2000); Hoffmann and Nickl (2011); Giné and
Nickl (2010); Bull and Nickl (2013). (An overview of many of these results can
be found in Giné and Nickl, 2016, Section 8.3.)

A different relaxation of the coverage condition is coverage on average over
a random draw of X, studied by Wahba (1983), which is similar to the cover-
age condition (3) studied in this work. Genovese and Wasserman (2008) pro-
pose a different relaxation, providing confidence intervals guaranteed to cover a
“surrogate” of the function f (a smoothed version of the regression function).
A different notion of coverage is the “confidence ball”, guaranteeing a bound �2
error

∫
x
(f̂(x) − f(x))2 dx rather than providing pointwise confidence intervals

for f(x) at each x (see, e.g., Li, 1989; Cai and Low, 2006).

Distribution-free prediction The field of distribution-free prediction aims
to provide prediction intervals that are uniformly valid over all distributions,
without assuming some minimum level of smoothness as in the nonparametric
inference literature. As mentioned above, the conformal prediction framework
(Vovk et al., 2005) provides methodology for this aim. Alternative methods of-
fering distribution-free predictive guarantees include holdout set methods (also
known as “split” or “inductive” conformal prediction, see, e.g., Papadopoulos
et al., 2002; Vovk et al., 2005; Papadopoulos, 2008; Lei et al., 2018), and the
jackknife+ (Barber et al., 2019), a variant of the jackknife (i.e., leave-one-out
cross-validation). Lei and Wasserman (2014) establish that distribution-free pre-
diction is possible while (approximately) achieving the minimum possible length
prediction intervals for any “nice” (e.g., smooth) distribution P .

The work of Vovk (2012); Lei and Wasserman (2014); Barber et al. (2020)
study whether a stronger form of predictive coverage can be attained—namely,
distribution-free conditional coverage, aiming for a guarantee that holds point-

wise at (almost) every x, i.e., P

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1 = x
}

≥ 1 − α.

Distribution-free pointwise coverage is shown to be impossible for any finite-
length interval (Vovk, 2012; Lei and Wasserman, 2014). Barber et al. (2020)
study a weaker notion of conditional coverage, aiming to ensure

P

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1 ∈ X
}

≥ 1 − α for all sufficiently large subsets

X ∈ Rd, and prove lower bounds on the length of any resulting distribution-free
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interval. Some of the techniques in these lower bounds are related to the proof
techniques we use in the present work.

In the setting where the response Y is binary or takes finitely many val-
ues, as discussed earlier, Vovk et al. (2005); Lei (2014); Sadinle et al. (2019)
apply the conformal prediction framework to the problem of distribution-free
classification. If the goal is to estimate label probabilities (rather than output
a predictive set), an alternative notion of validity in the binary setting is cali-
bration, where for an estimate π̂(X) of the label probability πP (X), we require
P {Y = 1 | π̂(X)} = π̂(X). This framework is studied in the distribution-free
setting by Vovk and Petej (2014) via the methodology of Venn predictors, and
more recently by Gupta et al. (2020).

2. Main results: lower bounds

In this section, we will prove that a distribution-free confidence interval for
binary regression cannot provide precise inference about the parameter πP (X).
To do this, we first compare to the problem of predictive inference, and then
turn to proving lower bounds on the length of any distribution-free confidence
interval.

2.1. Confidence vs. prediction

Our first main result proves that, in the binary regression setting, any algorithm
providing distribution-free coverage of πP (X) must necessarily also cover the
binary label Y , for every distribution P that is nonatomic (i.e., zero probability
at any single point).

Theorem 1. Let Ĉn be any algorithm that provides a (1− α)-distribution-free

confidence interval for binary regression, as in (3). Then Ĉn also satisfies (1−α)

predictive coverage uniformly over all nonatomic distributions P . That is, Ĉn

satisfies

P
(Xi,Yi)

iid∼P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α

for all nonatomic distributions P on Rd×{0, 1}.

For example, consider a distribution P with a constant label probability,
πP (x) ≡ 0.5. Given a large sample size n, we might hope that our algorithm
would detect the simple nature of this distribution, and could output a nar-
row interval, Ĉn(Xn+1) = 0.5 ± o(1). However, Theorem 1 tells us that any

distribution-free confidence interval Ĉn must necessarily include both endpoints
0 and 1 with substantial probability. In particular, this example suggests that,
unless πP (X) is usually close to 0 or 1, any distribution-free confidence interval

Ĉn is unlikely to be precise (i.e., Ĉn(Xn+1) is unlikely to be a short interval).
In Theorem 2 below, we will formalize this intuition by finding a lower bound
on the expected length of Ĉn(Xn+1).
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We note that Theorem 1 is closely related to a result of Vovk et al. (2005,
Proposition 5.1) (see also Nouretdinov et al. (2001, Theorem 7, Corollary 18) for

an earlier related result). Their work establishes that if Ĉn provides a (1− α)-
distribution-free confidence interval for binary regression (3), then there exists
some other algorithm C̃n, also satisfying the property (3), such that

P

{
Ĉn(Xn+1) ⊆ (0, 1)

}
≤ P

{
C̃n(Xn+1) = ∅

}
.

Clearly this last quantity cannot be larger than α (since this would immediately
contradict the coverage property (3)), and so this result, like Theorem 1 above,

indicates that Ĉn(Xn+1) must often include endpoints 0 and/or 1. While Vovk
et al. (2005)’s result appears different from the conclusion of Theorem 1 above,
the construction in their proof in fact suffices to prove Theorem 1 as well.

2.1.1. A key lemma

Rather than proving Theorem 1 directly, we will instead generalize to a more
powerful result:

Lemma 1. Let Ĉn be any algorithm that provides a (1 − α)-distribution-free
confidence interval for binary regression (3). Let P be any nonatomic distribu-
tion on (X,Y ) ∈ Rd × {0, 1}. Then for data points (Xi, Yi) drawn i.i.d. from P
and any random variable Zn+1 ∈ [0, 1] satisfying

Zn+1 ⊥⊥ Ĉn(Xn+1) | Xn+1 and E [Zn+1 | Xn+1] = πP (Xn+1) almost surely,

it holds that
P

{
Zn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α.

(Proofs for this lemma and all subsequent theoretical results are deferred to
the Appendix.)

With this lemma in place, Theorem 1 follows immediately—namely, defining
Zn+1 = Yn+1, we have proved the theorem. The lemma is substantially more
general, however, and we will need its full generality in order to prove our lower
bounds on the length of Ĉn(Xn+1) below.

2.2. A lower bound on length

Next, we will establish bounds on the length of a distribution-free confidence
interval for binary regression. We begin with a few definitions. First, for t ∈ [0, 12 ]
and a ∈ [0, 1], we define

�(t, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(1− a)t, a ≥ 1

2 ,
t
2a , a ≥ t and 0 < a < 1

2 ,

1− a
2t , a < t,

0, a = t = 0,
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Fig 1. Illustration of the function �(t, a). The dots indicate the points where the function
switches between the three cases in its definition (i.e., a = 1

2
and a = min{t, 1− t}).

and for t ∈ ( 12 , 1] let �(t, a) = �(1 − t, a). The function �(t, a) is illustrated in
Figure 1. To understand the role of this function in our work, we begin with the
following lemma:

Lemma 2. For any t, a ∈ [0, 1], define

Ft,a =

{
Measurable functions f : [0, 1] → [0, 1] satisfying

E [f(Z)] ≥ 1− a for any random variable Z ∈ [0, 1] with E [Z] = t

}
.

Then it holds that

�(t, a) = inf
f∈Ft,a

{∫ 1

s=0

f(s) ds

}
.

Next, for any distribution Q on [0, 1] and any α ∈ [0, 1], define

Lα(Q) = inf
Measurable fns.
a:[0,1]→[0,1]

{
ET∼Q [�(T, a(T ))] : ET∼Q [a(T )] ≤ α

}
.

In the following theorem, we will see that this function allows us to explic-
itly characterize lower and upper bounds for the length of any distribution-free
confidence interval.

Theorem 2. Let Ĉn be any algorithm that provides a (1− α)-distribution-free
confidence interval for binary regression (3). Then for any nonatomic distribu-
tion P on Rd × {0, 1}, it holds that

E
(Xi,Yi)

iid∼P

[
leb(Ĉn(Xn+1))

]
≥ Lα(ΠP ),

where ΠP is the distribution of the random variable πP (X) ∈ [0, 1].

Here leb() denotes the Lebegue measure on R.
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2.2.1. Proof sketch for Theorem 2

First, for intuition, we can consider a simple case where ΠP = δt, a point mass at
some t ∈ [0, 1]—that is, the label probability is constant, with πP (x) = t for all x.

Define a function f : [0, 1] → [0, 1] as f(s) = P
(Xi,Yi)

iid∼P

{
s ∈ Ĉn(Xn+1)

}
. By

Lemma 1, for any random variable Z ∈ [0, 1] with E [Z] = t drawn independently
of the data, it holds that

1− α ≤ P

{
Z ∈ Ĉn(Xn+1)

}
= E

[
P

{
Z ∈ Ĉn(Xn+1)

∣∣∣ Z}] = E [f(Z)] .

