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Abstract: Discriminating patients with Alzheimer’s disease (AD) from
healthy subjects is a crucial task in the research of Alzheimer’s disease.
The task can be potentially achieved by linear discriminant analysis (LDA),
which is one of the most classical and popular classification techniques.
However, the classification problem becomes challenging for LDA because
of the high-dimensionality and the spatial dependency of the brain imaging
data. To address the challenges, researchers have proposed various ways
to generalize LDA into high-dimensional context in recent years. However,
these existing methods did not reach any consensus on how to incorporate
spatially dependent structure. In light of the current needs and limita-
tions, we propose a new classification method, named as Penalized Max-
imum Likelihood Estimation LDA (PMLE-LDA). The proposed method
uses Matérn covariance function to describe the spatial correlation of brain
regions. Additionally, PMLE is designed to model the sparsity of high-
dimensional features. The spatial location information is used to address
the singularity of the covariance. Tapering technique is introduced to re-
duce computational burden. We show in theory that the proposed method
can not only provide consistent results of parameter estimation and feature
selection, but also generate an asymptotically optimal classifier driven by
high dimensional data with specific spatially dependent structure. Finally,
the method is validated through simulations and an application into ADNI
data for classifying Alzheimer’s patients.
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1. Introduction

This paper is motivated by discriminating patients with Alzheimer’s disease
(AD) from healthy subjects using structural Magnetic Resonance Imaging
(sMRI) data. We also would like to identify the key sMRI features that dif-
ferentiate the two groups. We translate the real needs as a technical problem
of using classification method and selecting features. However, the problem be-
comes challenging because of the complexity of the data. First, brain imaging
data is spatially dependent, which means that the dependence between various
voxels (pixels) can be depicted by their proximity. Second, brain imaging data
is high-dimensional, because a single subject can produce hundreds of 3D MRI
scans and a single 3D MRI scan can generate millions of voxels.

Many existing methods could handle the challenges of brain imaging data,
but they did not solve a classification problem. In brain research, the assign-
ment of functional regions has been mainly based on certain assumptions and
conceptualizations. In particular, conceptualization of spatial partition and cor-
respondence is widely used in brain imaging analysis (see Worsley [43], Smith
and Fahrmeir [39], Lindquist [29], Musgrove, Hughes and Eberly [33], Bowman
[6]). These methods exploited spatial dependence of brain imaging data, but they
were not designed to classify and identify spatial features. In addition to brain
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imaging, spatial analysis has been broadly applied across agriculture, geology,
soil science, oceanography, forestry, meteorology and climatology. Traditionally,
these applications are not necessarily high-dimensional. But an increasing trend
of big data shows that high-dimensional data with spatially dependent structure
attracts more and more interest. For recent developments of regularized models
dealing with spatially dependent data, please refer to Hoeting et al. [21], Huang
and Chen [23], Zhu, Huang and Reyes [47], Chu et al. [12], Reyes, Zhu and
Aukema [36], Fu et al. [20], Nandy, Lim and Maiti [34], Feng et al. [18]. One can
simply adapt these available procedures, but again they did not consider how
to classify and identify spatial features.

Many high-dimensional approaches are not preferable due to the concern of
high variance and overfitting issues (Friedman, Hastie and Tibshirani [19]). So
it is necessary to incorporate regularization techniques into the classification
method for high dimensional data. Fisher’s linear discriminant analysis (LDA)
is one of the most classical and popular classification techniques. The simplicity
and flexibility of LDA has allowed itself to be extended to many complex and
high dimensional applications. Researchers have proposed many ways to gener-
alize LDA into high-dimensional context. However, these existing methods did
not reach any consensus on how to incorporate spatial dependence structure.
In light of the current needs and limitations, we propose a new LDA procedure
accommodating both the complex dependent structure and high-dimensionality.

Before introducing the proposed procedure, we first give a review of the exist-
ing LDA methods for high dimensional data. Let us consider the p-dimensional
discriminant problem between two classes C1 and C2. According to some clas-
sification rule T (Ω) : Rp → {1, 2}, a new observation Ω can be classified into
class C1 = {Ω : T (Ω) = 1} or C2 = {Ω : T (Ω) = 2}. Given that Ω ∈ C1, the
misclassification rate is the conditional probability of that Ω is classified into
class C2, i.e. P (T (Ω) = 2|Ω ∈ C1). Similarly, P (T (Ω) = 1|Ω ∈ C2) denotes the
misclassification rate when Ω ∈ C2.

The optimal classifier obtained by minimizing the posterior probability is
known as the Bayes rule, which classifies the new observation into the most
probable class (Chapter 2 in [19]). Suppose that fk(ω) denotes the density of
the misclassification rate that an observation ω is classified into Ck, (k = 1, 2).
Let πk be the prior probability of class k with π1 + π2 = 1. According to Bayes
theorem, the posterior probability of an observation Ω = ω in each class is

P (Ω ∈ Ck|Ω = ω) = fk(ω)πk

f1(ω)π1+f2(ω)(1−π1)
.

A typical way of modeling the class densities is that they are assumed to be
multivariate Gaussian N(μ1,Σ) and N(μ2,Σ) respectively, where μk (k = 1, 2)
are the class mean vectors and Σ is the common positive definite covariance
matrix. Then the density of an observation Ω = ω from Ck can be written as

fk(ω) = 1
(2π)p/2

|Σ|1/2e− 1
2 (ω−μk)

TΣ−1(ω−μk)). Under this assumption, the Bayes

rule assigns Ω = ω into C1 if π1f1(ω) ≥ π2f2(ω). Equivalently, ω is assigned to
C1 if logπ1

π2
+ (ω − μ)TΣ−1(μ1 − μ2) ≥ 0, where μ = (μ1 + μ2)/2. Notice that

this classifier is linear in ω.
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In practice, the parameters of the Gaussian distribution should be estimated
using the training data. Suppose that Yk1, . . . ,Yknk

are training data from class
Ck, where k ∈ {1, 2} and Ykj ∈ R

p are independent and identically distributed as
p dimensional Gaussian distribution N(μk,Σ(θ0)), where μk = (μk1, . . . , μkp)

T ,
nk is the sample size for class Ck. Σ(θ) is the covariance matrix with parameter

θ = θ0. Assume that μ̂1, μ̂2, Σ̂ and Δ̂ (generated from Yk1, . . . ,Yknk
) are

estimates of μ1, μ2, Σ and Δ, where Δ = (Δ1, . . . ,Δp)
T = μ1 − μ2 is the

difference of the two classes in mean.
Let n = n1 + n2 be the total sample size. Assume that n1

n → π, 0 < π < 1
as n → ∞. p depends on n. Assume that the two classes have equal prior
probabilities, i.e. both the probabilities that a new observation comes from C1
and C2 are 1

2 . Then we obtain the classification rule δ̂:

δ̂(Ω) = (Ω− μ̂1 + μ̂2

2
)T Σ̂−1Δ̂. (1.1)

A new observation ω is classified into class C1 if δ̂(ω) > 0 and C2 otherwise. If

Ω comes from C1, then the conditional misclassification rate of δ̂ is

W1(δ̂) = P (δ̂(Ω) ≤ 0|Ω ∈ C1,Yki, i = 1, 2, . . . , nk, k = 1, 2) = 1− Φ(Ψ1), (1.2)

where

Ψ1 =
(μ1 − μ̂)T Σ̂(μ̂1 − μ̂2)√

(μ̂1 − μ̂2)T Σ̂−1ΣΣ̂−1(μ̂1 − μ̂2)
. (1.3)

Similarly, we can define the error rate for observations from C2. If Ω comes from
class C2, the conditional misclassification rate of δ̂ is:

W2(δ̂) = P(δ̂(Ω) > 0|Ω ∈ C2,Yki, k = 1, 2; i = 1, . . . , nk) = Φ(Ψ2), (1.4)

where

Ψ2 =
(μ2 − μ̂)T Σ̂(μ̂1 − μ̂2)√

(μ̂1 − μ̂2)T Σ̂−1ΣΣ̂−1(μ̂1 − μ̂2)
. (1.5)

As we assume the equal prior probability for the two classes, the overall
misclassification rate is defined as

W (δ̂) = 1
2 (W1(δ̂) +W2(δ̂)). (1.6)

If μ1, μ2 and Σ are known, the optimal classification rule is Bayes rule, which
classifies a new observation Ω = ω into class C1 if

δ(ω) = (ω − μ1 + μ2

2
)TΣ−1Δ > 0. (1.7)
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Bayes rule has the smallest misclassification rate. If Ω is from class C1 and
thus has a normal distribution N(μ1,Σ(θ)), we can calculate that the condi-
tional misclassification rate of Bayes rule δ is

W1(δ) = W2(δ) = 1− Φ(

√
Cp

2
), (1.8)

where Cp = ΔTΣ−1(θ)Δ and Φ(·) is the standard Gaussian distribution func-
tion.

We obtain the overall misclassification rate of Bayes rule as W (δ) = 1 −
Φ(

√
Cp

2 ). Since Bayes rule has the smallest misclassification rate, we write

WOPT = 1 − Φ(

√
Cp

2 ) as the optimal misclassification rate. Under certain con-

ditions, we could have Cp → C0, then WOPT → 1 − Φ(
√
C0

2 ), where C0 is a
constant.

Using training data, we can estimate the parameters with the sample mean
and covariance

μ̂k =

nk∑
i=1

Yki/nk = Ȳk·, (1.9)

Σ̂ =
∑
k

∑
i

(Yki − μ̂k)
T (Yki − μ̂k)/(n1 + n2 − 2), k = 1, 2. (1.10)

Then LDA classifies Ω into class C1 if

δ̂LDA(Ω) = (Ω− 1

2
(Ȳ1· + Ȳ2·))

T Σ̂−1(Ȳ1· − Ȳ2·) > 0 (1.11)

LDA is an asymptotically optimal classifier under traditional large sample
scenario, that is, the dimension of variables (p) is fixed and the sample size
(n) tends to infinity. However, this is not true in the high dimensional context.
Bickel and Levina [3] demonstrated that LDA asymptotically did not perform
better than random guessing if p/n → ∞.

The asymptotic theory of LDA does not hold under high dimensional setting
because of two reasons. First, the sample covariance matrix Σ̂ is singular. It is
difficult to estimate the precision matrix Ω = Σ−1. To resolve this, the indepen-
dence rule (IR) ignores the correlations among features and use diagonal of Σ̂
to replace Σ̂. Bickel and Levina [3] showed in theory that IR leads to a better
classification result than the naive LDA, where the Moore-Penrose inverse is
used to replace Σ̂−1. Another similar way to resolve this issue is the nearest
shrunken centroid classifier (Tibshirani et al. [40]). Fan and Fan [15] proposed
the feature annealed independence rule (FAIR) that performs feature selection
by t-test in addition to IR. The above methods made LDA applicable for high
dimensional classification. However, they ignored the covariance structure of the
features and the classifiers from those methods were not asymptotically opti-
mal. Some methods have been proposed for covariance matrix estimation or
precision matrix estimation in high dimension scenario (see Bickel and Levina
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[4, 5], Rothman et al. [37], Cai and Zhang [8], Cai et al. [10]). The covariance
matrix estimated by these methods can be directly used in LDA and address
the singularity of Σ̂. However, an accurate estimate of Σ does not necessarily
lead to better classification. Fan and Fan [15] and Shao et al. [38] showed that
even though the true covariance matrix is known, the classification could be no
better than random guess because of the noise accumulated from estimating the
means. This arouses the second challenge for high dimensional LDA. That is,
the noise introduced by the estimation of many non-informative features would
lead to poor classification performance. Therefore, the regulation of features is
needed.

To address the second challenge stated above, Witten and Tibshirani [42]
proposed penalized LDA by applying penalties on the feature vectors. Cai and
Liu [7], Mai, Zou and Yuan [30] and Fan, Feng and Tong [16] assumed sparsity
and introduced penalization on the discriminant direction ζ = Σ−1(μ2 − μ1),
which was also adopted by Cai and Zhang [9]. These methods regularized the
estimated discriminant direction ζ directly, avoiding of estimating Σ−1. The
advantages are obvious. The penalization reduced the noise accumulated in es-
timation on high dimensional features. The obtained classifiers incorporated the
covariance structure among features. However, the disadvantage is that the pan-
elized results were not straightforward to interpret. In particular, the panelized
directions did not convey any information on which features should be selected.
Because we know feature selection is more relevant to the research question. In
this paper, we adopt another types of work that assume sparsity on the feature
difference Δ = μ2 −μ1 (the difference of means between the two classes). Shao
et al. [38] assumed sparsity and put hard threshold on both the feature differ-
ence Δ and the covariance matrix Σ. This method provided an asymptotically
optimal classifier. The double threshold method in Shao et al. [38] was then
extended to quadratic discriminant analysis in Li and Shao [26]. Xu et al. [45]
proposed a covariance-enhanced method to achieve feature selection for linear
discriminant analysis. However, this method did not work directly on selecting
informative features. Most recently, Cannings and Samworth [11] used random
projection to perform dimension reduction to address this issue. However, this
method did not work well when the data is sparse in ultrahigh dimensional
settings, say p is in the thousands while sample size n ranges from 50 to 1000.

In this article, we develop a new classification procedure, named as Penal-
ized Maximum Likelihood Estimation LDA (PMLE-LDA), for high dimensional
data with spatially dependent features. We assume that the features follow mul-
tivariate normal distribution. We structure the covariance matrix by a spatial
covariance function (e.g. Matérn covariance function). By introducing the spa-
tial structure, the covariance matrix can be estimated by maximum likelihood
estimation no matter how large the number of features is, compared to the
sample size. This estimated covariance matrix can address the first challenge of
covariance singularity. To address the second challenge of mean misidentifica-
tion, we assume that the feature difference between two classes is sparse, which
indicates that only a fraction of the p features contribute in differentiating the
two classes. Given a training data set, we use Penalized Maximum Likelihood
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Estimation (PMLE) method to perform parameter estimation. The resulting
estimates are plugged into LDA model to construct a new classifier. We show
in theory that the proposed procedure can not only provide consistent results
of parameter estimation and feature selection, but also generate an asymptot-
ically optimal classifier driven by high dimensional data with specific spatially
dependent structure. To the best of our knowledge, the proposed method is the
first to use spatial correlations to adjust the classification rules. Although we
develop PMLE-LDA under the linear framework for two classes classification, it
could be potentially extended to other classification methods such as quadratic
discriminant analysis (QDA) and multi-classes classification problems.

The rest of the paper is organized as follows. In Section 2, we show that MLE-
LDA is asymptotically optimal if p/n → 0 under some regularity conditions. We
also show that in high dimensional setting (p/n → C > 0), the MLE-LDA per-
forms poorly (no better than random guess) even if the true covariance is known
unless the signals are very strong. This indicates the necessity of penalization
for the MLE. In Section 3, we propose to estimate the parameters by penal-
ized MLE (PMLE) by applying a penalty on Δ = μ1 − μ2, which measures
the difference of the two classes in mean. We assume the sparsity of Δ. Then
we derive and prove the parameter estimation consistency and feature selection
consistency of PMLE. In the end, PMLE-LDA is constructed. We show that it
is asymptotically optimal even if p/n → C > 0. Simulation study and real data
analysis are conducted in Section 4 and 5. We conclude and discuss in Section 6.

2. Classification using maximum likelihood estimate (MLE-LDA)

2.1. Spatial models

In this section, we introduce necessary terminologies and assumptions in spatial
statistics. For a spatial domain of interest D in R

d, we consider two classes of
spatial processes {yk(s) : s ∈ D, k = 1, 2}, (k = 1, 2), such that

yk(s) = μk(s) + ε(s), (2.1)

where μk(s) is the mean effect function and ε(s) is the corresponding random
noise. Assume that the error process {ε(s) : s ∈ D} is a Gaussian process with
mean zero and a covariance function

γ(s, s′;θ) = cov(ε(s), ε(s′)), (2.2)

where s, s′ ∈ D and θ is a q × 1 vector of covariance function parameters. We
assume that the spatial domain is expanding as the number of samples on the
domain is increasing.

Assumption 1. Assume the sample set D ∈ R
d (d ≥ 1) is predetermined and

non-random with the restriction ‖si − sj‖
2
≥ ε > 0, for si, sj ∈ D for all pairs

i, j = 1, 2, . . . , p to ensure that the sampling domain increases in extent as p
increases.
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Assume for any sample of the spatial processes, there are observations at p
discrete sites s1, . . . , sp ∈ D. Suppose yki(s) (i = 1, 2, . . . , nk) is from class Ck
(k = 1, 2). Let Ykij = yki(sj) be the observation at jth site for the ith sample
of spatial process yk(s), where k = 1, 2, i = 1, 2, . . . , nk, j = 1, 2, . . . , p, then the
jth observation for sample i can be represented by

Ykij = μkj + εkij , (2.3)

where μkj = μk(sj) is the mean effect at jth location in class Ck and εkij =
εki(sj) is the corresponding Gaussian random noise for ith sample at jth loca-
tion. In matrix notation, the above model can be written as

Yki = μk + εki, (2.4)

where Yki = (Yki1, . . . , Ykip)
T , μk = (μk1, . . . , μkp)

T is the mean vector of class
Ck and εki = (εki1, . . . εkip)

T has multivariate nomal distribution N(0,Σ). As
ε(s) has a covariance function (2.2), the covariance matrix Σ can be represented
by Σ(θ) = [γ(si, sj ;θ)]

p
i,j=1, i.e. γ(si, sj) is the (i, j)th entry. From (2.4), we

have

Yki ∼ N(μk,Σ(θ)). (2.5)

Assume θ0 be the true parameter in (2.2). If θ = θ0, we write Σ(θ0) as
Σ for simplicity. Next, we make some assumptions on the covariance function
γ(si, sj ;θ):

Assumption 2. (i) Let Ξ be the parameter space for θ. Assume the covariance
function γ(s, s′;θ) is stationary, isotropy, and twice differentiable with respect
to θ for all θ ∈ Ξ and s, s′ ∈ D.
(ii) γ(s, s′;θ) is positive-definite in the sense that the covariance matrix Σ =
[γ(si, sj ;θ)] is positive-definite for every finite subset {s1, s2, . . . , sp} of D.

Under the stationary and isotropic assumption, Σ(θ) could be written as
Σ(θ) = [γ(hij ;θ)]

p
i,j=1, where hij = ‖si − sj‖

2
is the Euclidean distance between

sites si and sj .
There are many ways to model the covariance function γ(h;θ). A widely used

family of covariance function is the Matérn covariance function. It is defined as:

γ(h;σ2, c, ν, r) := σ2(1− c)
21−ν

Γ(ν)
(h/r)νKν(h/r) (2.6)

where Kν(·) is a modified Bessel function of the second kind and σ2 > 0 is
the variance, 0 ≤ c ≤ 1 is a nugget effect, ν > 0 is the scale and smooth-
ness parameter (Cressie [14]). First, the Matérn covariance function is isotropic
and the correlation decreases when the distance h increases. Second, when ν
increases, the smoothness of the random field increases. Moreover, the Matérn
covariance function converges to Gaussian covariance function γ(h;σ2, c, r) =
σ2(1 − c) exp(−h2/r2) as ν → ∞. Last, if ν = 1

2 , (2.6) is reduced to the well
known exponential covariance function γ(h;σ2, c, r) = σ2(1− c) exp(−h/r). r is
called the range parameter since it measures the distance at which the correla-
tion have decreased below certain threshold.
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2.2. Classification using MLE-LDA

Under the setting of spatial statistics, the covariance structures Σ and means
μ1, μ2 and Δ = μ1 − μ2 can be estimated by maximum likelihood estimation
(MLE). Plugging the MLE into (1.1) results in a MLE-LDA classifier. In this
section, we investigate the properties of MLE-LDA. We prove that MLE-LDA
is asymptotically optimal if p/n → 0 but perform poorly while p/n → C > 0
even if the true covariance is known.

Let Y = (Y T
11 , . . . ,Y

T
1n1

,Y T
21 , . . . ,Y

T
2n2

)T , where Yki (k = 1, 2 and i =
1, 2, . . . , nk) is defined as in Section 2.1. As defined in (2.5), Y is an n × p
dimension vector and follows a multivariate normal distribution. Then we have
the log-likelihood function for μk and θ

L(θ,μ1,μ2;Y ) =− p(n1 + n2)

2
log(2π)− n1 + n2

2
log |Σ(θ)| (2.7)

− 1

2

2∑
k=1

nk∑
i=1

(Yki − μk)
TΣ(θ)−1(Yki − μk).

We can estimate μ1, μ2 and θ by MLE even in high dimensional settings.
According to the setting of the spatial model in Section 2.1, the resulting Σ(θ̂)
is a positive definite matrix. This resolves the first challenge of sample covariance
singularity.

We denote the resulting estimates as μ̂1MLE , μ̂2MLE , θ̂MLE , which can be
plugged in (1.1) and get the MLE-LDA classifier δ̂MLE :

δ̂MLE(Ω) = (Ω− μ̂1MLE + μ̂2MLE

2
)TΣ−1(θ̂MLE)(μ̂1MLE − μ̂2MLE). (2.8)

In this section, we investigate the consistency of parameter estimation of
(2.7). Also we investigate the classification performance of δ̂MLE . Let μ1 =
(μ11, μ12, . . . , μ1p), μ2 = (μ21, μ22, . . . , μ2p) and θ0 = (θ01, θ02, . . . , θ0q) be the
true parameters. Let Σk(θ), k = 1, 2, . . . , q be the partial derivative of the matrix
Σ(θ) with respect to θk, i.e.

∂
∂θk

Σ(θ) = Σk(θ). Also let Σk(θ), k = 1, 2, . . . , q

denote the partial derivative of the matrix Σ(θ)−1 with respect to θk, i.e.
∂

∂θk
Σ−1(θ) = Σk(θ). Also, denote Σkj(θ) =

∂Σ(θ)
∂θk∂θj

and Σkj(θ) = ∂Σ−1(θ)
∂θk∂θj

. We

are going to simplify the notation if θ = θ0, i.e. we write Σ(θ0) as Σ, Σ
−1(θ0)

as Σ−1, Σk(θ0) as Σk and Σk(θ0) as Σ
k. For a square matrix A, denote the set

of all the eigenvalues by λ(A). Moreover, denote the maximum and minimum
eigenvalues by λmax(A) and λmin(A), respectively.



3438 Y. Li et al.

We need to assume some regularity conditions for Theorem 2.1.

Assumption 3. lim supp→∞λmax(Σ) < ∞, lim infp→∞λmin(Σ) > 0

Assumption 4. ‖Σk‖−2

F
= Op(p

−1), where ‖Σk‖F
=
∑p

i,j=1 γ
2
k(hij ;θ), where

γk(hij ;θ) =
∂γ(hij ;θ)

∂θk
, k = 1, 2, . . . , q and θ is a k dimensional parameter.

Assumption 5. Assume limp→∞ aij exist, where aij =
tij

t
1/2
ii t

1/2
jj

and tij =

tr(Σ−1ΣiΣ
−1Σj).

Assumption 6. There exists an open subset ω that contains the true parameter
point θ0 such that for all θ∗ ∈ ω, we have:
(i)

−∞ < limp→∞ λmin(Σk(θ
∗)) < limp→∞ λmax(Σk(θ

∗)) < ∞.
(ii)

−∞ < limp→∞ λmin(Σkj(θ
∗)) < limp→∞ λmax(Σkj(θ

∗)) < ∞.
(iii)

‖ ∂tij(θ
∗)

∂θ ‖2= Op(p), where tij(θ
∗) = tr(Σ−1(θ∗)Σi(θ

∗)Σ−1(θ∗)Σj(θ
∗))

Since Σk = −ΣΣkΣ and Σkj = Σ−1(ΣkΣ
−1Σj + ΣjΣ

−1Σk − Σkj)Σ
−1, by

Assumption 3 and Assumption 6, we have

−∞ < lim
p→∞

λmin(Σ
k(θ∗)) < lim

p→∞
λmax(Σ

k(θ∗)) < ∞

and
−∞ < lim

p→∞
λmin(Σ

kj(θ∗)) < lim
p→∞

λmax(Σ
kj(θ∗)) < ∞.

Notice that for any p× p matrix A we have ‖A‖
F
≤ √

p ‖A‖
2
=

√
pλmax(A),

then from Assumption 6 we have:

(1)
∥∥Σk(θ∗)

∥∥
F
= Op(

√
p);

(2)
∥∥Σkj(θ∗)

∥∥
F
= Op(

√
p).

First we have the following theorem about MLE consistency of (2.7).

Theorem 2.1. Assume Assumptions 2–6 hold. Let (μ1,μ2,θ0) be the true pa-
rameter. The maximum likelihood estimate (MLE) of (2.7) is: μ̂1MLE = Ȳ1·,

μ̂2MLE = Ȳ2·, θ̂MLE, where Ȳk· =
∑nk

i=1 Yki/nk. Also,

(i) If p/n → 0,
∥∥∥θ̂MLE − θ0

∥∥∥
2

= Op(
1√
np );

(ii) If p/n → C with 0 < C ≤ ∞ and
√
p/n → 0,

∥∥∥θ̂MLE − θ0

∥∥∥
2

= Op(
1
n ).

Proof. See Appendix A.1.

In Theorem 2.1, Assumption 2 is necessary to ensure the good property for
covariance matrix Σ(θ). Assumption 3 and Assumption 5 are assumed in Mar-
dia and Marshall [31] for existence of MLE for spatial regression for fixed p
when n → ∞. Assumption 4 and Assumption 6 are necessary conditions for the
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parameter consistency when p → ∞. It is obvious that Matérn covariance func-
tion satisfies Assumption 2. In the section of Remarks on the assumptions 7,we
verified the Matérn covariance function satisfy the first part of Assumption 3
and Assumptions 4–6. Matérn covariance function also satisfy the second part of
Assumption 3 if Assumption 1 holds. Theorem 2.1 shows that under the spatial
statistical model, all the parameters (μ1,μ2,θ) can be estimated consistently by
the MLE for either p/n → 0 or p/n goes to a positive constant or ∞. Therefore
we obtain a positive definite covariance matrix estimate of Σ(θ). We can then

plug-in the MLE’s, μ̂1 = μ̂1MLE , μ̂2 = μ̂2MLE and Σ̂ = Σ(θ̂MLE) into (1.7) to
build up the classification function (2.8).

Then a new observation ω of Ω would be classified into class C1 if δ̂MLE(ω) >
0 and C2 otherwise. Using the same notations in Section 1, the conditional
misclassification rate is defined by (1.2) and (1.4). For simplicity, We are going

to use μ̂1 to denote μ̂1MLE , μ̂2 to denote μ̂2MLE , θ̂ to denote θ̂MLE in this
section.

We will see in Theorem 2.2 that the approximate optimal error rate can
be achieved while p/n → 0. However, Theorem 2.3 shows if p/n → C with
0 < C ≤ ∞, the error rate would be no better than random guessing even if we
know the true covariance, due to the error accumulated in the estimation of μ1

and μ2.

Theorem 2.2. Let Cp = ΔTΣ(θ)Δ. Assume p
n → 0, Cp → C0 with 0 ≤ C0 ≤

∞, and nCp → ∞ as n, p → ∞.

(1) The overall misclassification rate W (δ̂MLE) is asymptotically sub-optimal.

In other words, W (δ̂MLE) → 1− Φ(
√
C0

2 ).
(2) Moreover, if Cp → C0 with 0 ≤ C0 < ∞ or if Cp → ∞ and Cp

p
n → 0,

then W (δ̂MLE) is asymptotically optimal, i.e. W (δ̂MLE)
WOPT

P→ 1.

Proof. See Appendix A.1.

The following theorem shows that while p
n goes to a positive constant or ∞,

even though the true covariance is known, the error accumulated in the esti-
mation of μ1 and μ2 would cause biased misclassification rate unless the signal
levels (Cp) are extremely high. This discovery suggests that even though there’s
no problem in parameter estimation in our model even in high dimensional case,
it is still necessary to select important features for classification.

Theorem 2.3. Assume the true covariance Σ is known, we denote the classifier
function as

δμ̂(ω) = (ω − μ̂)TΣ−1(μ̂1 − μ̂2) (2.9)

where μ̂1, μ̂2 are MLE in (2.7) and μ̂ = μ̂1+μ̂2

2 . Assume p/n → C with 0 <
C ≤ ∞, Cp → C0 with 0 ≤ C0 ≤ ∞. Assume n1 
= n2 and nk > n

4 (k = 1, 2),
then

(1) For
Cp

p/n → ∞, then W (δ̂μ̂)
P→ 0 and WOPT

P→ 0 but
W (δ̂μ̂)
WOPT

P→ ∞.
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(2) For
Cp

p/n → c with 0 < c < ∞,

(i) if p
n → C < ∞, then limP W (δ̂μ̂) > 1− Φ(

√
C0

2 );

(ii) if p
n → ∞, then W (δ̂μ̂)

P→ 0 and WOPT
P→ 0, but

W (δ̂μ̂)
WOPT

P→ ∞.

(3) For
Cp

p/n → 0, then W (δ̂μ̂)
P→ 1

2 .

Proof. See Appendix A.1.

Corollary 1. Providing all the same conditions hold in Theorem 2.3, and if
n1 = n2, then

(1) If
Cp√
p/n

→ ∞, then W (δ̂μ̂)
P→ 0 and WOPT

P→ 0, but
W (δ̂μ̂)
WOPT

P→ ∞;

(2) If
Cp√
p/n

→ c with 0 < c < ∞,

(i) If p
n → C, then W (δ̂μ̂)

P→ 1 − Φ( c

2
√

4+c/
√
C
) and WOPT

P→ 1 −

Φ(

√
c
√
C

2 )

(ii) If p
n → ∞, then W (δ̂μ̂)

P→ 1− Φ( c4 ), and WOPT
P→ 0;

(3) If
Cp√
p/n

P→ 0, we have W (δ̂μ̂)
P→ 1

2 .

Proof. See Appendix A.1.

Theorem 2.3 and the Corollary 1 show that while p/n → C with 0 < C ≤ ∞,

δ̂μ̂ is never asymptotically optimal. It is asymptotically sub-optimal only if
Cp → ∞. We can apply LDA to spatially dependent data when estimating the
parameters by MLE, however, in high dimensional case (p/n → C with 0 < C ≤
∞), the classification performance may be poor due to noise accumulated in the
estimation of μ1 and μ2 (see Fan and Fan [15] and Shao et al. [38]). Therefore,
feature selection is still critical for classification with high dimension. Fan and
Fan [15] seeks to extract salient features by two-sample t-test and proved that t-
test can pick up all important features by choosing an appropriate critical value
once the features are assumed to be independent. Shao et al. [38] proposes to
select features by threshold. In this paper, we propose to use penalized maximum
likelihood estimates (PMLE) for parameter estimation and feature selection,
when the features are spatially correlated.

3. Classification using penalized maximum likelihood estimate
(PMLE-LDA)

3.1. The penalized maximum likelihood estimation (PMLE)

In this section, we consider feature selection for the high dimensional classifica-
tion problem (i.e. p/n → C with 0 < C ≤ ∞ as p → ∞ and n → ∞). We recall
the notation used in Section 1. We use (Δ1, . . . ,Δ2) = (μ21−μ11, . . . , μ2p−μ1p)
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to denote the differences of the mean between class C1 and C2. The vector form
is denoted as Δ = μ2−μ1, which is a p dimensional vector. Define the signal set
S = {j : Δj 
= 0}. Let s be the number of non zero elements inΔ. The important
features are contained in the set S. Instead of assuming the sparsity of discrim-
inant direction (Cai and Liu [7], Fan, Feng and Tong [16], Mai, Zou and Yuan
[30]), we assume the sparsity of feature difference Δ (i.e. s � n and s/n → 0).
Next, we derive the penalized likelihood function based on the assumption that
the observations Yki are normally distributed Yki ∼ N(μk,Σ(θ0)) for k = 1, 2
and i = 1, 2, . . . , nk.

First, we define two matrix forms that help simplify notations in subsequent
derivations. Let Ip be a p × p identity matrix. We denote the diagonal block
matrix for square matrix A as diagn(A). We denote the block matrix for identity
matrix Ip as J̃n,p. Their definitions are given as follows.

diagn(A) =

⎛
⎜⎜⎜⎝

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 0 A

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
n×n blocks

, J̃n,p =

⎛
⎜⎜⎜⎝

Ip Ip · · · Ip
Ip Ip · · · Ip
...

...
. . .

...
Ip Ip Ip Ip

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
n×n blocks

.

Both diagn(A) and J̃n,p consist of n×n blocks. Thus we define Ĩn,p = diagn(Ip).
Recall that Y = (Y T

11 , · · · ,Y T
1n1

,Y T
21 , · · · ,Y T

2n2
)T is an n × p dimensional

vector. In order to estimate Δ = μ1 −μ2, we transform Y by letting Z = VY ,
whereV is a (n−1)p×npmatrix made up of the first (n−1)p rows of Ĩn,p− 1

n J̃n,p.

Then Z = (ZT
1 ZT

2 · · ·ZT
n−1)

T , where Zi = Y1i − Ȳ for i = 1, 2, . . . , n1, Zi =

Y2(i−n1) − Ȳ for i = n1 + 1, n1 + 2, . . . , n− 1 and Ȳ = 1
n

∑2
k=1

∑nk

i=1 Yki. Note
that transformed data Z becomes (n−1)p dimensional instead of np dimensional,
because it is known that the freedom of a centered transformation is n − 1 (if
performed on n observations). Then the distribution of Z is given as

Zi ∼
{

N(−τ2Δ, n−1
n Σ(θ0)), i = 1, 2, . . . , n1,

N(τ1Δ, n−1
n Σ(θ0)), i = n1 + 1, . . . , n− 1.

where τ1 = n1

n and τ2 = n2

n . The covariance is cov(Zi,Zj) = − 1
nΣ for i 
= j. We

define X(1) and X(2) as

X(1) =

⎛
⎜⎜⎜⎝

−τ2 0 · · · 0
0 −τ2 · · · 0
...

...
. . .

...
0 0 0 −τ2

⎞
⎟⎟⎟⎠

p×p

, X(2) =

⎛
⎜⎜⎜⎝

τ1 0 · · · 0
0 τ1 · · · 0
...

...
. . .

...
0 0 0 τ1

⎞
⎟⎟⎟⎠

p×p

.

We further define that Xi = X(1) for i = 1, 2, . . . , n1 and Xi = X(2) for
i = n1 + 1, , . . . , n− 1. Then we have X = (XT

1 ,X
T
2 , · · · ,XT

n−1)
T .

Because PMLE is traditionally used in a linear regression setup, we rewrite
β = Δ, which keeps the notations that researchers have been familiar with. Then
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the (n−1)p×1 vector Z is a multivariate normal distribution N(Xβ, Σ̇), where
Σ̇ = (Ĩn−1,p− 1

n J̃n−1,p)diagn−1(Σ). Denote all the unknown parameters by η =

(β,θ) ∈ R
p+q. Based on the fact that

∣∣∣Σ̇∣∣∣ = ∣∣∣Ĩn−1,p − 1
n J̃n−1,p

∣∣∣ |diagn−1Σ(θ))|=
( 1n )

p |Σ(θ)|n−1
and (Ĩn−1,p − 1

n J̃n−1,p)
−1 = Ĩn−1,p + J̃n−1,p, we can write the

penalized log-likelihood function of β and θ as

Q(θ,β;Z)

=− np

2
log(2π)− 1

2 log
∣∣∣Σ̇∣∣∣− 1

2 (Z−Xβ)T Σ̇−1(Z−Xβ)− n

p∑
j=1

Pλ(|βj |)

=Cn,p −
n− 1

2
log |Σ| − 1

2 (Z−Xβ)T diagn−1(Σ
−1)(Ĩn−1,p + J̃n−1,p)(Z−Xβ)

− n

p∑
j=1

Pλ(|βj |), (3.1)

where Cn,p = − (n−1)p
2 log π + p

2 logn. Pλ(x) is a generic sparsity-inducing
penalty, which could be the lasso penalization or folded concave penalization
(such as the SCAD and the MCP). We will elaborate the choice of penalization
later in this paper.

In the joint likelihood (3.1), we can see that θ and β play different roles
because one is included in the mean and the other is included in the covariance.
So it is difficult to obtain the estimation of them simultaneously. The exact
solution of (3.1) should be achieved through numerous iterations before conver-
gence. However, to save computational time, we adopt the one-step estimation
procedure to estimate θ and β though iterative updates (Chu et al. [12]). The
procedure is shown as follows.

One-step PMLE (PMLEose) computing procedure:

1. Initialize β by minimizing R(β) = (Z − Xβ)T (Z − Xβ) +
n
∑p

j=1 Pλ(|βj |) with respect to β. Denote the initialization

by β̂(0);
2. With β = β̂(0), estimate θ by maximizing Q(θ, β̂(0);Z) in

(3.1) with respect to θ. Denote the estimate by θ̂(0);

3. With θ = θ̂(0), update β by maximizing Q(θ̂(0),β;Z) in (3.1)

with respect to β. Denote the estimate by β̂(1);
4. With β = β̂(1), estimate θ by maximizing Q(θ, β̂(1);Z) in

(3.1) with respect to θ. Denote the estimate by θ̂(1).