Applying Lemma 2, we therefore have

�(t, α) ≤
∫ 1

s=0

f(s) ds =

∫ 1

s=0

P
(Xi,Yi)

iid∼P

{
s ∈ Ĉn(Xn+1)

}
ds

= E
(Xi,Yi)

iid∼P

[∫ 1

s=0

1
{
s ∈ Ĉn(Xn+1)

}
ds

]
= E

[
leb(Ĉn(Xn+1))

]
,

by Fubini’s theorem. We can also verify that L(ΠP ) = L(δt) = �(t, α), complet-
ing the proof for this simple case.

Now, in general, πP (x) will not be a constant. Consider any distribution-free

confidence interval Ĉn, and let aP (t) be the noncoverage rate over test points
Xn+1 conditional on πP (Xn+1) = t, for a particular distribution P :

aP (t) = P
(Xi,Yi)

iid∼P

{
πP (Xn+1) �∈ Ĉn(Xn+1)

∣∣∣ πP (Xn+1) = t
}
.

We must therefore have ET∼ΠP
[aP (T )] ≤ α, in order to achieve at least 1 − α

coverage. By comparing to the constant-probability case, informally we can see

that �(t, aP (t)) must be a lower bound on E

[
leb(Ĉn(Xn+1))

∣∣∣ πP (Xn+1) = t
]
.

Therefore, marginalizing over πP (Xn+1), we see that E
[
leb(Ĉn(Xn+1))

]
is lower

bounded by ET∼ΠP
[�(T, aP (T ))], which is ≥ Lα(ΠP ) by definition. The full

details of this proof are deferred to the Appendix.

2.2.2. Interpreting the lower bound

As mentioned in the proof sketch above, we have seen that

If πP (X) = t almost surely, then Lα(ΠP ) = �(t, α),

giving us an exact expression for the lower bound on length in the case where
the label probability is constant.

More generally, we can verify that, for any t ∈ [0, 12 ],

If πP (X) ∈ [t, 1− t] almost surely, then Lα(ΠP ) ≥ �(t, α).
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(This bound holds because, for any s ∈ [t, 1 − t], we have �(s, a) ≥ �(t, a) for
all a; examining the definition of Lα leads immediately to this lower bound.)
This inequality means that, if πP (X) is bounded away from 0 and 1, then there
is a fundamental lower bound on the length of any distribution-free confidence
interval regardless of the sample size n, since the lower bound �(t, α) > 0 does
not depend on n. In other words, an infinite sample size does not lead to infinite
precision.

2.2.3. Comparison to existing results in predictive inference

Vovk et al. (2005, Section 3.4) study distribution-free prediction in a setting
where the label Y takes values in a finite set Y , with binary labels Y ∈ {0, 1}
as a special case. Their results (specifically, see Vovk et al., 2005, Proposi-
tions 3.3–3.5) characterize the minimum possible expected cardinality of any
distribution-free predictive set in terms of the “predictability” of Y given X—
in the special case of a binary label, this translates to studying the distribution
ΠP of πP (X). However, the two problems (predictive subsets of {0, 1} versus
confidence intervals that are subsets of [0, 1]) are very different in nature, and
their results are not directly related to the map Lα(ΠP ) derived in our work.

3. Main results: upper bounds

We will next investigate whether the lower bound on confidence interval length,
proved in Theorem 2, can in fact be achieved by a distribution-free method. In
order to be able to construct confidence intervals based on a finite sample, we
will work in a setting where we approximate P via a partition.

We begin by defining some notation. First suppose we are given a predefined
partition Rd = X1 ∪ · · · ∪ XM . (Later on, for a distribution-free algorithm, we
will allow the partition to be chosen as a function of the data.) For each x ∈ Rd,
we define m(x) to be the index of the region containing x, i.e., Xm(x) � x. For
each m, we define

pP,m = PPX
{X ∈ Xm} ,

the probability of X lying in the mth region, and

πP,m = EPX
[πP (X) | X ∈ Xm] = PP {Y = 1 | X ∈ Xm} ,

the average label probability within the mth region.
We will consider confidence intervals that pool data within each region—in

particular, we will construct a confidence interval Ĉn(Xn+1) that depends on
Xn+1 only through m(Xn+1). As a result, it is clear that we will only be able
to produce a precise confidence interval if πP (x) is approximately constant over
x ∈ Xm, for each m. To capture this notion, we define the “blur” of the partition
X1:M = {Xm}m=1,...,M as

ΔP (X1:M ) = EPX

[
|πP (X)− πP,m(X)|

]
.
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In other words, ΔP (X1:M ) will be low if the partition is highly informative,
separating Rd into regions where πP (x) is nearly constant. For example, if we
have access to a good estimate of the function πP (x), we can partition Rd by
clustering together points with similar estimated probabilities. Of course, the
blur ΔP (X1:M ) cannot in general be small unless we choose M to be large. We
will discuss this tradeoff later on.

3.1. An oracle algorithm

In order to motivate our distribution-free construction, we begin with a simpler
problem. Suppose that we are given a fixed partition Rd = X1 ∪ · · · ∪ XM , and
are given oracle knowledge of the probabilities pP,m and πP,m defined above.
What is the best possible interval length that can be obtained using this oracle
knowledge?

As for the lower bound, let us begin by examining the function �(t, a). For
any t, a ∈ [0, 1], define a function ft,a : [0, 1] → [0, 1] as follows. If t ∈ [0, 1

2 ],
define

ft,a(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− a) · 1s=0, if t = 0,

(1− a), if t = 1
2 ,

2(1− a) ·max{1− s
2t , 0}, if 0 < t < 1

2 and a ≥ 1
2 ,

max{1− as
t , 0}, if 0 < t < 1

2 and a < 1
2 ,

(4)

and for t ∈ ( 12 , 1] define ft,a(s) = f1−t,a(1−s). In the proof of Lemma 2, we will

establish that ft,a satisfies
∫ 1

s=0
ft,a(s) ds = �(t, a), and that E [ft,a(Z)] ≥ 1− a

for any Z with E [Z] = t. In other words, the function ft,a attains the infimum
in the statement of that lemma.

Next we will leverage this function to construct a confidence interval using the
given partition. Fix any t = (t1, . . . , tM ) ∈ [0, 1]M and any a = (a1, . . . , aM ) ∈
[0, 1]M . Given a test point x ∈ Rd, we first draw an independent random variable
U ∼ Unif[0, 1], and then define

Ct,a(x) =
{
s ∈ [0, 1] : ftm(x),am(x)

(s) ≥ U
}
. (5)

The following lemma examines the length and coverage properties of this con-
struction:

Lemma 3. Consider a fixed partition Rd = X1 ∪ · · · ∪ XM , and a fixed t =
(t1, . . . , tM ) ∈ [0, 1]M and a = (a1, . . . , aM ) ∈ [0, 1]M . Then for any distribution
P on (X,Y ) ∈ Rd × {0, 1},

EPX
[leb(Ct,a(X))] =

M∑
m=1

pP,m�(tm, am).

If additionally it holds that

For all m, either 0 ≤ πP,m ≤ tm ≤ 1

2
or

1

2
≤ tm ≤ πP,m ≤ 1, (6)
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then

PPX
{πP (X) ∈ Ct,a(X)} ≥ 1−

M∑
m=1

pP,mam.

(Note that Ct,a(X) is a randomized interval, and so the probability and ex-
pectation are taken with respect to the data point X ∼ PX and the independent
random variable U ∼ Unif[0, 1] used in the construction of Ct,a(X).)

Next, we define the oracle confidence interval. Suppose we are given oracle
knowledge of the pP,m’s and πP,m’s. Define

a∗P = (a∗P,1, . . . , a
∗
P,M )∈ argmin

a1,...,aM∈[0,1]

{
M∑

m=1

pP,m�(πP,m, am) :

M∑
m=1

pP,mam ≤ α

}
.

(7)
(This is a convex optimization problem, since �(t, a) is convex in a.) Given a
test point x ∈ Rd, we define the oracle interval as

C∗
P (x) = CπP ,a∗

P
(x), (8)

where we write πP = (πP,1, . . . , πP,M ). To understand this oracle interval, by

the results of Lemma 3, we can observe that the constraint
∑M

m=1 pP,mam ≤ α
ensures 1 − α coverage for the distribution P , while minimizing∑M

m=1 pP,m�(πP,m, am) ensures the lowest possible length under this coverage
constraint.

Our next result shows that if the blur ΔP (X1:M ) of the partition is low, then
the expected length of C∗

P is close to the distribution-free lower bound Lα(ΠP ).

Lemma 4. The oracle interval C∗
P constructed in (8) satisfies

PPX
{πP (X) ∈ C∗

P } ≥ 1− α

and

EPX
[leb(C∗

P (X))] ≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
.

Of course, C∗
P is not a distribution-free confidence interval—its coverage is

guaranteed for a specific distribution P (not uniformly over all P ), with the
assumption that we have information about the distribution—namely, the pP,m’s
and πP,m’s. We next extend this construction into the distribution-free setting
by using the training sample to estimate these quantities.

3.2. A distribution-free algorithm

We are now ready to present our distribution-free algorithm. For now, assume
again that we are given a fixed partition Rd = X1 ∪ · · · ∪ XM (we will allow
for a data-dependent partition later on). After observing a sample (X1, Y1), . . . ,
(Xn, Yn) ∈ Rd × {0, 1}, we first estimate the probability pP,m in each region,

p̂m =

∑n
i=1 1 {Xi ∈ Xm}

n
,
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and estimate the corresponding label probability πP,m,

π̂m =

∑n
i=1 1 {Xi ∈ Xm, Yi = 1}

np̂m
,

or set π̂m = 1
2 if p̂m = 0. In order to ensure distribution-free coverage we will

need to work with slightly more conservative estimates. Let

p̃m = p̂m +

√
p̂m · 3 log(4Mn/α)

n
+

3 log(4Mn/α)

n
, (9)

which is chosen to ensure that pm ≤ p̃m with high probability, and let

π̃m =

⎧⎪⎪⎨⎪⎪⎩
min

{
1
2 , π̂m +

√
π̂m · 2 log(4Mn/α)

np̂m
+ 2 log(4Mn/α)

np̂m

}
, if π̂m ≤ 1

2 ,

max

{
1
2 , π̂m −

√
(1− π̂m) · 2 log(4Mn/α)

np̂m
− 2 log(4Mn/α)

np̂m

}
, if π̂m > 1

2 .

(10)
This definition of π̃m is designed to pull the estimate π̂m closer to 1

2 (since 1
2

is the most challenging label probability for coverage, this is therefore a more
conservative estimate of πP,m).

From this point on, we use the same construction (5) as for the “oracle”
interval C∗

P above, but with the conservative empirical estimates p̃m and π̃m in
place of the unknown true quantities pP,m and πP,m. Define

ã = (ã1, . . . , ãM ) ∈ argmin
a1,...,aM∈[0,1]

{
M∑

m=1

p̃m�(π̃m, am) :

M∑
m=1

p̃mam ≤ α

}
, (11)

and define
Ĉn(Xn+1) = Cπ̃,ã(Xn+1), (12)

where we write π̃ = (π̃1, . . . , π̃M ).
We now prove that this construction offers a distribution-free confidence in-

terval, and establish an upper bound on its expected length.

Theorem 3. Let n ≥ 2. The confidence interval Ĉn constructed in (12) pro-
vides a (1 − α)-distribution-free confidence interval for binary regression (3).

Furthermore, for all distributions P on Rd × {0, 1}, the confidence interval Ĉn

satisfies

E
(Xi,Yi)

iid∼P

[
leb(Ĉn(Xn+1))

]
≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
+ c

√
M logn

αn
,

where c is a universal constant.

Comparing to the upper bound calculated in Lemma 4 for the oracle con-

fidence interval C∗
P , the only additional term is c

√
M logn

αn , which is vanishing

with n → ∞ as long as the partition size M is sufficiently small relative to the
sample size n.
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3.2.1. Sample splitting for a data-dependent partition

Thus far we have assumed that the partition Rd = X1 ∪ · · · ∪ XM is fixed (and
has low blur ΔP (X1:M ), in order for the upper bound to be meaningful). Of
course, in practice, the partition itself would need to be constructed using the
data. To do so, we follow a sample splitting strategy. We will use the first half
of the training data to estimate the function πP (x) and define the partition

accordingly, and the second half of the training data to construct Ĉn based on
this partition. Our construction can be paired with any regression algorithm R
that maps a training data set of size n to an estimate π̂R

n (x) of the function
πP (x)—for example, we might take R to be logistic regression or k-nearest
neighbors. We define the expected error of this regression algorithm as:

Δn,P (R) = E
[∣∣π̂R

n (Xn+1)− πP (Xn+1)
∣∣] ,

where the expected value is taken over (X1, Y1), . . . , (Xn, Yn)
iid∼ P and an inde-

pendent test point Xn+1 ∼ PX . We mention a few special cases:

• In a well-specified parametric model (e.g., Y |X follows a logistic model),

we typically have Δn,P (R) ∼
√

d
n in a low-dimensional (d < n) setting,

or Δn,P (R) ∼
√

k log d
n in a high-dimensional sparse setting, e.g., running

�1-penalized logistic regression when the true model is k-sparse (Negahban
et al., 2012).

• In a nonparametric setting, if x �→ πP (x) is assumed to be Lipschitz contin-
uous, a k-nearest neighbors (k-NN) method yields Δn,P (R) ∼ n−1/(2+d),
or Δn,P (R) ∼ n−2/(4+d) if we make the stronger assumption that x �→
πP (x) is smooth (see, e.g., Györfi et al., 2006). In the special case where
the data is supported on a d0-dimensional manifold in Rd for some d0 < d,
then the bound may hold with d0 in place of d for a faster convergence
rate (see, e.g., Jiang, 2019 for finite sample results).

Now we split the sample to construct our distribution-free confidence interval.
First, define π̂R

�n
2 �, fitted on data points i = 1, . . . , �n

2 �. Fix M = �
√

n/ logn�,
and define

X̂R
1 =

{
x ∈ Rd : 0 ≤ π̂R

�n
2 �(x) <

1

M

}
, . . . ,

X̂R
M =

{
x ∈ Rd :

M − 1

M
≤ π̂R

�n
2 �(x) ≤ 1

}
.

With this partition in place, we then define Ĉn exactly as before, except that we
restrict our sample to the remaining data points i = �n

2 �+1, . . . , n. Specifically,
let

p̂m =

∑n
i=�n

2 �+1 1
{
Xi ∈ X̂R

m

}
�n
2 �

and π̂m =

∑n
i=�n

2 �+1 1
{
Xi ∈ X̂R

m , Yi = 1
}

�n
2 �p̂m

,
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or set π̂m = 1
2 if p̂m = 0. Define the p̃m’s and π̃m’s exactly as in (9) and (10)

except with �n
2 � in place of n. We then define ã as in (11) before and set

ĈR
n (Xn+1) = Cπ̃,ã(Xn+1). (13)

Corollary 1. Let n ≥ 3. The interval ĈR
n constructed via data splitting with re-

gression algorithm R (13) provides a (1−α)-distribution-free confidence interval
for binary regression (3). Furthermore, for all distributions P on Rd × {0, 1},
ĈR

n satisfies

E
(Xi,Yi)

iid∼P

[
leb(ĈR

n (Xn+1))
]
≤ Lα(ΠP ) + 2

√
Δ�n

2 �,P (R)

α
+

c′√
α

4

√
log n

n
,

where c′ is a universal constant.

This corollary will follow directly from Theorem 3 by observing that, due

to the construction of the random partition X̂R
1:M , we have E

[
ΔP (X̂R

1:M )
]
≤

2Δ�n
2 �,P (R) + 1

M .

4. Discussion

The lower bounds established in this paper prove that, in the distribution-free
setting, parameter estimation is fundamentally as imprecise as prediction, and
confidence intervals for estimating the label probabilities πP (X)=P {Y =1 | X}
have a lower bound on their length that does not vanish even with sample
size n → ∞. Unlike the classical literature where these types of results are
established for pointwise coverage (i.e., coverage of πP (x) for all x), our new
results prove this fundamental lower bound holds even when we require coverage
to hold only on average over a new point X drawn from the distribution, and
we provide an exact calculation of the minimum possible length. These lower
bounds imply that, if we wish to maintain the versatility of the distribution-free
setting (i.e., avoiding smoothness assumptions), we can only obtain meaningful
confidence intervals by substantially relaxing our notion of coverage. In future
work, we hope to examine alternatives—for instance, coverage of a surrogate
function approximating πP (X), as in the work of Genovese and Wasserman
(2008) for confidence bands in nonparametric regression.

We may also ask whether the results here, proved in the setting of binary
regression where Y ∈ {0, 1}, may be extended to a more general regression
setting—that is, whether it is possible to estimate μP (X) = E [Y | X] under
a joint distribution P over (X,Y ) ∈ Rd × R. An initial exploration suggests
that such an extension would not be straightforward. Specifically, if Y is un-
bounded, then confidence intervals for μP (X) must necessarily have infinite
expected length. To see why, consider a contamination model, where, after draw-
ing (X,Y ) ∼ P , with probability εn we replace Y with a corrupted value cn. If
we choose εn � n−1, we cannot distinguish between P and this contaminated
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model P ′ on a sample of size n—this means that Ĉn(Xn+1) must cover the mean
whether the distribution is P or P ′. But, by choosing cn so that cnεn → ∞,
the means μP (X) and μP ′(X) are arbitrarily far apart, leading to arbitrarily

large length of Ĉn(Xn+1). Therefore we cannot obtain nontrivial results for un-
bounded Y . If we instead assume that Y is bounded, on the other hand, then
the lower bounds established for the binary case no longer apply (for example,
if Y = 0.5 almost surely, a distribution-free confidence interval could potentially
have vanishing length even if it is constructed only assuming Y ∈ [0, 1]). It is
therefore not clear whether there are settings for the general regression problem
where we may obtain meaningful upper and lower bounds for distribution-free
confidence intervals on the conditional mean μP (X), and we leave these ques-
tions for future work.

Appendix A: Additional proofs: lower bounds

A.1. Proof of Lemma 1

The proof of this lemma follows a similar strategy as in Barber et al. (2020,
Lemma 3), and is a generalization of the construction used in the proof of Vovk
et al. (2005, Proposition 5.1). First we embed the variables in the lemma into a
distribution on triples (X,Y, Z). Writing P̃X,Z to denote the joint distribution

of (Xn+1, Zn+1), we define P̃ as follows:{
(X,Z) ∼ P̃X,Z ,

Y |X,Z ∼ Bernoulli(Z).