Then θ̂ose = θ̂(1) and β̂ose = β̂(1) are the obtained estimates. We call θ̂ose
and β̂ose as the one-step PMLE. Mean parameters μ1 and μ2 can be estimated
by μ̂1,ose = Ȳ − τ2β̂ose and μ̂2,ose = Ȳ + τ1β̂ose. Besides, we estimate the

covariance as Σ̂ = Σ(θ̂ose). The (i, j)th element of Σ̂ is σ̂i,j = γ(hij ; θ̂ose),
where hij = ‖sj − si‖

2
is the Euclidean distance between site si and sj .
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3.1.1. Consistency of one-step PMLE

Penalty function largely determines the sampling properties of the penalized
likelihood estimates. Some additional assumptions about the penality function
and tuning parameter λ are needed:

Assumption 7. Assume an = Op(
1√
n
), where an = max1≤j≤p{p′λn

(|β0j |),
β0j 
= 0}.
Assumption 8. bn → 0 as n → ∞, where bn = max1≤j≤m{p′′λn

(|β0j |),
β0j 
= 0}.
Assumption 9. λn → 0 and λn/

√
s
n → ∞.

Assumption 10. lim infn→∞
p→∞

lim infθ→0+ P ′
λn

(|θ|)/λn > 0.

Assumption 7 ensures the unbiasedness property for large parameters and the
existence of the consistent penalized likelihood estimator. Assumption 8 ensures
that the penalty function does not influence the penalized likelihood estimators
more than the likelihood function itself. Assumption 10 ensures the penalized
likelihood estimators possess the sparsity property. Assumption 9 leads to the
variable selection consistency.

Smoothly Clipped Absolute Deviation (SCAD) penalty satisfies all these as-
sumptions. We adopt SCAD penalization in this paper. Fan and Li [17] proposed
the SCAD penalty function and claimed that it has three good properties: un-
biasedness, sparsity and continuity. Unbiasedness means that there is no over-
penalization of large features to avoid unnecessary modeling biases. Sparsity
means that the insignificant parameters are set to 0 by a thresholding rule to
reduce model complexity. Continuity means that the penalized likelihood pro-
duces continuous estimators. The SCAD penalty function is defined as

pλ(β) =

⎧⎪⎨
⎪⎩
λ |β| if |β| ≤ λ

−β2−2aλβ+λ2

2(a−1) if λ < |β| ≤ aλ
(a+1)λ2

2 if |β| > aλ

for some a > 0. More details can be found in Fan and Li [17]. We first illustrate
the property of PMLE of (3.1) by the following theorem.

We illustrate the property of one step PMLE as follows. Recall that the true
parameter β0 is a parameter vector of size p, and θ0 = (θ01, θ02, . . . , θ0q) is a
q-dimensional parameter in covariance function. We define the sparsity of β0

as follows. Without loss of generality, we can write β0 = (βT
1,0, β

T
2,0)

T , where
β1,0 ∈ R

s stands for non-zero components, and β0,2 = 0(p−s)×1 stands for zero
components. The number of nonzero components suffices that s

n → 0 as n, p, s →
∞. So we can write Xi = (X1

i ,X
2
i ), i = 1, 2, . . . , n, where X1

i is the p × s
submatrix of Xi made up of nonzero columns in supp(β0) and X2

i is the p×(p−
s) complement matrix. As demonstrated in Zou and Li [48], the one-step method
is as efficient as the fully iterative method both empirically and theoretically,
provided that the initial estimators are reasonably good. We will see in the proof
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of Theorem 3.1, in the one step estimation Algorithm stated in Section 3.1, the
initial estimators for β (β̂(0)) is obtained by minimizing penalized regression
function R(β) = (Z−Xβ)T (Z−Xβ)+n

∑p
j=1 Pλ(|βj |), which is consistent and

has oracle property. The initial estimator for θ (θ̂(0)) is also a consistent estimate
from MLE. As a result, the one-step PMLE (PMLEose) has good property as
demonstrated in Theorem 3.1.

Theorem 3.1. Suppose conditions Assumptions 2–10 hold. Let β0 =
(βT

1,0,β
T
2,0)

T , where β1,0 ∈ R
s is non-zero component, β2,0 = 0(p−s)×1 is the

zero component of β0 with s
n → 0, p

n → C with 0 < C ≤ ∞ as n, p, s → ∞. The
one-step PMLE of (3.1) from the one step procedure in Section 3.1 (PMLEose)

is η̂ose = (β̂ose, θ̂ose) with β̂ose = (β̂T
1,ose, β̂

T
2,ose)

T and β̂1,ose is a sub-vector of

β̂ose formed by nonzero components in supp(β0). Then η̂ose satisfy:

(a) (consistency)
∥∥∥θ̂ose − θ0

∥∥∥
2

= Op(
1√
np ) and

∥∥∥β̂ose − β0

∥∥∥
2

= Op(
√

s
n ).

(b) (sparsity) β̂2,ose = 0 with probability tending to 1 as n → ∞.

Proof. See Appendix A.2.

3.1.2. Covariance tapering and one-step PMLE

When the number of features is large (p is large) for each realization of the spatial
process, calculating the likelihood can be computationally infeasible (requiring
O(p3) calculation). Covariance tapering can be used to approximate the likeli-
hood. When the covariance matrix is replaced with a tapered one, the resulting
matrices can then be manipulated using efficient sparse matrix algorithms which
would reduce computational burden effectively.

In Section 1, the covariance matrix is defined as Σ(θ) = [γ(si, sj)]
p
i,j=1. Under

Assumption 2, we can simply write it as Σ = [γ(hij)]
p
i,j=1, where hij = ‖si − sj‖

2

is the Euclidean distance between sites si and sj . LetKT (h,w) denote a tapering
function, which is an isotropic autocorrelation function when 0 < h < w and
0 when h ≥ w for a given threshold w > 0. We use a simple tapering function
from Wendland [41],

KT (h, ω) = [(1− h/w)+]
2

(3.2)

where x+ = max(x, 0) meaning that the correlation is 0 when the lag distance h
is greater than the threshold distance w. Let K(w) = [KT (hii′ , w)]

p
i,i′=1 denote

the p × p tapering matrix. Then a tapered covariance of Σ is defined as ΣT =
Σ ◦ K(w), where ◦ is the Schur product (i.e. elementwise product). By the
properties of the Schur product (Horn and Johnson [22], chap. 5), the tapered
covariance matrix would keep the positive definiteness thus it is still a valid
covariance matrix. When p is large, we approximate the penalized log-likelihood
(3.1) by replacing Σ with ΣT and obtain a covariance tapered penalized log-
likelihood:



High dimensional classification for spatially dependent data 3445

QT (θ,β;Z)

=− np

2
log(2π)− 1

2 log
∣∣∣Σ̇T

∣∣∣− 1
2 (Z−Xβ)T Σ̇−1

T (Z−Xβ)− n

p∑
j=1

Pλ(|βj |)

=Cn,p −
n− 1

2
log |ΣT | − 1

2 (Z−Xβ)T diagn−1(Σ
−1
T )(Ĩn−1,p + J̃n−1,p)(Z−Xβ)

− n

p∑
j=1

Pλ(|βj |) (3.3)

where Cn,p = − (n−1)p
2 log π + p

2 logn.
We keep all the notations the same as in (3.1), except that Σ is replaced

by ΣT . We follow the one-step PMLE procedure. Let β̂T,ose = Δ̂T,ose and θ̂T,ose

be the one-step PMLE with tapered covariance (PMLET,ose). Next, we prove the

consistency of PMLET,ose. Let γk(θ, h) = ∂γ(θ,h)
∂θk

(θ) and γjk(θ, h) = ∂2γ(θ,h)
∂θkθj

.

Two additional assumptions are made here for regularization.

Assumption 11. Assume 0 < infp{wp

pδ } < supp{
wp

pδ } < ∞, where wp is the
threshold distance in the tapering function for some δ > 0.

Assumption 12. Let d (d ≥ 1) be the dimension of the domain, i.e. D ⊂ R
d.

Assume for all θ ∈ Ξ and 1 ≤ k, j ≤ q, we have γ(θ, h), γk(θ, h), γjk(θ, h) belong
to the function space £, where £ = {f(h) :

∫∞
0

hdf(h)dh < ∞}.
Let Σ be the covariance matrix and ΣT be the tapered covariance matrix.

Σk,T = ∂ΣT

∂θk
and Σjk,T = ∂2ΣT

∂θj∂θk
. By using the tapering function (3.2), we have

the following result for PMLET,ose.
Similar to Theorem 3.1, since the initial estimates have good properties, the

one-step PMLE with tapering (PMLET,ose) also has good properties hence we
have the following theorem:

Theorem 3.2. Assume conditions 2–12 hold. Assume β0 = (βT
1,0,β

T
2,0)

T , where
β1,0 ∈ R

s is non-zero component, β2,0 = 0(p−s)×1 is the zero component of
β0 with s

n → 0, p
n → C with 0 < C ≤ ∞ as n, p, s → ∞. The one-step

PMLE estimates of (3.3) from Algorithm in Section 3.1 (PMLET,ose) is η̂T,ose =

(β̂T,ose, θ̂T,ose) with β̂ = (β̂T
1,T,ose, β̂

T
2,T,ose)

T and β̂1,T,ose is a sub-vector of

β̂T,ose formed by non-zero components in supp(β0). Then η̂T satisfy:

(a) (consistency)
∥∥∥θ̂T,ose − θ0

∥∥∥
2

=Op(
1√
np ) and

∥∥∥β̂T,ose − β0

∥∥∥
2

=OP (
√

s
n ).

(b) (sparsity) β̂2,T,ose = 0 with probability tending to 1 as n → ∞.

Proof. See Appendix A.3.

3.2. The penalized maximum likelihood estimation LDA
(PMLE-LDA) classifier

Now we can develop the PMLE-LDA classifier in this section. No matter using
PMLEose or PMLET,ose, we obtain the consistent estimates forΔ and θ denoted
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by Δ̂ and θ̂. The estimation of μ1 and μ2 are μ̂1 = Ȳ −τ2Δ̂ and μ̂2 = Ȳ +τ1Δ̂.
Besides, we have estimated covariance Σ̂ = Σ(θ̂), where the (i, j)th element of
Σ̂ is:

σ̂ij = γ(|sj − si| ; θ̂) (3.4)

When p > n, the error accumulated in estimate of each σ̂ij may also cause
problems in classification (see Bickel and Levina [4] and Shao et al. [38]). For
regularization of the covariance matrix, we use the tapered covariance matrix in
classification function. Specifically, we define Σ̃ = ΣT (θ̂) = Σ(θ̂) ◦K(w), where
K(w) is defined in Section 3.1.2. We then replace μ1,μ2,Σ in LDA (1.7) by
μ̂1, μ̂2 and Σ̃ for classification. Then the PMLE-LDA function is:

δ̂PLDA(X) = (X − Ȳ − n1 − n2

2n
Δ̂)T Σ̃−1Δ̂ (3.5)

where Ȳ = 1
n

∑2
k=1

∑nk

i=1 Yki.
The conditional misclassification rate for class 1 and class 2 are defined by

(1.2) and (1.4) with Σ̂ replaced with Σ̃. Similarly we have the overall misclassi-
fication rate defined in (1.6).

We need more assumptions for the covariance function γ(h;θ) in Theorem 3.3.

Assumption 13. Let d (d ≥ 1) be the dimension of the domain D, i.e. D ⊂ Rd.

Assume
∫∞
1

hdγ(h;θ)dh < ∞ and
∫ 1

0
hd−1γ(h;θ)dh < ∞ for θ ∈ Ξ.

This requires that when h → ∞, γ(h;θ) ∼ hx with x < −(d + 1) and when
h → 0, γ(h;θ) ∼ hx with x > −d.

Assumption 14. Assume there exist a constant M such that for any h ≥ 0

and θ ∈ Ξ, ‖ ∂γ(h;θ)
∂θ ‖2≤ M .

Theorem 3.3. Assume θ̂, Δ̂ in (3.5) are estimated from Theorem 3.1 or 3.2.
Suppose Assumptions 2–3 and Assumptions 13–14 hold. Assume s

n → 0, p
n → C

with 0 < C ≤ ∞, Cp → C0 with 0 ≤ C0 ≤ ∞,
Cp√
s/n

→ 0. Also, assume

w = O((
√
np)

α
d ) with 0 < α < 1, and w−1 = O(p−δ) with some δ > 0, where d

is the dimension of the domain. Then the classification error rate of δ̂PLDA is

asymptotically sub-optimal, i.e. W (δ̂)
P→ 1− Φ(

√
C0

2 ). Moreover,

(1) If Cp → C0 < ∞, W (δ̂) is asymptotically optimal, i.e. W (δ̂)
WOPT

P→ 1;

(2) If Cp → ∞ and Cpκn,p → 0, W (δ̂) is asymptotically optimal, i.e. W (δ̂)
WOPT

P→
1, where κn,p = max( wd

√
np ,

1
w ,
√

s
n ).

Proof. See Appendix A.4.

Since WOPT = 1 − Φ(

√
Cp

2 ) → 1 − Φ(
√
C0

2 ), Theorem 3.3 shows that with
moderate conditions, the error rate of the proposed classifier goes to the unique
limit WOPT . Moreover, if Cp → C0 < ∞ or Cp goes to ∞ with a moderate rate,

then W (δ̂) goes to 1− Φ(
√
C0

2 ) with the same rate as WOPT .
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Fig 1. Two dimensional domain example. Left: 2D domain with p = 4 × 4; middle: μ1;
right: μ2.

4. Simulation study

We conduct extensive simulation study to evaluate the performance of our pro-
posed method compared to available generic procedures. Then we illustrate the
methodology with real neuroimgaing data from ADNI.

Assume that the spatial domain of interest D in R
2 is a u × u square area.

We can observe signal at each lattice. Then we have p = u × u features for
classification. The mean effects of the signal for class C1 and C2 are μ1 and μ2.
We assume that μ1 = (110,0p−10) and μ2 = 0p, where 1k is a k dimension
vector with all the elements equal to 1 and 0k is a k dimension vector with
all the elements equal to 0. For example, if u = 4 (hence p = 16), then the
corresponding spatial domain D, and the mean structure of μ1 and μ2 are
shown as in Figure 1. In the simulation setting, we construct various simulation
scenarios by letting u = 6, 20, and 35, making p = 36, 400, 1225 respectively.

For the spatial covariance, we generate the error terms from stationary and
isotropic Gaussian process with zero mean. A widely used spatial covariance
function Matérn covariance was defined in (2.6). We use a special case of Matérn
covariance function when ν = 1

2 , which is the exponential covariance function. In
the simulation, we set the variance scale as σ2 = 1, the nugget effect as c = 0.2
and the range parameter as r = 1, 2, . . . , 8, 9. Larger value of r means longer
range spatial dependency. Let h be the Euclidean distance between two sites
on the domain D. Specifically, on the domain D ∈ R

2, the distance between
site i with coordinate si = (xi, yi) and site j with coordinate sj = (xj , yj) is

hij =
√
(xi − xj)2 + (yi − yj)2.

We generate 100 groups of training sets with n1 = n2 = 30 according to
different setting of μ1, μ2 and Σ(θ0). For each training set, we estimate the
parameters μ1, μ2 and θ0 by MLE, tapered MLE, PMLE and tapered PMLE.
We also generate 100 groups of testing data sets with n1 = n2 = 100 to test the
classification performance. The average classification error rate was calculated
from the 100 groups of testing data sets.

We name our classification method proposed in this paper as PMLE-LDA.
For each choice of p, we compare the classification performance of PMLE-LDA
with MLE-LDA, PREG-LDA, FAIR (Feature Annealed Independence Rule)
and NB (Naive Bayes) and RPEC(Random-projection ensemble classification).



3448 Y. Li et al.

More specifically, PMLE-LDA is the classifier defined in (3.5); MLE-LDA uses

μ̂1MLE , μ̂2MLE and Σ(θ̂MLE) in LDA function for classification; PREG-LDA

uses Δ̂ = β̂(0) and θ̂ = θ̂(0) in LDA function, where β̂(0) and θ̂(0) are estimated
in the first and second step in the procedure in Section 3.1. NB [3] uses sam-
ple mean μ̂1, μ̂2 and diagonal of sample covariance Σ̂ in LDA. This method is
also known as independent rule(IR). FAIR [15] assumes independence between
variables and utilizes t-test for variable selection in NB. RPEC [11] is a very
general method which is not designed for a specific classifier (e.g. LDA). It uses
random projections to project the feature vectors from any classifier into a lower
dimensional space. To compare with the truth, we uses TRUE to denote that
true mean μ1, μ2 and true covariance Σ(θ0) are used in LDA for classification.

We recall the basic differences of these methods as follows. RPEC, FAIR
and NB are the classification methods without considering spatial dependency,
while MLE-LDA, PREG-LDA and PMLE-LDA are methods considering spa-
tial dependency. MLE and NB are two methods without feature selection, while
PREG-LDA, PMLE-LDA and FAIR are classification methods with feature se-
lection. Moreover, PREG-LDA selects features by penalized regression without
considering spatial dependency, while PMLE-LDA selects features by penalized
maximum likelihood estimation with spatial dependency incorporated.

We also compared our method with four more methods, which are l1-logistic
regression, l1-FDA, DSDA (Direct sparse discriminant analysis) and CATCH
(Covariate-adjusted tensor classification in high-dimensions). l1-logistic regres-
sion is one of the most basic and popular methods to solve a classification
problem. l1-LDA is proposed for penalizing the discriminant vectors in Fisher’s
discriminant problem (Witten and Tibshirani [42]). DSDA generalizes classical
LDA and formulates high-dimensional LDA into a penalized least squares prob-
lem (Mai, Zou and Yuan [30]). CATCH takes advantage of the tensor structure
to significantly reduce the number of parameters and hence alleviate computa-
tion complexity (Pan, Mai and Zhang [35]).

The classification performance of all the methods is shown in Table 1. r = 1,
r = 5 and r = 9 means weak, moderate and strong spatial dependence re-
spectively. Among all the methods, PMLE-LDA outperforms all the others. We
have the following conclusions. First, when spatial dependency is weak (r = 1),
all the methods with or without spatial dependency do not have much differ-
ence. But when spatial dependency is strong (r = 9), the methods with spatial
dependency (MLE-LDA, PREG-LDA, PMLE-LDA) outperform the methods
without spatial dependency (FAIR, NB, RPEC, l1-logistic, l1-LDA, DSDA and
CATCH). Second, when the number of feature is small (p = 36), the methods
with or without feature selection have similar performance. But when number of
feature is large (p = 400 and p = 1225), the methods with feature selection out-
performs the methods without feature selection. PREG-LDA and PMLE-LDA
outperforms MLE-LDA. FAIR outperforms NB. Third, CATCH outperforms l1-
logistic, l1-LDA and DSDA, because it honors the tensor structure and preserves
more information. But CATCH does not consider the spatial dependency, so the
performance is not as good as PMLE-LDA. In the end, PMLE-LDA outperforms
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Table 1

Comparisons of classification accuracy rate.

TRUE MLE PREG PMLE FAIR NB RPEC l1-logistic l1-LDA DSDA CATCH

p = 36

r = 1 0.88(0.02) 0.84(0.03) 0.84(0.04) 0.84(0.05) 0.81(0.04) 0.84(0.04) 0.82(0.03) 0.81(0.04) 0.83(0.03) 0.80(0.05) 0.83(0.04)
r = 5 0.91(0.02) 0.88(0.02) 0.88(0.02) 0.88(0.04) 0.72(0.05) 0.75(0.05) 0.85(0.03) 0.83(0.04) 0.75(0.06) 0.83(0.04) 0.84(0.04)
r = 9 0.94(0.02) 0.91(0.02) 0.92(0.02) 0.92(0.02) 0.71(0.05) 0.75(0.05) 0.88(0.03) 0.87(0.03) 0.75(0.08) 0.86(0.04) 0.87(0.03)

p = 400

r = 1 0.92(0.02) 0.74(0.03) 0.84(0.05) 0.82(0.05) 0.83(0.04) 0.74(0.04) 0.73(0.04) 0.80(0.04) 0.74(0.04) 0.79(0.05) 0.83(0.04)
r = 5 0.95(0.01) 0.81(0.03) 0.90(0.05) 0.92(0.03) 0.74(0.04) 0.60(0.05) 0.68(0.04) 0.77(0.05) 0.59(0.06) 0.79(0.05) 0.78(0.06)
r = 9 0.97(0.01) 0.86(0.02) 0.93(0.04) 0.96(0.02) 0.72(0.05) 0.58(0.05) 0.71(0.04) 0.82(0.05) 0.56(0.06) 0.83(0.05) 0.82(0.04)

p = 1225

r = 1 0.92(0.02) 0.65(0.03) 0.83(0.05) 0.77(0.07) 0.83(0.05) 0.66(0.05) 0.65(0.04) 0.78(0.04) 0.66(0.04) 0.79(0.05) 0.81(0.04)
r = 5 0.95(0.02) 0.72(0.03) 0.86(0.07) 0.90(0.04) 0.74(0.05) 0.56(0.05) 0.58(0.04) 0.73(0.05) 0.53(0.04) 0.74(0.05) 0.73(0.04)
r = 9 0.97(0.01) 0.76(0.03) 0.89(0.07) 0.93(0.03) 0.72(0.05) 0.54(0.05) 0.58(0.04) 0.76(0.05) 0.52(0.03) 0.78(0.05) 0.76(0.05)

Table 2

Comparisons of parameter estimation.

p = 36 p = 400 p = 1225

TRUE MLE PMLE MLE PMLE MLE PMLE

r = 1 r 1 1.01(0.16) 1.04(0.16) 1(0.05) 1(0.05) 1.00(0.02) 1.00(0.01)
c 0.2 0.19(0.12) 0.19(0.12) 0.2(0.04) 0.19(0.03) 0.20(0.01) 0.20(0.02)
σ 1 0.97(0.03) 1(0.04) 0.97(0.01) 1(0.01) 0.97(0.01) 1.00(0.01)

r = 5 r 5 5.08(0.75) 5.09(0.75) 5.03(0.27) 5.04(0.27) 4.99(0.17) 5.00(0.17)
c 0.2 0.2(0.03) 0.2(0.03) 0.2(0.01) 0.2(0.01) 0.20(0.004) 0.20(0.004)
σ 1 0.97(0.08) 1.01(0.08) 0.97(0.03) 1.01(0.04) 0.97(0.02) 1.00(0.02)

r = 9 r 9 9.17(1.58) 9.1(1.57) 9.1(0.67) 9.12(0.69) 8.96(0.45) 8.97(0.45)
c 0.2 0.2(0.02) 0.2(0.02) 0.2(0.01) 0.2(0.01) 0.20(0.01) 0.20(0.01)
σ 1 0.97(0.1) 1.01(0.1) 0.97(0.05) 1.01(0.05) 0.96(0.03) 1.00(0.03)

PREG-LDA, which implies the selection procedure considering spatial depen-
dency outperforms feature selection without considering spatial dependency.

The parameter estimation results are shown in Table 2. It shows the param-
eters are all consistently estimated. We also compared the average number of
variables selected from PMLE-LDA, PREG-LDA and FAIR in Table 3. The
tunning parameter λ in PREG-LDA and PMLE-LDA is selected by 10 fold
cross validation by minimizing the classification error rate. Table 3 shows that
FAIR tends to select the fewest features. PMLE tends to select more features
than PREG. But when spatial dependency is strong, PMLE produces smaller
variance for feature selection and thus smaller misclassification rate.

Additionally, we investigate the performance of classification, parameter es-
timation and feature selection of tapered MLE-LDA, tapered PMLE-LDA and
tapered PREG-LDA. Note that the tapering technique is applied in parameter
estimation. The performances of classification and feature selection are similar
with the ones without tapering (see Tables 1 and 3). However, the tapering
technique estimates a larger range parameter r when the spatial dependency is
strong. This is consistent with the characteristic of tapering technique. To save
space, these tables are omitted here but are available in Li [25].

Finally, we investigate the simulation results when covariance is mis-specified.
More specifically, we use Gaussian covariance function defined in Section 2.1
(i.e. Matérn covariance when ν → ∞) to generate the data. Then we use ex-
ponential covariance function (i.e. Matérn covariance when ν = 1

2 ) to estimate
the structure and complete classification. Both of them are Matérn covariance
with different smoothness parameters. We generate the data using Gaussian
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Table 3

Comparisons of number of selected features.

PMLE PREG FAIR

p = 36 selectedN correctN selectedN correctN selectedN correctN

r = 1 20.77(6.21) 9.47(1.71) 18.92(7.03) 9.81(0.8) 6.45(3.98) 5.48(2.36)
r = 5 19.97(5.51) 9.51(1.52) 19.97(7.06) 10(0) 3.23(1.48) 3.08(1.47)
r = 9 19.8(5.04) 9.72(1.07) 19.45(7.57) 10(0) 2.81(1.38) 2.68(1.34)

p = 400

r = 1 84.8(55.3) 9.2(1.5) 42(55.2) 9.2(1.4) 20.8(15.1) 7.2(2.1)
r = 5 73.7(32.2) 9.8(0.6) 50.7(73.3) 9.5(1.2) 11.3(10.6) 5.3(2.8)
r = 9 52.5(21.9) 9.9(0.5) 63.7(98.5) 9.7(1.1) 6.8(7.6) 4.1(2.7)

p = 1225

r = 1 181.3(205.3) 7.85(2.83) 37.48(59.38) 8.59(1.85) 31.07(22.28) 6.96(1.73)
r = 5 174.5(126.3) 9.48(1.53) 76.88(191.66) 8.89(1.84) 26.15(20.55) 6.42(2.83)
r = 9 115.1(58.9) 9.81(0.88) 79.21(192.62) 9.1(1.81) 15.28(14.02) 5.28(3.41)

Table 4

Comparisons of classification accuracy rate when covariance is mis-specified.

TRUE MLE PREG PMLE FAIR NB RPEC

p = 36

r = 1 0.89(0.02) 0.84(0.03) 0.84(0.04) 0.84(30.05) 0.83(0.05) 0.85(0.05) 0.83(0.03)
r = 5 0.94(0.02) 0.92(0.02) 0.92(0.02) 0.93(0.03) 0.71(0.05) 0.74(0.05) 0.90(0.03)
r = 9 0.97(0.01) 0.96(0.01) 0.95(0.02) 0.96(0.02) 0.71(0.05) 0.74(0.05) 0.94(0.02)

p = 400

r = 1 0.91(0.02) 0.73(0.03) 0.84(0.05) 0.83(0.05) 0.85(0.05) 0.75(0.03) 0.74(0.04)
r = 5 0.98(0.01) 0.88(0.02) 0.94(0.03) 0.97(0.02) 0.73(0.04) 0.59(0.04) 0.67(0.04)
r = 9 0.99(0.01) 0.94(0.02) 0.97(0.02) 0.98(0.01) 0.70(0.06) 0.56(0.04) 0.75(0.05)

p = 1225

r = 1 0.91(0.02) 0.64(0.04) 0.82(0.05) 0.77(0.06) 0.83(0.05) 0.67(0.05) 0.65(0.04)
r = 5 0.98(0.01) 0.78(0.03) 0.90(0.07) 0.95(0.02) 0.73(0.05) 0.54(0.05) 0.56(0.04)
r = 9 0.99(0.01) 0.85(0.03) 0.92(0.07) 0.96(0.03) 0.71(0.06) 0.53(0.06) 0.57(0.04)

covariance function with σ2 = 1, c = 0.2, and r = 1, 2, . . . , 9. Table 4 shows
the classification performance if the covariance are misspecified. It shows that
with misspecified covariance, the PMLE-LDA classification method has the best
performance, even when the spatial dependency is strong (r = 5 and r = 9).
Therefore, the proposed method is robust to the mis-specification of covariance.

5. Real data application

Alzheimer’s disease (AD) is a neuro-degenerative disease and the most com-
mon form of dementia, affecting many millions around the world. Classification
of AD patients is a crucial task in dementia research. To apply our classifi-
cation method, we obtain the data from the Alzheimer’s disease Neuroimag-
ing Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI), which was
launched in 2004. ADNI aims to improve clinical trials for prevention and
treatment of Alzheimer’s disease (AD). With the interest of promoting con-
sistency in data analysis, the ADNI Core has created standardized analysis sets
of the structured MRI scans comprising only image data that have passed qual-
ity control (QC) assessments. The assessments were conducted at the Aging

http://www.loni.ucla.edu/ADNI
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Table 5

Subjects characteristics.

AD NL p-value
n 187 227
Age (Mean ± sd) 75.28± 7.55 75.80± 4.98 0.4168
Gender (F/M) 88/99 110/117 0.813
MMSE (Mean ± sd) 23.28± 2.04 29.11± 1.00 < 1e− 15
Key: AD, subjects with Alzheimer’s disease; NL, healthy subjects;

Age, baseline age; MMSE, baseline Mini-Mental State Examination.

and Dementia Imaging Research laboratory at the Mayo Clinic (Jack et al.
[24]). In this study, we used T1-weighted MRI images from the collection of
standardized datasets. The description of the standardized MRI imaging from
ADNI can be found in http://adni.loni.usc.edu/methods/mri-analysis/

adni-standardized-data/ and Wyman et al. [44].

According to Jack et al. [24], the images were generated using magnetization
prepared rapid gradient echo (MPRAGE) or equivalent protocols with varying
resolutions (typically 1.0× 1.0mm in plane spatial resolution and 1.2mm thick
sagittal slices with 256×256×166 voxels). The images were then pre-processed ac-
cording to a number of steps detailed in Jack et al. [24] and http://adni.loni.

usc.edu/methods/mri-analysis/mri-pre-processing/, which corrected gra-
dient non-linearity, intensity inhomogeneity and phantom-based distortion. In
addition, the pre-processed imaging were processed by FreeSurfer for cortical
reconstruction and volumetric segmentation by Center for Imaging of Neurodeg-
nerative Diseases, UCSF.

In this paper, we obtain images from ADNI-1 subjects obtained using 1.5 T
scanners at screening visits. We use the first time point if there are multiple
images of the same subject acquired at different times. 187 subjects diagnosed
as Alzheimer’s disease at screening visits and 227 healthy subjects at screening
visits are contained in this study. The total number of subjects is 414. Details
of the subjects can be found in Table 5. The authors used ADNI data in their
previous research work (Zhang et al. [46], Li et al. [28]). Please refer these papers
for other information about the data.

After retrieving the pre-processed imaging data from ADNI, an R package
ANTsR is applied for imaging registration. Then we use “3dresample” com-
mand by AFNI software (Cox [13]) to adjust the resolution and reduce the total
number of voxels in the images to 18 × 22 × 18 voxels. Take x axis and y axis
for horizontal plane, x axis and z axis for coronal plane and y axis and z axis
for sagittal plane.

After removing the voxels with zero signal for most of the subjects (more
than 409 subjects), we have 1971 voxels left in use. The distance between
each pair of voxels can be calculated by their coordinates. For example, there
are two voxels s1, s2 with coordinate s1 = (x1, y1, z1) and s2 = (x2, y2, z2).
Then the Euclidean distance between s1 and s2 is defined by: d(s1, s2) =√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. Other distances can also be used in our
method.

http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
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Table 6

Subjects characteristics of training and testing set.

training set testing set p-value
AD n 100 87

Age (Mean ± sd) 75.64± 7.39 74.85± 7.75 0.478
Gender (F/M) 47/53 41/46 0.999
MMSE (Mean ± sd) 23.22± 2.08 23.36± 2.01 0.649

NL n 100 87
Age (Mean ± sd) 75.99± 5.39 75.34± 4.56 0.3723
Gender (F/M) 42/58 50/37 0.05
MMSE (Mean ± sd) 29.06± 1.04 29.09± 1.01 0.8307

Key: AD, subjects with Alzheimer’s disease; NL, healthy subjects;

Age, baseline age; MMSE, baseline Mini-Mental State Examination.

Table 7

Classification performance for voxel level MRI data. We split the data into Training sets
(200 samples) and testing sets (174 samples) as described.

MLE PREG PMLE FAIR NB RPEC
Accuracy 0.690 0.759 0.770 0.569 0.661 0.678

No. of training err 37 52 47 68 43 21
No. of testing err 54 42 40 75 59 56

No. of selected voxels 1971 26 4 16 1971 –

We randomly sample 100 from the 187 AD subjects and 100 from the 227
health subjects as the training set. Then there are 87 AD subjects and 127
healthy subjects left. The testing set includes the 87 AD subjects and a random
sample of 87 from the 127 healthy subjects. Details of the subjects in the training
and testing set are provided in Table 6.

We assume the exponential correlation structure among voxels. Then we ap-
ply the PMLE-LDA method proposed in this research for classification. First,
the parameter are estimated by PMLE: r = 61.66, c = 0.954, σ2 = 223.09 and
5 voxels are selected for classification from training data. Then we plug-in the
estimates into the classification function and obtain classification results on the
testing data.

The classification accuracy rate of PMLE-LDA is listed in Table 7. We also
list the classification accuracy from other methods. It shows the classification
accuracy rate of our method is about 77.0%, which is superior to other compara-
ble methods (MLE-LDA: 69.0%, PREG-LDA: 75.9%, FAIR: 56.9%, NB: 66.1%
and RPEC: 67.8%).

To show the robustness of the proposed method, we repeat the above proce-
dure for 100 times and calculated the average accuracy and standard deviation
in Table 8. Although we know that MRI data is noisy in general and heteroge-
neous across subjects, our method still provide reasonably higher classification
rates with small standard deviations.

6. Conclusion and discussion

The paper contains new developments for the classification problem of multi-
variate Gaussian variables with spatial structures. We generalize the classical
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Table 8

Average classification performance for voxel level MRI data. We repeated the
training/testing procedure for 100 times.

MLE PREG PMLE FAIR NB RPEC
Accuracy 0.704 0.704 0.703 0.577 0.691 0.695

(sd) 0.036 0.035 0.035 0.054 0.034 0.032
No. of selected voxels 1971 1076.30 1043.35 6 1971 –

(sd) – 35.61 35.5 0.19 – –

LDA by assuming spatially dependent structures in the covariance and imposing
sparsity on the feature difference. In particular, by using the Matérn covariance
function, the p × p dimensional covariance is parameterized by only three uni-
variate parameters. By utilizing the additional spatial location information and
constructing the data-driven spatial correlation structure in the data, the new
spatial LDA method is expected to be more efficient than other sparse LDA
methods. Under this framework, we adopt Penalized Maximum Likelihood Es-
timation (PMLE) method to perform parameter estimation. Most importantly,
we show in theory that the proposed method can not only provide consistent
results of parameter estimation and feature selection, but also achieve an asymp-
totically optimal classifier for high dimensional data with spatial structures.

Brain imaging data are usually matrix-variate or tensor-variate observations.
In this paper, we adopt one type of data arrangements that vectorize the tensor
data into vectors and stack covariates along with the long vector to apply vec-
tor methods. This will inevitably increase the dimension of covariance matrix
and thus lead to high computational burden regarding matrix operations. We
can increase the speed by avoiding matrix inverse calculation (Bhattacharya,
Chakraborty and Mallick [2]) or directly estimating sample covariance instead
of using MLE. In the future, we plan to extend our current computing strategy
to tensor methods (e.g. tensor LDA) that significantly reduce the number of pa-
rameters and hence alleviate computation complexity (Li and Zhang [27], Pan,
Mai and Zhang [35]).

In general, nonparametric methods do not have the assumption on data dis-
tribution. It overcomes the limitation of parametric LDA, which can not perform
well in non-Gaussian data. But intrinsically, these two types of methods are de-
manded to solve the same kind of problem, which is to resemble the changing
pattern of brain regions. Mostly, they use average trend to denote the dete-
rioration of brain function and use network structure to denote synergies of
the functional connectivity. To model the average trend, typical methods such
as kernel function, spline, wavelet and Fourier transformation are exploited to
transform the original coordinates to a new space with better properties. To
model the network structure, typical methods such as nonparametric graphi-
cal model, random matrices and Fourier transform of images are exploited to
decompose the nodes into new clusters relevant information. However, one dis-
advantage of nonparametric method is that the results are not straightforward
to interpret, as they are wrapped up in a “black box”. In the future, we plan to
extend our current method to nonparametric models by using Fourier transfor-
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mation. We will work more on how to include inverse transformation into the
model so that the results are interpretable in the original space.

7. Remarks on the assumptions

Remarks on Assumption 3:

The first part of Assumption 3 is the same as that in Mardia and Marshall
[31]. We now verify that the covariance matrix derived from Matérn covariance
function satisfy the first part of Assumption 3. First, for symmetric matrix, we
have

λmax(Σ) ≤ (‖Σ‖
1
)1/2(‖Σ‖

∞
)1/2 = ‖Σ‖

∞
= max

i

p∑
j

γ(hij)

Using the same notation in the proof of Lemma 3, for each i

p∑
j=1

γ(hij) ≤
∞∑

m=0

∑
j∈Bi

m

r(hij) ≤ Kρ

∞∑
m=0

md−1δd max
j∈Bi

m

r(hij)

≤ Kρ

∫ ∞

0

hd−1r(h)dh (7.1)

Recall that Matérn covariance function has the following expansion at h = 0:

γ(h;σ2, c, ν, r) = σ2(1− c)(1− b1h
2ν + b2h

2 +O(h2+2ν)) as h → 0

where b1 and b2 are explicit constants depending only on ν and r. Thus for
ε > 0, ∫ ε

0

hd−1γ(h)dh = O(

∫ ε

0

hd−1dh) = O(εd/d) → 0 as ε → 0 (7.2)

Also, since Kν(h) ∝ e−hh− 1
2 (1+O( 1h )) as h → ∞, there exist a constant K,

for any C sufficiently large, we have:∫ ∞

C

hd−1γ(h)dh ≤ K

∫ ∞

0

hd−1+v− 1
2 e−hdh = Γ(d+ v − 1

2 ) < ∞ (7.3)

Eqs. (7.2) and (7.3) lead to
∫∞
0

hd−1γ(h)dh < ∞. Let p → ∞ in (7.1), we
have lim supp→∞λmax(Σ) < ∞ if Σ is derived from Matérn covariance function.