Note that, marginalizing over Z, the pair (X,Y ) follows distribution P . In other
words, the joint distribution of

(X1, Y1), . . . , (Xn, Yn), Xn+1, Zn+1

under the model (Xi, Yi, Zi)
iid∼ P̃ , matches the distribution specified in the

lemma. Therefore, it is equivalent to prove the bound

P
(Xi,Yi,Zi)

iid∼ P̃

{
Zn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α. (14)

Next fix any integer M ≥ n + 1, and let (X(m), Z(m))
iid∼ P̃X,Z for m =

1, . . . ,M . Let L specify this sequence of M pairs. Next, fixing L, we draw
{(Xi, Yi, Zi)}i=1,...,n+1 as follows:⎧⎪⎨⎪⎩

Sample m1, . . . ,mn+1 uniformly without replacement from {1, . . . ,M},
Set (Xi, Zi) = (X(mi), Z(mi)) for each i = 1, . . . , n+ 1,

Draw Yi ∼ Bernoulli(Zi) for each i = 1, . . . , n+ 1.

(15)
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Then clearly, after marginalizing over L, the triples (Xi, Yi, Zi) are drawn i.i.d.
from P̃ . In other words,

P
(Xi,Yi,Zi)

iid∼ P̃

{
Zn+1 ∈ Ĉn(Xn+1)

}
= EL

[
PDistrib. (15)

{
Zn+1 ∈ Ĉn(Xn+1)

∣∣∣ L}] . (16)

Now consider any sequence L = {(X(m), Z(m))}m=1,...,M , and let QL be the
distribution on (X,Y, Z) defined by sampling (X,Z) uniformly at random from

L, then drawing Y ∼ Bernoulli(Z). We can consider drawing (Xi, Yi, Zi)
iid∼ QL

for i = 1, . . . , n+ 1, which is equivalent to⎧⎪⎨⎪⎩
Sample m1, . . . ,mn+1 uniformly with replacement from {1, . . . ,M},
Set (Xi, Zi) = (X(mi), Z(mi)) for each i = 1, . . . , n+ 1,

Draw Yi ∼ Bernoulli(Zi) for each i = 1, . . . , n+ 1.

(17)
A simple calculation shows that, whenm1, . . . ,mn+1 are sampled uniformly with
replacement from {1, . . . ,M}, the probability of the event {mi = mj for any
i �= j} is bounded by n2/M . Therefore, for any fixed L, the total variation
distance between the two sampling schemes (15) and (17) is at most n2/M , and
so

PDistrib. (15)

{
Zn+1 ∈ Ĉn(Xn+1)

∣∣∣ L}
≥ P

(Xi,Yi,Zi)
iid∼QL

{
Zn+1 ∈ Ĉn(Xn+1)

∣∣∣ L}− n2

M
. (18)

Next we calculate πQL(x), i.e., the label probability under QL. If
X(1), . . . , X(M) are all distinct for this L, then by definition of QL, we can see
that πQL(X

(m)) = Z(m) for each m = 1, . . . ,M . (In particular, we can observe
that the probability function πQL corresponding to this distribution QL may
in general be highly nonsmooth even if πP is smooth—we have |πQL(X

(m)) −
πQL(X

(m′))| = |Z(m) − Z(m′)|, which may be O(1) even if |X(m) − X(m′)| is
arbitrarily small.) Therefore,

P
(Xi,Yi,Zi)

iid∼QL

{
Zn+1 ∈ Ĉn(Xn+1)

∣∣∣ L}
= P

(Xi,Yi,Zi)
iid∼QL

{
πQL(Xn+1) ∈ Ĉn(Xn+1)

∣∣∣ L} ≥ 1− α,

where the last step holds since Ĉn is assumed to be an algorithm that provides
a (1 − α)-distribution-free confidence interval for any distribution (3), and in
particular must provide coverage under QL. In other words, for any L, we have
proved that

P
(Xi,Yi,Zi)

iid∼QL

{
Zn+1 ∈ Ĉn(Xn+1)

∣∣∣ L}
≥ (1− α) · 1

{
X(1), . . . , X(M) are distinct

}
.
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Combining this bound with (16) and (18) establishes that

P
(Xi,Yi,Zi)

iid∼ P̃

{
Zn+1 ∈ Ĉn(Xn+1)

}
≥ (1− α) · P

{
X(1), . . . , X(M) are distinct

}
− n2

M
.

Since P is assumed to be nonatomic, the marginal PX is nonatomic as well, and
so the X(m)’s are distinct with probability 1. Therefore,

P
(Xi,Yi,Zi)

iid∼ P̃

{
Zn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α− n2

M
.

Finally, since M can be taken to be arbitrarily large, this establishes the desired
bound (14), and thus completes the proof of the lemma.

A.2. Proof of Lemma 2

We will prove a stronger form of Lemma 2. We define a set of distributions on
[0, 1], Q = Q(0)∪Q(1), where each distribution is a mixture of a point mass and
a uniform distribution:

Q(0) = {pδ0 + (1− p)Unif[0, c] : p, c ∈ [0, 1]},
Q(1) = {pδ1 + (1− p)Unif[c, 1] : p, c ∈ [0, 1]}.

(19)

Lemma 5. For any t, a ∈ [0, 1], define

F+
t,a =

⎧⎪⎨⎪⎩
Measurable functions f : [0, 1] → [0, 1] satisfying

E [f(Z)] ≥ 1− a for any random variable Z ∈ [0, 1] such that

either 0 ≤ E [Z] ≤ t ≤ 1

2
or

1

2
≤ t ≤ E [Z] ≤ 1

⎫⎪⎬⎪⎭
and

F∗
t,a =

{
Measurable functions f : [0, 1] → [0, 1] satisfying

EQ [f(Z)] ≥ 1− a for any distribution Q ∈ Q with EQ [Z] = t

}
,

and let Ft,a be defined as in the statement of Lemma 2. Then it holds that

�(t, a)= inf
f∈F+

t,a

{∫ 1

s=0

f(s) ds

}
= inf

f∈Ft,a

{∫ 1

s=0

f(s) ds

}
= inf

f∈F∗
t,a

{∫ 1

s=0

f(s) ds

}
.

Proof of Lemma 5. Since F+
t,a ⊆ Ft,a ⊆ F∗

t,a, it clearly holds that

inf
f∈F+

t,a

{∫ 1

s=0

f(s) ds

}
≥ inf

f∈Ft,a

{∫ 1

s=0

f(s) ds

}
≥ inf

f∈F∗
t,a

{∫ 1

s=0

f(s) ds

}
.
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We now need to prove two remaining inequalities to establish the lemma:

inf
f∈F∗

t,a

{∫ 1

s=0

f(s) ds

}
≥ �(t, a) (20)

and

inf
f∈F+

t,a

{∫ 1

s=0

f(s) ds

}
≤ �(t, a). (21)

First we prove (20). Fix any t, a ∈ [0, 1] and any f ∈ F∗
t,a. We split into cases:

• If t = 0, then �(t, a) = 0, and the bound holds trivially.
• If 0 < t ≤ 1

2 ≤ a, let Q = Unif[0, 2t]. Then Q ∈ Q with EQ [Z] = t, and so
we have∫ 1

s=0

f(s) ds ≥ 2t ·
∫ 2t

s=0

1

2t
· f(s) ds = 2t · EQ [f(Z)] ≥ 2t(1− a) = �(t, a).

• If 0 < t ≤ a < 1
2 , let Q = (1− 2a) · δ0 + 2a · Unif[0, t

a ]. Then Q ∈ Q with
EQ [Z] = t, and so we have∫ 1

s=0

f(s) ds ≥ t

2a2
· 2a ·

∫ t/a

s=0

a

t
· f(s) ds

≥ t

2a2
·
(
2a ·
∫ t/a

s=0

a

t
· f(s) ds+ (1− 2a) · f(0)− (1− 2a)

)

=
t

2a2
(EQ [f(Z)]− (1− 2a))

≥ t

2a2
((1− a)− (1− 2a)) =

t

2a
= �(t, a).

• If 0 ≤ a < t ≤ 1
2 , let Q = (1 − 2t) · δ0 + 2t · Unif[0, 1]. Then Q ∈ Q with

EQ [Z] = t, and so we have∫ 1

s=0

f(s) ds =
1

2t
· 2t ·

∫ 1

s=0

f(s) ds

≥ 1

2t
·
(
2t ·
∫ 1

s=0

f(s) ds+ (1− 2t) · f(0)− (1− 2t)

)
=

1

2t
· (EQ [f(Z)]− (1− 2t))

≥ 1

2t
· ((1− a)− (1− 2t)) = 1− a

2t
= �(t, a).

• By symmetry, the analogous calculations hold if t > 1
2 .

Therefore
∫ 1

s=0
f(s) ds ≥ �(t, a) in all cases, which completes the proof of (20).

Next we turn to (21). For any t, a ∈ [0, 1], define the function ft,a : [0, 1] →
[0, 1] as in (4). We first verify that∫ 1

s=0

ft,a(s) ds = �(t, a). (22)
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We split into cases:

• If t = 0 then
∫ 1

s=0
ft,a(s) ds = 0 = �(t, a).