Now consider the second part of Assumption 3. Assumption 1 assumes in-
creasing domain framework. Bachoc and Furrer [1] showed that under Assump-
tion 1 and some weak assumptions on the matrix covariance function, if the
spectral density of the covariance function is positive, the smallest eigenvalue of
the covariance matrix is asymptotically bounded away from zero. Most standard
covariance function such as Matérn covariance function satisfy those assump-
tions hence satisfy the second part of Assumption 3.
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Remarks on Assumption 4 and Assumption 5:

Assumption 4 and Assumption 5 are the same as the assumptions in Mardia

and Marshall [31]. ‖Σk‖
F
=
∑p

i,j=1 γ
2
k(hij ;θ), where γk(hij ;θ) =

∂γ(hij ;θ)
∂θk

, k =
1, 2, . . . , q and θ is a k dimensional parameter. We now verify that Matérn
covariance function satisfy Assumption 4 for fixed ν. For Matérn covariance
function with fixed ν, we have

∂γ(h)

∂σ2
=

21−ν

Γ(ν)
(h/r)νKν(h/r)(1− c) (7.4)

∂γ(h)

∂c
= −σ2 2

1−ν

Γ(ν)
(h/r)νKν(h/r)

∂γ(h)

∂(1/r)
= σ2(1− c)

21−ν

Γ(ν)
h(h/r)ν(2

ν

h/r
Kν(h/r)−Kν−1(h/r))

It is easy to show that for each k, exist a constant ε > 0 independent of n, p, for
each i, there’s j such that γk(hij) > c. As a result, ‖Σk‖

F
=
∑p

i,j=1 γ
2
k(hij ;θ) ≥∑p

i=1 ε = pε. Therefore ‖Σk‖−1

F
= Op(p

−1).

Remarks on Assumption 6:

We can also verify that the Matérn covariance function with fixed ν satisfy
Assumption 6 and Assumption 6. Similar to the procedure in the remarks on
Assumption 3, it is sufficient to verify for any θ ∈ Θ, γk(h;θ) and γkj(h;θ)
belong to the function space:

� = {f(x) :
∫ ∞

0

f(x)xd−1dx < ∞}

where d ≥ 1 is the dimension of the domain. We have the first-order par-
tial derivative of Matérn covariance function in (7.4). The second-order partial
derivative of Matérn covariance function is as follows:

∂2γ(h)

(∂2σ2)
= 0 (7.5)

∂2γ(h)

∂σ2∂c
= −21−ν

Γ(ν)
(h/r)νKν(h/r)

∂2γ(h)

∂σ2∂(1/r)
= (1− c)

21−ν

Γ(ν)
h(h/r)ν(2

ν

h/r
Kν(h/r)−Kν−1(h/r))

∂2γ(h)

∂c2
= 0

∂2γ(h)

∂c∂(1/r)
= −σ2 2

1−ν

Γ(ν)
h(h/r)ν(2

ν

h/r
Kν(h/r)−Kν−1(h/r))

∂2γ(h)

∂2(1/r)
= σ2(1− c)

21−ν

Γ(ν)
[(h/r)ν−2h2Kν(h/r)(2ν − 1)2ν
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− (4ν + 1)(h/r)ν−1h2Kν+1(h/r)− (h/r)νh2Kν+2(h/r)]

Note that the covariance function and its first-order and second-order partial
derivatives are linear combinations of a Bessel function of h times a polynomial
of h. Similar to proving

∫∞
0

hd−1γ(h)dh < ∞ in (7.1), we have γk(h;θ) ∈ �
and γkj(h;θ) ∈ �. Hence Assumption 6 and Assumption 6 are satisfied. By
similar procedure, we can verify that Matérn covariance function also satisfy
Assumption 12 and Assumption 13.

Appendix A

A.1. Proofs for classification using MLE

Lemma 1. Let ε be p-dimensional vectors and ε ∼ N(0,Σ), where Σ is a
p×p positive definite covariance matrix. For m-dimension vector u with ‖u‖

2
=√

uTu = C and p×m matrix Xi, we have:

∣∣εTXu
∣∣ = Op(

√
tr(XTΣX) ‖u‖

2
) (A.1)

Proof. Since E(εTX) = 0,

E(εTXu)2 ≤
[
E(εTXXT ε)

]1/2 ‖u‖
2
=
[
E(tr(εTXXT ε))

]1/2 ‖u‖
2

(A.2)

= tr(XTΣX) ‖u‖
2

By Chebyshev’s inequality, for any M

P (
εTXu√

‖u‖2
2
tr(XTΣX)

> M) ≤ E(εTXu)2

M2 ‖u‖2
2
tr(XTΣX)

=
1

M2
(A.3)

Thus for any ε > 0, exits M large enough such that

P (

∣∣εTXu
∣∣√

‖u‖2
2
c(n)tr(XTΣX)

> M) < ε (A.4)

This lead to
∣∣εTXu

∣∣ = Op(
√

tr(XTΣX) ‖u‖
2
).

Lemma 2. Let εi (i = 1, 2, . . . , n) be p-dimensional vectors and εi ∼
N(0, c(n)Σ), where c(n) is a function of n and Σ is a p × p positive definite
covariance matrix with λ(Σ) < ∞. For a p× p matrix A, we have

n∑
i=1

[
εTi Aεi − c(n)tr(AΣ)

]
= Op(c(n)

√
n ‖A‖

F
)
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Proof. Since E(εTi Aεi) = tr(c(n)AΣ), we have

E(

n∑
i=1

εTi Aεi − c(n)tr(AΣ))2

=

n∑
i=1

E(εTi Aεi − c(n)tr(AΣ))2 =

n∑
i=1

E(εTi Aεi)
2 − nc2(n)tr2(AΣ) (A.5)

Let B = c(n)Σ
1
2AΣ

1
2 , then exit orthogonal matrix Q such that B = QTΛQ

where Λ = diag(λi) and λi are eigenvalues of B. Let ε̃i =

√
c(n)QΣ− 1

2 εi, then
ε̃i ∼ N(0, Ip×p) where Ip×p is identity matrix. Then

E(εTi Aεi)
2 = E(ε̃Ti Λε̃i)

2 = E(

p∑
i=1

λj ε̃
2
ij)

2 (A.6)

= E(

p∑
i=1

λ2
j ε̃

4
ij +

p∑
j,k=1

λjλkε̃
2
ij ε̃

2
ij) = 2

p∑
i=1

λ2
j + (

p∑
i=1

λj)
2

= 2 tr(BTB) + tr2(B)

= c(n)2[2 tr(ΣAΣA) + tr2(AΣ)]

Hence

E(

n∑
i=1

εTi Aεi − c(n)tr(AΣ))2 = 2nc(n)2tr(ΣATΣA) ≤ 2nc(n)2λ2
max(Σ)tr(A

TA)

(A.7)

By Chebyshev’s inequality, for any M we have

P (

∑n
i=1 ε

T
i Aεi − c(n)tr(AΣ)√
nc(n)2 ‖A‖2

F

> M) ≤ 2nc(n)2tr(ΣATΣA)

M2nc(n)2 ‖A‖2
F

≤ 2λ2
max(Σ)

M2

(A.8)

Then for any ε > 0 exits M large enough such that

p(

∑n
i=1 ε

T
i Aεi − c(n)tr(AΣ)√
nc(n)2 ‖A‖2

F
)

> M) < ε (A.9)

which means
∑n

i=1 ε
T
i Aεi − c(n)tr(AΣ) = Op(c(n)

√
n ‖A‖

F
)

Proof of Theorem 2.1. Take derivative with respect to μk (k = 1, 2) with the
function L(θ,μ1,μ2) defined in (2.7). Considering Σ−1(θ) is nonsingular, we
have μk = μ̂kMLE = Ȳk·.

For θ̂MLE , we first consider the case of p/n → 0. It is sufficient to prove that
for any given ε > 0, there is a large constant C such that for large p and n, the
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smallest rate of convergence ηn,p is
√

1
np such that we have

P ( sup
‖u‖

2
=C

L(θ0 + uηn,p, μ̂1, μ̂2) < L(θ0, μ̂1, μ̂2)) > 1− ε (A.10)

where u ∈ R
q. This implies that there exists a local maximum for the function

L in the neighborhood of θ0 with the radius at most proportional to ηn,p.

L(θ0 + uηn,p, μ̂1, μ̂2)− L(θ0, μ̂1, μ̂2) (A.11)

= (
∂L

∂θ
(θ0))

Tuηn,p +
1
2u

T (
∂2L

∂θ∂θT
(θ∗))uη2n,p

= −n

2
uTT (θ0)uη

2
n,p + (

∂L

∂θ
(θ0))

Tuηn,p +
1
2u

T (
∂2L

∂θ∂θT
(θ∗) +mnT (θ0))uη

2
n,p

= (I) + (II) + (III)

where T (θ0) is a q×q matrix with its (i, j)th element tij(θ0) = tr(Σ−1ΣiΣ
−1Σj).

From Assumption 4 and 5, tij = aij(tii)
1
2 (tjj)

1
2 ≥ aijλ

−2
min(Σ) ‖Σi‖

F
‖Σj‖

F
.

There exists a constant M such that

(I) = −n

2
uTTuη2n,p = −n

2

q∑
i,j=1

tijuiujη
2
n,p ≤ −Mnp

2
η2n,p ‖u‖

2

2
(A.12)

(II) = −1
2

2∑
k=1

nk∑
i=1

q∑
j=1

[
(Yki − μ̂k)

TΣj(Yki − μ̂k)− (
nk − 1

nk
)tr(ΣΣj)

]
uθjηn,p

(A.13)

+ 1
2

q∑
j=1

tr(ΣΣj)uθjηn,p

= (1) + (2)

Because Yki − μ̂k ∼ N(0, nk−1
nk

Σ), by Lemma 2,

|(1)| = Op(

2∑
k=1

nk − 1√
nk

∥∥Σj
∥∥

F
‖u‖

2
ηn,p)

= Op(
√
n
∥∥Σj

∥∥
F
‖u‖

2
ηn,p) = Op(

√
np ‖u‖

2
ηn,p) (A.14)

The last equality is because from Assumption 6,
∥∥Σi

∥∥2
F
≤
∥∥Σi

∥∥2
2
= pλ2

max(Σ
i) =

O(p).
Also by Assumption 6, tr(ΣΣj) = tr(Σ1/2ΣjΣ1/2) ≤ λmax(Σ

j)tr(Σ). Then
noticing that tr(Σ) = O(p), and p/n → 0

|(2)| =

∣∣∣∣∣∣ 12
q∑

j=1

tr(ΣΣj)ujηn,p

∣∣∣∣∣∣ = Op(tr(Σ)ηn,p ‖u‖2
) = Op(pηn,p ‖u‖2

)
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Thus

(II) = Op((
√
np+ p)ηn,p ‖u‖

2
)

• If p/n → 0, (II) = Op(
√
np)ηn,p. By choosing sufficient large C = ‖u‖

2
,

the minimal rate of ηn,p to have (II) be dominated by (I) is ηn,p =

Op(
√

1
np );

• If p/n → C with 0 < C ≤ ∞, (II) = Op(pηn,p). Then the minimal rate of

ηn,p to have (II) dominated by (I) is ηn,p = Op(
√

1
n )

Since

∂L

∂θj∂θl
(θ)

=
n

2

[
tr(Σj(θ)Σ(θ)) + tr(Σj(θ)Σl(θ))

]
− 1

2

2∑
k=1

nk∑
i=1

(Yki − μ̂k)
TΣjl(θ)(Yki − μ̂k)

(III) can be written as

(III)

=

q∑
j,l=1

[
2∑

k=1

nk∑
i=1

(
(Yki − μ̂k)

TΣjl(θ∗)(Yki − μ̂k)− (
nk − 1

nk
)tr(Σ(θ0)Σ

jl(θ∗))
)]

×−1
2uθjuθlη

2
n,p

+
n

2n1n2

q∑
j,l=1

tr(Σjl(θ∗)Σ(θ0))uθjuθlη
2
n,p

+
n

2

q∑
j,l=1

[
tr(Σjk(θ∗)Σ(θ∗))− tr(Σjk(θ∗)Σ(θ0))

]
uθjuθlη

2
n,p

+
n

2

q∑
j,l=1

[
tr(Σj(θ∗)Σl(θ

∗))− tr(Σj(θ0)Σl(θ0))
]
uθjuθlη

2
n,p

=(3) + (4) + (5) + (6)

By Lemma 2 and Assumption 6,

|(3)| = Op(
√
n
∥∥Σjl(θ∗)

∥∥
F
η2n,p) = Op(

√
npη2n,p)

For (4), by Assumption 6

tr(Σjl(θ∗)Σ(θ0)) = Op(p)

thus |(4)| = Op(
p
nη

2
n,p) It is easy to see (3), (4) are dominated by (I). For (5),

|(5)| =

∣∣∣∣∣∣14n
q∑

j,k=1

tr(Σkj(θ∗)(Σ(θ0)− Σ(θ∗)))uθkuθjη
2
n,p

∣∣∣∣∣∣ . (A.15)
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Let dil(θ
∗) be the i, lth entry of matrix Σkj(θ∗), γil(θ) be the i, lth entry of

Σ(θ), then by Assumption 2 and Assumption 6

tr(Σkj(θ∗)(Σ(θ0)− Σ(θ∗))) =

p∑
i,l=1

dil(θ
∗)(γli(θ0)− γli(θ

∗)) (A.16)

≤
p∑

i,l=1

|dil(θ∗)|‖ ∂γil(θ
∗)

∂θ
‖2‖ θ0 − θ∗ ‖2

≤
p∑

i,l=1

dil(θ
∗
2)Mηn,p

≤ Mηn,pp
∥∥Σkj(θ∗)

∥∥
F

= Op(
√

p3ηn,p)

Hence

|(5)| = OP (n
√

p3η3) = Op((p
3/2nηn,p)η

2
n,p)) (A.17)

• If p/n → 0 and ηn,p = Op(
1√
np ), (5) is dominated by (I).

• If p/n → C with 0 < C ≤ ∞, etan,p = Op(
1
n ) and

√
p/n → 0, (5) is

dominated by (I).

For (6), let tij(θ
∗) = tr(Σ−1(θ∗)Σi(θ

∗)Σ−1(θ∗)Σj(θ
∗)), by Assumption 6,

|(6)| ≤ n

q∑
k,j=1

∥∥∥∥∂tij(θ∗)

∂θ

∥∥∥∥
2

‖θ∗ − θ0‖
2
uθkuθjη

2
n,p (A.18)

= OP (npη
3
n,p)

While ηn,p = Op(
1√
np ) or ηn,p = Op(

1
n ), (6) is also dominated by (I). Hence

(III) is dominated by (I). This completes the proof.

Proof of Theorem 2.2. We start with W1(δ̂MLE) = 1−Φ(Ψ1), where W1(δ̂MLE)
is the conditional misclassification rate defined in (1.2) and Ψ1 is defined in (1.3).

The idea is to prove lim infn,p→0 Ψ1 →
√
C0

2 .

From Theorem 2.1, we have ‖ θ̂ − θ ‖2= Op(
1√
np ). Recall that Σ = Σ(θ) =[

γ(hij ;θ)
]p
i,j=1

and Σ̂ = Σ(θ̂) =
[
γ(hij ; θ̂)

]p
i,j=1

.

By Assumption 2, we have:

max
i,j

|γ(hij ;θ)− γ(hij ; θ̂)| ≤ M ‖ θ − θ̂ ‖2 . (A.19)

Thus there exist ε > 0 and matrix E =
[
eij

]p
i,j=1

such that

Σ̂ = Σ + εE, (A.20)
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where ε = Op(
1√
np ) and E is a p × p matrix with absolute values of all entries

less than 1, i.e. |eij | ≤ 1 for any i, j = 1, 2, . . . , p. As a result, for large p and n,
the inverse of Σ can be written as:

Σ̂−1 = Σ−1 − εΣ−1EΣ−1 +O(ε2)E2, (A.21)

where E2 is a p× p matrix with all entries less than 1, see Meyer [32].
Now we consider the denominator of (1.3). We first claim the denominator

can be written as:

Δ̂T (Σ̂−1ΣΣ̂−1)Δ̂ = Δ̂TΣ−1Δ̂(1 + op(1)). (A.22)

Because by (A.21), we have

Σ̂−1ΣΣ̂−1 = (Σ−1 − εΣ−1EΣ−1 +O(ε2)E2)Σ(Σ
−1 − εΣ−1EΣ−1 +O(ε2)E2)

= Σ−1 − 2εA+ ε2AΣA+O(ε2)E2 +O(ε3)EE2Σ
−1 +O(ε4)E2E2

(A.23)

where A = Σ−1EΣ−1.
Also, noticing that ε = O( 1√

np ), k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2 and

λmax(E) ≤ tr(E) ≤ p, we have:

Δ̂T (εA)Δ̂

Δ̂TΣ−1Δ̂
=

yT εEy

yTΣy
≤ ελmax(E)

λmin(Σ)
≤ εp/λmin(Σ) = O(

√
p

n
) (A.24)

where yT = Δ̂TΣ−1. Similarly, we have:

Δ̂T (ε2AΣA)Δ̂

Δ̂TΣ−1Δ̂
≤ ε2

λ2
max(E)

λ2
min(Σ)

≤ ε2p2/λ2
min(Σ) = O(

p

n
) (A.25)

Δ̂T (O(ε2)E2)Δ̂

Δ̂TΣ−1Δ̂
≤ O(ε2)λmax(E2)λmin(Σ) ≤ O(ε2)pλmax(Σ) = O(

1

n
)

(A.26)

Δ̂T (O(ε3)EE2Σ
−1)Δ̂

Δ̂TΣ−1Δ̂
≤ O(ε3)

λmax(E2)λmax(E)λmax(Σ
−1)

λmin(Σ)

≤ O(ε3)p2
λmax(Σ)

λmin(Σ)
= O(

√
p

n

1

n
) (A.27)

Δ̂T (O(ε4)E2E2)Δ̂

Δ̂TΣ−1Δ̂
≤ O(ε4)p2λmax(Σ) = Op(

1

n2
) (A.28)

Since p
n → 0 as n → ∞ and p → ∞, (A.22) is derived by combining (A.24)–

(A.28).

Now we investigate Δ̂TΣ−1Δ̂ and claim that:

Δ̂TΣ−1Δ̂ = ΔTΣ−1Δ(1 + op(1)) +
np

n1n2
(1 + op(1)) (A.29)
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Recall μ̂1 = Ȳ1· =
1
n1

∑n1

i=1 Y1i, which is normally distributed asN (μ1,
1
n1

Σ).

Also, μ̂2 = Ȳ2· =
1
n2

∑n2

i=1 Y2i, which is normally distributed as N(μ2,
1
n2

Σ).

Let μ̂1 = μ1+ ε̂1 and μ̂2 = μ2+ ε̂2 where ε̂1 ∼ N (0, 1
n1

Σ) and ε̂2 ∼ N(0, 1
n2

Σ).
Then we have:

Δ̂TΣ−1Δ̂ = ΔTΣ−1Δ+ 2ΔTΣ−1(ε̂1 − ε̂2) + (ε̂1 − ε̂2)
TΣ−1(ε̂1 − ε̂2)

Noticing ε̂1 − ε̂2 ∼ N(0, n
n1n2

Σ), by Chebyshev’s inequality, for any ε0 > 0

P (
ΔTΣ−1(ε̂1 − ε̂2)

ΔTΣ−1Δ
> ε0) ≤

E
(
ΔTΣ−1(ε̂1 − ε̂2)

)2
(ε0ΔTΣ−1Δ)2

(A.30)

=
n

n1n2ΔTΣ−1Δ

≤ n

n1n2Cp
=

1

π(1− π)nCp
→ 0

It goes to 0 because nCp → ∞. Then

ΔTΣ−1(ε̂1 − ε̂2) = op(Δ
TΣ−1Δ)

Then we consider the third term in (A.29). Let ε̃ =
√

n1n2

n Σ
1
2 (ε̂1− ε̂2). Then

ε̃ ∼ N (0, Ip×p). Now for any ε0 > 0

P (| (ε̂1 − ε̂2)
TΣ−1(ε̂1 − ε̂2)− np/n1n2

np/n1n2
| > ε0) = P (| ε̃

T ε̃− p

p
| > ε0)

≤
E
(
ε̃T ε̃

)2
ε20p

2

=
2

p

1

ε2
→ 0

as p → ∞. Then

(ε̂1 − ε̂2)
TΣ−1(ε̂1 − ε̂2) =

np

n1n2
(1 + op(1)) (A.31)

Then (A.29) followed. Now (A.22) and (A.29) yield:

Δ̂T (Σ̂−1ΣΣ̂−1)Δ̂ = ΔTΣΔ(1 + op(1)) +
np

n1n2
(1 + op(1)) (A.32)

Now we consider the nominator of (1.3).

(μ1 − μ̂)T Σ̂Δ̂ =
1

2

(
ΔT Σ̂−1Δ+ ε̂T2 Σ̂

−1ε̂2 − ε̂T1 Σ̂
−1ε̂1 − 2ΔT Σ̂−1ε̂2

)
(A.33)

=
1

2
((1) + (2)− (3)− (4))
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(1) = ΔT (Σ−1 − εE +O(ε2)E2)Δ

By the assumption that k1 ≤ λmin(Σ) ≤ λmax ≤ k2, λmax(E) ≤ p and
λmax(E2) ≤ p, we have

ΔT (εE)Δ

ΔTΣ−1Δ
→ 0

and
ΔT (O(ε2)E2)Δ

ΔTΣ−1Δ
→ 0

thus

(1) = ΔTΣ−1Δ(1 + op(1)) (A.34)

By the same argument, we have (2) = ε̂T2 Σ
−1ε̂2(1 + op(1)) and (3) =

ε̂T1 Σ
−1ε̂1(1 + op(1)). Since ε̂1 ∼ N(0, 1

n1
Σ) and ε̂1 ∼ N(0, 1

n1
Σ), similar to

the proof of (A.31), we have:

(2) =
p

n2
(1 + op(1)) and (3) =

p

n1
(1 + op(1)) (A.35)

Now we consider term (4) in (A.33).

(4) = ΔT (Σ−1 − εΣ−1EΣ−1 +O(ε2)E2)ε̂2

= ΔTΣ−1ε̂2 + εΔTΣ−1EΣ−1ε̂2 +O(ε2)ΔTE2ε̂2

Similar to the proof of (A.30), all the three terms in (4) are small order of
ΔTΣ−1Δ. Thus we have

(4) = op(Δ
TΣ−1Δ) (A.36)

Now the nominator can be written as:

(μ1 − μ̂)T Σ̂−1Δ̂ = 1
2

(
ΔTΣ−1Δ(1 + op(1)) +

p

n1n2
(n1 − n2)(1 + op(1))

)
(A.37)

(A.32) and (A.37) yield

W1(δ̂MLE) = 1− Φ
(ΔTΣ−1Δ(1 + op(1)) +

p
n1n2

(n1 − n2)(1 + op(1))

2
√

ΔTΣ−1Δ(1 + op(1)) +
np

n1n2
(1 + op(1))

)

By the same argument, we have:

W2(δ̂MLE) = Φ
(−ΔTΣ−1Δ(1 + op(1)) +

p
n1n2

(n1 − n2)(1 + op(1))

2
√
ΔTΣ−1Δ(1 + op(1)) +

np
n1n2

(1 + op(1))

)
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Since p
n → 0 and Cp = ΔTΣ−1Δ → C0 with 0 ≤ C0 ≤ ∞, we have

W (δ̂MLE) =
1
2

(
1− Φ

(
Cp(1 + op(1)) +

p
n1n2

(n1 − n2)(1 + op(1))

2
√
Cp(1 + op(1)) +

np
n1n2

(1 + op(1))

)

+Φ

(−Cp(1 + op(1)) +
p

n1n2
(n1 − n2)(1 + op(1))

2
√
Cp(1 + op(1)) +

np
n1n2

(1 + op(1))

))

→ 1− Φ(

√
C0

2
)

as p → ∞ and n → ∞. If Cp → C0 < ∞, 1−Φ(
√
C0

2 ) > 0. Thus δ̂MLE is asymp-
totically optimal. Now we check the asymptotically optimal when Cp → ∞.
From the inequality

x

1 + x2
e−

x2

2 ≤ Φ(−x) ≤ 1

x
e−

x2

2 , x > 0 (A.38)

we have

xy

1 + x2
e−

x2−y2

2 ≤ W (δ̂MLE)

Φ(−
√

Cp

2 )
≤ 1 + y2

xy
e−

x2−y2

2

where x =
Cp(1+op(1))± p

n1n2
(n1−n2)(1+op(1))

2
√

Cp(1+op(1))+
np

n1n2
(1+op(1))

and y =

√
Cp

2 . It is easy to check

that xy
1+x2 → 1 and 1+y2

xy → 1 as Cp → ∞. Also x2 − y2 → 0 if Cp(p/n) → 0.
This completes the proof.

Proof of Theorem 2.3. The misclassification rate of δμ̂ is:

W (δμ̂) =
1
2 (W1(δμ̂) +W2(δμ̂))

where

W1(δμ̂) = 1− Φ(Ψ1) and W2(δμ̂) = Φ(Ψ2)

where Ψ1 and Ψ2 is defined by (1.3) and (1.5) with Σ̂ replaced by Σ. We start
with

Ψ1 =
(μ1 − μ̂)TΣ−1(μ̂1 − μ̂2)√
(μ̂1 − μ̂2)TΣ−1(μ̂1 − μ̂2)

The denominator is (A.29) and it can be represented as:

Δ̂Σ−1Δ̂ = ΔTΣΔ(1 + op(1)) +
np

n1n2
(1 + op(1))

The nominator is:

(μ1 − μ̂)TΣ−1Δ̂ = 1
2 (Δ

TΣ−1Δ+ ε̂T1 Σ
−1ε̂1 − ε̂T2 Σ

−1ε̂2 − 2ΔTΣ−1ε̂2)
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By the similar procedure in the proof of (A.37), it can be represented by

(μ1 − μ̂)TΣ−1Δ̂ = 1
2

(
ΔTΣ−1Δ(1 + op(1)) +

p

n1n2
(n1 − n2)(1 + op(1))

)
Thus we have:

W1(δ̂μ̂) = 1− Φ
(Cp(1 + op(1)) +

p
n1n2

(n1 − n2)(1 + op(1))

2
√
Cp(1 + op(1)) +

np
n1n2

(1 + op(1))

)
(A.39)

Similarly, we have

W2(δ̂μ̂) = Φ
(−Cp(1 + op(1)) +

p
n1n2

(n1 − n2)(1 + op(1))

2
√
Cp(1 + op(1)) +

np
n1n2

(1 + op(1))

)

(i) If
Cp

p/n → ∞. Then

±Cp(1 + op(1)) +
p

n1n2
(n1 − n2)(1 + op(1))

2
√

Cp(1 + op(1)) +
np

n1n2
(1 + op(1))

=
±Cp(1± p

n1n2Cp
(n1 − n2)(1 + op(1)))

2
√
Cp(1 +

np
n1n2Cp

(1 + op(1))

=
±
√

Cp(1± p
n1n2Cp

(n1 − n2)(1 + op(1)))

2
√

(1 + np
n1n2Cp

(1 + op(1))

→±
√
C0

2

which yields W (δ̂μ̂) → 0 since p
n → C with 0 < C < ∞ and Cp → C0 = ∞.

Now we show that
W (δ̂μ̂)
WOPT

→ ∞ in probability.
Noticing the fact that

x

1 + x2
e−

x2

2 ≤ Φ(−x) ≤ 1

x
e−

x2

2 , x > 0

we have

WOPT

Φ
(
−x

2

) =
Φ(−

√
Cp

2 )

Φ
(
−x

2

) ≤ 4 + x2

x
√

Cp

e−
1
8 (Cp−x2)

where x =
Cp(1+op(1)± p(n1−n2)

n1n2
(1+op(1)))√

Cp(1+op(1))+
np

n1n2
(1+op(1))

4 + x2

x
√

Cp

=
4

x
√

Cp

+
x√
Cp

→ a constant
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because

1

x
√

Cp

→ 0

and

x√
Cp

=

{
→ 1 if c = ∞,

→ a0 if c < ∞

where a0 =
√
c+1/

√
c√

c+1/(π(1−π))
. Also

Cp − x2 =
C2

pop(1) + Cp
(n±(n1−n2))p

n1n2
(1 + op(1)) +

p2(n1−n2)
2

n2
1n

2
2

Cp(1 + op(1)) +
np

n1n2
(1 + op(1))

→ ∞

Thus we have

Φ(−
√

Cp

2 )

Φ
(
−x

2

) → 0 (A.40)

As a result

W (δ̂μ̂)

WOPT
→ ∞

(ii) While
Cp

p/n → c with 0 < c < ∞

±Cp(1 + op(1)) +
p

n1n2
(n1 − n2)(1 + op(1))

2
√
Cp(1 + op(1)) +

np
n1n2

(1 + op(1))

=
±Cp(1± p

n1n2Cp
(n1 − n2)(1 + op(1)))

2
√
Cp(1 +

np
n1n2Cp

(1 + op(1))

=
±
√

Cp(1± p
n1n2Cp

(n1 − n2)(1 + op(1)))

2
√
(1 + np

n1n2Cp
(1 + op(1))

→
±
√
C0(1± 1

c
2π−1

π(1−π) )

2
√
1 + 1

c
1

π(1−π)

Since Cp → C0,

W1(δ̂μ̂) → 1− Φ(

√
C0(1 +

1
c

2π−1
π(1−π) )

2
√
1 + 1

c
1

π(1−π)

)
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and

W2(δ̂μ̂) → 1− Φ(

√
C0(1− 1

c
2π−1

π(1−π) )

2
√
1 + 1

c
1

π(1−π)

)

If p
n → C with 0 < C < ∞, then 0 < C0 < ∞. Since Φ(x) is convex function

in the sense that 1
2 (Φ(x+ ε) + Φ(x− ε)) ≤ Φ(x) for any x > 0 and x > ε > 0,

lim
P

W (δ̂μ̂) = lim
P

1
2 (W1(δ̂μ̂) +W2(δ̂μ̂))

≥1− Φ(

√
C0

2
√
1 + 1

c
1

π(1−π)

) > 1− Φ(

√
C0

2
)

where limP means converge in probability with p → ∞ and n → ∞.
If p

n → ∞, then C0 = ∞. Hence W (δ̂μ̂) = 1
2 (W1(δ̂μ̂) + W2(δ̂μ̂)) → 0. By

similar argument in (i), we have
W (δ̂μ̂)
WOPT

→ ∞.

(iii) While
Cp

p/n → 0,

±Cp(1 + op(1)) +
p

n1n2
(n1 − n2)(1 + op(1))

2
√

Cp(1 + op(1)) +
np

n1n2
(1 + op(1))

=

√
p
n (±Cp/(

p
n ) +

n(n1−n2)
n1n2

(1 + op(1)))

2
√
(Cp/(

p
n ) +

n2

n1n2
(1 + op(1))

→
{
∞ if n1 > n2,

−∞ if n1 < n2.

Which yields W (δ̂μ̂) → 1
2 .

Proof of Corollary 1. Noticing that when n1 = n2 = n/2, ε̂1 ∼ N(0, 1
n1

Σ) and

ε̂2 ∼ N(0, 1
n1

Σ). Let ε̃i =
√
niΣ

1
2 ε̂i for i = 1, 2. Then ε̃i ∼ N(0, Ip) and

E(ε̂T1 Σ
−1ε̂1 − ε̂T2 Σ

−1ε̂2)
2 =E(ε̃T1 ε̃1 − ε̃T2 ε̃2)

2/N2
1 =

p∑
j=1

(ε̃21j − ε̃22j)
2/n2

1 = 6p/n2
1

Hence we have:

ε̂T1 Σ
−1ε̂1 − ε̂T2 Σ

−1ε̂2 = Op(

√
p

n
)

Similar to the proof of (A.39) we have:

W1(δ̂μ̂) ≤ 1− Φ
( Cp(1 + op(1)) +

√
p

n (1 + op(1))

2
√

Cp(1 + op(1)) +
4p
n (1 + op(1))

)
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and

W2(δ̂μ̂) ≤ Φ
( −Cp(1 + op(1)) +

√
p

n (1 + op(1))

2
√
Cp(1 + op(1)) +

4p
n (1 + op(1))

)

±Cp(1 + op(1)) +
√
p

n (1 + op(1))

2
√
Cp(1 + op(1)) +

4p
n (1 + op(1))

=
±Cp/

√
p
n (1 + op(1)) +

1√
n
(1 + op(1))

2
√
Cp/

p
n (1 + op(1)) + 4 + op(1))⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

→ ±∞ if
Cp√
p/n

→ ∞

→ ± c
4 if

Cp√
p/n

→ c and p/n → ∞

→ ± c

2
√

4+c/
√
C

if
Cp√
p/n

→ c and p/n → C < ∞

→ 0 if
Cp√
p/n

→ 0

The proof of
W (δ̂μ̂)
WOPT

→ ∞ is the same as that in the proof of Theorem 2.3(1).
This completes the proof.

A.2. Proofs for consistency of one-step PMLE

Proof of Theorem 3.1. In the algorithm, we estimate β̂(0) first. Then θ̂(0) is
estimated by fixing β = β̂(0). Then update β = β̂(1) by fixing θ = θ̂(0). θ = θ̂(1)

is updated in the last step by fixing β = β̂(1). So the idea is to prove the
theorem in the following sequence: (a) The consistency and sparsity of β(0);

(b) The consistency of θ̂(0); (c) The consistency and sparsity of β̂(1); (d) The

consistency of θ̂(1).

(a) We first prove
∥∥∥β̂(0) − β0

∥∥∥
2

= Op(
√

s
n ) and β̂

(0)
2 = 0 with probability

tending to 1, where β̂
(0)
2 is the p − s dimension sub-vector of β̂(0) =

(β̂
(0)T
1 , β̂

(0)T
2 )T . The proof of (a) is the same as the proof of (c), except

the loss function is defined as R(β) which is negative of the penalized MLE
function (3.1) with covariance matrix Σ̇ replaced by diagn−1(Ip). Then the
parameters are estimated by minimize the loss function. We omit the proof
here and illustrate the details in (c).

(b) Second, we prove
∥∥∥θ̂(0) − θ0

∥∥∥
2

= Op(
√

1
np ). Fixing β = β̂0, write

F (θ, β̂(0);Z)

=− np

2
log(2π)− 1

2 log
∣∣∣Σ̇(θ)∣∣∣− 1

2 (Z−Xβ̂(0))T Σ̇−1(θ)(Z−Xβ̂(0))

It is sufficient to prove for any given ε > 0 the smallest convergence rate

of ηn,p is
√

1
np such that we have

P ( sup
‖u‖

=
C

F (θ0 + uηn,p, β̂
(0);Z) < F (θ0, β̂

(0);Z)) > 1− ε
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This implies there exists a local maximum for the function Q(θ, β̂(0);Z)
of θ in the neighborhood of θ0 with the radius at most proportional to
ηn,p.

By Taylor’s expansion, Σ̇(θ0+uηn,p)−Σ̇(θ0) =
∑q

j=1
∂Σ̇(θ∗)
∂θj

uθjηn,p, where

θ∗ is between θ0 + uηn,p and θ0. Denote Σ̇j(θ∗) = ∂Σ̇(θ∗)
∂θj

, then

F (θ0 + uηn,p, β̂
(0);Z)− F (θ0, β̂

(0);Z)

= [F (θ0 + uηn,p,β0)− F (θ0,β0)]

−
q∑

j=1

(Z−Xβ0)
T Σ̇j(θ∗)X(β̂(0) − β0)uθjηn,p

− 1
2

q∑
j=1

(β̂(0) − β0)
TXT Σ̇j(θ∗)X(β̂(0) − β0)uθjηn,p

=(I) + (II) + (III)

where

(I) =F (θ0 + uηn,p,β0)− F (θ0,β0)

=− n− 1

2
uTTuη2n,p +

(
∂F

∂θ
(θ0)

)T

uηn,p

+
1

2
uT (

∂2F

∂θ∂θT
(θ∗) + (n− 1)T )uη2n,p

=(1) + (2) + (3)

(II) =

q∑
j=1

(β̂(0) − β0)
TXT Σ̇j(θ∗)(Z−Xβ0)ujηn,p

(III) =− 1
2

q∑
j=1

(β̂(0) − β0)
TXT Σ̇j(θ∗)X(β̂(0) − β0)ujηn,p

We consider (I) first. T in (1) is q × q matrix with its (i, j)th element as
tij(θ0), where tij(θ) = tr(Σ−1(θ)Σi(θ)Σ

−1(θ)Σj(θ)). By Assumption 4
and Assumption 5 and using the similar argument in proving the bound
of (I) in Theorem 2.1, there exist a constant K, such that

(1) = −n

2

q∑
i,j=1

tij(θ0)uiujη
2
n,p ≤ −Knpη2n,p ‖u‖

2

2

with probability tending to 1. In regarding to (2),

∂F

∂θj
(θ0) =

n− 1

2
tr(Σj(θ0)Σ(θ0))− 1

2 (Z−Xβ)T Σ̇j(θ0)(Z−Xβ)
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Notice that Z − Xβ ∼ N(0, Σ̇(θ)) and tr(Σ̇jΣ̇) = (n − 1)tr(ΣjΣ). By
Lemma 2,

(2) =Op(

√
tr(Σ̇Σ̇jΣ̇Σ̇j)ηn,p ‖u‖2

) = Op(
√

(n− 1)tr(ΣΣjΣΣj)ηn,p ‖u‖2
)

=Op(
√

(n− 1) ‖Σj‖2
F
ηn,p ‖u‖2

) ‖u‖
2
)

By Assumption 3, Assumption 6, (2) = Op(
√
npηn,p).