• If t = 1
2 then

∫ 1

s=0
ft,a(s) ds = 1− a = �(t, a).

• If 0 < t < 1
2 and a ≥ 1

2 , then∫ 1

s=0

ft,a(s) ds = 2(1− a)

∫ 2t

s=0

1− s

2t
ds = 2(1− a)t = �(t, a).

• If 0 < t ≤ a < 1
2 , then∫ 1

s=0

ft,a(s) ds =

∫ t/a

s=0

1− as

t
ds =

t

2a
= �(t, a).

• If 0 ≤ a < t < 1
2 , then∫ 1

s=0

ft,a(s) ds =

∫ 1

s=0

1− as

t
ds = 1− a

2t
= �(t, a).

• By symmetry, the analogous calculations hold if t > 1
2 .

Therefore we have established that (22) holds in all cases. Next we check that
ft,a ∈ F+

t,a. Let Z ∈ [0, 1] be any random variable satisfying either 0 ≤ E [Z] ≤
t ≤ 1

2 or 1
2 ≤ t ≤ E [Z] ≤ 1. We again split into cases.

• If t = 0 then E [Z] = 0 and so Z = 0 with probability 1. Then E [ft,a(Z)] =
f0,a(0) = 1− a.

• If t = 1
2 then ft,a(Z) = f 1

2 ,a
(Z) = 1−a almost surely, and so E [ft,a(Z)] =

1− a.
• If 0 < t < 1

2 and a ≥ 1
2 , then E [Z] ≤ t and so

E [ft,a(Z)] = 2(1−a)·E
[
max

{
1− Z

2t
, 0

}]
≥ 2(1−a)·

(
1− E [Z]

2t

)
≥ 1−a.

• If 0 < t < 1
2 and a < 1

2 , then E [Z] ≤ t and so

E [ft,a(Z)] = E

[
max

{
1− aZ

t
, 0

}]
≥ 1− aE [Z]

t
≥ 1− a.

• By symmetry, the analogous calculations hold if t > 1
2 .

Therefore, the bound E [ft,a(Z)] ≥ 1− a holds in all cases, and so ft,a ∈ F+
t,a by

definition. Therefore,

inf
f∈F+

t,a

{∫ 1

s=0

f(s) ds

}
≤
∫ 1

s=0

ft,a(s) ds = �(t, a),

and so (21) holds.
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A.3. Proof of Theorem 2

Recall the set of distributions Q defined in (19). Define a function g : [0, 1] ×
[0, 1] → [0, 1] as

g(t, z) = P

{
z �∈ Ĉn(Xn+1)

∣∣∣ πP (Xn+1) = t
}
,

and define another function h : [0, 1]×Q → [0, 1] as

h(t, Q) = EQ [g(t, Z)] .

For each t ∈ [0, 1], let Qt = {Q ∈ Q : EQ [Z] = t}. By Aliprantis and Border
(2006, Theorem 18.19), the function

t �→ a(t) := sup
Q∈Qt

h(t, Q)

is measurable, and furthermore there exists a measurable function t �→ Qt ∈ Qt

such that
h(t, Qt) = a(t) = sup

Q∈Qt

h(t, Q)

for all t ∈ [0, 1], as long as we verify the following conditions:

• Q is a separable metrizable space. To verify this condition, we will use the
total variation distance as our metric on Q. Define

Q(0)
∗ = {pδ0 + (1− p)Unif[0, c] : p, c ∈ [0, 1] ∩Q},

Q(1)
∗ = {pδ1 + (1− p)Unif[c, 1] : p, c ∈ [0, 1] ∩Q}.

where Q is the set of rational numbers. Then Q(0)
∗ ∪Q(1)

∗ is a countable set,
and is a dense subset of Q (under the total variation distance). Therefore,
Q is separable.

• Qt is compact for all t. To prove this, first consider the case t ≤ 1
2 . If t = 0

then Qt ∩ Q(0) = {δ0}, and is trivially compact. Now consider 0 < t ≤ 1
2 .

Writing Qp,c = pδ0 + (1− p)Unif[0, c], fix any Qp,c, Qp′,c′ ∈ Qt ∩Q(0). We
must have c, c′ ≥ 2t and p, p′ ≤ 1− 2t in order to obtain expected value t,
and we can calculate that this implies

|p− p′|+ 2t|c− c′| ≤ dTV(Qp,c, Qp′,c′) ≤ |p− p′|+ (2t)−1|c− c′|.

This proves that, on Qt ∩ Q(0), the topology induced by total variation
distance is the same as the topology induced by the Euclidean distance
on (p, c) ∈ [0, 1]2. Therefore, since Qt ∩ Q(0) = {Qp,c : (1 − p) · c

2 = t}
corresponds to a closed subset of (p, c) ∈ [0, 1]2, this set is compact for the
case t ≤ 1

2 . If instead t > 1
2 , then Qt ∩ Q(0) = ∅ and is trivially compact.

An analogous argument shows that Qt∩Q(1) is compact. Therefore, Qt =
(Qt ∩ Q(0)) ∪ (Qt ∩ Q(1)) is compact.
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• t �→ h(t, Q) is measurable for all Q, which holds since t �→ g(t, z) is
measurable by definition of the conditional expectation, and therefore
t �→ h(t, Q) = EQ [g(t, Z)] is measurable as well.

• Q �→ h(t, Q) is continuous for all t, which holds since
∣∣h(t, Q)−h(t, Q′)

∣∣ ≤
dTV(Q,Q′) for all Q,Q′.

Now define a random variable Zn+1 drawn from the distribution QπP (Xn+1)

after conditioning on Xn+1. Then by definition, Zn+1 satisfies

Zn+1 ⊥⊥ Ĉn(Xn+1) | Xn+1 and E [Zn+1 | Xn+1] = πP (Xn+1) almost surely,

and by Lemma 1 it therefore holds that P
{
Zn+1 ∈ Ĉn(Xn+1)

}
≥ 1−α. There-

fore,

α ≥ P

{
Zn+1 �∈ Ĉn(Xn+1)

}
= E

[
E

[
P

{
Zn+1 �∈ Ĉn(Xn+1)

∣∣∣ Zn+1, πP (Xn+1)
} ∣∣∣ πP (Xn+1)

]]
= E [E [g(πP (Xn+1), Zn+1) | πP (Xn+1)]]

= E
[
h(πP (Xn+1), QπP (Xn+1))

]
= E [a(πP (Xn+1))] = ET∼ΠP

[a(T )] .

Recalling the definition of Lα(ΠP ), this means that Lα(ΠP )≤ET∼ΠP
[�(T, a(T ))].

Next, fix any t ∈ [0, 1]. By definition of a(t), for any Q ∈ Qt, EQ [g(t, Z)] ≤
a(t). In the notation of Lemma 5, the function z �→ 1−g(t, z) belongs to F∗

t,a(t),
and so ∫ 1

s=0

(1− g(t, s)) ds ≥ �(t, a(t)).

Since this holds for all t ∈ [0, 1], we therefore have

ET∼ΠP

[∫ 1

s=0

(1− g(T, s)) ds

]
≥ ET∼ΠP

[�(T, a(T ))] ≥ Lα(ΠP ).

Finally, applying Fubini’s theorem completes the proof:

E

[
leb(Ĉn(Xn+1))

]
= E

[∫ 1

s=0

1
{
s ∈ Ĉn(Xn+1)

}
ds

]
= E

[∫ 1

s=0

P

{
s ∈ Ĉn(Xn+1)

∣∣∣ πP (Xn+1)
}

ds

]
= E

[∫ 1

s=0

1− g(πP (Xn+1), s) ds

]
= ET∼ΠP

[∫ 1

s=0

1− g(T, s) ds

]
≥ Lα(ΠP ).
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Appendix B: Additional proofs: upper bounds

B.1. Proof of Lemma 3

First we check expected length. By definition of Ct,a(Xn+1), we have

E [leb(Ct,a(Xn+1))] =

M∑
m=1

pP,mE [leb(Ct,a(Xn+1)) | Xn+1 ∈ Xm]

=

M∑
m=1

pP,mE [leb({s ∈ [0, 1] : ftm,am(s) ≥ U})]

=

M∑
m=1

pP,mE

[∫ 1

s=0

1 {ftm,am(s) ≥ U} ds

]

=

M∑
m=1

pP,m

∫ 1

s=0

P {ftm,am(s) ≥ U} ds by Fubini’s theorem

=

M∑
m=1

pP,m

∫ 1

s=0

ftm,am(s) ds =
m∑

m=1

pP,m�(tm, am),

where the last step applies the calculation (22) from the proof of Lemma 5.

Next we check coverage under assumption (6). We have

P {πP (Xn+1) ∈ Ct,a(Xn+1)} = P
{
ftm(Xn+1),am(Xn+1)

(
πP (Xn+1)

)
≥ U

}
= E

[
P
{
ftm(Xn+1),am(Xn+1)

(
πP (Xn+1)

)
≥ U

∣∣ Xn+1

}]
= E

[
ftm(Xn+1),am(Xn+1)

(
πP (Xn+1)

)]
=

M∑
m=1

pP,mE
[
ftm,am

(
πP (Xn+1)

) ∣∣ Xn+1 ∈ Xm

]
.

Next, for each m, in the proof of Lemma 5 we established that ftm,am ∈ F+
tm,am

.
By definition of this set, this implies that

E
[
ftm,am

(
πP (Xn+1)

) ∣∣ Xn+1 ∈ Xm

]
≥ 1− am,

since E [πP (Xn+1) | Xn+1 ∈ Xm] = πP,m, and πP,m satisfies the assumption (6).
Therefore,

P {πP (Xn+1) ∈ Ct,a(Xn+1)} ≥
M∑

m=1

pP,m(1− am) = 1−
M∑

m=1

pP,mam,

as desired.
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B.2. Proof of Lemma 4

First, the coverage statement follows immediately from Lemma 3, since∑M
m=1 pP,ma∗P,m ≤ α by definition of a∗P . Now we consider the expected length.

For each x define
δ(x) =

∣∣πP (x)− πP,m(x)

∣∣.
Let

ε = EPX

[√
δ(X)

2α

]
≤
√

EPX
[δ(X)]

2α
=

√
ΔP (X1:M )

2α
. (23)

If ε > 1 then the result of the lemma holds trivially, since leb(C∗
P (X)) ≤

leb([0, 1]) = 1 always. Therefore we can restrict our attention to the case that
ε ∈ [0, 1].

Now fix any function a : [0, 1] → [0, 1] with ET∼ΠP
[a(T )] ≤ α. Define a

vector a◦ ∈ [0, 1]M with entries

a◦m = min

{
1,EPX

[√
αδ(X)

2
+ (1− ε) · a(πP (X))

∣∣∣∣∣ X ∈ Xm

]}
.

We can calculate

M∑
m=1

pP,ma◦m ≤
M∑

m=1

pP,mEPX

[√
αδ(X)

2
+ (1− ε) · a(πP (X))

∣∣∣∣∣ X ∈ Xm

]

= EPX

[√
αδ(X)

2

]
+ (1− ε) · EPX

[a(πP (X))]

≤ EPX

[√
αδ(X)

2

]
+ (1− ε) · α by definition of a

= α by definition of ε.

Therefore, a◦ is feasible for the optimization problem (7), and so by optimality
of a∗P , we must have

M∑
m=1

pP,m�(πP,m, a∗P,m) ≤
M∑

m=1

pP,m�(πP,m, a◦m).

We next need to bound this right-hand side. For each m, we have either a◦m = 1
in which case �(πP,m, a◦m) = 0, or if instead a◦m < 1, then we have

�(πP,m, a◦m) = �

(
πP,m,EPX

[√
αδ(X)

2
+ (1− ε) · a(πP (X))

∣∣∣∣∣ X ∈ Xm

])

≤ EPX

[
�

(
πP,m,

√
αδ(X)

2
+ (1− ε) · a(πP (X))

) ∣∣∣∣∣ X ∈ Xm

]
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≤ EPX

⎡⎣� (πP (X), (1− ε) · a(πP (X))) +
|πP (X)− πP,m|

2
√

αδ(X)
2

∣∣∣∣∣∣ X ∈ Xm

⎤⎦
= EPX

[
� (πP (X), (1− ε) · a(πP (X))) +

√
δ(X)

2α

∣∣∣∣∣ X ∈ Xm

]
,

where the second step applies the fact that �(t, a) is convex in a, while the
third step applies the fact that �(t, a) is 1

2a -Lipschitz in t for any fixed a, and
is nonincreasing in a for any fixed t. Next, since �(t, a) is convex in a and is
bounded by 1, we have

� (πP (X), (1− ε) · a(πP (X))) = � (πP (X), (1− ε) · a(πP (X)) + ε · 0)
≤ (1− ε) · �(πP (X), a(πP (X))) + ε · �(πP (X), 0) ≤ �(πP (X), a(πP (X))) + ε.

Combining everything, then,

�(πP,m, a◦m) ≤

EPX
[�(πP (X), a(πP (X))) | X ∈ Xm] + ε+ EPX

[√
δ(X)

2α

∣∣∣∣∣ X ∈ Xm

]
.

Summing over m, we obtain

M∑
m=1

pP,m�(πP,m, a∗P,m) ≤
M∑

m=1

pP,m�(πP,m, a◦m)

≤ EPX
[�(πP (X), a(πP (X)))] + ε+ EPX

[√
δ(X)

2α

]

≤ ET∼ΠP
[�(T, a(T ))] +

√
2ΔP (X1:M )

α
,

where the last step applies (23) and the definition of ΠP . Since we proved this
bound for an arbitrary function a : [0, 1] → [0, 1] satisfying ET∼ΠP

[a(T )] ≤ α,
we have therefore shown that

M∑
m=1

pP,m�(πP,m, a∗P,m) ≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
.

Finally, Lemma 3 implies that EPX
[leb(C∗

P (X))] =
∑M

m=1 pP,m�(πP,m, a∗P,m),
which completes the proof.

B.3. Proof of Theorem 3

Before proving the theorem, we state two supporting lemmas. The first is a basic
property of the function �(t, a).
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Lemma 6. Fix any a, t, t′ ∈ [0, 1]. If it holds that

|t− t′| ≤ 2δ2 + δ
√

8min{t, 1− t},

then

�(t′, a+ rδ) ≤ �(t, a) +
δ

r

for any r such that a+ rδ ≤ 1.

The second is a simple consequence of the Chernoff bound on the Binomial
distribution.

Lemma 7. Let n ≥ 2. Then under any distribution P , with probability at least
1− α

n , the following bounds hold for all m = 1, . . . ,M :

pP,m ≤ p̃m

(
1− 1

n

)
and

p̃m ≤ pP,m +

√
pP,m · 18 log(4Mn/α)

n
+

12 log(4Mn/α)

n
, (24)

and

|π̃m − πP,m| ≤
√

min{πP,m, 1− πP,m} · 18 log(4Mn/α)

npP,m
+

12 log(4Mn/α)

npP,m
,

and either 0 ≤ πP,m ≤ π̃m ≤ 1

2
or

1

2
≤ π̃m ≤ πP,m ≤ 1. (25)

Now we turn to the proof of the theorem. We first prove the coverage bound
under an arbitrary distribution P . Let E1 be the event that, for all m, it holds
that

pP,m ≤ p̃m

(
1− 1

n

)
, and either 0 ≤ πP,m ≤ π̃m ≤ 1

2
or

1

2
≤ π̃m ≤ πP,m ≤ 1.

Lemma 7 verifies that P {E1} ≥ 1 − α
n for any distribution P . Recall that

Ĉn(Xn+1) = Cπ̃,ã(Xn+1) depends on the training data only through π̃, ã, which
themselves are functions of the p̂m’s and π̂m’s. By Lemma 3, on the event E1,
it holds that

P

{
πP (Xn+1) �∈ Ĉn(Xn+1)

∣∣∣ {(Xi, Yi)}i=1,...,n

}
≤

M∑
m=1

pP,mãm ≤
(
1− 1

n

) M∑
m=1

p̃mãm ≤ α

(
1− 1

n

)
,

where the last step holds by definition of ã. Therefore,

P

{
πP (Xn+1) �∈ Ĉn(Xn+1)

}
≤ P

{
πP (Xn+1) �∈ Ĉn(Xn+1)

∣∣∣ E1}+
α

n
≤ α,

which verifies the distribution-free coverage guarantee.
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Next we turn to proving the bound on expected length. Applying Lemma 3,
it holds that

E

[
leb(Ĉn(Xn+1))

∣∣∣ {(Xi, Yi)}i=1,...,n

]
=

M∑
m=1

pP,m�(π̃m, ãm).

Let E2 be the event that, for all m, (24) and (25) both hold. By Lemma 7,
P {E2} ≥ 1− α

n , and therefore,

E

[
leb(Ĉn(Xn+1))

]
≤ E

[
1E2 ·

M∑
m=1

pP,m�(π̃m, ãm)

]
+

α

n
. (26)

We therefore now need to bound
∑M

m=1 pP,m�(π̃m, ãm) on the event E2.
From this point on, all our calculations will be conditional on {(Xi, Yi)}i=1,...,n

and we will assume that E2 holds. For all m, define

δm =

{
1√
2

∣∣√π̃m −√
πP,m

∣∣ , πP,m ≤ 1
2 ,

1√
2

∣∣√1− π̃m −
√
1− πP,m

∣∣ , πP,m > 1
2 ,

and let

ε = 9

√
M log(4Mn/α)

αn
.

By (25), we can calculate

M∑
m=1

pP,mδm ≤
M∑

m=1

pP,m ·
√

6 log(4Mn/α)

npP,m
≤
√

6M log(4Mn/α)

n
=

ε
√
6α

9
,

(27)

where the next-to-last step holds since
∑M

m=1

√
pP,m ≤

√
M
√∑M

m=1 pP,m =√
M .
Next, we will assume for now that ε ≤ 1. Let

a◦m = min
{
1, (1− ε) · a∗P,m + δm

√
α
}

where a∗P is defined as in (7). Now fix any m. If a◦m = 1 then �(π̃m, a◦m) = 0. If
not, then a◦m = (1− ε) ·a∗P,m+ δm

√
α, and we now derive a bound on �(π̃m, a◦m).

By definition of δm, we have

|π̃m − πP,m| ≤ δm ·
√
8min{πP,m, 1− πP,m}+ 2δ2m.