Then we consider (3). For any j, k = 1, 2, . . . , q

∂2(F )

∂θj∂θk
(θ∗)

=
n− 1

2
(tr(Σjk(θ∗)Σ(θ∗)− tjk(θ

∗))− 1
2 (Z−Xβ)T Σ̇jk(θ∗)(Z−Xβ)

Thus (3) could be written as:

(3) =
q∑

j,k=1

n− 1

2
(tr(Σjk(θ∗)Σ(θ0))− 1

2 (Z−Xβ)TΣjk(θ∗)(Z−Xβ))uθjuθkη
2
n,p

+

q∑
j,k=1

n− 1

2
(tr(Σjk(θ∗)Σ(θ∗))− tr(Σjk(θ∗)Σ(θ0)))uθjuθkη

2
n,p

+

q∑
j,k=1

n− 1

2
(tjk(θ0)− tjk(θ

∗))uθjuθkη
2
n,p

=(i) + (ii) + (iii)

By Lemma 2 and Assumption 6, (i) = Op(
√

(n− 1)tr(ΣΣjkΣΣjk)η2n,p) =
Op(

√
npη2n,p). Similar to the deriving the order of (5) and (6) in the proof

of Theorem 2.1, (ii) = Op(n
√

p3η3n,p) and (iii) = Op(npη
3
n,p). By choosing

large C = ‖u‖
2
, the minimal rate that (2) and (3) are dominated by (1)

is ηn,p = Op(
1√
np ).

Now we consider (II). Denote B =
∑n−1

i=1 Xi. Then by Lemma 1, for any
j = 1, 2, . . . , q,

(β̂(0) − β0)
TXT Σ̇j(θ∗)(Z−Xβ0)

=Op(

√
tr(XT Σ̇j(θ∗)Σ̇(θ∗)Σ̇j(θ∗)X)

∥∥∥β̂(0) − β0

∥∥∥
2

)

=Op(

√√√√tr(

n−1∑
i=1

XT
j Σ

j∗Σ∗Σj∗Xi) + tr(BTΣj∗Σ∗Σj∗B)
∥∥∥β̂(0) − β0

∥∥∥
2

)

where Σ∗ = Σ(θ∗) and Σj∗ = Σj(θ∗). Notice that
∑n−1

i=1 XT
i Xi = (n1n2

n −
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n2
1

n2 )Ip×p and (
∑n−1

i=1 Xi)
T (
∑n−1

i=1 Xi) =
n2
1

n2 Ip×p. Then by Assumption 6

tr(
n−1∑
i=1

XT
j Σ

j∗Σ∗Σj∗Xi)

=(
n1n2

n
− n2

1

n2
)tr(Σj∗Σ∗Σj∗) ≤ λmax(Σ)

n1n2

n

∥∥Σj∗∥∥2
F
= Op(np).

Similarly tr(BTΣj∗Σ∗Σj∗B) = Op(np).
Since

∥∥β(0) − β0

∥∥
2
= Op(

√
s
n ), (II) = Op(

√
psηn,p)

For (III), by Assumption 6, for any j = 1, 2, . . . , q we also have:

(β̂(0) − β0)
TXT Σ̇j(θ∗)X(β̂(0) − β0)

=(β̂(0) − β0)
TXT diagn−1Σ

j(θ∗)(Ĩn−1,p + J̃n−1,p)X(β̂(0) − β0)

≤λmax(Σ
j∗)((β̂(0) − β0)

T

(
n−1∑
i=1

XT
i Xi + (

n−1∑
i=1

Xi)
T (

n−1∑
i=1

Xi)

)
(β̂(0) − β0))

=Op(n
∥∥∥β̂(0) − β0

∥∥∥2
2

) = Op(s)

Thus (III) = Op(sηn,p). Both (II) and (III) are dominated by (I) while

ηn,p = Op(
√

1
np ). This concludes the proof of

∥∥∥θ̂(0) − θ0

∥∥∥
2

= Op(
√

1
np ).

(c) Write β̂(1) = (β̂
(1)
1 , β̂

(2)
2 )T . Then we prove

∥∥∥β̂(1) − β0

∥∥∥
2

= Op(
√

s
n ) and

β̂
(1)
2 = 0 with probability tending to 1, where β̂1

(1) formed by elements in

supp(β0) and β̂
(1)
2 is a p − s sub-vector of β̂(1). Let ηn,p =

Op(
∥∥∥θ̂(0) − θ0

∥∥∥
2

) = Op(
√

1
np ). We use two steps to prove the consistency

and sparsity.

step 1. We first prove consistency on s-dimensional space. Define the log-
likelihood function for β1 as

Q̄(θ̂(0),β1) =− np

2
log(2π)− 1

2 log
∣∣∣Σ̇(θ̂(0))

∣∣∣
− 1

2 (Z−X1β1)T Σ̇−1(θ̂(0))(Z−X1β1)− n
n∑

j=1

Pλ(|βj |)

where β1 is sub-vector of β0 = (β1T ,β2T )T formed by elements in suppβ0.

We first
∥∥∥β̂(1)

1 − β1
∥∥∥

2

= Op(
√

s
n ). It is sufficient to prove that for any

ε > 0, the smallest rate of ξn,p is
√

s
n such that we have:

P ( sup
‖u‖

2
=C

Q̄(θ̂(0),β1 + uξn,p) < Q̄(θ̂(0),β1)) > 1− ε
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where u ∈ R
s. This implies that with probability tending to 1, there is

a local maximizer β̂
(1)
1 of the function Q̄ in the neighborhood of β1

0 with
the radius of β1

0 at most proportional to ξn,p.

Q̄(θ̂(0),β1
0 + uξn,p)− Q̄(θ̂(0),β1

0)

=− 1
2u

TX1T Σ̇−1(θ̂(0))X1uξ2n,p − (Z−X1β1
0)Σ̇

−1(θ̂(0))X1uξn,p

− np
m∑
j=1

(
p′λn,p

(|β0j |)sgn(βj)uβjξn,p + p′′λn,p
(|β0j |)u2

βj
ξ2n)(1 + o(1))

)
=(I) + (II) + (III)

By Taylor’s expansion, Σ̇−1(θ̂(0)) = Σ̇−1(θ0) +
∑q

j=1 Σ̇
j(θ∗), where θ∗ is

a q dimension vector between θ0 and θ̂(0). Therefore,

(I) =− 1
2u

TX1T Σ̇−1(θ0)X
1uξ2n,p − 1

2

q∑
j=1

uTX1T Σ̇j(θ∗)X1uξ2n,pujηn,p

=(1) + (2)

and

(II) =

− (Z−X1β1
0)Σ̇

−1(θ̂(0))X1uξn,p+

q∑
j=1

(Z−X1β1
0)Σ̇

j(θ∗)X1uξn,pujηn,p

=(3) + (4)

Since λmin(Σ
−1) > 0 and notice

∑n−1
i=1 X1T

i X1
i = (n1n2

n − n2
1

n2 )Is,(∑n−1
i=1 X1T

i=1

)(∑n−1
i=1 X1

i=1

)
=

n2
1

n2 Is

(1) = 1
2u

TX1T diagn−1(Σ
−1)(Ĩn−1,p + J̃n−1,p)X

1uξ2n,p

=− 1
2u

T
n−1∑
i=1

X1T
i Σ−1X1

i uξ
2
n,p − 1

2u
T

n−1∑
i=1

X1T
i Σ−1

n−1∑
i=1

X1
i uξ

2
n,p

≤− 1
2u

T

(
n−1∑
i=1

X1T
i X1

i +

n−1∑
i=1

X1T
i

n−1∑
i=1

X1
i

)
uξ2n,pλmin(Σ

−1)

=− 1
2

n1n2

n
‖u‖2

2
ξ2n,pλmin(Σ

−1)

≤− 1
2

π(1− π)

λmax(Σ)
nξ2n,p ‖u‖

2

2

By similar argument and Assumption 6, (2) = Op(nξ
2
n,pηn,p) = op((1))

while ηn,p = Op(
√

1
np ). For (II), by Lemma 1 and Assumption 3,

(3) =Op(

√
tr(X1Σ̇−1(θ0)X1) ‖u‖

2
ξn,p)
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=Op(

√
λmax(Σ)

n1n2

n
tr(Is×s) ‖u‖

2
ξn,p)

=Op(
√
ns ‖u‖

2
ξn,p))

Similarly, (4) = Op(
√
ns ‖u‖

2
ξn,pηn,p) = op((3)). So we have (II) =

Op(
√
ns ‖u‖

2
ξn,p)).

(III) = (5) + (6), where

(5) = −n

s∑
j=1

p′λn,p
(|β0j |)sgn(βj)uβjξn,p (A.41)

(6) = −n
s∑

j=1

p′′λn,p
(|β0j |)u2

βj
ξ2n)(1 + o(1))

Since an,p = Op(
1√
n
) by Assumption 7,

|(5)| ≤ n
√
san,p ‖u‖2

= Op(
√
nsξn,p ‖u‖2

) (A.42)

By Assumption 8

|(6)| ≤ 2nξ2n,p

s∑
j=1

p′′(β0j)u
2
βj

≤ 2nξ2n,pbn,p ‖u‖
2

2
(A.43)

= op(nξ
2
n,p)

By choosing large C = ‖u‖
2
, the smallest rate of ξnp that (II) and (III)

are dominated by (I) is ξn,p = Op(
√

s
n ). This completes the proof that∥∥∥β̂(1)

1 − β1
0

∥∥∥
2

= Op(
√

s
n ).

step 2. in step 2 we prove that the vector β̂ = (β̂
(1)
1 , 0) is a strict local

maximizer on R
d. It is sufficient to prove for any given β ∈ R

d satis-
fying ‖β − β0‖2

= Op(
√

s
n ), we have Q(βs, θ̂(0)) ≥ Q(β, θ̂(0)), where

β = (β1T ,β2T )T and βs = (β1T , 0T )T .
Let ε = C

√
s
n , it is sufficient to prove for j = s+ 1, s+ 2, . . . , p:

∂Q(β, θ̂(0))

∂βj
< 0 for 0 < βj < ε (A.44)

∂Q(β, θ̂(0))

∂βj
> 0 for −ε < βj < 0

∂Q(β, θ̂(0))

∂βj
=(Z−Xβ0)

T Σ̇−1(θ̂(0))Xj +

p∑
l=1

XT
l Σ̇

−1(θ̂(0))Xj(βl − β0l)

(A.45)
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− nP ′
λ(|βj |)sgn(βj)

=(I) + (II) + (III)

where Xj is the jth column of X.
We first consider (I). By Taylor’s expansion,

(I) =(Z−Xβ0)
T Σ̇−1(θ0)Xj +

q∑
k=1

(Z−Xβ0)
T Σ̇k(θ∗)Xjukηn,p

=(5) + (6)

Notice
∑n−1

i=1 XT
ijXij =

n1n2

n − n2
1

n2 and (
∑n−1

i=1 Xij)
T (
∑n−1

i=1 Xij) =
n2
1

n2 .

(5) =(Z−Xβ0)
T diagn−1(Σ

−1)(Ĩn−1,p + J̃n−1,p)Xj = Op(

√
XjΣ̇−1Xj)

=Op(

√√√√n−1∑
i=1

XT
ijΣ

−1Xij +

n−1∑
i=1

XT
ijΣ

−1

n−1∑
i=1

Xij)

where Xij is the jth column of Xi.

Noticing
∑n−1

i=1 XT
ijXij = n1n2

n − n2
1

n2 , (
∑n−1

i=1 Xij)
T (
∑n−1

i=1 Xij) =
n2
1

n2 and

λmax(Σ
−1) ≤ ∞, we have (5) = Op(

√
n). Similarly, (6) = Op(

√
nηn,p) =

op((3)), which is dominated by (5) if ηn,p = o(1).
For (II), by Taylor’s expansion,

(II) =
p∑

l=1

XT
l Σ̇

−1(θ0)Xj(βl − β0l) +

q∑
k=1

p∑
l=1

XT
l Σ̇

k(θ∗)Xj(βl − β0l)(θ
∗
k − θ0k)

= (7) + (8)

(7) =

p∑
l=1

XT
l diagn−1(Σ

−1)(Ĩn−1,p + J̃n−1,p)Xj(βl − β0l)

=

p∑
l=1

(
n−1∑
i=1

XT
ilΣ

−1Xij +

n−1∑
i=1

XT
ilΣ

−1
n−1∑
i=1

Xij

)
(βl − β0l)

Notice

n−1∑
i=1

XT
ilΣ

−1Xij ≤
n−1∑
i=1

(XT
ilΣ

−1Xil))
1
2 (XT

ijΣ
−1Xij))

1
2

≤
n−1∑
i=1

λmax(Σ
−1)(XT

ilXil))
1
2 (XT

ijXij))
1
2

=λmax(Σ
−1)(

n1n2

n
− n2

1

n2
) = Op(n).
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Also, let Bl =
∑n−1

i=1 Xil. Then BT
l Bl =

(
n1

n

)2
.

n−1∑
i=1

XT
ilΣ

−1
n−1∑
i=1

Xij = BT
l Σ

−1Bj

≤ (BT
l Σ

−1Bl)
1/2(BT

j Σ
−1Bj)

1/2 ≤ λmax(Σ
−1)

n2
1

n2

Then

(7) = Op(n ‖β − β0‖
)
= OP (

√
ns) (A.46)

Similarly, (8) = Op(
√
nsηn,p) Thus

∂Q(β)

∂βj
= nλn,p

(
OP (

√
s√

nλn,p
)) +

P ′
λn,p

(|βj |)
λn,p

sgn(βj)
)

(A.47)

By assumption 9 and 10, the sign of (A.47) is determined by βj , hence

(A.44) followed. This implies β̂(1) should satisfy sparse property and com-
pletes the proof of step 2.

(d) Lastly we prove
∥∥∥θ̂(1) − θ0

∥∥∥
2

= Op(
√

1
np ). Since

∥∥∥β̂(1) − β0

∥∥∥
2

= Op(
√

s
n ),

it is the same as the proof of (b). We omit the detail here and this com-
pletes the proof.

A.3. Proofs for consistency for one-step PMLE with tappering

Lemma 3. Assume Assumption 1, Assumption 2, Assumption 11 and Assump-
tion 12 hold, we have:

(1) ‖Σ(θ)− Σ(θ)T ‖∞
= O( 1

pδ0
);

(2) ‖Σk(θ)− Σk,T (θ)‖∞
= O( 1

pδ0
);

(3) ‖Σjk(θ)− Σjk,T (θ)‖∞
= O( 1

pδ0
).

The matrix norm ‖·‖
∞

for the p × p matrix A = [aij ]
p
i,j=1 is defined as the

maximum of row sumation, i.e. ‖A‖
∞

= maxi
∑p

j=1 |aij |
Proof. We show (1) in detail and omit the details for (2) and (3), as similar
arguments can be applied.

‖Σ(θ)− ΣT (θ)‖∞
= max

i

p∑
j=1

|γ(hij ;θ)KT (hij , wp)− γ(hij ;θ)| (A.48)

where hij = ‖si − sj‖
2
is the distance between site si and sj . For any i =

1, 2, . . . , p,

p∑
j=1

|γ(hij ;θ)KT (hij , wp)− γ(hij ;θ)| (A.49)
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≤
∑

hij<wp

|γ(hij ;θ)KT (hij , wp)− γ(hij ;θ)|+
∑

hij≥wp

γ0(θ, hij)

= (I) + (II)

Let Ai = {j : hij > wp} and Bi
m = {j : (m − 1)δ ≤ hij < mδ}, where Δ

is independent of n and p. Then Ai ⊂
⋃∞

m=�wp
Δ � B

i
m. Let V (R) be the volume

of a d-dimensional baa of radius R. Then the volume of Bi
m is Bi

m = V (mδ)−
V ((m − 1)δ) = fd−1(m)δd, where fd−1(m) is a polynomial function of m with
degree of d − 1. By Assumption 1, the number of sites in any unit subset of
D ⊂ R

d is bounded, say ρ. Let #{A} denote the cardinality of a discrete set
A. Then we have #{Bi

m} ≤ fd−1(m)δdρ. Then exist a constant K such that
fd−1(m) ≤ Kmd−1 Then

(II) =
∑

hij≥wp

|γ(θ, hij)| ≤
∞∑

m=�wp
δ �

∑
j∈Bi

m

|γ(θ, hij)| (A.50)

≤ Kρ

∞∑
m=�wp

δ �

md−1δd max
j∈Bi

m

|γ(θ, hij)|

≤ Kρ

∫ ∞

wp

xd−1 |γ(θ, x)| dx ≤ Kρ

wp

∫ ∞

0

xd |γ(θ, x)| dx

Let Ai
2 = {j : hij ≤ wp}. Then Ai

2 ⊂
⋃�wp

δ �+1
m=1

(I) =
∑

hij<wp

|γ(hij ;θ)− γ(hij ;θ)KT (hij , wp)| (A.51)

= 2
∑

hij<wp

|γ(hij ;θ)|
hij

wp

≤ 2

wp

�wp
δ �+1∑
m=1

∑
j∈Bi

m

hij |γ(θ, hij)|

≤ 2Kρ

wp

�wp
δ �+1∑
m=1

(mδ)d−1δ max
j∈Bi

m

hij |γ(θ, hij)|

≤ 2Kρ

wp

∫ ∞

0

xd |γ(θ, x)| dx

≤ 2Kρ

wp

∫ ∞

0

xdγ0(θ, x)dx

wp has the same order as p1/2 by Assumption 11. By Assumption 12, both (I)
and (II) = O(1/p1/2). This completes the proof.

Lemma 4. Assume Assumptions 3–6, Assumption 11, Assumption 12 hold, we
have
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(a) limp→∞ λmin(ΣT ) > 0, limp→∞ λmax(ΣT ) < ∞;
(b) There exists an open subset ω that contains the true parameter θ0 such

that for all θ∗ ∈ ω, we have:

(i) −∞ < limp→∞ λmin(Σ
k
T (θ

∗)) < limp→∞ λmax(Σ
k
T (θ

∗)) < ∞;

(ii) −∞ < limp→∞ λmin(Σ
kj
T (θ∗)) < limp→∞ λmax(Σ

kj
T (θ∗)) < ∞;

(iii)
∣∣∣∂tij,T (θ∗)

∂θk

∣∣∣ = O(p) for all k = 1, 2, . . . , q.