Applying Lemma 6, we have

�(π̃m, a◦m) ≤ �(πP,m, a◦m − δm
√
α) +

δm√
α

= �(πP,m, (1− ε)a∗P,m) +
δm√
α
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= �(πP,m, (1− ε)a∗P,m + ε · 0) + δm√
α

≤ (1− ε) · �(πP,m, a∗P,m) + ε · �(πP,m, 0) +
δm√
α

≤ �(πP,m, a∗P,m) + ε+
δm√
α
,

since �(t, a) is convex in a, and bounded by 1. Summing over all m, and apply-
ing (27),

M∑
m=1

pP,m�(π̃m, a◦m) ≤
M∑

m=1

pP,m�(πP,m, a∗P,m) +

(
1 +

√
6

9

)
ε

≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
+

(
1 +

√
6

9

)
ε, (28)

where the last step applies Lemma 4 along with the calculation EPX
[leb(C∗

P (X))]

=
∑M

m=1 pP,m�(πP,m, a∗P,m) from the proof of that lemma.

Next we will need to relate
∑M

m=1 pP,m�(π̃m, a◦m) to
∑M

m=1 pP,m�(π̃m, ãm).
Recalling the definition of ã in (11), we see that by optimality of ã,

If
M∑

m=1

p̃ma◦m ≤ α, then
M∑

m=1

pP,m�(π̃m, ãm) ≤
M∑

m=1

pP,m�(π̃m, a◦m). (29)

We now turn to verifying that
∑M

m=1 p̃ma◦m ≤ α, to ensure that a◦ is feasible
for the optimization problem (11). First, we have

M∑
m=1

pP,ma◦m ≤
M∑

m=1

pP,m

(
(1− ε) · a∗P,m + δm

√
α
)

= (1− ε)

M∑
m=1

pP,ma∗P,m +
√
α

M∑
m=1

pP,mδm

≤ (1− ε)α+
√
α

M∑
m=1

pP,mδm by definition of a∗P (7)

≤ (1− ε)α+
√
α · ε

√
6α

9
by (27)

= α− αε

(
1−

√
6

9

)
.

Next, applying (24), along with the fact that a◦m ≤ 1 by construction, we have

M∑
m=1

p̃ma◦m ≤
M∑

m=1

(
pP,m +

√
pP,m · 18 log(4Mn/α)

n
+

12 log(4Mn/α)

n

)
· a◦m
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≤
M∑

m=1

pP,ma◦m +

(
M∑

m=1

√
pP,ma◦m

)
·
√

18 log(4Mn/α)

n
+

12M log(4Mn/α)

n

≤
M∑

m=1

pP,ma◦m +

√√√√ M∑
m=1

pP,ma◦m ·
√

18M log(4Mn/α)

n
+

12M log(4Mn/α)

n

≤ α− αε

(
1−

√
6

9

)
+

√
α ·
√

18M log(4Mn/α)

n
+

12M log(4Mn/α)

n

≤ α,

where the last step plugs in the definition of ε along with the assumption that
ε ≤ 1. Thus we have proved that

∑M
m=1 p̃ma◦m ≤ α. This means that a◦ is

feasible for the optimization problem (11). Combining (28) with (29), we have
therefore proved that on the event E2,

M∑
m=1

pP,m�(π̃m, ãm) ≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
+

(
1 +

√
6

9

)
ε.

After combining with (26), we therefore have

E

[
leb(Ĉn(Xn+1))

]
≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
+

(
1 +

√
6

9

)
ε+

α

n
,

as long as ε ≤ 1. Furthermore, the assumption ε ≤ 1 ensures that log(4Mn/α) ≤
2 logn, and so plugging in the definition of ε, we have proved that

E

[
leb(Ĉn(Xn+1))

]
≤ Lα(ΠP ) +

√
2ΔP (X1:M )

α
+ c′
√

M logn

αn

for a sufficiently large universal constant c′. If instead we have ε > 1, then we

have E
[
leb(Ĉn(Xn+1))

]
≤ 1 ≤ c′′

√
M logn

αn for a sufficiently large universal con-

stant c′′. Taking c = max{c′, c′′}, we have completed the proof of the theorem.

B.4. Proof of Corollary 1

To help with the proof, we begin by adapting our previous notation to the
setting of a data-dependent partition. The partition X̂R

1:M is a function of the
first half of the data, i.e., data points {(Xi, Yi)}i=1,...,�n

2 �. Conditioning on these
data points, we define

pP,m = PPX

{
X ∈ X̂R

m

∣∣∣ {(Xi, Yi)}i=1,...,�n
2 �

}
and

πP,m = EPX

[
πP (X)

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

]
,
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where we should interpret this to mean that the partition X̂R
1:M is treated as

fixed, and the probability and expectation are calculated with respect to an
independent draw X ∼ PX . Similarly, we will write

Δ
(
X̂R

1:M

)
= EPX

[
|πP (X)− πP,m(X)|

∣∣∣ {(Xi, Yi)}i=1,...,�n
2 �

]
.

These quantities are now functions of the data points {(Xi, Yi)}i=1,...,�n
2 �.

Next we apply Theorem 3. Specifically, we will condition on the data points
{(Xi, Yi)}i=1,...,�n

2 � used to choose the partition so that the partition can be
treated as fixed, and will apply Theorem 3 with �n

2 � ≥ 2 in place of n (i.e., we
apply the theorem to data points i = �n

2 � + 1, . . . , n in place of i = 1, . . . , n).
This proves that

P
(Xi,Yi)

iid∼P

{
πP (Xn+1) ∈ ĈR

n (Xn+1)
∣∣∣ {(Xi, Yi)}i=1,...,�n

2 �

}
≥ 1− α

and

E
(Xi,Yi)

iid∼P

[
leb(ĈR

n (Xn+1))
∣∣∣ {(Xi, Yi)}i=1,...,�n

2 �

]
≤ Lα(ΠP ) +

√
2ΔP (X̂R

1:M )

α
+ c

√
M log�n

2 �
α�n

2 �
.

Marginalizing over the data points {(Xi, Yi)}i=1,...,�n
2 � used to choose the par-

tition, we therefore have

P
(Xi,Yi)

iid∼P

{
πP (Xn+1) ∈ ĈR

n (Xn+1)
}
≥ 1− α

and after applying Jensen’s inequality,

E
(Xi,Yi)

iid∼P

[
leb(ĈR

n (Xn+1))
]

≤ Lα(ΠP ) +

√√√√2E
(Xi,Yi)

iid∼P

[
ΔP (X̂R

1:M )
]

α
+ c

√
M log�n

2 �
α�n

2 �
.

Note that these bounds hold for any distribution P . The first statement there-
fore immediately verifies that ĈR

n satisfies the distribution-free coverage prop-
erty (3). We now complete the proof of the bound on length. Write midm =
m(X)− 1

2

M , the midpoint of the range [m−1
M , m

M ) of estimated probabilities that

define the region X̂R
m . We have

Δ
(
X̂R

1:M

)
= EPX

[
|πP (X)− πP,m(X)|

∣∣∣ {(Xi, Yi)}i=1,...,�n
2 �

]
=

M∑
m=1

pP,mEPX

[
|πP (X)− πP,m(X)|

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

]
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≤
M∑

m=1

pP,m

(
|πP,m −midm|+

EPX

[
|πP (X)−midm|

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

])
≤ 2

M∑
m=1

pP,mEPX

[
|πP (X)−midm|

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

]
= 2EPX

[∣∣πP (X)−midm(X)

∣∣ ∣∣∣ {(Xi, Yi)}i=1,...,�n
2 �

]
,

where the next-to-last step holds since, for each m,

|πP,m −midm| =
∣∣∣EPX

[
πP (X)

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

]
−midm

∣∣∣
≤ EPX

[
|πP (X)−midm|

∣∣∣ X ∈ X̂R
m ; {(Xi, Yi)}i=1,...,�n

2 �

]
,

by Jensen’s inequality. Next, by definition of the partition X̂R
1:M , we have∣∣πP (X)−midm(X)

∣∣ ≤ ∣∣∣πP (X)− π̂R
�n

2 �(X)
∣∣∣+ 1

2M

almost surely. Therefore,

E

[
Δ
(
X̂R

1:M

)]
≤ E

[
1

M
+ 2EPX

[∣∣∣πP (X)− π̂R
�n

2 �(X)
∣∣∣ ∣∣∣ {(Xi, Yi)}i=1,...,�n

2 �

]]
=

1

M
+ 2Δ�n

2 �,P (R).

Combining everything, we have

E
(Xi,Yi)

iid∼P

[
leb(ĈR

n (Xn+1))
]

≤ Lα(ΠP ) +

√√√√2
(

1
M + 2Δ�n

2 �,P (R)
)

α
+ c

√
M log�n

2 �
α�n

2 �
.

Plugging in our choice of M , we have proved the desired bound when the uni-
versal constant c′ is chosen appropriately.

B.5. Proofs of supporting lemmas

Proof of Lemma 6. Without loss of generality we can take t ≤ 1
2 . Furthermore,

if t′ > 1
2 then �(t′, a+ rδ) ≤ �( 12 , a+ rδ), so it suffices to consider only the case

where t′ ≤ 1
2 as well. Finally, if t′ < t then �(t′, a + rδ) ≤ �(t, a + rδ) ≤ �(t, a)

since �(t, a) is nondecreasing in t ∈ [0, 1
2 ] and nonincreasing in a, so the result

is trivial in this case. Therefore, from this point on we only need to prove the
result for 0 ≤ t ≤ t′ ≤ 1

2 .
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Now we split into cases.