Proof. (a) Let KT = [K(hij , w)]
p
i,j=1 be the tappering covariance. By eigen-

value inequalities of Schur product:

min
1≤i≤p

aiiλmin(Σ) ≤ λ(Σ ◦KT ) ≤ max
1≤i≤p

aiiλmax(Σ) (A.52)

where aij are the (i, j)th entry of matrixKT . By Assumption 3, λmin(ΣT )>
0 and limp→∞ λmax(ΣT ) < ∞

(b) Since Σk
T = Σk ◦ KT and Σkj

T = Σkj ◦ KT (b)(i) and (b)(ii) hold by
Assumption 6. For (b)(iii), since tij,T (θ) = tr(Σ−1

T Σi,TΣ
−1
T Σj,T )

∂tij,T (θ)

∂θl
=tr(Σ−1

T Σl,TΣ
−1
T Σi,TΣ

−1
T Σj,T ) + tr(Σ−1

T Σil,TΣ
−1
T Σj,T )

(A.53)

+ tr(Σ−1
T Σi,TΣ

−1
T Σl,TΣ

−1
T Σj,T ) + tr(Σ−1

T Σi,TΣ
−1
T Σjl,T )

=(1) + (2) + (3) + (4)

Then (1) can be written as:

tr(Σ−1
T Σl,TΣ

−1
T Σi,TΣ

−1
T Σj,T ) (A.54)

=tr((Σ−1
T − Σ−1)Σl,TΣ

−1
T Σi,TΣ

−1
T Σj,T )

+ tr(Σ−1(Σl,T − Σl)Σ
−1
T Σi,TΣ

−1
T Σj,T )

+ tr(Σ−1Σl(Σ
−1
T − Σ−1)Σi,TΣ

−1
T Σj,T )

+ tr(Σ−1ΣlΣ
−1(Σi,T − Σi)Σ

−1
T Σj,T )

+ tr(Σ−1ΣlΣ
−1Σi(Σ

−1
T − Σ−1)Σj,T )

+ tr(Σ−1ΣlΣ
−1ΣiΣ

−1(Σj,T − Σj)) + tr(Σ−1ΣlΣ
−1ΣiΣ

−1Σj)

Define ‖·‖
s
for matrix A by ‖A‖

s
= maxi{|λi(A)| , i = 1, 2, . . . , p}, where

λi(A) is the ith eigenvalue of matrix A. Notice∥∥Σ−1
T − Σ−1

∥∥
s
≤
∥∥Σ−1

∥∥
s
‖Σ− ΣT ‖s

∥∥Σ−1
T

∥∥
s
.

Since λmin(Σ
−1) = 1/λmax(Σ) > 0,

∥∥Σ−1
∥∥

s
≤ λmax(Σ

−1) < ∞. Also∥∥Σ−1
T

∥∥
s
< ∞, ‖Σj,T ‖

s
< ∞ for all j = 1, 2, . . . , q. Hence

∥∥Σ−1
T − Σ−1

∥∥
s
=

Op(p
−δ0). Then∣∣tr((Σ−1

T − Σ−1)Σl,TΣ
−1
T Σi,TΣ

−1
T Σj,T )

∣∣ (A.55)
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≤ p
∥∥((Σ−1

T − Σ−1)Σl,TΣ
−1
T Σi,TΣ

−1
T Σj,T )

∥∥
s

≤ p
∥∥(Σ−1

T − Σ−1)
∥∥

s
‖Σl,T ‖

s

∥∥Σ−1
T

∥∥2
s
‖Σi,T ‖

s
‖Σj,T ‖

s

= O(p/pδ0) = O(p1−δ0)

By similar argument, the first six terms in (1) all have the order of
O(p1−δ0). Apply the same argument on (2)− (4) we have:

∂tij,T (θ)

∂θl
=

∂tij(θ)

∂θl
+O(p1−δ0) (A.56)

By Assumption 6,
∂tij,T (θ)

∂θl
= Op(p). This completes the proof.

Proof of Theorem 3.2. From Lemma 4, all regularity conditions for ΣT are sat-
isfied. The proof of 3.2 is similar to that of Theorem 3.1. By replacing Σ by
ΣT and replacing Assumption 3-Assumption 6 by the results in Lemma 4, the
results in Theorem 3.2 follows.

A.4. Proofs for classification using PMLE-LDA

Lemma 5. Let θ̂ be the estimate of θ0 and
∥∥∥θ̂ − θ̂0

∥∥∥
2

= Op(
1√
np ). Define

Σ̃ = ΣT (θ̂) = Σ(θ̂) ◦K(w)

where K(w) is defined in Section 3.1.2. Assume Assumption 1, Assumption 2
and Assumption 11 and Assumption 12 hold,then∥∥∥Σ̃− Σ

∥∥∥
2

= Op(cn) and
∥∥∥Σ̃−1 − Σ−1

∥∥∥
2

= Op(cn)

where cn,p = max( wd
√
np ,

1
w )

Proof. ∥∥∥Σ̃− Σ
∥∥∥

2

=
∥∥∥Σ(θ̂) ◦K(w)− Σ(θ0)

∥∥∥
2

≤max
i

p∑
j=1

∣∣∣r(θ̂;hij)KT (hij , w)− r(θ0;hij)
∣∣∣

where KT (h,w) = [(1− h/w)+]
2. For any i = 1, 2, . . . , p,

p∑
j=1

∣∣∣r(θ̂;hij)KT (hij , w)− r(θ0;hij)
∣∣∣

≤
∑

hij<w

∣∣∣r(θ̂;hij)KT (hij , w)− r(θ0;hij)
∣∣∣+ ∑

hij≥w

|r(θ0, hij)|
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≤
∑

hij<w

∣∣∣(r(θ̂;hij)− r(θ0;hij))KT (hij , w)
∣∣∣

+
∑

hij<w

|r(θ0;hij)KT (hij , w)− r(θ0;hij)|+
∑

hij≥w

|r(θ0, hij)|

=(I) + (II) + (III)

From the same proof procedure of Lemma 3, we have (II) = Op(1/w) and
(III) = Op(1/w). From Assumption 1 and Assumption 2(iii), we have

(I) ≤
∑

hij<w

∣∣∣r(θ̂;hij)− r(θ0;hij)
∣∣∣ ≤ q∑

k=1

∑
hij<w

|rk(θ∗;hij)|
∣∣∣θ̂∗k − θ0k

∣∣∣
≤Mwdρ

∥∥∥θ̂ − θ0

∥∥∥
2

Therefore (I) = Op(
wd
√
np ). Combine (I), (II) and (III),

∥∥∥Σ̃− Σ
∥∥∥

2

= Op(cn).

Since Σ(θ0) and Σ̃ = ΣT (θ̂) are positive definite,
∥∥Σ−1

∥∥
2
= 1

λmin(Σ) < ∞ and∥∥∥Σ̃−1
T

∥∥∥
2

= 1
λmin(Σ̃T )

< ∞.

∥∥∥Σ̃−1
T − Σ−1

∥∥∥
2

=
∥∥∥Σ−1(Σ− Σ̃T )Σ̃

−1
T

∥∥∥
2

≤
∥∥Σ−1

∥∥
2

∥∥∥Σ− Σ̃T

∥∥∥
2

∥∥∥Σ̃−1
T

∥∥∥
2

= Op(cn),

and this completes the proof.

Lemma 6. Assume Assumption 12 holds. Then max1≤i≤s

∑p
k=s+1 σ

2
ik is

bounded above by a constant.

Proof. Since Assumption 12 holds, by similar argument as providing Lemma 3,
we have:

max
1≤i≤s

p∑
k=s+1

σ2
ik = max

1≤i≤s

p∑
k=s+1

γ(hik,θ0)

≤ max
1≤i≤s

⎛
⎝ ∑

0<hij<1

γ(hik,θ0) +
∑
hij≥1

γ(hik,θ0)

⎞
⎠

≤
∫ 1

0

hd−1γ(h,θ0)dh+

∫ ∞

1

hd−1γ(h,θ0)

≤
∫ 1

h=0

hd−1γ0(h,θ0)dh+

∫ ∞

1

hdγ0(h,θ0) ≤ ∞

Proof of Theorem 3.3. Suppose a new observation is from class 1, the condi-
tional misclassification rate of δ̂PMLE for class 1 is:

W1(δ̂PMLE) = 1− Φ(
(μ1 − Ȳ − n1−n2

2n Δ̂)T Σ̃−1Δ̂√
Δ̂T Σ̃−1ΣΣ̃−1Δ̂

) (A.57)
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Where Ȳ =
∑2

k=1

∑nk

i=1 Yki. We first consider denominator. From Lemma 5,∥∥∥Σ− Σ̃
∥∥∥

2

= Op(cn) and
∥∥∥Σ−1 − Σ̃−1

∥∥∥
2

= Op(cn), where cn = max( wd
√
np ,

1
w )

and w is the threshold distance w. Then

Δ̂T Σ̃−1ΣΣ̃−1Δ̂ =Δ̂T Σ̃−1Δ̂+ Δ̂T Σ̃−1(Σ− Σ̃)Σ̃−1Δ̂ (A.58)

≤Δ̂T Σ̃−1Δ̂+

∥∥∥Σ− Σ̃
∥∥∥

2

λmin(Σ̃)
Δ̂T Σ̃−1Δ̂

=Δ̂T Σ̃−1Δ̂(1 +Op(cn))

=(Δ̂TΣ−1Δ̂+ Δ̂T (Σ̃−1 − Σ−1)Δ̂)(1 +Op(cn))

=Δ̂TΣ−1Δ̂(1 +Op(cn))

Write

Δ̂TΣ−1Δ̂ = ΔΣ−1Δ+ 2(Δ̂−Δ)TΣ−1Δ+ (Δ̂−Δ)TΣ−1(Δ̂−Δ) (A.59)

From Theorem 3.1,
∥∥∥Δ̂−Δ

∥∥∥
2

= OP (
√

s
n ). Hence (Δ̂ − Δ)TΣ−1(Δ̂ − Δ) =

OP (
s
n ). Also the second term

(Δ̂−Δ)TΣ−1Δ ≤ (ΔTΣ−1Δ)
1
2

(
(Δ̂−Δ)TΣ−1(Δ̂−Δ)

) 1
2

(A.60)

Since s
nΔTΣ−1Δ

→ 0, we have

Δ̂TΣ−1Δ̂ =ΔTΣ−1Δ(1 +OP (

√
s

nΔTΣ−1Δ
) +OP (

s

nΔTΣ−1Δ
)) (A.61)

= ΔTΣ−1Δ(1 +OP (

√
s

nΔTΣ−1Δ
))

Let Dn,p = max(
√

s
nΔTΣ−1Δ

, cn), the denominator can be represented by:√
Δ̂T Σ̃−1ΣΣ̃−1Δ̂ =

√
ΔΣ−1Δ(1 +Op(Dn,p)).

Now consider the nominator.

(μ1 − Ȳ − n1 − n2

2n
Δ̂)T Σ̃−1Δ̂ (A.62)

= (μ1 − Ȳ )T Σ̃−1Δ̂+
n2 − n1

2n
Δ̂T Σ̃−1Δ̂

= (μ1 − Ȳ − n2

n
Δ)T Σ̃−1Δ̂+

n2

n
ΔT Σ̃−1Δ̂+

n2 − n1

2n
Δ̂T Σ̃−1Δ̂

= (1) + (2) + (3)

We start from (3). By Lemma 5, Δ̂T Σ̃−1Δ̂ = Δ̂TΣ−1Δ̂(1 + Op(cn)). From
(A.61), (3) can be represented by (3) = n2−n1

2n ΔTΣ−1Δ(1 +OP (Dn,p)).
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For (2), first we have ΔT Σ̃−1Δ̂ = ΔTΣ−1Δ̂(1 + Op(cn)). Then combine
(A.61)

ΔTΣ−1Δ̂≤
(
ΔTΣ−1Δ

) 1
2
(
Δ̂TΣ−1Δ̂

) 1
2
= ΔTΣ−1Δ(1 +OP (

√
s

nΔTΣ−1Δ
))

(A.63)

Then (2) can be represented by: (2) = n2

n ΔTΣ−1Δ̂ = n2

n ΔTΣ−1Δ(1 +
OP (Dn,p)).

Thus

(2) + (3) = 1
2Δ

TΣ−1Δ(1 +OP (Dn,p)) (A.64)

Now we consider (1). Let Δ̂ = (Δ̂T
1 , Δ̂

T
2 )

T where Δ̂1 is s dimension and Δ̂2

is p − s dimension. From Theorem 3.1, with probability tending to 1, Δ̂2 = 0

and
∥∥∥Δ̂−Δ

∥∥∥
2

= OP (
s
n ). Let ξ = μ1 − Ȳ − n2

n Δ = (ξT1 , ξ
T
0 )

T , where ξ1 is s

dimension and ξ0 is p− s dimension. Then ξ ∼ N(0, 1
nΣ)

Write

Σ =

(
Σ1 Σ12

ΣT
12 Σ2

)
, Σ−1 =

(
C1 C12

CT
12 C2

)

Σ̃ =

(
Σ̃1 Σ̃12

Σ̃T
12 Σ̃2

)
, Σ̃−1 =

(
C̃1 C̃12

C̃T
12 C̃2

)

where Σ1, Σ̃1, C1 and C̃1 are s× s matrix. Then

C12 = −Σ−1
1 Σ12C2 and C̃12 = −Σ̃−1

1 Σ̃12C̃2.

Write

(1) =ξT Σ̃−1Δ̂ = ξT1 C̃1Δ̂1 + ξT0 C̃12Δ̂1

=ξT1 C̃1Δ̂1 − ξ0C̃2Σ̃2Σ̃
−1
1 Δ̂1

=(i) + (ii)

First we have: ξT1 C̃1Δ̂1 ≤ (ξT1 C̃1ξ1)
1/2(Δ̂T

1 C̃1Δ̂1)
1/2. By Lemma 5,

ξT1 C̃1ξ1 = ξT1 C1ξ1(1 +Op(cn))

Since ξ1 ∼ N(0, 1
nΣ1), E(ξT1 Σ

−1
1 ξ1) = tr( 1nIs) = s

n . Then ξT1 Σ
−1
1 ξ1 = OP (

s
n )

and therefore ξT1 C1ξ
T
1 ≤ ξT1 Σ

−1ξT1
λmax(C1)

λmin(Σ
−1
1 )

= Op(
√

s
n ). Hence ξT1 C̃1ξ1=OP (

s
n ).

Also,

Δ̂T
1 C̃1Δ̂1 = Δ̂T Σ̃−1Δ̂ = ΔTΣ−1Δ(1 +Op(Dn,p))

Hence (i) in (1) is: (i) = ξT1 C̃1Δ̂1 = (ΔTΣ−1Δ)
1
2Op(

√
s
n ).
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The second term in (1) is:

(ii) = ξ0C̃2Σ̃12Σ̃
−1
1 Δ̂1 ≤ (Δ̂1Σ̃

−1
1 Δ̂1)

1/2(ξ0C̃
T
2 Σ̃

T
12Σ̃

−1
1 Σ̃12C̃2)

1/2

By Lemma 5,

ξT0 C̃
T
2 Σ̃

T
12Σ̃

−1
1 Σ̃12C̃2ξ0 = ξ0C

T
2 Σ

T
12Σ

−1
1 Σ12C2ξ0(1 +Op(cn))

Since ξ0 ∼ N(0, 1
nΣ2),

E[ξT0 C
T
2 Σ

T
12Σ

−1
1 Σ12C2ξ0] ≤λmax(Σ

−1
1 )E[ξT0 C

T
2 Σ

T
12Σ12C2ξ0]

=λmax(Σ
−1
1 )tr(E[ξT0 C

T
2 Σ

T
12Σ12C2ξ0])

=λmax(Σ
−1
1 )

1

n
tr(CT

2 Σ
T
12Σ12C2Σ2)

≤λmax(Σ
−1
1 )λmax(Σ2)λ

2
max(C2)

1

n
tr(Σ12Σ

T
12).

tr(Σ12Σ
T
12) =

s∑
i=1

p∑
k=s+1

σ2
ik ≤ s max

1≤i≤s

p∑
k=s+1

σ2
ik, (A.65)

thus ξT0 C
T
2 Σ

T
12Σ

−1
1 Σ12C2ξ0 = Op(

s
ndn,p), where dn,p = max1≤i≤s

∑p
k=s+1 σ

2
ik.

By Lemma 6, dn,p is bounded above by a constant. As a result:

ξT0 C̃
T
2 Σ̃

T
12Σ̃

−1
1 Σ̃12C̃2ξ0 =xiT0 C

T
2 Σ

T
12Σ

−1
1 Σ12C2ξ0

=Op(
s

n
dn,p)(1 +Op(max(cn,

√
s

n
)))

Since

Δ̂T
1 Σ̃

−1
1 Δ̂1 ≤ Δ̂T

1 C̃1Δ̂1 ≤ Δ̂T Σ̃−1Δ̂ = ΔTΣ−1Δ(1 +OP (Dn,p)) (A.66)

Let An,p = max(
√

s
nΔTΣ−1Δ

, s
n , cn), we have

(ii) = (ΔTΣ−1Δ)
1
2OP (An,p)) (A.67)

Combining the approximation of (i) and (ii) in (1), we have (1) = ξT Σ̃−1Δ̂ =

(ΔTΣ−1Δ)
1
2OP (An,p).

As a result, since

√
s/n

Cp
→ 0,

W1(δ̂PLDA) = 1− Φ(
1
2Δ

TΣ−1Δ(1 +Op(Dn,p)) +
√
ΔTΣ−1ΔOp(An,p)√

ΔTΣ−1Δ(1 +Op(Dn,p))
)

= 1− Φ

(
1
2Cp(1 +Op(Dn,p) +

√
CpOp(An,p)√

Cp(1 +Op(Dn,p))

)
(A.68)
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Similarly, we can derive:

W2(δ̂PLDA) = Φ(
−1

2Δ
TΣ−1Δ(1 +Op(Dn,p)) +

√
ΔTΣ−1ΔOp(An,p)√

ΔTΣ−1Δ(1 +Op(Dn,p))
)

= Φ

(
−1

2Cp(1 +Op(Dn,p) +
√
CpOp(An,p)√

Cp(1 +Op(Dn,p))

)
(A.69)

Since Dn,p → 0 and An,p → 0, both W1(δ̂PLDA) and W2(δ̂PLDA) go to 1 −
Φ(

√
C0

2 ) as n, p → ∞ with probability tending to 1 as n, p, s → ∞. Then the

approximate overall misclassification error rate is W (δ̂PLDA) =
1
2 (W1(δ̂PLDA)+

W2(δ̂PLDA)) → 1− Φ(
√
C0

2 ). This completes the proof of sub-optimal.

Now we show the asymptotically optimal of W (δ̂PLDA). If Cp → C0 < ∞,
W (δ̂PLDA)

WOPT
= W (δ̂PLDA)

Φ(−
√

Cp
2 )

→ 1.

If Cp → ∞,

x
√

Cp

4 + x2
e−

x2−Cp
8 ≤ W (δ̂PLDA)

Φ(−
√

Cp

2 )
≤ 4 + Cp

x
√
Cp

e−
x2−Cp

8

where x =
Cp(1+Op(Dn,p))±2

√
CpOp(An,p)√

Cp(1+Op(Dn,p))
=
√

Cp(1 +Op(Dn,p ±O(
An,p√

Cp

))).

First
x
√

Cp

4+x2 e−
x2−Cp

8 → 1 and
4+Cp

x
√

Cp

→ 1 as Cp → ∞. Also,

x2 − Cp = Cp(O(Dn,p +O(
An,p√
Cp

)))

if Cpcn → 0 and Cp

√
s
n → 0, we have x2 −Cp → 0. Hence W (δ̂PLDA)

WOPT
→ 1. This

completes the proof.
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