• If t = a = 0, then �(t, a) = �(0, 0) = 0 and

�(t′, a+ rδ) ≤ t′

2(a+ rδ)
≤ 2δ2

2 · rδ =
δ

r
,

where the first step holds since �(t, a) ≤ t
2a for all t, a.

• If a ≥ 1
2 , then

�(t′, a+ δr)− �(t, a)− δ

r
= 2(1− a− δr)t′ − 2(1− a)t− δ

r

= 2(1− a)(t′ − t)− 2δrt′ − δ

r

≤ 2(1− a)(t′ − t)− δ
√
8t′ since 2xy ≤ x2 + y2 for all x, y

≤ t′ − t− δ
√
8t′ since a ≥ 1

2
implies 2(1− a) ≤ 1

≤ 0,

where the last step holds by assumption on |t′ − t|.
• If t ≤ a < 1

2 , then �(t, a) = t
2a , and we also know that �(t′, a+δr) ≤ t′

2(a+δr)

as before. Therefore,

�(t′, a+ δr)− �(t, a) ≤ t′

2(a+ δr)
− t

2a

≤ t+ δ
√
8t+ 2δ2

2(a+ δr)
− t

2a
by assumption on |t′ − t|

≤
t+ δr · t

a + δ
r · 2a+ 2δ2

2(a+ δr)
− t

2a
since 2xy ≤ x2 + y2 for all x, y

=
(a+ δr) ·

(
t
a + 2δ

r

)
2(a+ δr)

− t

2a
=

δ

r
.

• If a < t and a+ δr < t′, then

�(t′, a+ δr)− �(t, a)− δ

r
=

(
1− a+ δr

2t′

)
−
(
1− a

2t

)
− δ

r

=
a · (t′ − t)

2tt′
− δr + 2t′δ/r

2t′

≤ t′ − t

2t′
− δr + 2t′δ/r

2t′
since a < t

≤ t′ − t− δ
√
8t′

2t′
since 2xy ≤ x2 + y2 for all x, y

≤ 0,

where the last step holds by assumption on |t′ − t|.
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• If a < t and a + δr ≥ t′, then �(t, a) = 1 − a
2t ≥ 1

2 and �(t′, a + δr) ≤
t′

2(a+δr) ≤
1
2 , and so

�(t′, a+ δr)− �(t, a)− δ

r
≤ 0.

We have now verified that the bound holds in all cases, which completes the
proof.

Proof of Lemma 7. Fix anym. We will show that the bounds hold for this choice
of m with probability at least 1− α

Mn , and then the lemma follows by applying
the union bound.

The multiplicative Chernoff bound (McDiarmid, 1998, Theorem 2.3(b,c))
states that, for any integer N ≥ 1 and any t ∈ [0, 1], for a random variable
B ∼ Binomial(N, t), it holds for all δ > 0 that

P

{
B ≥ Nt−

√
2Nt log(1/δ)

}
≥ 1− δ (30)

and
P

{
B ≤ Nt+

√
3Nt log(1/δ) ∨ 3 log(1/δ)

}
≥ 1− δ. (31)

Now fix any m. We will prove that the statements (24) and (25) hold with
probability at least 1− α

Mn for this m.
First, we have np̂m ∼ Binomial(n, pP,m), and therefore, applying (30) with

N = n, t = pP,m, and δ = α
4Mn , with probability at least 1− α

4Mn it holds that

p̂m ≥ pP,m −
√
pP,m · 2 log(4Mn/α)

n
. (32)

Furthermore, applying (31) with N = n, t = pP,m, and δ = α
4Mn , with proba-

bility at least 1− α
4Mn it holds that

p̂m ≤ pP,m +

√
pP,m · 3 log(4Mn/α)

n
∨ 3 log(4Mn/α)

n
. (33)

Now assume that (32) and (33) both hold. We will show that this implies (24)
for this m. First, by (33), we have

p̃m = p̂m +

√
p̂m · 3 log(4Mn/α)

n
+

3 log(4Mn/α)

n

≤ pP,m +

√
pP,m · 18 log(4Mn/α)

n
+

12 log(4Mn/α)

n
.

Next, by (32), we have

pP,m ≤ p̂m +

√
p̂m · 2 log(4Mn/α)

n
+

2 log(4Mn/α)

n
≤ p̃m − pP,m

n− 1
.
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where the last step holds since n ≥ 2 and so log(4Mn/α)
n ≥ log(4n)

n ≥ 1
n−1 ≥ pP,m

n−1 .
Thus we have

pP,m ≤ p̃m

(
1− 1

n

)
.

This verifies that (24) holds for this value of m.
Now we turn to (25). We will condition on p̂m. We split into cases:

• First suppose πP,m satisfies

πP,m +

√
πP,m · 3 log(4Mn/α)

np̂m
∨ 3 log(4Mn/α)

np̂m
≤ 1

2
.

Then p̂m > 0, and conditional on p̂m, we have

np̂mπ̂m ∼ Binomial(np̂m, πP,m).

Therefore, applying (30) with N = np̂m, t = πP,m, and δ = α
4Mn , with

probability at least 1− α
4Mn it holds that

π̂m ≥ πP,m −

√
πP,m · 2 log(4Mn/α)

np̂m
. (34)

And, applying (31) with N = np̂m, t = πP,m, and δ = α
4Mn , with proba-

bility at least 1− α
4Mn it holds that

π̂m ≤ πP,m +

√
πP,m · 3 log(4Mn/α)

np̂m
∨ 3 log(4Mn/α)

np̂m
. (35)

Now assume that (32), (34), and (35) all hold. By definition of this case, the
bound (35) immediately implies that π̂m ≤ 1

2 and therefore by definition,
π̃m ≤ 1

2 also. Applying (34),

πP,m ≤ π̂m +

√
π̂m · 2 log(4Mn/α)

np̂m
+

2 log(4Mn/α)

np̂m
,

and πP,m ≤ 1
2 by definition of this case, so

π̃m = min

{
1

2
, π̂m +

√
π̂m · 2 log(4Mn/α)

np̂m
+

2 log(4Mn/α)

np̂m

}
≥ πP,m.

By applying (35), we furthermore have

π̃m ≤ π̂m +

√
π̂m · 2 log(4Mn/α)

np̂m
+

2 log(4Mn/α)

np̂m
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≤ πP,m +

√
πP,m · 12 log(4Mn/α)

np̂m
+

8 log(4Mn/α)

np̂m
.

Next, if p̂m ≥ 2
3pP,m then this last bound yields

π̃m ≤ πP,m +

√
πP,m · 18 log(4Mn/α)

npP,m
+

12 log(4Mn/α)

npP,m
,

while if instead p̂m < 2
3pP,m then by (32) we can see that pP,m ≤

18 log(4Mn/α)
n , and so

π̃m ≤ 1

2
≤ 9 log(4Mn/α)

npP,m
.

Either way, then, we have verified that the statement (25) holds, as desired.
• Next, suppose πP,m satisfies

πP,m ≤ 1

2
< πP,m +

√
πP,m · 3 log(4Mn/α)

np̂m
∨ 3 log(4Mn/α)

np̂m
.

If p̂m > 0, then conditional on p̂m, we have

np̂m(1− π̂m) ∼ Binomial(np̂m, 1− πP,m).

Therefore, applying (30) with N = np̂m, t = 1−πP,m, and δ = α
4Mn , with

probability at least 1− α
4Mn it holds that

(1− π̂m) ≥ (1− πP,m)−

√
(1− πP,m) · 2 log(4Mn/α)

np̂m
. (36)

Furthermore the bound (34) holds with probability at least 1 − α
4Mn as

above. (If instead p̂m = 0, then the bounds (34) and (36) hold trivially.)
Now assume that (32), (34), and (36) all hold. If π̂m ≤ 1

2 , then by definition
we have π̃m ≤ 1

2 also. Furthermore, applying (34) proves that πP,m ≤ π̃m

exactly as for the previous case. If instead π̂m > 1
2 , then (36) implies that

1

2
≤ (1−πP,m) ≤ (1− π̂m)+

√
(1− π̂m) · 2 log(4Mn/α)

np̂m
+

2 log(4Mn/α)

np̂m
,

which therefore means that

π̃m = max

{
1

2
, π̂m −

√
(1− π̂m) · 2 log(4Mn/α)

np̂m
− 2 log(4Mn/α)

np̂m

}
=

1

2
.

We have therefore established that πP,m ≤ π̃m ≤ 1
2 under either scenario.

Next,

|π̃m − πP,m| ≤ 1

2
− πP,m <

√
πP,m · 3 log(4Mn/α)

np̂m
∨ 3 log(4Mn/α)

np̂m
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by definition of this case. As for the previous case, we can therefore ver-
ify (25) by considering the two possibilities p̂m ≥ 2

3pP,m and p̂m < 2
3pP,m,

and applying (32).
• The case that πP,m > 1

2 is treated analogously.

We have now verified that, for each m, with probability at least 1− α
Mn , the

bounds (24) and (25) both hold, which completes the proof of the lemma.
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